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ABSTRACT

Achieving nuanced and accurate emulation of human voice has been a longstand-
ing goal in artificial intelligence. Although significant progress has been made in
recent years, the mainstream of speech synthesis models still relies on supervised
speaker modeling and explicit reference utterances. However, there are many as-
pects of human voice, such as emotion, intonation, and speaking style, for which
it is hard to obtain accurate labels. In this paper, we propose VoxGenesis, a novel
unsupervised speech synthesis framework that can discover a latent speaker man-
ifold and meaningful voice editing directions without supervision. VoxGenesis
is conceptually simple. Instead of mapping speech features to waveforms de-
terministically, VoxGenesis transforms a Gaussian distribution into speech distri-
butions conditioned and aligned by semantic tokens. This forces the model to
learn a speaker distribution disentangled from the semantic content. During the
inference, sampling from the Gaussian distribution enables the creation of novel
speakers with distinct characteristics. More importantly, the exploration of latent
space uncovers human-interpretable directions associated with specific speaker
characteristics such as gender attributes, pitch, tone, and emotion, allowing for
voice editing by manipulating the latent codes along these identified directions.
We conduct extensive experiments to evaluate the proposed VoxGenesis using
both subjective and objective metrics, finding that it produces significantly more
diverse and realistic speakers with distinct characteristics than the previous ap-
proaches. We also show that latent space manipulation produces consistent and
human-identifiable effects that are not detrimental to the speech quality, which
was not possible with previous approaches. Finally, we demonstrate that VoxGe-
nesis can also be used in voice conversion and multi-speaker TTS, outperforming
the state-of-the-art approaches. Audio samples of VoxGenesis can be found at:
https://bit.ly/VoxGenesis.

1 INTRODUCTION

Deep generative models have revolutionized multiple fields, marked by several breakthroughs in-
cluding the Generative Pretrained Transformer (GPT) (Brown et al., 2020), Generative Adversarial
Network (GAN) (Goodfellow et al., 2014), Variational Autoencoder (VAE) (Kingma & Welling,
2014), and, more recently, Denoising Diffusion Models (DDPM) (Dhariwal & Nichol, 2021} [Ho
et al.,[2020). These models can generate realistic images, participate in conversations with humans,
and compose intricate programs. When utilized in speech synthesis, they are capable of producing
speech that is virtually indistinguishable from human speech (Shen et al., 2018} |Oord et al., 2016
Kim et al.|2021; |[Wang et al.; Tan et al.,|2022)). However, the success are primarily confined to repli-
cating the voices of training or reference speakers. In contrast to image synthesis, where models can
produce realistic and unseen scenes and faces, the majority of speech synthesis models are unable to
generate new, unheard voices. We argue that this limitation predominantly stems from the design of
the speaker encoders and neural vocoders. Typically, they function as deterministic modules (Polyak:
et al.| 2021} Jia et al., [2018bj |[Kim et al., 2021} |Qian et al.| 2020), mapping speaker embeddings to
the target waveforms.

Besides the obvious advantage of being able to generate new objects, generative models also per-
mit the control over the generation process and allow for latent space manipulation to edit specific
aspects of the generated objects without the necessity for attribute labels (Harkonen et al., [2020;


https://bit.ly/VoxGenesis

Under review as a conference paper at ICLR 2024

Voynov & Babenkol |2020a). This advantage is especially important in speech, where nuanced char-
acteristics such as emotion, intonation, and speaker styles are hard to label. The incorporation of
a speaker latent space could enable more sophisticated voice editing and customization, expanding
the potential applications of speech synthesis substantially. However, learning the speaker distribu-
tion is not a straightforward task. This is due to the intrinsic complexity of speech signals where
speaker-specific characteristics are entangled with the semantic content information. As such, we
cannot directly fit a distribution over speech and expect the model to generate new speakers while
maintaining control over the content information. The disentanglement of content from speaker
features is a necessary first step (Hsu et al., 2017; |Yadav et al.l 2023} |Qian et al., [2020; [Lin et al.,
2023). In (Stanton et al., [2022), the authors proposed TacoSpawn, a method that fits a Gaussian
Mixture Model (GMM) over Tacotron2 speaker embeddings to learn a prior distribution over speak-
ers. While TacoSpawn (Stanton et al., [2022)) does offer the capability to generate novel speakers,
it comes with its own set of limitations. Firstly, there is a separation in the parameterization of the
speaker embedding table and the speaker generation model, which prevents the synthesis modules
from fully benefiting from the generative approach. Secondly, in contrast to modern deep genera-
tive models, the mixture model in TacoSpawn is trained to maximize the likelihood of the speaker
embeddings rather than the data likelihood, thereby limiting the representational capability of the
generative model.

In this paper, we introduce VoxGenesis, an unsupervised generative model that learns a distribu-
tion over the voice manifold. At its core, VoxGenesis learns to transform a Gaussian distribution
into a speech distribution conditioned on semantic tokens. This approach contrasts with conven-
tional GAN vocoders such as Mel-GAN (Kumar et al., 2019), HIFI-GAN (Kong et al., [2020), and
more recently SpeechResynthesis (Polyak et al., 2021), which learn a deterministic mapping be-
tween speech features and waveforms. Figure [I] illustrates the architectural differences between
VoxGenesis and SpeechResynthesis. VoxGenesis introduces a mapping network that converts the
isotropic Gaussian distribution into a non-isotropic one, enabling the control module (the yellow
box) to identify major variances. It also features a shared embedding layer for the discriminator and
employs semantic transformation matrices, facilitating semantic-specific transformations of speaker
attributes. Furthermore, VoxGenesis sets itself apart from image generation GANs like Style-GAN
or BigGAN by integrating a Gaussian constrained encoder into the framework. This inclusion not
only stabilizes training but also enables the encoding of external speaker representations.

In summary, our contributions are as follows:

* We introduce a general framework for unsupervised voice generation by transforming
Gaussian distribution to speech distribution.

* We demonstrate the potential for unsupervised editing of nuanced speaker attributes such
as gender characteristics, pitch, tone, and emotions.

* We identify the implicit sampling process associated with using speaker embeddings for
GANSs and proposed a divergence term to constrain the speaker embeddings distributions.
This allows the conventional speaker encoder to be incorporated as components of a gen-
erative model, thereby facilitating the encoding and subsequent modification of external
speakers.

2 BACKGROUD

Voice Conversion (VC) and Text-to-Speech (TTS). The majority of VC and TTS models work
in the speech feature domain, meaning that the model output are speech features such as a Mel-
spectrogram (Qian et al., 2019; [Kaneko et al.l 2019} [Shen et al., 2018; |[Ren et al., 2019). The
primary distinction between VC and TTS is their approach to content representations. While VC
strives to convert speech from one speaker to another without altering the content, TTS acquires
content information from a text encoder. This encoder is trained on paired text-speech data and can
utilize autoregressive modelling (Shen et al., 2018)) or non-autoregressive modelling with external
alignments, as seen in FastSpeech (Ren et al.| 2019). Given the necessity for vocoders in both VC
and TTS to invert the spectrogram, there has been a significant effort to improve them. This has
led to the development of autoregressive, flow, GAN, and diffusion-based vocoders (Kong et al.,
2020; |Oord et al. 2016} |Prenger et al., 2019;|Chen et al.| 2020). Recently, VITS (Kim et al.,|2021)),
an end-to-end TTS model, has been introduced; it utilizes conditional variational autoencoders in
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tandem with adversarial training to facilitate the direct conversion from text to waveform. Building
on top of VITS, YourTTS (Casanova et al., [2022)) caters to multilingual scenarios in low-resource
languages by enhancing the input text with language embeddings. Beyond the standard GAN and
VAE models, VoiceBox introduces flow-matching to produce speech when provided with an audio
context and text (Le et al.||[2023)).

Speaker Modeling in Speech Synthesis. Speaker modeling stands as a crucial component in speech
synthesis. The initial approach to speaker modeling involved the utilization of a speaker embedding
table (Gibiansky et al., 2017). However, the scalability of this method becomes a concern with
the increase in the number of speakers. Therefore, pretrained speaker encoders have been intro-
duced into TTS systems to facilitate the transfer of learned speaker information to the synthesis
modules (Jia et al., |2018a). The speaker embeddings can be combined with conventional speech
features like MFCC or with self-supervised learned (SSL) speech units (Hsu et al., 2021} [Schneider
et all 2019). A demonstration of integrating SSL speech units with speaker embeddings is pre-
sented in SpeechResynthesis (Polyak et al., 2021)), where the authors have proposed a model that
re-synthesizes speech utilizing SSL units and speaker embeddings. Besides the explicit utilization
of speaker lookup tables and speaker embeddings, speaker information can also be incorporated im-
plicitly. This can be achieved by training autoregressive models on residual vector quantized (RVQ)
representations (Kumar et al.} [2023; Défossez et al [2022; [Zeghidour et al.| 2021)), exemplified by
VALL-E (Wang et al.), or through BERT-like masking prediction as in SoundStorm (Borsos et al.,
2023).

Speech Style Learning and Editing. Speech conveys multifaceted information such as speaker
identity, pitch, emotion, and intonation. Many elements are challenging to label, making unsuper-
vised learning a popular approach for extracting such information. The concept of Style Tokens
is introduced in (Wang et al.l [2018), where a bank of global style tokens (GST) is learned jointly
with Tacotron. The authors demonstrate that GST can be employed to manipulate speech speed
and speaking style, independently of text content. In another development, SpeechSplit (Wang
et al.| |2018) achieves the decomposition of speech into timbre, pitch, and rhythm by implement-
ing information bottlenecks. Consequently, style-transfer can be executed using the disentangled
representations. However, the utilization of information bottlenecks can potentially result in de-
teriorated reconstruction quality. To address this issue, the authors in (Choi et al.l 2021) propose
NANSY, an analysis and synthesis framework that employs information perturbation to disentangle
speech features. This method has been successfully applied in various applications, including voice
conversion, pitch shift, and time-scale modification.

3  VOXGENESIS

3.1 LEARNING LATENT SPEAKER DISTRIBUTION WITH GAN

Generative Adversarial Network (GAN) has been the de facto choice for vocoders since the ad-
vent of Mel-GAN and HiFi-GAN (Kumar et al., 2019; |[Kong et al., 2020). However, these GANs
are predominantly utilized as spectrogram inverters, learning deterministic mappings from Mel-
spectrogram or other speech features (Polyak et al., |2021) to waveforms. A notable limitation in
these models is the lack of true “generation”; the vocoders learn to replicate the voices of the train-
ing or reference speakers rather than creating new voices. This stands in contrast to the application
of GANSs in computer vision, where they are primarily utilized to generate new faces and objects
(Karras et al., [2019; Brock et al., |2018). The principal challenge in using GAN as a generative
model arises due to the high semantic variations in speech. This makes transforming a Gaussian
distribution to a speech distribution difficult without certain constraints. Recently, Self-Supervised
Learned (SSL) speech units have emerged as effective tools for disentangling semantic information
(Hsu et al.| 2021 Baevski et al.| [2020). This advancement motivates us to utilize these semantic to-
kens as conditions for GAN; consequently, a conditional GAN is employed to transform a Gaussian
distribution, rather than mapping speech features to waveforms. Let’s represent a semantic token
sequence as Y and an acoustic waveform sequence as X, originating from the empirical distribution
Pdata(X ). We aim to train a GAN to transform a standard Gaussian distribution p(z) into speech
distributions pgu, (X) conditioned on semantic tokens Y. This is done by solving the following
min-max problem with a discriminator D and a generator G:

mgnmgx V(D,G) = Expy. (x)[log D(X | Y)] + Eznr0,1) [log(l1 — D(G(z | Y))], (1)
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Figure 1: Illustration of (a) the SpeechResynthesis (excluding pitch module) and (b) our VoxGene-
sis. In contrast to SpeechResynthesis, which focuses on reconstructing the waveforms from semantic
tokens and speaker embeddings, VoxGenesis is a deep generative model that learns to transform a
Gaussian distribution to match the speech distribution conditioned on semantic tokens either using
Gaussian noise as input (the green dashed line), or using embeddings from a Gaussian-constrained
speaker encoder (pink dashed line).

There is no one-to-one correspondence between the latent code and the generated waveform any-
more. Therefore, training the network with the assistance of Mel-spectrogram loss, as proposed in
(Kong et al.l 2020), is no longer feasible here. Instead, the model is trained to minimize discrepan-
cies only at the distribution level, as opposed to relying on point-wise loss.

Regarding the generator’s design, Figure [T(b) highlights three modules that are vital for learning:
Shared Embedding Layer e: Both the generator and the discriminator leverage a shared embed-
ding layer e. It is crucial, in the absence of Mel-spectrogram loss, for the discriminator to receive
semantic tokens; otherwise, the generator could deceive the discriminator with intelligible speech.
Mapping Network M : A mapping network M is integrated, consisting of seven feedforward layers,
to transform the latent code prior to the deconvolution layers. Drawing inspiration from Style-GAN
(Karras et al.| 2019), this enables the generation of more representative latent codes and a non-
isotropic distribution, the output of which will be utilized by the control module, discussed in later
section. Semantic Conditioned Transformation 7": Rather than indiscriminately adding the latent
codes to each semantic token embedding, we conditionally transform the latent code based on the
semantic information. This enables semantic-specific transformations of speaker attributes. Specifi-
cally, the generator comprises a deep deconvolution network f, a semantic conditioned feed-forward
network 7', a shared embedding layer e, and a latent code transform network M. The equation for
the generator, conditioned on semantic tokens, is represented as:

G(z|Y) = f(T(M(z),Y) +e(Y)). )

Ancestral Sampling for GAN. Transforming random noise to speech distribution has its disad-
vantages, one of which is the inability to use specific speakers’ voices post-training due to the
absence of an encoder to encode external speakers. Another notable challenge is the well-known
“mode collapse,” an issue often mitigated in most GAN vocoders due to the stabilizing effect of the
Mel-spectrogram loss during training. To overcome these challenges, we introduce a probabilistic
encoder capable of encoding speaker representation using posterior inference, pg(z| X ), while main-
taining the marginal distribution as a standard Gaussian distribution, p(z). The neural factor analysis
(NFA) (Lin et al.l [2023) is one of such models. Here we assume the NFA encoder is pre-trained.
During GAN training, ancestral sampling is used; initially, samples are drawn from the empirical
distribution, pga, (X)), followed by sampling from the posterior distribution , py(z| X ), parametrized
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by 6:

X ~ pdata(X) (3)
z ~ py (2| X). )

Given that the marginal distribution, p(z), is Gaussian, the GAN continues to be trained to transform
a Gaussian distribution to a speech distribution, conditioned on semantic tokens. Here, the one-to-
one correspondence between z and the target waveform, X, is re-established, allowing the usage of
Mel-spectrogram loss to stabilize training and avert mode collapse. During inference, to generate
random speakers, samples can be drawn from the marginal distribution, p(z), or, to encode a specific
speaker, the maximum a posteriori estimate of the conditional distribution, pg(z|X), can be used.
We refer to the resulting model as NFA-VoxGenesis.

The ancestral sampling procedures described in Eq. [3] and Eq. ] can be generalized to encompass
any encoder capable of yielding a conditional distribution, extending even to discriminative speaker
encoders. The essential prerequisite here is the feasibility of sampling from the marginal distribu-
tion p(z), a condition not satisfied by discriminative speaker encoders as it does not constrain p(z)
during training. To address this, a divergence term can be introduced during discriminative speaker
encoders training to ensure that the marginal distribution py(z) approximates a standard Gaussian
distribution:

min ADscr, (po (2)| (0, 1), 5)

where Dy, is the Kullback—Leibler divergence and A control the strength of divergence relate to
other encoder loss. The subscript 6 denotes the dependence of the implicit distribution p(z) on the
parameters of the speaker encoder. Since pg(z) is accessible only through ancestral sampling, Eq.
is executed by computing the mean and the standard deviation of the speaker embeddings within
a mini-batch and subsequently computing the divergence with a standard Gaussian. Incorporating
the divergence term during the training phase of the speaker encoders enables compatibility of our
framework with any speaker encoders. The VoxGenesis model equipped with a speaker encoder
trained via cross-entropy is referred as CE-VoxGenesis, and when trained with contrastive loss, it is
referred as CL-VoxGenesis. Because all encoders are trained with Gaussian divergence, we refer to
them as Gaussian-constrained speaker encoders as depicted by Figure [I(b). Table []illustrates the
different variants of VoxGenesis associated with various speaker encoders.

3.2 INTERPRETABLE LATENT DIRECTION DISCOVERY

GAN:Ss are often preferred over denoising diffusion models and flow models (Ho et al.,[2020; Kingma
& Dhariwal, |2018)) due to their semantically meaningful latent space. This characteristics enables
manipulations to modify various aspects of the generated object (Hérkonen et al., [2020; Voynov &
Babenko, 2020b). This feature is particularly invaluable in applications where obtaining attribute
labels is challenging. In this section, we illuminate how a straightforward application of Princi-
pal Component Analysis (PCA) on intermediate features unveils latent directions instrumental for
manipulating speaker characteristics. PCA is a canonical technique designed to identify the pre-
dominant variations within the data. Our objective is to apply PCA to latent representations to
uncover these significant variations or changes that are interpretable to humans. As discussed in
(Hérkonen et al.,[2020), the isotropic distribution of p(z) tends to be ineffective for highlighting the
most distinctive change directions, due to its uniform characteristic in all dimensions. To use PCA
effectively, we opt for computing them on the output of the mapping network M (z). We randomly
sample z from a Gaussian distribution and compute the corresponding w = M (z). Singular Value
Decomposition (SVD) is then employed to determine the N bases {v})_;. For any given speaker
representation z, modifications can be performed by moving w along the direction outlined by the
principal component v, :

w' = M(z) + svp, 6)

where s represents a shift value. w’ is subsequently fed through the deconvolution layers to synthe-
size speech spoken by the modified speaker. This procedure is applicable to external speaker repre-
sentations encoded through encoders like NFA or Gaussian-constrained speaker encoders. Figure
illustrates the effect of modifying latent codes along the discovered directions. We find principal di-
rections related to gender characteristics, pitch, tone, and emotion. Notably, inter-speaker variations
like gender are reflected in the leading Principal Components (PCs), while more subtle intra-speaker
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Figure 2: The effect of manipulating different latent directions on speaker similarity, pitch, and
gender identification.

nuances like emotion are captured in the latter PCs. As illustrated in Figure 2| (b), manipulating the
latent representation of a male speaker along the negative direction of first principal component
gradually shifts it towards the sound of a female speaker, as detected by a speech gender classifier.
It is noteworthy that between the region of -0.1 and -0.25, speaker similarity remains high (0.9 and
0.7, respectively), and the classifier exhibits ambiguity regarding the speaker’s gender. This implies
minimal alteration in speaker identity, while rendering the speaker more feminine sounding with
subtle modifications. In Figure|2|(a), we demonstrate the effects of modifying the third principal di-
rection, responsible for controlling pitch. The shift in the latent code along this PC (depicted by the
green line) apparently lowers the pitch across the entire recording, compared to the original wave-
form represented by the blue line. Conversely, altering along the opposite direction (illustrated by
the red line) elevates the pitch. Figure 2] (c) evaluates the ramifications of shifting different PCs on
speaker similarity. It’s evident that manipulations employing leading PCs influence speaker similar-
ity more substantially compared to those utilizing later PCs. This phenomenon suggests a potential
application of later PCs in refining subtle speaker attributes like emotion and intonation, allowing
for nuanced adjustments while preserving the inherent characteristics of the speaker.

3.3 VOICE CONVERSION AND MULTI-SPEAKER TTS WITH VOXGENESIS

With the integration of NFA (Lin et al.l [2023) or Gaussian-constrained speaker encoders, VoxGe-
nesis can be effectively employed for voice conversion and multi-speaker Text-to-Speech (TTS).
Given a speaker reference waveform, denoted as X3, and a content reference waveform, denoted as
X, VoxGenesis enables the conversion of the speaker identity in X, to that in X, while the speech
content in X, remains unchanged. This is represented mathematically as:

Xossp =G (zp | Ya), where 2z, =argmax pg(z | Xp). @)

Y, represents the semantic token that is extracted from the content reference waveform X,. Essen-
tially, this capability allows for the transformation of speaker identity of the given speech content
without altering the content of the speech. We can also sample from a Gaussian distribution to
generate a novel speaker speaking the content in X, :

Xo=G(z|Y,), where z~ N(0,T). (8)

VoxGenesis can also be deployed as a speaker encoder and vocoder for a multi-speaker TTS. For
this application, we initially discretize speech features utilizing HuBERT (Hsu et al., [2021) and
subsequently train a Tacotron model to predict the discrete tokens.

4 EXPERIMENTAL SETUP

4.1 MODEL CONFIGURATION AND TRAINING DETAILS

All VoxGenesis variants and baseline models including TacoSpawn, VITS, and SpeechResynthesis
were trained using the train-clean-100 and train-clean-360 split of LibriTTS-R (Zen et al., 2019
Koizumi et al.|2023)). Audio files are downsampled to 16kHz to ensure compatibility with the 16kHz
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Table 1: Speaker generation evaluation. Subjective metrics results are reported with a 95% confi-
dence interval.

Method | FID || Spk. Similarity || Spk. Diversity 1| ~MOS 1
Ground Truth \ - \ 0.22 \ 4.2240.07 \ 4.34+0.09
TacoSpawn (Stanton et al., [2022) \ 0.18 \ 0.59 \ 3.85+0.09 \ 3.54 +0.09
Vanilla-VoxGenesis 0.17 0.38 3.96+0.07 3.92+0.07
NFA-VoxGenesis 0.14 0.30 4.17+0.09 4.22+0.06
CL-VoxGenesis 0.16 0.36 4.02+0.12 3.7440.08
CE-VoxGenesis 0.11 0.28 4.1140.07 4.1340.09

models. For training vanilla-VoxGenesis, NFA-VoxGenesis, and CL-VoxGenesis, we did not use
speaker labels or any meta data. For CE-VoxGenesis, we used the speaker labels. We used HuBERT
Large as semantic encoder (Ott et al., | 2019). Different from (Lin et al.,[2023)), NFA was trained with
an EM algorithm using HuBERT’s features and discrete tokens. The embeddings dimension of NFA
speak vector is 300. For CE-VoxGenesis and CL-VoxGenesis, the speaker encoders were trained
using cross-entropy and contrastive loss on a X-vector network (Snyder et al.l [2018)), respectively.
Because the HuBERT features have a larger time span than the MFCC features used in the original
HiFi-GAN, we adjusted the upsample parameters in the transpose convolution layer to [10, 4, 2, 2].
We used the Adam optimizer with a learning rate of 0.0002 and the betas set to 0.8 and 0.99. The
training segment length was set to 8,960 frames.

4.2 EVALUATION METRICS FOR SPEAKER GENERATION

We used Fréchet Inception distance (FID) (Heusel et al., 2017)) on speaker embeddings to compare
the generated speaker distribution and the training speaker distribution. We used 50,000 randomly
sampled utterances to evaluate the FID score. Because a model that simply memorizes the training
speakers would achieve a very low FID score and it is easy to memorize speaker embeddings with
speaker labels, which would not align with our goal of novel speaker generation. To complement
FID, we used an additional subjective metric that measures the similarity between the generated
speakers and the training speakers.

5 RESULTS

Given the nature of our work, we believe that it would be more informative for readers to lis-
ten to the audio samples for comparisons. The demo page is available at https://bit.1ly/
VoxGenesis.

5.1 SPEAKER GENERATION EVALUATION

In this section, we evaluate the diversity, speech quality, and similarity of the generated speakers
in comparison to the training speakers. Table [I] presents these evaluations for TacoSpawn (Stanton
et al.} 2022) and four VoxGenesis variants, with ground truth included for reference. We can see that
all four variants of VoxGenesis produce lower FID scores than TacoSpawn. This suggestes that Vox-
Genesis is more effective in capturing the speaker distribution. Moreover, VoxGenesis speaker simi-
larity is also significantly lower than TacoSpawn, suggesting that the generative process relies less on
memorization of the training speakers. Among the variants, the unsupervised version of VoxGenesis
registers a higher FID score than its supervised counterpart—a foreseeable outcome given its lack
of access to speaker labels. Despite no discernible difference in speech quality, Vanilla-VoxGenesis
records the lowest diversity score, as reflected by both FID and speaker diversity score, signaling
some degree of mode collapse occurring in Vanilla-VoxGenesis training. During the auditory evalu-
ation, we found that VoxGenesis tends to generate speakers who exhibit distinct characteristics and
speak with better intonation and emotion, in contrast to the more neutral-toned speakers produced
by TacoSpawn. This distinction is reflected in the MOS and speaker diversity scores, where all four
VoxGenesis variants outperform TacoSpawn.
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5.2 EDIBILITY OF THE LATENT SPACE

In this section, we evaluate the edibility of the VoxGenesis latent space. Specifically, the objectives
are to investigate: (1) whether editing impacts the speech quality of the recording, (2) the extent to
which editing alters the identity of the speaker, and (3) whether the editing along a direction has
consistent effects and generalizes to both the internal latent code and externally encoded speakers.
To address these questions, we provided 10 edited sample for each editing direction, and engaged
human assessors to evaluate both the speech quality, measured by MOS, and identifiability, mea-
sured by the “successful ID rate”. Additionally, a pre-trained speaker classifier (Snyder et all, 2018)
was employed to assess the similarity among the edited speakers. For the identifiability experiments,
assessors were asked to identify the changes induced by editings, given 10 options, which included
4 real directions utilized in the experiment and 6 random distractors. We conducted experiments on
both internal representations (samples from Gaussian prior) and external speakers (extracted from
test speech files). The outcomes of these experiments are shown in Figure [3] where the first row
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Figure 3: Barplot showing the effect of editing the latent representations on speaker similarity,
speech quality, and identifiability.

shows the results of internal speaker editing and the second row show the results of external speaker
editing, and each column shows the different aspects of evaluation. In the column (a), it is observed
that, with the exception of gender, most edits retain high speaker similarity, indicating that the ma-
jority of the latent directions induced are within-speaker changes. In the column (b), which measures
speech quality, it is evident that editing does not compromise the quality of the speech much; most
MOS of the edited files exceed 4. In the column (c), which examines the identifiability of the editing,
it is apparent that changes in internal representation are quite noticeable to the listener, as indicated
by the very high successful ID rate in the first row of the (c) column. Nevertheless, we noticed that
manipulating external code is notably more challenging than adjusting internal code. This is partic-
ularly apparent for more nuanced attributes such as tone and emotion, where the successful ID rate
experiences a significant drop between the two rows of the column (c). Although Success ID Rate
decreases in all instances, different encoders exhibit distinct behaviors, with NFA and supervised
speaker encoder demonstrating more robust editing capabilities.

5.3 ZERO-SHOT VOICE CONVERSION AND MULTI-SPEAKER TTS PERFORMANCE

In addition to speaker generation and editing, it is straightforward to apply VoxGenesis to voice
conversion and multi-speaker TTS tasks. Given that the majority of VC and TTS systems utilize
embeddings from discriminative speaker encoders, exploring the performance of an unsupervised
approach like NFA-VoxGenesis, which is trained without using any speaker labels, is quite interest-
ing. Therefore, the focus of this evaluation is primarily on NFA-VoxGenesis, and its performance is
compared with the state-of-the-art the voice conversion system, Speech Resynthesis

2021])), and the state-of-the-art multi-speaker TTS system, VITS (Kim et al., [2021}).
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For zero-shot voice conversion, we randomly selected 15 speakers from LibriTTS-R (Koizumi et al.,
2023)) test split. We assessed the capability of the model to retain content and maintain speaker
fidelity. This is measured by the Word Error Rate (WER) and Equal Error Rate (EER) using a pre-
trained ASR (Ravanelli et al.,|2021) and an (Snyder et al., |2018) model, respectively, alongside the
speech naturalness, measured by MOS. The results are documented in Table[2} As can be seen from
Table 2] VoxGenesis and Speech Resynthesis exhibit comparable performance in content preser-
vation, as measured by WER. This is anticipated since both VoxGenesis and Speech Resynthesis
employ a HuBERT-based model to extract content information. Regarding speaker fidelity, NFA-
VoxGenesis surpasses Speech Resynthesis in terms of EER, indicating that the generative speaker
encoder of NFA maintains speaker information more effectively than the discriminative speaker
encoder in Speech Resynthesis. Additionally, the overall speech quality of NFA-VoxGenesis is su-
perior to that of Speech Resynthesis, as reflected by the higher MOS score. For multi-speaker TTS,
we assess the generated speech with a focus on speaker MOS, where evaluators appraise the similar-
ity between the generated speakers and the ground truth speakers, putting aside other aspects such
as content and grammar. Additionally, we employ general MOS to measure the overall quality and
naturalness of the speech. As indicated in Table [3] VoxGenesis achieves higher MOS scores in both
speaker similarity and naturalness. We observed that VoxGenesis preserves speakers characteristics
and intonation better, despite the absence of speaker labels during the training.

Method Dataset WER EER MOS
NFA-VoxGensis LibriTTS-R  7.56 575  4.21+0.07
Speech Resynthesis ~ LibriTTS-R  7.54 6.23  3.77+£0.08
ControlVC LibriTTS-R  7.57 5.98  3.85+0.06
NFA-VoxGensis LibriTTS 6.13 4.82  4.01+0.07
Speech Resynthesis  LibriTTS 6.72 549  3.42+0.04
ControlVC LibriTTS 6.43 5.22 3.56+0.03
NFA-VoxGensis VCTK 5.68 2.83  4.32+0.08
Speech Resynthesis ~ VCTK 6.15 417  3.58+0.09
ControlVC VCTK 6.03 3.88  3.66+0.07

Table 2: Results of Voice Conversion Experiments on LibriTTS-R, Original LibriTTS, and VCTK
Datasets. The baselines are ControlVC (Chen & Duan, [2022)) and Speech Resynthesis (Polyak et al.}
2021)).

Measurement Dataset NFA-VoxGenesis VITS StyleTTS  FastSpeech2
Spk. MOS LibriTTS-R  4.03+0.09 3.63x0.2  3.68+0.09 3.55+0.12
MOS LibriTTS-R  4.15+0.08 3.8+0.09  3.94+0.07 3.82+0.07
Spk. MOS LibriTTS 4.05+0.06 3.42+0.11 3.74+£0.06 3.77+0.11
MOS LibriTTS 4.02+0.08 3.54+0.07 3.82+0.08 3.72+0.08
Spk. MOS VCTK 4.3+0.07 3.95+£0.09 4.02+0.07 3.81+0.06
MOS VCTK 4.42+0.09 4.03£0.08 4.09+0.06 4.18+0.07

Table 3: Comparison of Multi-Speaker TTS Performance on LibriTTS-R, Original LibriTTS, and
VCTK, Featuring Benchmarks Against VITS (Kim et al., 2021), StyleTTS (L1 et al., 2022), and
FastSpeech2 (Ren et al.| 2020)

6 CONCLUSIONS

In this paper, we introduced VoxGenesis, a deep generative model tailored for voice generation and
editing. We demonstrated that VoxGenesis is capable of generating realistic speakers with distinct
characteristics. It can also uncover significant, human-interpretable speaker variations that are hard
to obtain labels. Furthermore, we demonstrated that VoxGenesis is adept at performing zero-shot
voice conversion and can be effectively utilized as both a vocoder and a speaker encoder in multi-
speaker TTS.
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A APPENDIX

Model Input to Encoder Speaker Speaker Speaker  Speaker
GAN Objective Labels  Generation Encoding Edit

Vanilla-VoxGenesis ~ Noise NA No Yes No Internal
NFA-VoxGenesis Emb. Likelihood No Yes Yes Any
CL-VoxGenesis Emb. Contrastive No Yes Yes Any

+ KL-divergence

Cross-entropy

CE-VoxGenesis Emb. + KL-divergence

Required Yes Yes Any

Table 4: Summary of VoxGenesis models with different speaker encoders.

A.1 ADDITIONAL EXPERIMENTS

We have supplemented the experiments with different SSL models for content modeling in Table[5]

Speaker Module Content Model WER EER MOS

NFA HuBERT 7.56 575  4.21+0.07
NFA w2v-BERT 7.22 5.63  4.1+0.09
NFA ContentVec 7.04 5.65 4.25+0.05

Table 5: The Effect of Using Different SSL Module for Content Modeling

A.2 ADDITIONAL SYSTEMS DESCRIPTION

The speaker embeddings networks employed in our study, both contrastive and supervised, are based
on the x-vector architecture. The supervised x-vector network is trained using a combination of
cross-entropy loss and KL-divergence, with the weighting factor A set to 1. In contrast, the con-
trastive x-vector network is trained using the NT-Xent loss, also with A set to 1. Both networks
undergo training on the same dataset as VoxGenesis. Regarding Tacospawn, we implement ancestor
sampling, which involves initially sampling from a mixture distribution and then from a Gaussian
distribution. For all VoxGenesis models, we directly sample from a standard normal Gaussian dis-
tribution.

A.3 ADDITIONAL DETAILS ABOUT SPEAKER GENERATION EVALUATION

Specifically, we used a pre-trained x-vector network (Snyder et al.| 2018)) to retrieve the top-3 most
similar speech segments, and then asked 20 human evaluators to assess the similarity between the
generated speaker and the retrieved ones. We used a three-point scale from 0 to 1 to represent the
evaluators’ opinions, with 1 being that the retrieved audio is very likely from the generated speaker
and O being that the retrieved audio is unlikely to be from the generated speaker. We refer to the

13
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score as the speaker similarity score. Additionally, we asked the evaluators to rate the diversity of the
generated speakers on a scale from 0 to 5, with 0 indicating no diversity and 5 indicating that every
utterance sounded like it was spoken by a different speaker. We refer to this metric as the diversity
score. Finally, we asked the evaluators to rate the naturalness of the speech using the standard MOS
scale, with an interval of 0.5. We utilized crowd-sourcing for the subjective evaluations.

A.4 LIBRITTS AND LIBRITTS-R GENERATED SPEAKER QUALITY COMPARISON

Method Dataset FID Spk. Similarity Spk. Diversity MOS
NFA-VoxGenesis LibriTTS-R  0.14 0.3 4.17+0.09 4.22+0.06
NFA-VoxGenesis  LibriTTS 0.15 0.23 4.4+0.07 4.03+0.05

Table 6: LibriTTS and LibriTTS-R Generated Speaker Quality Comparison
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