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Abstract

We present a self-supervised pre-training ap-001
proach for learning rich visual language rep-002
resentations for both handwritten and printed003
historical document transcription. After su-004
pervised fine-tuning of our pre-trained en-005
coder representations for low-resource docu-006
ment transcription on two languages, (1) a007
heterogeneous set of handwritten Islamicate008
manuscript images and (2) early modern En-009
glish printed documents, we show a mean-010
ingful improvement in recognition accuracy011
over the same supervised model trained from012
scratch with as few as 30 line image transcrip-013
tions for training. Our masked language model-014
style pre-training strategy, where the model is015
trained to be able to identify the true masked016
visual representation from distractors sampled017
from within the same line, encourages learning018
robust contextualized language representations019
invariant to scribal writing style and printing020
noise present across documents.021

1 Introduction022

Document transcription is the task of converting023

images of handwritten or printed text into a sym-024

bolic form suitable for indexing, searching, and025

computational analysis.1 Historical documents,026

whether they were (re)produced via handwriting027

or the early printing press, confound current sta-028

tistical document transcription models due to (1)029

extremely varied style and content across domains,030

1We use the generic term document transcription to refer
to both the task of optical character recognition (OCR), which
is typically reserved for printed documents, and handwritten
text recognition (HTR) for manuscripts.

Figure 1: Example page image crops from an Islamicate
manuscript dated to 1842 (Top, ref: Leiden Or. 669),
showcasing its dense, visual complexity with extensive
marginalia, and printed proceedings of London’s Old
Bailey Courthouse (Bottom, c. 18th century) (Shoe-
maker, 2005).

(2) the presence of noise, and (3) a dearth of la- 031

beled data. 032

First, historical printed documents, such as 033

books produced from early modern England (c. 034

16th–18th centuries; bottom of Fig. 1), use non- 035

standardized spacing and fonts (Shoemaker, 2005) 036

and can contain code-switching that confuses lan- 037

guage models (Garrette et al., 2015). However, 038

this variation pales in comparison to their hand- 039

written counterparts. For instance, pre-modern 040

Islamicate manuscripts (i.e., Persian and Arabic 041
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handwritten documents from c. 7th–19th centuries;042

top of Fig. 1), differ in script family, scribal hand-043

writing style, and symbol inventory/vocabulary. As044

a result, a large degradation in performance is ob-045

served when evaluating HTR models on unseen046

manuscripts (Jaramillo et al., 2018).047

Production and imaging noise also present a048

problem for historical document transcription mod-049

els. Whether it be uneven inking from a printing050

press, inconsistent text baselines, or holes resulting051

from insect damage to ancient pages, techniques052

must be designed to cope with the noise (Berg-053

Kirkpatrick and Klein, 2014; Goyal et al., 2020).054

While neural networks have a demonstrated ca-055

pability to model complex data distributions, they056

typically require large amounts of supervised train-057

ing data to do so, which is infeasible for historical058

documents. Unsupervised, non-neural transcrip-059

tion models with fewer parameters alleviate the060

need to create labeled data (Berg-Kirkpatrick et al.,061

2013), but struggle with complex handwriting vari-062

ation. For Islamicate manuscripts, ground truth063

transcription often requires paleography experts to064

decipher the ancient writing systems as they appear065

in each scribal writing style.066

In this paper, we propose a self-supervised learn-067

ing framework designed to overcome these three068

challenges presented by historical documents. In-069

spired by the astounding success of self-supervised070

pre-training techniques for masked language mod-071

eling (MLM) in NLP (Devlin et al., 2019), visual072

models (Chen et al., 2020; Radford et al., 2021),073

and speech recognition (Baevski et al., 2020), our074

approach pre-trains a neural text line-image en-075

coder by learning to distinguish masked regions of076

unlabeled line images from other distractor regions.077

Specifically, our contribution is the following:078

• we show that the recent pre-train/fine-tune079

paradigm is particularly advantageous for low-080

resource historical document transcription,081

obtaining large improvements in both printed082

and handwritten documents in both English083

and Arabic-script languages.084

• we motivate the self-supervised contrastive085

loss for document transcription through the086

lens of “lacuna reconstruction”, where blank087

parts of a document called lacuna must be088

inferred by human readers.089

In doing so, we argue that our approach to pre- 090

training implicitly incentivizes the model to dis- 091

cover and encode discrete character classes in its 092

internal representations, while ignoring style dif- 093

ferences occurring in lines using different fonts, 094

languages, or authored by other scribes. 095

2 Related Work 096

Masked Pre-training Our approach to self- 097

supervised pre-training follows a growing body 098

of work in both NLP and speech that leverages 099

mask-predict objectives for learning useful, task- 100

agnostic language representations from unlabeled 101

data. In the self-supervised pre-train/supervised 102

fine-tune paradigm, these representations can then 103

be updated on the task of interest using in-domain 104

labeled data. Past work covers learning representa- 105

tions for NLP from monolingual and multilingual 106

text (Devlin et al., 2019; Yang et al., 2019), speech 107

(Baevski et al., 2019; Jiang et al., 2019; Song et al., 108

2020; Wang et al., 2020), and images grounded 109

with text (Radford et al., 2021). Representations 110

can be learned either through reconstruction objec- 111

tives (Jiang et al., 2019; Song et al., 2020; Wang 112

et al., 2020) as opposed to a probabilistic con- 113

trastive loss (Oord et al., 2018; Baevski et al., 2019, 114

2020). Most similar to our work is wav2vec2.0 115

(Baevski et al., 2020), which uses the same two 116

phase training setup with a self-supervised con- 117

trastive loss during pre-training and Connection- 118

ist Temporal Classification (CTC) loss on tran- 119

scribed speech data during fine-tuning. Talnikar 120

et al. (2020) presents that the self-supervised loss 121

regularizes the supervised loss during joint learn- 122

ing of both objectives. Follow up work has shown 123

the usefulness of the pre-trained speech representa- 124

tions for exploring speech variation (Bartelds et al., 125

2020). In this paper, we show that the same learn- 126

ing paradigm can also be successfully applied to 127

very low resource document transcription settings. 128

Islamicate HTR While machine recognition 129

of handwritten, historic English/German docu- 130

ments can range from 5–12% character error 131

rate (CER) on a sufficient amount of in-sample 132

manuscript training data (Sánchez et al., 2019), 133

performance on Arabic-script languages is much 134

more challenging, leading to substantially higher 135

CER. Pre-modern Islamicate manuscripts (i.e., 136
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Persian and Arabic handwritten documents from137

c. 7th–19th centuries), often differ in script fam-138

ily, scribal handwriting style, and symbol inven-139

tory/vocabulary. In the top of Figure 1, we present140

an extreme example of some of the problematic vi-141

sual variation that can be observed. Even a model142

trained in a supervised fashion on such a com-143

plex document sees a large degradation in perfor-144

mance when evaluating HTR models on unseen145

manuscripts (Jaramillo et al., 2018) . Until re-146

cently, OCR performance on Arabic-script printed147

texts was still poor, typically above 25% CER (Al-148

ghamdi and Teahan, 2017), which is too high for149

downstream users (i.e., researchers and librarians).150

Recent studies involving Islamicate manuscripts151

found that state-of-the-art systems are only able152

to achieve 40 to mid-20% CER using pro-153

prietary software (e.g., Google Cloud Vision,154

RDI, Transkribus) (Clausner et al., 2018; Keinan-155

Schoonbaert, 2020, 2019). However, results from156

these studies only report in-domain performance—157

an unrealistic scenario where considerable amounts158

of labeled data can be obtained to enable both train-159

ing and testing on the same manuscript. In contrast,160

out-of-domain performance tends to suffer consid-161

erably, supported by Romanov et al. (2017)’s study162

of neural OCR for printed Arabic-script documents.163

Our work aims to address such performance is-164

sues for both in-domain and out-of-domain Islami-165

cate HTR settings by learning general, content-rich166

pre-trained language representations from large167

amounts of heterogeneous unlabeled data.168

Historical OCR Closely related to manuscript169

transcription, OCR is another task involving lan-170

guage recognition from images. However, OCR171

operates on documents that have been printed by a172

machine with regular, re-used character fonts ex-173

hibiting much less superficial glyph variation than174

human handwriting. OCR is far from a solved175

problem in the case of documents printed on early176

modern (c. 16th–18th centuries; see bottom of177

Fig. 1), movable-type printing presses, where hu-178

mans would manually set metal type casts with179

non-standard spacing and fonts (Shoemaker, 2005).180

In this setting, inking noise and historical font181

shapes confuse OCR models trained on modern,182

computer-generated documents (Arlitsch and Her-183

bert, 2004). Berg-Kirkpatrick et al. (2013)’s Ocular184

explicitly uses a generative probabilistic model in-185

spired by historical printing processes to model 186

such noise. Later work has extended it to han- 187

dle more typesetting noise (Berg-Kirkpatrick and 188

Klein, 2014), code-switched documents (Garrett, 189

2014), and produce both diplomatic and normal- 190

ized transcriptions (Garrette and Alpert-Abrams, 191

2016). Separately, OCR post-correction models 192

have been proposed to resolve OCR outputs in 193

historical documents (Hämäläinen and Hengchen, 194

2019; Dong and Smith, 2018) and other low- 195

resource settings (Rijhwani et al., 2020, 2021). In 196

contrast, our approach pre-trains the visual lan- 197

guage recognition model’s encoder, which pro- 198

duces better contextualized representations in or- 199

der to reduce the amount of errors the model itself 200

makes. Unlike Ocular, our proposed method does 201

not use a language model and is not fully unsuper- 202

vised as we require 1-3 pages of transcribed data 203

for learning to transcribe during fine-tuning. 204

3 Approach 205

When human readers encounter a lacuna, a 206

blank information gap in a portion of a book or 207

manuscript, they must infer its latent meaning us- 208

ing nearby context like in a cloze test (Taylor, 209

1953). We argue that the most useful information 210

for inference lies in the ability to reason about the 211

identities of the missing characters in the lacuna us- 212

ing the identities of the surrounding characters. In- 213

deed, MLM-style pre-training techniques are also 214

motivated by the idea of the cloze test, and recent 215

research indicates that language representations 216

learned through the prediction of missing content 217

using surrounding sentential context are useful for 218

many downstream tasks (Devlin et al., 2019; Clark 219

et al., 2019, 2020). Our approach combines the 220

ideas of lacuna inference and masked pre-training 221

to provide a useful learning signal for downstream 222

historical document transcription, a setting with 223

massive digitized collections but few transcribed 224

examples. 225

Specifically, we introduce a self-supervised pre- 226

training method that randomly masks lacuna-like 227

regions of document line images and learns to re- 228

construct them by distinguishing them from nearby 229

line image segments, or foils. While lacuna can be 230

reconstructed in a generative way, we find that a 231

discriminative contrastive loss works better in prac- 232

tice. By leveraging a diverse set of unlabeled data 233
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Figure 2: Our proposed two-stage approach for low-resource document transcription first pre-trains a line image encoder using
a self-supervised contrastive loss on unlabeled data (left), followed by a fine-tuning phase, in which the pre-trained encoder
learns to transcribe 1–3 pages of supervised data using a CTC loss (right).

for pre-training, the model is forced to infer the234

identities of masked text regions in the presence of235

scribal writing variation or typesetting noise ubiq-236

uitous in historical documents. In the next sections,237

we describe our model/masking strategy in detail.238

3.1 Model239

In Figure 2, we show our two-stage pre-train/fine-240

tune modeling approach. First, we describe the241

document line image encoder that is shared be-242

tween stages. For simplicity of description, we243

assume that each document line image, X , is n244

pixels tall and m pixels wide, and that pixels are245

binary-valued. Thus, the space of input text line im-246

ages can be denoted as X = {0, 1}n×m. We first247

process the input with a convolutional feature ex-248

tractor, f : X 7→ H, that maps the input, X , to249

an encoding matrix, H , using a deep convolutional250

neural network followed by a reshaping of the im-251

age height dimension into the channels dimension.252

Next, a contextual encoder, g : H 7→ C, computes253

a contextualized representation matrix, C, from H254

using a neural sequence model, parameterized by255

either an LSTM or Transformer (Hochreiter and256

Schmidhuber, 1997; Vaswani et al., 2017). We de-257

scribe both the design of f , which determines the258

output size of the convolutional encoding space H, 259

and g in Section 5.1. Together, both the convolu- 260

tional and contextual layers form the encoder of 261

text line images used for downstream document 262

transcription. Ideally, f will capture the underly- 263

ing visual appearance of distinct character classes, 264

while g will discover linguistic correlations be- 265

tween these classes. 266

3.2 Masking 267

During pre-training, we replace randomly sampled, 268

non-overlapping segments of H with a learned 269

mask embedding vector prior to computing con- 270

textualized representation matrix C. We train the 271

model to distinguish the masked region from a foil 272

using the contrastive loss presented in Section 3.3. 273

3.3 Pre-training Objective 274

We use the following self-supervised contrastive 275

loss whose variants have demonstrated success in 276

self-supervised representation learning (Oord et al., 277

2018; Baevski et al., 2020): 278

LU (ct) = − log
exp

(
s(ct, ht)

)∑
t′ exp

(
s(ct, ht′)

) 279

280

Here, ct (depicted in Figure 2) is the contextual 281
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Figure 3: Assortment of cropped, grayscale line im-
ages from a selection of our datasets, as extracted by
annotators. From top to bottom, RASM 2019 (Keinan-
Schoonbaert, 2020), Attar-Mubhij, H. uliyya, Trove (Hol-
ley, 2010), Old Bailey (Shoemaker, 2005). The Arabic-
script line images are shown pre-binarization, while the
English line images come binarized.

encoder’s output representation of the masked line282

image at position t. Similarly, ht (also depicted283

in Figure 2) is the convolutional encoder’s output284

representation of the masked region itself. Further,285

s(c, h) represents a scoring function that computes286

the similarity between representation vectors c and287

h. We use the cosine similarity similar to Baevski288

et al. (2020), but compute it only raw vectors, in-289

stead of the raw vectors and quantized vectors. The290

cross-entropy loss requires the model to distinguish291

the representation of the true masked region, ht,292

from distractor representations: the convolutional293

encodings of other segments, ht′ with t′ ̸= t.294

3.4 Fine-tuning Objective295

After learning pre-trained representations, we add296

the randomly initialized, fully connected character297

vocabulary projection layer to the top of our con-298

text encoder network (top right of Fig. 2) and per-299

form supervised training using the Connectionist300

Temporal Classification (CTC) objective (Graves301

et al., 2006; Graves, 2012; Baevski et al., 2020)302

with transcribed data. CTC is a commonly used303

loss function for supervised training in speech and304

handwriting recognition systems. In this case, CTC305

is used to marginalize over all monotonic align-306

ments between the sequence of input visual rep-307

resentations and the observed ground truth output308

sequence of characters.309

4 Datasets 310

In this section, we describe both unlabeled pre- 311

training and labeled fine-tuning/testing datasets 312

used in our experiments. 313

4.1 Islamicate Manuscripts 314

First, we introduce a variety of Islamicate 315

manuscript datasets selected for both their uniquely 316

different domain content (e.g., scientific to le- 317

gal to religious) and their visually distinct scribal 318

handwriting style. All but the first pre-train 319

dataset are professionally transcribed by Islami- 320

cate manuscript scholars. 321

HMML Pre-train Through a collaboration 322

with the Hill Museum and Manuscript Library 323

(HMML), we obtain about 100 early modern, 324

mostly Syrian, naskh2 manuscripts dating from 325

1600–1775 with some voweling, but with ornamen- 326

tally voweled texts excluded (i.e., texts in which 327

every single vowel and orthographic feature is in- 328

cluded, usually for ornamental reasons). We filter 329

out manuscripts with extensive marginalia, figures, 330

or tables, though some marginal notes and other 331

elements (e.g., seals, interlinears) are still present. 332

This results in a dataset containing roughly 750,000 333

unlabeled line images. 334

HMML Fine-tune We obtain transcriptions for 335

115 line images from a 4-page held-out subset 336

of the HMML Pre-train dataset. This dataset is 337

designed for in-domain fine-tuning/testing experi- 338

ments with our pre-trained models. 339

RASM 2019 For the ICDAR 2019 Competi- 340

tion on Recognition of Historical Arabic Scien- 341

tific Manuscripts, the British Library released 342

2,164 transcribed line images from scientific 343

manuscripts written in various scribal hands 344

(Keinan-Schoonbaert, 2020). RASM 2019 has 345

become a popular benchmark for Arabic-script 346

handwriting recognition due to its relatively large 347

amount of supervised data for the task. 348

Attar-Mubhij An Arabic-language legal text 349

with 190 transcribed line images. 350

2https://en.wikipedia.org/wiki/Naskh_
(script)
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H. uliyya A 229-line Persian, nasta’lı̄q3 devo-351

tional text written by an early modern scholar con-352

taining mostly Arabic-language prayers.353

4.2 Early Modern English Printed Works354

Next, we describe several English book and news-355

paper datasets used in our experiments that were356

originally printed in early modern England and357

Australia.358

EEBO Pre-train We harvest 750,000 unlabeled359

line images from a randomly sampled collection360

of document images from Early English Books361

Online (EEBO),4 which contains “almost every362

work printed in the British Isles and North America,363

as well as works in English printed elsewhere from364

1470-1700.”365

Trove A dataset of historic Australian newspa-366

pers (c. 1803–1954) from the National Library367

of Australia (Holley, 2010). We use the manu-368

ally transcribed version totaling 450 lines (Berg-369

Kirkpatrick et al., 2013).370

Old Bailey A manually transcribed set of 20 doc-371

uments printed 1716–1906, consisting of 30 lines372

per document, taken from Berg-Kirkpatrick and373

Klein (2014). Shoemaker (2005) compiled the doc-374

uments, which describe proceedings of London’s375

Old Bailey Courthouse.376

4.3 Line Extraction377

Since our model processes individual line im-378

ages of a document, we use Kiessling (2020)’s379

line extraction method to automatically segment380

page images into their component text line images381

for at-scale collection of the pre-training datasets.382

We find and discard poorly extracted line images383

outside an empirically determined pixel width-to-384

height ratio range of 6–23.385

5 Results386

In this section, we present document transcription387

results for both Islamicate manuscripts and early388

modern English works introduced in Section 4. We389

compare performance against supervised and un-390

supervised prior work, and investigate the impact391

of pre-training/fine-tuning dataset sizes.392

3https://en.wikipedia.org/wiki/
Nastaliq

4https://www.proquest.com/eebo

5.1 Experimental Details 393

Encoder For all experiments, we binarize the 394

line images and scale them to a height of 96 pixels, 395

but allow them to vary in width. We base our CNN 396

architecture on the Kraken OCR system (Kiessling, 397

2019): two rectangular 4× 2 kernels first process 398

the input image, each followed by a Leaky ReLU 399

activation and Group Norm. Two max pooling 400

operations are applied, one before and one after the 401

final 3× 3 convolutional layer kernel, with kernel 402

sizes/strides of 4×2/1×2 for both. The first kernel 403

uses a stride of 4 × 2 and the final two both use 404

1×1. The convolutional hidden dimensions are 64, 405

128, and 256. We use a 3-layer BiLSTM for our 406

contextual encoder with a hidden size of 512. This 407

results in 6,408,000 trainable parameters. Models 408

are implemented in PyTorch (Paszke et al., 2019) 409

and Fairseq (Ott et al., 2019). 410

Pre-training During pre-training, we perform 411

a non-exhaustive grid search over masking prob- 412

ability and length using 75k lines of data. We 413

determine p = 0.5/p = 0.65 to perform best for 414

Islamicate manuscript/English print with a non- 415

overlapping segment length of 12 time steps. We 416

ensure that 8 time steps are between each non- 417

overlapping segment. A maximum of 100 time 418

steps are sampled and used as foils in the denomi- 419

nator of the loss from Sec. 3.3. We use the same 420

learning rate scheduler and Adam optimizer from 421

Baevski et al. (2020) that warms up for the first 8% 422

of updates to a learning rate of 5e-4 and linearly 423

decays it afterwards. Models are pre-trained for 424

3–5 days on 4 RTX 2080 Ti cards. 425

Fine-tuning During fine-tuning, we use a tri- 426

stage learning rate schedule with the Adam op- 427

timizer, which warms up the learning rate to 5e-4 428

during the first 10% of updates and decays it lin- 429

early by a factor of 0.05 for the final 50% of train- 430

ing. We only update the fully connected layer for 431

the first 200 epochs of training and then proceed 432

to update the contextual encoder as well. These 433

optimization choices are inspired by Baevski et al. 434

(2020). We use a small batch size of 8 and train 435

for a maximum of 700 epochs with the CTC loss 436

(Sec. 3.4). We use greedy decoding after removing 437

the CTC’s blank token and do not use any external 438

language model. For Islamicate manuscript exper- 439

iments we perform NFD unicode normalization. 440
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Baselines

Test Dataset CER (↓)

System HMML-F RASM Attar-Mubhij H. uliyya

Google Cloud OCR 49.0 57.0 61.2 71.4

30 Lines for Supervised Fine-tuning

Fine-tune/Test Dataset CER (↓)

# Lines Pretrain HMML-F RASM Attar-Mubhij H. uliyya

0 51.0 68.9 60.4 70.3
75k 22.7 46.1 30.4 52.9
750k 14.8 36.2 23.7 45.5

90 Lines for Supervised Fine-tuning

Fine-tune/Test Dataset CER (↓)

# Lines Pretrain HMML-F RASM Attar-Mubhij H. uliyya

0 36.9 61.7 36.8 52.5
75k 15.2 34.4 20.8 37.5
750k 10.0 25.9 15.0 28.3

Table 1: 30 line and 90 line supervised fine-tuning,
tested on held-out portion of fine-tuning dataset. Char-
acter error rate (CER) is reported.

Character Error Rate (CER) is computed using441

Kraken OCR (Kiessling, 2019).442

Fine-tune/Test Splits For Islamicate manuscript443

datasets, we hold out 10% of RASM 2019 for444

testing and the final page each of HMML Fine-445

tune, Attar-Mubhij, and H. uliyya. For English446

print datasets, we use the same test splits as Berg-447

Kirkpatrick and Klein (2014) for fair comparison448

and fine-tune on the validation set of each dataset.449

5.2 Islamicate Manuscripts450

In Table 1, we present single-run supervised fine-451

tuning results on in-domain subsets of each dataset452

limited to 30 and 90 lines (roughly 1 and 3 pages453

of data, respectively). Each row represents a dif-454

ferent set of encoder parameters, which we use to455

initialize the fine-tuning experiments. Zero lines456

represents a randomly initialized encoder, while457

75k and 750k settings use the encoder parameters458

pre-trained with our lacuna reconstruction objec-459

tive on different orders of magnitude of unlabeled460

HMML Pre-train line images. We also report re-461

sults obtained from the Google Cloud OCR API as462

a baseline comparison.463

The first thing we can observe is the extremely464

high character error rates for both the commer-465

cial Google Cloud OCR system and the randomly466

initialized 0k pre-train models, especially in the467

30-line setting. Access to about 2 more pages of468

data (in the 90-line setting) improves results for469

Baselines

Test Dataset CER (↓)

System Trove Old Bailey

Google Tesseract 37.5 -
ABBYY FineReader 22.9 -
Ocular 14.9 14.9
Ocular Beam 12.9 10.9
Ocular Beam-SV 11.2 10.3
Google Cloud OCR 13.3 8.5

30 Lines for Supervised Fine-tuning

Test Dataset CER (↓)

# Lines Pretrain Trove Old Bailey

0 70.5 60.0
75k 20.3 26.5
750k 19.6 12.2

90 Lines for Supervised Fine-tuning

Test Dataset CER (↓)

# Lines Pretrain Trove Old Bailey

0 38.7 28.6
75k 12.2 9.4
750k 10.4 7.6

Table 2: 30 line and 90 line supervised fine-tuning,
tested on held-out portion of each fine-tuning dataset.
Character error rate (CER) is reported (↓). First 5 base-
lines are taken from Berg-Kirkpatrick and Klein (2014).

this setting in the Arabic-language legal text Attar- 470

Mubhij, but does not seem to help much for RASM 471

2019, a larger collection of scientific manuscripts. 472

This is probably due to the higher amount of diver- 473

sity in content and style in this benchmark dataset 474

for Arabic-language HTR. Seemingly, without any 475

signal from pre-training and only tens of lines of 476

transcribed data, the model is unable to learn a suf- 477

ficient visual encoder for the large variety of scribal 478

hands and scripts observed in the manuscripts (ex- 479

amples shown in Fig. 3). Pre-training on just 75k 480

lines halves the error rate for Attar-Mubhij in the 481

30-line setting. Furthermore, 750k pre-train re- 482

duces the Attar-Mubhij CER from 60.4 to 23.7. 483

The HMML Fine-tune dataset (HMML-F in Ta- 484

ble 1) has the largest relative error rate difference 485

between the pre-trained models and models with- 486

out pre-training. Errors are reduced by about 55% 487

for 75k-30, 70% for 750k-30, 58% for 75k-90, and 488

73% for 750k-90, which is at least 10 points higher 489

than other datasets on average. Since manuscripts 490

in HMML-F are sourced from the same library as 491

the HMML Pre-train dataset, the results suggest 492

that in-domain pre-training data provides an ad- 493
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Figure 4: Comparison of results on the Old Bailey test set with errors highlighted. Pre-trained results are from the
90-line fine-tuning setting.

Figure 5: Comparison of results on the Trove test set
with errors highlighted. Pre-trained results are from the
90-line fine-tuning setting.

vantage over the other documents from different494

collections. Regardless, our approach’s improved495

performance on 30-line settings compared to the su-496

pervised 90-line results trained from scratch across497

all datasets is impressive and shows promising gen-498

eralization ability.499

5.3 Early Modern English Printed Works500

In Table 2, we present supervised fine-tuning re-501

sults on in-domain subsets of each dataset limited502

to the same 30 and 90 line settings as in the Islami-503

cate manuscript experiments. Our first observation504

is that the randomly initialized encoder from the505

0-line pre-train setting sees a much larger improve-506

ment from 30 to 90 lines of supervised fine-tuning507

data than the Islamicate manuscript experiments.508

We speculate this due to the more similar and re-509

peated glyph shapes on printed data compared to510

handwritten data, which makes learning of the vi-511

sual encoder easier. Still, pre-training the visual512

encoder cuts CER across both datasets, though we513

do see a slightly bigger relative error rate reduction514

when fine-tuning on Trove versus Old Bailey.515

In Figures 4 & 5, we show comparisons across516

predicted transcriptions from different systems and517

datasets for illustrative purposes. First, we observe518

that Google Cloud OCR, the best baseline system519

on Old Bailey, consistently struggles with inking520

variation. For example, the bleeding ink on the ini-521

tial ‘s’ of each line image is mistaken for a ‘B’, the522

‘n’ in ‘not’ in Fig. 4 is mistaken for a ‘D’ due to 523

the subtle connection of the glyph’s legs from over- 524

inking, and the ‘m’ in ‘Sportsman’ in Fig 5 is 525

confused for the characters ‘in’ because of under- 526

inking. However, the 0k pre-train baseline clearly 527

makes the most insertion/deletion/substitution er- 528

rors since it must learn how to transcribe noisy line 529

images from a randomly initialized encoder using 530

only 90 transcribed line images for supervised pa- 531

rameter learning. Initializing the visual encoder 532

with parameters learned from our self-supervised 533

regime on 75k unlabeled line images from EEBO 534

reduces a lot of these nonsensical errors to only 535

superficial glyph recognition issues. By increasing 536

the pre-training amount by an order of magnitude 537

to 750k, we obtain our best results. Future work 538

could integrate a language model during decod- 539

ing to address the unlikely sequences of charac- 540

ters/words still output by our best system, like the 541

words ‘Apaley’ and ‘Sportsmon’. 542

5.4 Conclusion 543

In this paper, we proposed a two-phase pre- 544

train/fine-tune approach for document transcrip- 545

tion and applied it to historical documents in 546

low-resource settings. Our pre-training strategy, 547

inspired by reconstructing missing information 548

in documents, or lacuna, uses hundreds of thou- 549

sands of unlabeled line images to learn rich vi- 550

sual language representations. After supervised 551

fine-tuning on tens of transcribed line images, we 552

showed large character error rate reduction on both 553

Islamicate manuscripts exhibiting major script and 554

style variation and improved over several state- 555

of-the-art OCR systems on early modern English 556

printed works. We estimate that our approach 557

could save human annotators significant amounts 558

of time and enable more distant readings of library 559

collections. 560
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Ethical Considerations561

While more accurate transcription of printed and562

handwritten documents in low-resource settings563

can expand research access for language and his-564

tory scholars, it could also potentially facilitate565

government surveillance of marginalized commu-566

nities. Separately, bad actors could more easily567

scan and digitize document images containing sen-568

sitive information and use them for nefarious pur-569

poses.570
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