Under review as a conference paper at ICLR 2025

DETECTING AND APPROXIMATING REDUNDANT
COMPUTATIONAL BLOCKS IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks often learn similar internal representations, both across
different models and within their own layers. While inter-network similarities have
enabled techniques such as model stitching and merging, intra-network similarities
present new opportunities for designing more efficient architectures. In this paper,
we investigate the emergence of these internal similarities across different layers in
diverse neural architectures, showing that similarity patterns emerge independently
of the datataset used. We introduce a simple metric, Block Redundancy, to detect
redundant blocks, providing a foundation for future architectural optimization
methods. Building on this, we propose Redundant Blocks Approximation (RBA),
a general framework that identifies and approximates one or more redundant com-
putational blocks using simpler transformations. We show that the transformation
T between two representations can be efficiently computed in closed-form, and
it is enough to replace the redundant blocks from the network. RBA reduces
model parameters and time complexity while maintaining good performance. We
validate our method on classification tasks in the vision domain, using a variety of
pretrained foundational models and datasets.

1 INTRODUCTION

O
- qu QX:& :égq .

b; X biyn Y

Figure 1: Framework Description. Given two latent spaces X and Y representing respectively the
output of blocks b; and b;,, for a subset of n data points from the training set, we approximate a
transformation matrix 7 such that: Y ~ Y’ = T (X) to recover a representation Y’ ~ Y.

As Neural Networks (NNs) grow in size and complexity, their demand for computational resources
has become a significant bottleneck. Despite the impressive performance of large models, they often
come with substantial trade-offs, such as slower inference times and increased memory and power
consumption. This has led to a growing interest in methods that can reduce model complexity without
sacrificing performance. However, most approaches to mitigating these challenges either require
additional training or complex fine-tuning, or they result in a non-trivial loss in performance. However,
recent research showed that there exists internal representation similarities within and between NNs.
Thus, many layers or components within these networks may perform similar functions or yield
highly correlated outputs, suggesting the potential for simplifying these networks. Understanding
and leveraging these internal similarities can open up new opportunities for reducing model size,
enhancing inference speed, and improving computational efficiency.

In this paper, we address two key research questions: (i) how to identify redundant blocks, and (ii) how
to effectively approximate these blocks while preserving the final representations and the network’s
overall functionality. To address the first question, we introduce a straightforward metric, the Block
Redundancy (BR) score, which helps identifying components that do not contribute significantly to
the network’s final representation. By carefully selecting which blocks to approximate, we can ensure

Under review as a conference paper at ICLR 2025

minimal impact on the network’s final output. For the second question, we propose the Redundant
Blocks Approximation (RBA), a novel method that leverages internal representation similarities
to approximate redundant computational blocks using lightweight transformations, such as linear
mappings. Once the blocks that have minimal impact on model functionality are identified, instead of
using these redundant blocks in each forward pass (e.g., transformer blocks containing attention and
normalization operations), RBA completely replaces them with a simpler transformation. Thanks to
this approximation, RBA reduces model parameters and accelerates inference while maintaining the
integrity of the final representation produced by the original model.

Our main contributions are as follows:

* We provide a comprehensive analysis of internal representation similarities across various
pretrained foundation models, revealing consistent patterns between blocks within each
architecture, independent of the dataset (Figures[2]and [§]to [9).

* We show that a simple metric such as the MSE is enough for assessing the redundancy of
individual blocks within a NN (Figure).

* We introduce RBA, a general framework for identifying and approximating redundant
computational blocks in NNs using simpler transformations (e.g., linear), reducing model
parameters and complexity with minimal to no impact on the produced representations
(Figure [I).

» We validate our method on vision-based classification tasks using diverse pretrained models

and datasets, demonstrating its applicability and effectiveness across different architectures
and datasets (Tables[T] [7] and [S).

2 RELATED WORK

Measuring Similarities. A range of metrics have been introduced to assess the similarity between
latent spaces generated by different NNs |Klabunde et al.| (2023); [Ballester et al.| (2023). One
established approach is Canonical Correlation Analysis (CCA) (Hotelling}, [1992)), known for its
invariance to linear transformations. Variants of CCA, such Singular Value Decomposition (SVD) and
Singular Value CCA (SVCCA) (Raghu et al.| [2017), aim to enhance robustness, while techniques like
Projection Weighted CCA (PWCCA) (Morcos et al.| [2018)) mitigate sensitivity to small perturbations.
Another widely used metric, Centered Kernel Alignment (CKA) (Kornblith et al., [2019)), captures
the similarity between latent spaces while ignoring orthogonal transformations. However, recent
work (Davari et al.| [2022) highlights that this metric can be sensitive to shifts in the latent space.
Additionally, |Barannikov et al.| (2021) proposes a method to compare two data representations
by measuring the multi-scale topological dissimilarity, while Fumero et al.[(2024)) leverages the
principles of spectral geometry to model and analyze the relationships between distinct latent spaces.

Leveraging Similarities. Analyzing the similarities between internal representations, both within
and across NN, has received significant attention in recent research. |Valeriani et al.| (2024) examines
the intrinsic dimensions and neighbor compositions of representations in various transformer models.
Similarly, Kvinge et al.| (2022) explores how models process different variations of data points across
layers, while|Nguyen et al.[(2020) investigates how changes in network depth and width impact hidden
representations, revealing characteristic block structures. Finally, |Crisostomi et al.|(2023)) investigates
under what assumptions two latent spaces be merged into one. All these insights have been applied
across various contexts. Moschella et al.|(2023)) constructs a unified space shared by different NN,
enabling zero-shot stitching of independently trained models across different modalities [Norelli
et al.| (2023), even without explicit assumptions on the transformation class that connects the latent
manifold embeddings (Cannistraci et al.|(2024) or with partial correspondence within the latent spaces
Cannistraci et al.|(2023). While [Ricciardi et al.| (2023)) proves the feasibility of zero-shot stitching
between encoders and policies trained on different environmental variations. Other works |Lahner &
Moeller| (2024); Maiorca et al.| (2024) demonstrate that representations learned by distinct NNs can
be aligned using simple transformations. Finally, Tang et al.|(2023) leverages similarities in unified
visual-language models to dynamically skip layers in both encoders and decoders.

Architectural Efficiency. While large-scale models with billions or even trillions of parameters
continue to achieve state-of-the-art performance, their growth comes with trade-offs, including
slower inference times and significantly higher computational costs. To address these issues, various

Under review as a conference paper at ICLR 2025

techniques have been developed, such as early exiting and model pruning. Early exit strategies, which
introduce intermediate output layers at different stages of the network, have been shown to improve
efficiency and reduce inference time (Xin et al., 2020; Zhou et al., [2020; |Yu et al., 2022). However,
this approach requires the additional training of intermediate classifiers to enable exits at predefined
layers. On the other hand, model pruning reduces the computational load of Deep Neural Network
(DNN) by either removing individual weights based on certain criteria (Ma et al., 2023} [Liao et al.,
2023)) or eliminating or compressing larger structural components such as channels or attention heads
(Zhang & Hel 20205 [Sajjad et al.} 2023} [Venkataramanan et al.| 2024; [Zhang et al.| [2024; |Bai et al.}
2023). Although effective, this approach usually requires first training the full model in its dense
form, followed by multiple iterations of pruning and retraining or training the pruned model from
scratch.

Instead of removing layers or components, we focus on identifying redundant computational blocks
within the network and replacing them with lightweight transformations. Unlike other approaches,
RBA is an architecture-agnostic method to reduce model complexity and computational overhead
without the need for additional training or fine-tuning while still maintaining competitive perfor-
mance.

3 REDUNDANT BLOCKS APPROXIMATION

The core principle of our approach, RBA, is to detect similar representations within NN, identifying
redundant blocks, and approximate them with simpler transformations instead of executing the entire
DNN. A visual overview is provided in Figure

In this section, we first show how to identify redundant blocks, and how to effectively approximate
their representations while preserving the network’s overall functionality.

Identifying Redundant Representations. We hypothesize that certain foundation model archi-
tectures, such as Vision Transformers (ViTs), may contain redundant blocks that produce similar
representations. This redundancy may stem from overparameterization or task-specific characteristics.
In this context, a ’block” refers to a self-contained unit in the model that typically contains several
layers, such as self-attention, normalization, or feed-forward layers, but functions as a cohesive unit.

To quantify redundancy, we introduce a simple metric called Block Redundancy (BR), which measures
the degree of change in internal representations between blocks. This helps to identify essential
blocks versus those that contribute minimally to the overall model.

Let B represent the total number of blocks in the model, and let h® denote the internal representation
(i.e., the output) of block b, where b € 1,2, ..., B. For a given subset of the training data Dy, we
compute the representations h(®) (z) for each input & € Dgyp. The BR for block b is defined as the
negative Mean Squared Error (MSE) between the output representations of blocks b and b — 1:

2

BR®) =~ 3 [h® () ~n)|)
|Dsub| € Dgyp 2

A higher BR(b) indicates a minimal change between the outputs of block b and the preceding block

b — 1, suggesting a potential redundancy in block b. Conversely, a lower BR(b) implies that block b

plays a significant role in transforming the internal representations.

By systematically evaluating the BR for each block, we can identify redundant components that can
be simplified, enabling a reduction in the NN’s complexity without compromising the original final
representation or its performance.

Approximating Redundant Blocks. After identifying redundant representations using BR, the next
step is to approximate their outputs through more computationally efficient transformations, rather
than directly removing the blocks. While this approach applies to consecutive blocks such as b; and
b;+1, it generalizes naturally to non-consecutive blocks as well. Specifically, for any block b; and
block b;, (where n > 1), our method enables the approximation of the output of block b;,, from
the output of block b;, provided they exhibit low BR scores. This allows us to skip the computation
of blocks b;11,b;19,...,b;1n, effectively reducing the overall computation.

Let X € R"*% represent the output of block b; for a subset of n data points from the training set,
where d; is the dimensionality of the latent space. Similarly, let Y € R™* % represent the output of

Under review as a conference paper at ICLR 2025

block b, for the same subset of data points, with ds being the dimensionality of the latent space at
block b; 1,,. Our objective is to find a function 7 : R% — R such that:

Y =~ T(X)

In this work, we consider 7 to be a linear transformation (T) that can be estimated by minimizing
the squared error between the transformed output of block b; and the actual output of block b, ,,,
which can be solved using least squares:

T = arg min|[Y — 7(X)|3
T

This optimization problem allows for a closed-form solution that efficiently computes the optimal
transformation T. The solution bypasses the computation of any redundant blocks between b; and
b;+n, replacing them with T. This approximation results in a significant reduction in computational
complexity, as one or more full transformer block consisting of multi-head self-attention and feed-
forward layers can be replaced by a low-cost linear transformation.

To sum up, the overall pipeline of our approach comprises two main stages:

1. Redundancy Identification: We apply the BR metric to identify redundant blocks across
the model based on their contribution to the transformation of internal representations.

2. Block Approximation: For blocks deemed redundant, we compute an efficient linear
approximation, using the transformation matrix T to bypass these blocks.

This process reduces model parameters and computational complexity with minimal impact on the
resulting representations, as shown in Figures [3] 4] and [I0|to [I3] Additionally, it is possible train
any downstream linear classifier on top of the simplified model for the desired task, retaining the
original architecture’s overall structure while significantly decreasing the number of parameters and
computation costs, as shown in Tables|[T} [2]and[7] to[9}

4 EXPERIMENTS

In this section, we analyze the representation of foundation pre-trained models and we show quantita-
tive experiments to evaluate the effectiveness of our proposed framework. We begin by empirically
motivating our study in Section [4.1| where we analyze the similarity between different blocks of
pretrained foundation models for image classification. Then in Section[d.2] we assess the impact of
approximating blocks on latent representations and explore the correlation between layer approx-
imations and high BR. Finally in Section[4.3] we conduct quantitative experiments on the image
classification task to further evaluate the performance of our framework across various models and
datasets, demonstrating its general applicability and effectiveness.

4.1 BLOCK SIMILARITIES

Experimental Setting. In this section, we analyze the latent spaces generated by pretrained founda-
tional models in the vision domain. Our analysis focuses on five distinct transformer-based models:
ViT-S, ViT-B, DiNO-S, DiNO-B, and DEiT-S. We evaluate their similarities using four well-
known datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al.,|2009), MNIST (Deng} [2012), and
F-MNIST (Xiao et al.,|2017). Since these models classify input based on the representation of the
[CLS] token, the analysis is conducted using the [CLS] token from each block, rather than the full
representation. This ensures that the analysis remains aligned with the key components of the model’s
final predictions. This flexibility enables the method to adapt to different model architectures and
tasks, where tokens other than the [CLS] may hold more relevant information. Model and dataset
details can be found in Table[5|and Table[6] respectively.

Results and Analysis. Figure 2] presents the cosine similarity matrices between blocks of the ViT-B
and DiNO-S models on MNIST and CIFAR-100. These matrices illustrate the internal block-by-
block similarities within each architecture. Our results reveal that while the patterns of similarity vary
across architectures, they remain consistent across different datasets. This suggests that the similarity
structure between computational blocks is predominantly influenced by the model architecture itself,
rather than the specific dataset used. This finding aligns with observations from Nguyen et al.[(2020),

Under review as a conference paper at ICLR 2025

= <000 032 053 070 076 090 109 143

=032 000 008 022 032 045 067 -

1 21053 008 000 012 023 041 061 -
070 022 012 000 012 027 047 -L0s|
076 032 023 012 000 014 036 -

1050 045 041 027 014 000 025 -

ViT-S

Woooe s 1 6 s 4 3

=00 000 0m 000 0o o0 o0 o1t o1 PR

— ~000 000 000 000 001 001 008 011 014 8
4 =000 000 00 000 -001 001 -008 010 014
- ~000 000 00 -000 -001 001 -008 -0.11 014 EN

= ~-001 -001 001 001 -000 001 008 01 014 LI

008 008 008 008 008 00 000 00i 0os 0i7 RES

lonn 011 010 011 011 00 001 000 005 015 FEIRES

030 000 008 -021 032 047 057
4 051 008 000 011 023 039 050
067 021 011 000 012 024 036
078 032 025 012 000 011 026 -109)

086 047 039 024 011 -0 019

200 000 000 00 001 001 008 010 013
=00 000 000 00 001 001 006 010 012
1010 000 000 0.0 -001 001 006 010 013
001 001 001 001 000 001 07 011 03

=001 001 001 001 001 000 04 006 009 KEH

F-MNIST

000 030 051 067 075 086 097 153 [

97 -057 030 036 026 019 00 081

133 -Lo1 - 109 117 081 000,

=00 00 000 00 001 001 07 010 0.3 FEIETINES

007 006 006 006 007 004 000 001 004 0]

10010 -010 010 -011 -006 01 -000 -003 014 |08

~025 000 -008 020 033 045 -059 099 I8

1 047 008 000 011 023 039 050 1.2 B

072 033 023 011 000 012 023

085 048 039 025 012 000 015

1000 00 000 000 001 001 005 0 D11
4 ~-000 000 -000 -000 001 001 -005 109 010/
=000 -000 -000 -000 -001 001 005 -009 011
001 001 001 001 000 001 006 010 D11

001 001 001 -001 001 000 005 106 008

CIFAR-10

000 028 047 062 072 035 -096 129 [

- —02 020 011 -000 011 025 034 -Lo1 ERRER

o123

= --000 -000 -000 000 -001 -001 006 010 0.1 [0

=06 005 005 005 006 003 000 001 003 014 NEY

=010 0 0 009 0110 005 001 00 002 01)

CIFAR-100

07 033 024 012 000 012 024 110 [
. --085 048 040 026 012 -000 016 -1.20 B8
097 059 050 035 024 016 000 095 [

100 L2 01 -L10 120 -095 000

< -0 000 000 000 001 01 006 010 012 P
~-000 000 00 000 001 001 006 009 01
£ =000 060 W 000 001 001 005 069 01
-~ =000 000 -D00 000 001 001 006 010 0.1
- =001 001 001 001 000 001 006 010 .12 LT RENREN
~-001 001 001 001 001 00 003 005 008
< =005 006 005 005 006 003 000 001 003 014 08

009 -009 010 010 -006 -001 000 -003 011 [

a1 01 11 011 012 005 003 003 o 000 KESNER

DiNO-B

o1s 018 018 013 018 010 005 008 00 011 8 013 013 012 013 013 009 04 003 000 010 0D

- nmm... 03 043 008

018 -000 -005 -010 024 017 020

o 8 s o oo o a1s o) 3
J 110 0 200 0 o 00 OIS : ;

DEiT-S

Figure 2: Representation Redundancies. BR matrices illustrating the internal block-by-block
redundancies in ViT-S, DiNO-B, and DEiT-S models across four datasets: MNIST, F—MNIST,
CIFAR-10, and CIFAR-100. Each heatmap quantifies the BR metric between internal representa-
tions of different blocks using the Classify token ([CLS]) token, providing insights into redundancy in
foundation pretrained models. The matrices reveal that the similarity structure between computational
blocks is predominantly influenced by the model architecture itself, rather than the specific dataset.
Please refer to Figures|§| and for additional results using other metrics and models.

where wide and deep trained from scratch models tend to exhibit a distinctive “block structure” in
their representations, linked to model overparameterization. Our results extend this observation
by showing that block structures also emerge in pretrained foundation models, with their presence
primarily dependent on the architecture. Please refer to Figures[§]and [0 for additional results.

Takeaway. The representation patterns generated by pretrained models are primarily determined by
the architecture, and remain consistent across different datasets.

4.2 REDUDANT BLOCK APPROXIMATION

ViT-S DiNO-S
0.00 o
’F+47%"’ ~0.005
—-0.05 \ ~0.010
gé —010] —— mnist —— mnist oo A mnist ‘\w\&
—— fashion-mnist —=— fashion-mnist —0.020 /'« fashion-mnist
—015{ —— cifarl0 —=— cifarl0 -0.025 e Cifarl0
—+— cifar100 —— cifar100 \t ~0.030 ;/ . cifar100
3) 3 H) 3] o - 3 7 3 5 o
01501« mnist 61 —— mnist /; 0.030 \ —— mnist
01251 —— fashion-mnist 5] —— fashion-mnist /’ 0.025 \ —— fashion-mnist
] 9100{ —— cifar1lo 4| —— cifarl0 / —— cifarl0
2 007s] —— cifarl00 3| —— cifarl00 / 0020 \3 —=— cifar100
= 0.015
0.050 2 o 0.010] *—
0.025 ' - o005 .
0-000 2 4 6 8 10 ’ T a4 6 8 10

Figure 3: Block Redundancy vs. Representation Similarity. This figure illustrates the correlation
between the BR metric when approximating the i*” block and the MSE between the last layer
representations of the original encoder and the approximated encoder. Each column corresponds to a
different model (ViT-S, DiNO-S, DEiT-S), while the various curves represent different datasets.

Under review as a conference paper at ICLR 2025

Experimental Setting. In Section[4.1| we empirically demonstrate that different blocks in pretrained
models exhibit similarities. To further investigate this, introduce the Block Redundancy metric. As
illustrated in Equation (), this metric measures the level of redundancy of a block: a high score
indicates minimal change between two blocks output, suggesting that the second block may be
redundant. Conversely, a low score implies that the second block contributes significantly to the final
prediction. After identifying redundant blocks, we restructure the models accordingly to reduce their
complexity and parameter count. These redundant blocks are approximated using a shared linear
transformation applied across all tokens, based on a subset of 3,000 training samples. We compute BR
scores for each block across different datasets and pretrained encoders: ViT-S, DiNO-S, DEiT-S,
utilizing MNIST, F-MNIST, CIFAR-10, and CIFAR-100. Additionally, we compute the MSE
between the representations of the last layer in the original model and the RBA model when skipping
the i*" block. We also visualize the Principal Component Analysis (PCA) projections of these
representations when specific blocks are approximated to assess the impact on representation fidelity.

Quantitative Analysis. As illustrated in Figure 3] in most cases, the BR decreases as the block depth
increases. This suggests that approximating the final blocks would lead to significant changes in
the final representations, indicating their critical role in maintaining similar final representations.
However, in the case of DEiT-S, the trend is reversed. Here, the BR is higher in the central blocks and
lower in the initial ones. This is confirmed by the dissimilarity between the last-layer representations,
which increases when the earlier blocks are removed in DE1T-S, whereas the opposite is observed in
other models. These findings reinforce the intuition behind the BR metric, demonstrating a correlation
between BR and the final representation similarity when approximating blocks. In some instances,
such as with the MNIST dataset, the BR scores remain relatively consistent across blocks, indicating
that the representations are largely similar one to another. However, for more complex datasets like
CIFAR-100, the representations in the final or in the first blocks become increasingly dissimilar,
making it advantageous to approximate intermediate blocks. This suggests that the BR metric is
influenced not only by the architecture but also by the complexity of the dataset, allowing for targeted
approximations that reduce model parameters and complexity without significantly compromising
performance.

Original RBA Original RBA

MNIST
F-MNIST

CIFAR-10
CIFAR-100

Figure 4: Last Block Approximation. PCA visualization of the final layer representations for both
the original model and the model with its last block approximated from the preceding one. The
representations are generated using the DiNO—-S model across four datasets. The plots highlight
that in this model, the last layer representations are crucial, making it more effective to approximate
earlier blocks instead. Note that for CIFAR-100 (bottom right), only the overall structure of the
space can be observed, as the 100 classes make it challenging to distinguish labels based on color.
For further results approximating other blocks and using other encoders, refer to Figures [10[to

Qualitative Analysis. To further investigate the relationship between BR and representation
(dis)similarity, Figure {f] and Figure[5|show the PCA projection of the final block’s representations in
both the original and approximated models, with a focus on approximating the 11*" block. These
plots visualize the representations generated using the DiNO—-S and DE1iT-S pretrained encoders
across the MNIST, F-MNIST, CIFAR-10, and CIFAR-100 datasets. For CIFAR-10, having
100 classes, only the overall structure of the representation space is visible, making it difficult to
distinguish individual labels by color. In Figure 4} approximating the final block results in noticeable
deviations from the original representations, while in Figure [] the approximated representation

Under review as a conference paper at ICLR 2025

remains similar to the original one. This observation aligns with the results from Figure 3] where
approximating the appropriate block can lead to significant changes in representations. Finally, in
Figure [7] we present an ablation study on various similarity metrics, analyzing their correlation
with downstream accuracy. The results demonstrate that the BR metric is particularly effective
in identifying the optimal blocks for approximation. For additional visualizations, please refer to

Figures [T0]to [13]

Original Original RBA

MNIST
F-MNIST

CIFAR-10

CIFAR-100

Figure 5: Last Block Approximation. PCA visualization of the final layer representations for
both the original model and the model with its last block approximated by the preceding one. The
representations are generated using the DE1T~-S model across four datasets. The plots highlight that
in this model, the representations in the last layer are redundant and can be effectively approximated,
offering potential performance improvements while reducing model complexity and parameter count.
Note that for CIFAR-100 (bottom right), only the overall structure of the space can be observed,
as the 100 classes make it challenging to distinguish labels based on color. For further results
approximating other blocks and using other encoders, refer to Figures|10|to

Takeaway. Approximating redundant blocks effectively reduces model parameters and complexity
without significantly compromising representation fidelity.

4.3 DOWNSTREAM TASK: CLASSIFICATION

Experimental Setting. We finally conduct image classification using the same datasets and pretrained
models described in previous sections, with all models remaining pretrained and frozen. After
identifying redundant blocks, the models are restructured accordingly. Approximations between
blocks are computed using a shared linear transformation across all tokens, based on a subset of
3,000 training samples. Subsequently, a single linear layer is trained for classification using the Adam
optimizer with a learning rate of 0.001 over 5 epochs, three seeds, and a batch size of 256.

Approx. Num. Params ImageNetlk

= -000 025 -042 0.56 0.6 -0.76 -0.85 0.96 EL XTI

1—5 15.31M 43.68 +0.36 ~-025 000 007 017 028 040 048 054 |6

= 000 -025 042 0.56 066 -0.76 0.85 -0.96 L]

— --025|-000 -007 -0.17 0.28 -0.40(-0.48 -0.64 X LI
- -2

2—5 16.94M 60.41 £+ 0.06 o o o =042 -0.07 000 0.10 020 -032 041 0,64 [%

7—10 16.94M 33.77+0.44 - - 056 -0.17 -0.10 -0.00 008 -0.18 -0.26 061 [

13 18.56M 65.31+£0.14 - - T s a2 020 008 000 007 015 0 TR N
35 18.56M 68.16 + 0.16

. =076 040 032 -0.18 0.07 -0.00 -008 -0.69 &

2—4 18.56M 67.81+0.15
8—10 18.56M 46.75+£0.21
9—11 18.56M 46.17 £0.25 "B

23 20.19M 71.74 + 0.29
34 20.19M 71.70 £ 0.28 *
4=5 20.19M 71.4940.23 Bl 65
9—10 20.19M 61.114+0.15 -8

- 21.82M 73.98 +0.19

085 -048 -0.41 026 0.15 -0.08 -0.00 0,62 &

Figure 6: BR and Accuracy Approximation Correlation. (Left) Accuracy performance of the
ViT-S encoder with various approximation strategies on ImageNet1k. (Right) The block-by-
block BR matrix. Results highlighted in green demonstrate that approximating blocks with high BR
values maintains comparable accuracy while reducing parameter count and speeding up computations.
Comparatively, results in purple show that approximating four high-BR blocks yields better accuracy
than approximating three low-BR blocks, which exhibit lower redundancy.

Under review as a conference paper at ICLR 2025

Table 1: Image Classification Performance Across Architectures and Seeds. Classification
accuracy scores for ViT-S, DiNO-S and DEiT—S using MNIST, CIFAR-10 and CIFAR-100C,
and 3 random seeds. CIFAR-100C refers to CIFAR-100 with the coarse setting (20 labels).
The ”Approx” column b; — b; + n specifies the blocks used for approximation, where the first value
represents the block whose output is used to approximate the second block’s output. The "Num.
Blocks” column indicates the total number of remaining blocks after the approximation, and the
”Num. Params” column shows the number of model parameters. The proposed method preserves
performance while reducing the number of parameters. Please refer to Table[7] for the results on all
the models and datasets, as well as Table @

Accuracy T

Encoder Approx. Num. Blocks ~ Num. Params MNIST CIFAR-10 CIFAR-100C ImageNetlk
ViT-S 1—5 8 15.31M 92.11+0.20 84.93+0.62 68.47+0.30 43.68 £ 0.36
25 9 16.94M 94.67 £0.12 90.97£0.30 78.07+£0.38 60.41 £0.06

7—10 9 16.94M 94.91+0.30 85.81£1.03 71.10+0.51 33.77+£0.44

1—3 10 18.56M 95.67 +0.19 92.09£0.30 79.68+0.20 65.31 £0.14

2—4 10 18.56M 95.37 +£0.08 93.03£0.10 81.744+0.28 67.81 £0.15

9—11 10 18.56M 94.77 +£0.10 89.16 £1.10 75.30+0.44 46.17£0.25

2—3 11 20.19M 95.76 + 0.08 94.87+0.20 85.96 £ 0.05 71.74 + 0.29

34 11 20.19M 95.70 £0.11 95.10£0.23 86.00+0.12 71.70 £0.28

4—=5 11 20.19M 95.67 + 0.17 95.43 + 0.25 86.24 + 0.21 71.49 £0.23

9 —10 11 20.19M 95.75+0.44 94.23 £0.12 82.69+0.49 61.11 £0.15

- 12 21.82M 95.95+0.40 95.87+£0.08 87.60+0.15 73.98+£0.19

DiNO-S 1—5 8 15.55M 95.32+1.09 79.37£1.34 60.72+0.49 19.45 £ 0.64
2—=5 9 17.18M 96.04 £ 0.67 85.58 £0.54 67.89 £0.57 41.39£0.17

7—10 9 17.18M 96.93+0.45 91.24£0.13 78.14+0.14 4594 £0.40

1—3 10 18.80M 96.74 +0.96 91.82£0.17 78.81+0.35 57.38£0.13

2—4 10 18.80M 96.54 £ 0.55 91.03+£0.75 76.57+0.25 60.26 £ 0.26

9—11 10 18.80M 92.46 +1.63 85.65+0.68 72.44+1.19 34.50+0.10

2—=3 11 20.43M 96.99 +0.70 94.67 £0.20 83.924+0.49 65.42+£0.25

34 11 20.43M 97.22 + 0.50 94.72 +£ 0.24 83.37 £ 0.37 65.60 = 0.39

45 11 20.43M 97.33 + 0.47 94.64 £0.10 82.81 +£0.62 64.58 + 0.30

9—10 11 20.43M 96.99 £ 0.97 93.52 £ 0.48 84.09 + 0.52 59.19 £+ 0.10

- 12 22.06M 96.85+1.04 96.06 £0.32 87.62+0.24 67.74+£0.23

DEiT-S 1—5 8 15.31M 93.27+£0.37 78.20 £0.21 59.82+0.16 43.37 £0.18
25 9 16.94M 94.99 +0.18 85.27 £0.11 69.95+0.15 61.67 £0.16

7—10 9 16.94M 95.81 +0.23 89.20£0.34 75.96+0.20 57.10 £ 0.22

1—3 10 18.56M 95.35+0.21 85.59+0.23 70.61+0.42 66.05+ 0.26

2—4 10 18.56M 95.68 £ 0.11 88.76 £0.08 75.83+0.38 69.96 £0.12

9—11 10 18.56M 95.64 + 0.13 91.09 + 0.21 79.30 £ 0.58 69.63 £0.24

23 11 20.19M 95.99 +0.19 90.13£0.23 78.11 +0.23 73.17 £ 0.19

34 11 20.19M 96.05 + 0.09 90.33+0.26 78.70+0.39 72.75+ 0.09

4—=5 11 20.19M 95.88 +£0.18 90.26 £0.17 78.124+0.20 72.28 £0.17

9—10 11 20.19M 95.96 +£0.24 91.08 £0.25 79.33 £ 0.34 72.00 £ 0.09

- 12 21.82M 96.03 +0.24 90.83 £0.11 79.06 +0.30 73.95 £ 0.09

Results and Analysis. As illustrated in Table |1} employing RBA allows for reducing model size
while maintaining, and in some cases even improving, performance. Notably, as discussed in
Section 2] and illustrated in Figure [3]and Figure[5] using DE1iT-S to approximate the last blocks
yields better results, even when approximating multiple blocks such as 9—11 or 8—10. In contrast,
with ViT-S, the same approximations result in a slight decrease in performance. Moreover, in
Figure[d] we illustrate the correlation between the redundancies identified by the BR metric and the
results obtained when approximating the identified redundant representations using the Vi T—S and
the ImageNet 1k dataset. As shown in the leftmost correlation matrix and highlighted in green in
the table, approximating redundant blocks yields comparable results while reducing both the number
of parameters and computational cost. Additionally, the rightmost correlation matrix, along with
the results highlighted in violet in the table, demonstrates that approximating four redundant blocks
yields better results than approximating three non-redundant blocks. Overall, performance remains
similar or improved, demonstrating that a simple linear transformation is sufficient to approximate
different blocks of a NN, significantly reducing the number of parameters and model complexity.

Under review as a conference paper at ICLR 2025

It’s important to note that this transformation is uniformly applied to all tokens, further optimizing
the process, with no additional training or fine-tuning required afterward. Additional results on
classification performance can be found in Table[7]

Table 2: Image Classification Performance: RBA vs. Skip Across Seeds. Accuracy scores for
ViT-S on CIFAR-10 and CIFAR-100F are reported using 3 different seeds. The ”Approx.”
column b; — b; + n specifies the blocks being approximated, where the first value represents the
block whose output is used to approximate the second block’s output. The ’Skip” column represents
the operation of skipping a block instead of approximating it, while the "Num. Blocks” column
shows the total number of remaining blocks. Results demonstrate that approximating outperforms
skipping in all cases. Refer to TableEl for results on the other datasets.

Skip Accuracy T Approximate Accuracy 1

Encoder Approx. Num. Blocks CIFAR-10 CIFAR-100F CIFAR-10 CIFAR-100F
ViT-$S 1—=5 8 58.08 +0.44 32,68 £0.70 84.93+0.62 58.98+0.19
2—=5 9 64.43 £2.00 41.78 +£0.45 90.97+0.30 69.85+0.18

7—10 9 73.94+0.34 45.00£0.31 85.81 £1.03 60.33£0.85

1—3 10 66.27 £0.76 42.76 £0.75 92.09+0.30 72.13 £0.37

24 10 71.56 £1.62 50.19+£0.38 93.03+0.10 74.65+£ 0.59

9—11 10 89.65 +£0.52 70.75+0.39 89.16+£1.10 68.25 £+ 0.57

23 11 81.24+0.48 60.22£0.75 94.87+0.20 79.16 £ 0.43

9—10 11 93.40+0.32 76.32£0.30 94.23+0.12 76.69 £ 0.36

- 12 95.87 +£0.08 81.29£0.20 95.87+0.08 81.52£0.15

Naive Baseline. Additionally, we evaluated the model’s performance when completely skipping
blocks instead of approximating them. As for the previous setting, after performing the desired skips,
the network is not trained or fine-tuned. The results in Table 2] show the accuracy scores for ViT-S
on CIFAR-10 and CIFAR-100F, where the ”Skip” column represents the operation of skipping
a block entirely rather than applying an approximation. The findings consistently demonstrate that
approximating blocks significantly outperforms skipping them in all cases. This underscores the
effectiveness of RBA in preserving model performance while reducing complexity. Please refer to
Table [9] for results on other datasets.

Table 3: Generalization Results. Classification accuracy scores when approximating using a
transformation calculated on other datasets for ViT—S and DiNO-S using MNIST, CIFAR-10,
CIFAR-100C and CIFAR-100F. The "Approx” column b; — b; + n specifies the blocks used for
approximation, where the first value represents the block whose output is used to approximate the
second block’s output. The “’Fit On” column indicates the dataset on which is calculated the linear
transformation. Please refer to Table|10]for complete results.

Accuracy 1

Encoder Approx. Fit On MNIST CIFAR-10 CIFAR-100C CIFAR-100F
ViT-S 2—=3 MNIST 94.11 57.13 41.89 28.50
CIFAR-10 89.58 95.08 85.32 77.92
CIFAR-100 89.63 95.00 85.50 T77.74
3—4 MNIST 93.52 10.36 8.97 3.09
CIFAR-10 88.02 95.18 86.14 78.52
CIFAR-100 88.21 94.82 85.92 78.09
1—-3 MNIST 92.79 16.17 11.09 3.84
CIFAR-10 80.41 90.63 75.59 65.98
CIFAR-100 81.24 89.98 76.27 66.26
35 MNIST 88.22 15.17 8.52 2.03
CIFAR-10 61.68 93.57 80.24 71.76
CIFAR-100 64.18 92.77 80.56 72.43

Generalization. Additionally, we evaluated the model’s performance in approximating representa-
tions based on a transformation calculated on a different dataset using the same architecture. As in
the previous setting, after applying the desired skips, the network is neither trained nor fine-tuned.
The results in TableEl show the accuracy scores for ViT—S and DiNO-S on MNIST, CIFAR-10,
and CIFAR-100F, where the Fit On” column indicates the dataset used to calculate the transforma-
tion. With the exception of MNI ST, which might be too basic to generalize effectively, the findings

Under review as a conference paper at ICLR 2025

consistently demonstrate that it is possible to leverage a simple linear transformation that is not only
shared across all tokens but also across different datasets. Additional results can be found in Table [[Q}

Transformation Ablation. Finally, we conducted an ablation study on the transformations used
to approximate latent spaces. The results, presented in Table] show accuracy scores for ViT-5
on ImageNetlk using the proposed method (RBA) alongside two more complex MultiLayer
Perceptron (MLP) translators, referred to as Res-MLP and MLP. Details on these translators are
provided in Appendix [A22-T] Both the MLP and Res-MLP translators are trained for 300 steps
using a learning rate of le-3 and the Adam optimizer. The findings demonstrate that employing a
simple linear transformation to approximate redundant layers is the optimal choice in most cases.
As expected, the more blocks are approximated, the less linearly correlated they become, making
a more complex approximation more effective (see 1 — 5 in Table). Furthermore, the Res-MLP
and MLP translators require additional training, whereas the RBA approach is entirely training- and
fine-tuning-free, as it relies on a closed-form linear transformation. This process eliminates the need
for gradient computation or backpropagation.

Table 4: Transformation Ablation. Classification accuracy scores when approximating using RBA
or using a more complex MLP on ImageNet 1k using ViT-S accross three seeds. The ”Approx”
column b; — b; + n specifies the blocks used for approximation, where the first value represents the
block whose output is used to approximate the second block’s output.

Accuracy T

Encoder Approx. RBA MLP Res-MLP
ViT-S 1—=5 43.68 + 0.36 4579 £ 0.19 45.44 £0.12

2—=5 60.41 £+ 0.06 60.22 £ 0.08 60.02 £ 0.34
7—10 33.77 £ 0.44 22.854+0.10 33.01 £0.76

1—3 65.31 + 0.14 65.45 + 0.31 64.54 + 0.25
3—=5 68.16 + 0.16 66.28 £0.43 67.38 £0.14
2—4 67.81 £ 0.15 67.30 £0.12 66.91 &+ 0.09
8 —10 46.75 + 0.21 38.29+£0.72 44.97 £0.60
9—11 46.17 + 0.25 34.70 £0.68 39.01 £0.34

2—3 71.74 + 0.29 71.254+0.19 70.94 £0.18
34 71.70 + 0.28 70.78 £ 0.42 70.78 £0.10
4 =5 71.49 + 0.23 69.47 £0.18 70.86 £0.10
9—10 61.11 £ 0.15 53.78 £0.19 58.06 £ 0.43

Takeaway. Redundant Block Approximation preserves essential representational features while
maintaining the model’s structural integrity, even when simplifying its architecture, whereas just
skipping blocks could lead to performance degradation.

5 CONCLUSION

In this paper, we introduced a novel framework for approximating redundant representations in
transformer-based foundation models and proposed a simple yet effective metric to identify such
redundancies. By leveraging a simple linear transformation, shared across all tokens, between
consecutive and non-consecutive blocks output, we demonstrated that it is possible to significantly
reduce model parameters and complexity without sacrificing performance, and in some cases even
improving it. Our approach provides an efficient way to optimize model architecture, maintaining
essential representation fidelity while streamlining the network for downstream tasks.

Limitations and Future Works. While our framework shows promising results, it has been primarily
tested on transformer-based architectures. We leave to future work to explore the application of our
framework across different modalities (e.g., text), architectures (e.g., ResNets and AutoEncoders), and
downstream tasks (e.g., reconstruction). Additionally, we plan to enhance the representation analysis
by incorporating topological metrics, which could provide a different perspective on structural
similarities between representations. This alternative viewpoint may uncover new insights into
redundancy patterns and further refine our approach. By expanding the framework’s scope, we aim to
validate its versatility and continue optimizing model efficiency across a broader set of architectures
and tasks, advancing its practical applicability in diverse settings.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong Liu. Unified data-free compression:
Pruning and quantization without fine-tuning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5876-5885, 2023.

Rubén Ballester, Carles Casacuberta, and Sergio Escalera. Topological data analysis for neural
network analysis: A comprehensive survey. arXiv preprint arXiv:2312.05840, December 2023.

Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topol-
ogy divergence: A method for comparing neural network representations. arXiv preprint
arXiv:2201.00058, 2021.

Irene Cannistraci, Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, and
Emanuele Rodola. Bootstrapping parallel anchors for relative representations, 2023. URL
https://openreview.net/forum?id=VBuUL2IWl1lq.

Irene Cannistraci, Luca Moschella, Marco Fumero, Valentino Maiorca, and Emanuele Rodola. From
bricks to bridges: Product of invariances to enhance latent space communication. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview,
net/forum?id=vngVydDWftl

Donato Crisostomi, Irene Cannistraci, Luca Moschella, Pietro Barbiero, Marco Ciccone, Pietro
Lio, and Emanuele Rodola. From charts to atlas: Merging latent spaces into one. In NeurIPS
2023 Workshop on Symmetry and Geometry in Neural Representations, 2023. URL https
//openreview.net/forum?id=ZFu/7CPtznY.

MohammadReza Davari, Stefan Horoi, Amine Natik, Guillaume Lajoie, Guy Wolf, and Eu-
gene Belilovsky. Reliability of cka as a similarity measure in deep learning. arXiv preprint
arXiv:2210.16156, 2022.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141-142, 2012.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, and Emanuele Rodola.
Latent functional maps. In Proc. NeurIPS, 2024.

Harold Hotelling. Relations between two sets of variates. Breakthroughs in statistics: methodology
and distribution, pp. 162—-190, 1992.

Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of
neural network models: A survey of functional and representational measures. arXiv preprint
arXiv:2305.06329, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pp. 3519—
3529. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Ruslan Kuprieiev, skshetry, Dmitry Petrov, Pawet Redzynski, Peter Rowlands, Casper da Costa-
Luis, Alexander Schepanovski, Ivan Shcheklein, Batuhan Taskaya, Gao, Jorge Orpinel, David
de la Iglesia Castro, Fdbio Santos, Aman Sharma, Dave Berenbaum, Zhanibek, Dani Hodovic,
daniele, Nikita Kodenko, Andrew Grigorev, Earl, Nabanita Dash, George Vyshnya, Ronan Lamy,
maykulkarni, Max Hora, Vera, and Sanidhya Mangal. Dvc: Data version control - git for data &
models, 2022. URL https://doi.org/10.5281/zenodo.7083378.

11

https://openreview.net/forum?id=VBuUL2IWlq
https://openreview.net/forum?id=vngVydDWft
https://openreview.net/forum?id=vngVydDWft
https://openreview.net/forum?id=ZFu7CPtznY
https://openreview.net/forum?id=ZFu7CPtznY
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.5281/zenodo.7083378

Under review as a conference paper at ICLR 2025

Henry Kvinge, Grayson Jorgenson, Davis Brown, Charles Godfrey, and Tegan Emerson. Internal
representations of vision models through the lens of frames on data manifolds. In NeurIPS 2023
Workshop on Symmetry and Geometry in Neural Representations, 2022.

Zorah Lihner and Michael Moeller. On the direct alignment of latent spaces. In Marco Fumero,
Emanuele Rodold, Clementine Domine, Francesco Locatello, Karolina Dziugaite, and Caron
Mathilde (eds.), Proceedings of UniReps: the First Workshop on Unifying Representations in
Neural Models, volume 243 of Proceedings of Machine Learning Research, pp. 158—169. PMLR,
15 Dec 2024. URL https://proceedings.mlr.press/v243/lahner24a.html.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1402-1406, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, and
Emanuele Rodola. Latent space translation via semantic alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural

networks with canonical correlation. Advances in Neural Information Processing Systems, 31,
2018.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and
Emanuele Rodola. Relative representations enable zero-shot latent space communication. In Proc.
ICLR, 2023.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. arXiv preprint
arXiv:2010.15327, 2020.

Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodola, and
Francesco Locatello. Asif: Coupled data turns unimodal models to multimodal without training.
Advances in Neural Information Processing Systems, 36:15303-15319, 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svecca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural
information processing systems, 30, 2017.

Antonio Pio Ricciardi, Valentino Maiorca, Luca Moschella, and Emanuele Rodola. Zero-shot stitching
in reinforcement learning using relative representations. In Sixteenth European Workshop on Rein-
forcement Learning, 2023. URL https://openreview.net/forum?id=4tcXsImfsS1.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang,
Yi Liang, and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for accelerating
unified vision language model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10781-10791, 2023.

12

https://proceedings.mlr.press/v243/lahner24a.html
https://openreview.net/forum?id=4tcXsImfsS1

Under review as a conference paper at ICLR 2025

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arxiv 2020.
arXiv preprint arXiv:2012.12877, 2(3), 2020.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. Advances
in Neural Information Processing Systems, 36, 2024.

Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli, and Amir Habibian. Skip-
attention: Improving vision transformers by paying less attention. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=vI95kcLAoU.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for
vision transformers. In Proc. AAAI, 2022.

Hanxiao Zhang, Yifan Zhou, and Guo-Hua Wang. Dense vision transformer compression with few
samples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 15825-15834, June 2024.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in neural information processing systems, 33:14011-14023,
2020.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience:
Fast and robust inference with early exit. Advances in Neural Information Processing Systems, 33:
18330-18341, 2020.

13

https://openreview.net/forum?id=vI95kcLAoU
https://openreview.net/forum?id=vI95kcLAoU

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

In Section Section 3] we provide a detailed description of the proposed framework and the experi-
mental settings for the various scenarios. In the following sections, we present all implementation
details that are not described in the main manuscript. Additionally, we will release a modular PyTorch
implementation.

A.2 IMPLEMENTATION DETAILS

This section details the experiments conducted in Section [d} Table 5 contains the full list of the
pretrained models, while Table[6|contains dataset information.

Table 5: Pretrained models details. Details of the pretrained feature extractors with their Hugging-
Face key, their alias, and their latent space dimensionality.

Modality HuggingFace Model Name Alias Enc. Dim
WinKawaks/vit-small-patch16-224 viT-S (Dosovitskiy et al.|[2021 384
google/vit-base-patch16-224 ViT-B (Dosovitskiy et al.|[2021 768

Vision facebook/dinov2-small DiNO-S (Oquab et al.|[2023 384
facebook/dinov2-base DiNO-B (Oquab et al.|[2023 768
facebook/deit-small-patch16-224 DEiT-S (Touvron et al.|[2020) 384

Table 6: Dataset details. Details of the HuggingFace datasets used in the classification and recon-
struction experiments, with the associated number of classes.

Modality Name Alias Number of Classes
MNIST (Deng, 2012) MNIST 10
Fasion-MNIST (Xiao et al.,[2017) F-MNIST 10

Image CIFAR-10 (Krizhevsky et al.[[2009) CIFAR-10 10
CIFAR-100 (coarse) (Krizhevsky et al., 2009 CIFAR-100C 20
CIFAR-100 (fine) (Krizhevsky et al.| 20 CIFAR-100F 100
Imagenet-1k (IRussakovsky et al,,|2015) ImageNetlk 1000

A.2.1 TRANSLATORS

The first implementation, referred to as the Res-MLP, is composed of two normalization layers and
a feedforward submodule. The first layer normalization processes the input tensor, followed by a
feedforward submodule comprising a linear transformation, a SiLU activation, a dropout layer, and
a final linear transformation. The output of the feedforward submodule is added to the normalized
input via a residual connection. This sum is then passed through the second layer normalization to
produce the final output. While the second implementation, referred to as the MLP, is a simplified
MLP that employs a sequential architecture with a first linear transformation that reduces the input
dimensionality to half of the target dimension, followed by a GELU activation function for smooth
non-linearity, and a final linear transformation that restores the reduced features to match the target
dimensionality. Refer to Listings[T]and] for the code snipped of the two translators.

Listing 1: Python Code Snippet for the Res-MLP translator

class ResMLP (nn.Module) :
def __init__ (self, num_features: int, dropout_p: float):
super () .__init__ ()

self.norml nn.LayerNorm (num_features)
self.norm2 = nn.LayerNorm (num_features)

self.ff = nn.Sequential (

14

Under review as a conference paper at ICLR 2025

nn.Linear (num_features, num_features),
nn.SiLU(),

nn.Dropout (p=dropout_p),

nn.Linear (num_features, num_features),

)

def forward(self, x: torch.Tensor) —-> torch.Tensor:
x_normalized = self.norml (x)
x_transformed = self.ff (x_normalized)

return self.norm2 (x_transformed + x_normalized)

Listing 2: Python Code Snippet for the MLP translator

translation = nn.Sequential (
nn.Linear (x.size(l), y.size(1l) // 2),
nn.GELU (),
nn.Linear (y.size(1l) // 2, y.size(1l)),

A.2.2 ToOOLS & TECHNOLOGIES

All the experiments presented in this work employ the following tools:
* PyTorch Lightning, to ensure reproducible results while also getting a clean and modular
codebase;
* NN-Template GrokAI (2021), to easily bootstrap the project and enforce best practices;
 Transformers by HuggingFace, to get ready-to-use transformers for both text and images;
* Datasets by HuggingFace, to access most of the datasets;
e DVC (Kuprieiev et al.| [2022)), for data versioning;

A.3 ADDITIONAL EXPERIMENTS

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Approx. Num. Params ImageNetlk
1=5 15.31M 43.68 £ 0.36
25 16.94M 60.41 + 0.06
7—10 16.94M 33.77+0.44
1-3 18.56M 65.31+0.14
35 18.56M 68.16 + 0.16
2—4 18.56M 67.81+0.15
8—10 18.56M 46.75£0.21
9—11 18.56M 46.17 £0.25
23 20.19M 71.74 £ 0.29
34 20.19M 71.70 £ 0.28
4—=5 20.19M 71.494+0.23
9—10 20.19M 61.114+0.15

- 21.82M 73.98 £0.19

BR Cosine

094 096 1.00 096 0.93 0.88

090 093 0.96 1.00 0.96 091

086 089 0.93 096 1.00 094

0.66 0.71 069 0.67 0.63 0.60 0.60

0.61 0.65 063 0. 3056 0.56

04

Figure 7: Correlation Between Similarity Metrics and Accuracy Approximation. (Leff) The
accuracy performance of the Vi T—S encoder is shown with different approximation strategies applied
on ImageNetlk. (Right) A block-by-block matrix visualizes results using various similarity
metrics. The findings reveal that using BR or cosine similarity enhances the emergence of the block
structure, making it easier to identify highly redundant blocks. Notably, results highlighted in orange
demonstrate that the BR metric uniquely indicates that approximating blocks 7 — 10 is suboptimal,
as it results in lower accuracy. In contrast, approximating an equivalent number of blocks (3) in the
range of 2 — 5 yields favorable results, particularly when considering the reduction in the number of
parameters.

16

Under review as a conference paper at ICLR 2025

864
865
866
867
868
869
870
871
872
873
874
875
876
877

F-MNIST CIFAR1O CIFAR100

878

879 = —.mnw:mnssrm.
f : s 034 030 035 100 096 091 037,

880
881
882
883

884
885 N B 058 100 0m 03 099 031

098 100 095 097 095 094

886 = 00 0 2 0 s ; 057 099 1.00 099 097 096

055 097 099 100 099 097

887 ; 0 o0) s s « 094 096 097 0% 100 038

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

oo Figure 8: Representation Similarities. Cosine similarity matrices illustrating the internal block-by-
995 block similarities in ViT-S, ViT-B, DEiT~S, DiNO-S and DiNO-B, and DEi TS models across
907 four datasets: MNIST, F-MNIST, CIFAR-10, and CIFAR-100. Each heatmap quantifies the
908 similarity between the internal representations of different blocks using the [CLS] token, providing
909 insights into redundancy in foundation pretrained models. The matrices reveal that the similarity
910 structure between computational blocks is predominantly influenced by the model architecture itself
911 rather than the specific dataset.

912

913

914

915

916

917

17

Under review as a conference paper at ICLR 2025

- -am

s

P

ViT-S

[

oo

- 208

Zam

ey

ViT-B

~om

S

DEiT-S

~om

- 000

-+ o0

- o0

~on

Y

s

DiNO-S

00
- 000
-+ oo
o0
< Joos

“on

DiNO-B

o

"y

- -0t

e

032 053 070 076 090 109 143 = -000 030 031 067

000 -008 -022 032 045 067 L8| — 030 -0m 008 021 032

008 000 -0.12 023 041 061 4 051 0% 000 011 023

022 012 00 012 027 047 -L0s| - 087 021 011 000 012

032 023 012 000 014 036 111 - 075 032 023 012 000 011 026 -109)
048 041 027 015 000 025 L7 . 086 047 039 024 011 -000 019 417
067 061 047 036 -028 000 077 097 057 050 -036 026 019 000 0

08 -L10 105 -L11 i o 7 st

‘08 205 1673267631 = 000 017 050 165 286

<000 049 141 295 531 901 HATETES — 017 000 03% 114 223 1200 206
049 000 057 135 -392 128 10 e om0 03 0 046 132 292 521 2 (IR
41 057 000 057 267 S0 - 14 046 000 038 -194 -402 760 AEORTEN
295 135 097 000 103 237 o 7 ~286 223 -132 058 000 092 264 581

531 392 267 103 00 139 491 4 2 000 096 341 278

226 560 337 139 00 88 672 528 09 000 122 434 6560

1 020 1088

763 478 161 000 231 524 a1 122 000 153 413 6978

066 15.37-16.4-14.08

s 040 047 46| 054 056 066 045|047 034 06

015 a1 02
o 015 oz

005 011 025

000 005 010 014 020 039 050 100 0 09

005 000 005 010 015 039 050 1.0 08 o6

010 005 000 003 009 039110 o

014 010 003 000 005 048 101

020 015 000 005 00 083 099 -1 09 005 000 016 021

i o
=k

039 0. 015 011 06

03 03 01|03 0

05 050 0 0% 0@

000 000 000 001 001

000 000 -000 -001 -0

000 000 000 000 000 001

000 000 000 000 000 001

001 000 000 000 000 001

001 000 000 000 000 001

002 001 001 001 001 000

008 002 002 003 002 001

015 012 012 012 012

000 000 000 001 001 000 000 00
000 000 000 001 001 008 011 S0l om0 000 000 000 001 001 006
000 000 000 001 001 Ly =000 000 000 000 001 001 006
000 000 000 001 001 -0 000 -000 -000 -001 -001 -006
001 001 001 000 001 00 011 014 LTS T oo o0 oo 001 o0 001 ‘om
001 001 001 001 000 004 007 .10 38 RS <04~ 001 001 001 001 001 000 004
008 008 008 008 003 000 001 005 017 TS Ly < -0 006 006 006 007 008 000 001
011 010 011 011 007 001 010 010 010

014 014 018 018 010 005 013 012 013

029 029 030 031 0303203

04

—

oz

07 08

Yy
072 03
085 s

oo

m

o

om0

s

o7

—om

o052

a0

24

s

Ery

018 om0

e

o

o

a0

“os

—os

00 008

e

5 050

CIFAR1O

000 028 047 062 072 085 096 129

00 011

0

on

03

102 101

s
017 082
o0 022

022 000 034 131

03 s

1%

3

a7 305

o5

033

005 010 014 017

000 004 09 013

000 003 008

003 000 004

013 008 04 000

016 013 011 006

060 060 060 057 047

000 001 001

000 000 001 001 002

000 000 00 00 -001

000 000 000 -000 -001

000 000 000 000 001

000 000 00 00 -001

001 -001 001 001 000

001 002 02 002

007 007 008 008

040

000 -000 001 -001 006

000 000 001 001 -005

000 000 001 001 005

000 -000 001 -001 005

001 -001 000 001 006,

001 001 001 000 003

005 -005 -006 003 000

009 009 010 006 001
010 011 011 008 003

o

020 033 048 059
02 03 050
000 011 025 034
0 012 023
025 012 000 015

034 023 015 000

73 301 826
130 244 4.
o84 186 AT2
05
00 053 18
053 0m 07
189 079 000

582 437 278 099

s a0 20

09|

102]

o1

L0 120 094

048 054078

047 03

076 043
040 065 034

o

om

om

m

o

s

o

om

an

o

04

10

as

o8

“0s

04

as

CIFAR100

08 047

000 -0

008 -0

02 on

03 024

048 040

059 050

100 12

015 057

000 018

o1 000

057 024

138 om0

st a9

a5 a7

2 68

w6 an
w03
0
a0 012
012 000
w02 012

035 028

s
25t
193
135

03

00 135 3 192 R

a2 07 00 205 RS

s

000 005 010

005 000 005

010 -005 000

014 009 003

017 013 008

02 016 013

025 024

000 0
000 000
000 00
000 00
001 001
001 01

006 005

009 009 010

o1 o on

006

052 030|084

o

00

ry

00

o0

oot

006 003
010 006

012 00

027 029

Figure 9: Representation Redundancies. BR matrices illustrating the internal block-by-block
redundancies in ViT-S, ViT-B, DEiT-S, DiNO-S and DiNO-B, and DEiT-S models across
four datasets: MNIST, F-MNIST, CIFAR-10, and CIFAR-100. Each heatmap quantifies the BR
metric between the internal representations of different blocks using the [CLS] token, providing
insights into redundancy in foundation pretrained models. The matrices reveal that the similarity
structure between computational blocks is predominantly influenced by the model architecture itself
rather than the specific dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Original RBA Original RBA

MNIST
F-MNIST

CIFAR-10
CIFAR-100

Figure 10: Last Block Approximation. PCA visualization of the final layer representations for
both the original model and the model with its second block approximated by the preceding one.
The representations are generated using the DiNO-S model across four datasets. Note that for
CIFAR-100 (bottom right), only the overall structure of the space can be observed, as the 100
classes make it challenging to distinguish labels based on color

Original Original RBA

 MNIST
FTMNIST

CIFAR-10
CIFAR-100

Figure 11: Last Block Approximation. PCA visualization of the last layer representations for
both the original model and the model with its second block approximated using the previous one.
Representations refer to the using Vi T—S model across four datasets.

Original Original RBA

 MNIST
F-MNIST

CIFAR-100

CIFAR-10

Figure 12: Last Block Approximation. PCA visualization of the last layer representations for
both the original model and the model with its last block approximated from the previous one.
Representations refer to the using Vi T-S model across four datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Original RBA Original RBA

~ MNIST
_F-MNIST

CIFAR-10
CIFAR-100

Figure 13: Last Block Approximation. PCA visualization of the last layer representations for
both the original model and the model with its last block approximated from the previous one.
Representations refer to the using DEiT-S model across four datasets.

20

Under review as a conference paper at ICLR 2025

Table 7: Image Classification Performance Across Architectures and Seeds. Accuracy scores
are reported for different pretrained models, random seeds, and datasets. CIFAR-100C refers to
CIFAR-100 with the coarse setting (20 labels), while CIFAR-100F refers to the fine setting
(100 labels). The ”Approx” column b; — b; + n specifies the blocks used for approximation, where
the first value represents the block whose output is used to approximate the second block’s output.
The "Num. Blocks” column indicates the total number of remaining blocks after the approximation,
and the "Num. Params” column shows the number of model parameters. The proposed method
preserves performance while reducing the number of parameters.

Accuracy T

Encoder Approx. Num. Blocks Num. Params MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F
ViT-S 1—=5 8 15.31M 92.11+£0.20 86.36 +£1.00 84.934+0.62 68.47£0.30 58.96 £ 0.20
25 9 16.94M 94.67+£0.12 87.824+£0.92 90.97+0.30 78.07£0.38 69.83 £0.19
7—10 9 16.94M 94.91+£0.30 88.00+£0.78 85.81+1.03 71.10£0.51 60.18 +0.93
1—3 10 18.56M 95.67+0.19 87.43+0.63 92.094+0.30 79.68£0.20 72.124+0.27
35 10 18.56M 95.16 £0.08 88.38+0.80 94.18+0.11 83.29 £0.47 76.46 +0.23
2—4 10 18.56M 95.37+£0.08 88.08+1.08 93.03+0.10 81.74£0.28 74.69 £ 0.60
8—10 10 18.56M 95.27+0.58 88.56+0.95 91.56+0.72 77.73 £0.41 69.36 +0.22
9—11 10 18.56M 94.77+0.10 88.23+0.42 89.16+1.10 75.30 £0.44 68.19 +0.59
23 11 20.19M 95.76 £0.08 88.67+0.63 94.87+0.20 85.96 £ 0.05 79.21+0.45
34 11 20.19M 95.70 £0.11 88.35+1.00 95.1040.23 86.00 £ 0.12 79.57+0.43
4—=5 11 20.19M 95.67 £0.17 89.11+0.45 9543+0.25 86.24 +0.21 79.87 £0.20
9—10 11 20.19M 95.75£0.44 88.85+0.90 94234+0.12 82.69+0.49 76.65 + 0.37
- 12 21.82M 95.95 £0.40 89.01 +£0.63 95.874+0.08 87.60+0.15 81.44 +£0.19
DiNO-S 1—=5 8 15.55M 95.32+1.09 87.43+0.78 79.37+1.34 60.72+0.49 51.72+0.44
25 9 17.18M 96.04 £0.67 88.43+0.65 85.5840.54 67.89+0.57 60.21 £ 0.60
7—10 9 17.18M 96.93 £0.45 87.47+0.74 91.244+0.13 78.14£0.14 70.46 £ 0.23
1—-3 10 18.80M 96.74 £0.96 87.60+1.68 91.824+0.17 78.81£0.35 71.79 +£0.22
35 10 18.80M 96.93 £0.42 88.54+0.21 90.90+0.30 76.12 £ 0.50 69.16 £ 0.74
2—4 10 18.80M 96.54 £0.55 87.63+1.29 91.03+0.75 76.57 £0.25 69.82 + 0.60
8§ —10 10 18.80M 97.03+£0.17 87.77+1.38 93.34+044 82.27£041 75.02 £ 1.12
9—11 10 18.80M 92.46 £1.63 82.68+0.92 85.65+0.68 7244 +£1.19 60.73 £ 0.62
23 11 20.43M 96.99+0.70 88.62+0.54 94.67+0.20 83.92+£0.49 78.34 +0.30
34 11 20.43M 97.22+0.50 88.06+1.01 94724+0.24 83.37£0.37 78.14 4+ 0.20
4—=5 11 20.43M 97.33+0.47 88.67+1.36 94.64+0.10 82.81 £0.62 76.99 £+ 0.37
9—10 11 20.43M 96.99+£0.97 88.41+0.33 93.524+0.48 84.09 £0.52 77.54+0.89
- 12 22.06M 96.85+1.04 88.17+0.64 96.06+0.32 87.62+0.24 82.09 +0.23
DEiT-S 1—=5 8 15.31M 93.27+£0.37 85.76+0.30 78.20+£0.21 59.82£0.16 50.72+0.31
25 9 16.94M 94.99+0.18 87.414+0.27 85.27+0.11 69.95+0.15 61.25+0.29
7—10 9 16.94M 95.81+0.23 87.82+0.43 89.20+0.34 75.96 £0.20 69.22+0.21
1—3 10 18.56M 95.35+0.21 87.11+0.32 85.594+0.23 70.61 £0.42 61.74+0.07
35 10 18.56M 95.86+0.14 87.79+0.51 89.124+0.23 75.84 £0.09 67.25+0.20
2—4 10 18.56M 95.68 +£0.11 87.96+0.39 88.76+0.08 75.83+£0.38 67.01+0.31
8—10 10 18.56M 95.87£0.27 88.05+0.37 90.6240.09 78.25 £ 0.52 71.03 +0.31
911 10 18.56M 95.64 £0.13 88.26+0.11 91.09+0.21 79.30 £ 0.58 71.77 £0.33
23 11 20.19M 95.99£0.19 87.85+0.33 90.134+0.23 78.11+£0.23 70.13 + 0.09
34 11 20.19M 96.05+0.09 87.97+0.14 90.33+0.26 78.70 £0.39 70.40 +0.21
4—=5 11 20.19M 95.88£0.18 88.04+0.31 90.26+0.17 78.12+0.20 69.66 + 0.38
9—10 11 20.19M 95.96 £0.24 88.09+0.17 91.08+0.25 79.33 £0.34 71.62 £ 0.10
- 12 21.82M 96.03+0.24 87.86+0.25 90.83+0.11 79.06 £ 0.30 71.25+0.18

21

Under review as a conference paper at ICLR 2025

Table 8: Image Classification Performance Across Seeds. Accuracy scores are reported for
ViT-B using 3 random seeds, and different datasets. CIFAR-100C refers to CIFAR-100 with
the coarse setting (20 labels), while CIFAR-100F refers to the f£ine setting (100 labels). The
”Approx.” column b; — b; + n specify the blocks used for approximation, where the first value
represents the block whose output is used to approximate the second block’s output, while the "Num.
Blocks” column indicates the total number of remaining blocks after the approximation. The proposed
method preserves performance while reducing the number of parameters.

Accuracy 1

Approx. Num. Params MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F
1—=5 60.40M 87.06 £0.53 84.33+0.61 73.54+0.57 51.67+1.10 38.98 £0.72
25 66.90M 94.20+£0.21 87.80+0.24 87.10+£0.83 71.68+0.50 61.19 £0.37
1—3 73.40M 96.51 +0.42 88.72£0.41 93.71+0.13 83.05+0.23 74.74 £ 0.29
325 73.40M 95.59 £0.09 88.28+0.20 93.11+0.06 83.50+0.17 74.35 £ 0.47
24 73.40M 96.21 £0.33 89.21+£0.64 94.59+0.32 85.13+0.24 76.82 £ 0.41
8 — 10 73.40M 96.54 +0.21 89.72+£0.52 95.05+0.26 85.78 £0.37 79.62 £0.14
9—11 73.40M 95.59 £0.52 89.49+0.26 93.22+0.56 82.23+0.44 76.33 £0.10
34 79.90M 96.86 = 0.35 89.69£1.09 96.18+0.09 89.18+0.06 82.50 £ 0.17
45 79.90M 96.55 £0.23 89.13£0.50 95.39+0.23 87.43+0.15 80.30 £ 0.16
0—1 79.90M 96.75+0.29 88.97+£0.26 93.74+0.15 84.49+0.20 76.54 £0.29
1—=2 79.90M 96.88 £0.01 89.29+0.24 95.63+0.11 87.46+0.20 80.64 £ 0.23
23 79.90M 96.91 +0.17 89.69 £0.61 96.00+0.18 88.38+0.13 81.59 £0.35

- 86.40M 95.61 +0.22 89.64£0.57 96.25+0.17 89.52+0.23 83.41 +0.20

Table 9: Image Classification Performance: RBA vs. Skip Across Seeds. Accuracy scores for
ViT-S on all the datasets are reported using 3 different seeds. The ”’Skip.” column b; — b; +n
specifies the blocks being skipped, where the first value represents the starting block (excluded from
the skip) and the second value represents the final (included) block. The "Num. Blocks” column
shows the total number of remaining blocks.

Skip Accuracy 1

Skip Num. Blocks MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F
1—5 8 92.74£0.58 82.25+0.93 58.084+0.44 43.43£0.79 32.68 £0.70
2—=5 9 93.78+0.55 84.994+0.51 64.43+2.00 51.39+0.57 41.78 £ 0.45
7—10 9 91.56+0.46 85.02+1.15 73.94+0.34 59.99+0.73 45.00 £ 0.31
1—3 10 94.41+0.33 82.82+£046 66.27+0.76 52.5240.48 42.76 £0.75
325 10 93.96 £0.25 86.10+0.15 74.79£1.56 62.53 £0.32 54.62 £ 0.52
24 10 94.31+£0.48 85.22+0.67 71.56£1.62 59.40=£0.38 50.19 4+ 0.38
8§ =10 10 94.824+0.21 87.77+0.43 85.74+0.32 72.39+0.41 63.79 £ 0.66
9—11 10 94.80+0.15 88.32+0.46 89.65+0.52 76.40+0.08 70.75 + 0.39
0—1 11 95.98£0.13 84.91+0.36 70.90+0.09 57.16 £0.41 47.54 £0.37
1—2 11 95.79+0.16 87.07+£0.70 83.21+0.52 70.66 +0.69 62.23 £0.21
23 11 95.14+0.39 85.50£0.62 81.244+0.48 68.63+0.33 60.22 £0.75
34 11 95.34£0.58 87.62+1.18 88.25+0.23 77.58 £0.46 69.79 £ 0.02
4—=5 11 95.75£0.20 87.26+0.86 86.23+0.63 74.52£0.63 66.69 £ 0.48
5—6 11 95.77+£0.22 86.99+0.33 83.42+£0.52 69.62+0.32 61.96 £ 0.55
6—7 11 95.33+£0.08 86.64+1.14 87.57+0.24 75.91+£0.20 68.70 £0.31
7—8 11 95.76 £0.20 87.50+0.85 88.70+0.46 76.80+0.09 69.33 £0.39
8§—9 11 96.28+0.04 88.38+0.83 89.98+0.48 76.45+0.65 71.80 4+ 0.22
9—10 11 95.56 £0.47 88.74+1.09 93.40£0.32 82.44+0.44 76.32 £+ 0.30
10— 11 11 95.224+0.29 89.39+0.30 93.77+0.69 82.39+0.06 78.68 +0.29
- 12 95.95+£0.40 89.01+£0.63 95.87+0.08 87.60£0.15 81.29 £0.20

22

Under review as a conference paper at ICLR 2025

Table 10: Generalization Results. Classification accuracy scores when approximating using a
transformation calculated on other datasets for ViT-S and DiNO-S using MNIST, CIFAR-10,
CIFAR-100C and CIFAR-100F. CIFAR-100C refers to CIFAR-100 with the coarse setting
(20 labels), while CIFAR-100F with the fine setting (100 labels). The ”Approx” column b; —
b; + n specifies the blocks used for approximation, where the first value represents the block whose
output is used to approximate the second block’s output. The ”Fit on” column indicates the dataset
on which the linear transformation is calculated.

Accuracy T

Encoder Approx. Fit On MNIST CIFAR-10 CIFAR-100C CIFAR-100F
ViT-$ 23 MNIST 94.11 57.13 41.89 28.50
CIFAR-10 89.58 95.08 85.32 77.92
CIFAR-100 89.63 95.00 85.50 77.74
34 MNIST 93.52 10.36 8.97 3.09
CIFAR-10 88.02 95.18 86.14 78.52
CIFAR-100 88.21 94.82 85.92 78.09
45 MNIST 93.96 38.40 25.56 16.52
CIFAR-10 78.36 95.31 85.84 78.20
CIFAR-100 80.11 94.98 86.01 78.14
9— 10 MNIST 89.73 74.41 59.78 44.40
CIFAR-10 82.28 92.39 71.63 57.17
CIFAR-100 54.12 85.60 77.37 61.81
13 MNIST 92.79 16.17 11.09 3.84
CIFAR-10 80.41 90.63 75.59 65.98
CIFAR-100 81.24 89.98 76.27 66.26
35 MNIST 88.22 15.17 8.52 2.03
CIFAR-10 61.68 93.57 80.24 71.76
CIFAR-100 64.18 92.77 80.56 72.43
2—4 MNIST 92.74 17.24 12.27 4.27
CIFAR-10 63.52 92.14 79.80 70.52
CIFAR-100 66.05 91.21 79.57 70.16
8 — 10 MNIST 86.77 36.61 30.79 15.10
CIFAR-10 24.29 80.81 48.73 31.74
CIFAR-100 38.89 59.12 64.07 43.20
9—11 MNIST 77.19 31.40 18.79 4.32
CIFAR-10 49.65 76.61 50.48 25.57
CIFAR-100 35.61 68.40 55.67 31.59
25 MNIST 81.11 13.09 6.74 2.24
CIFAR-10 37.16 88.70 67.99 57.24
CIFAR-100 39.60 86.75 70.00 58.90
710 MNIST 85.04 33.28 19.26 4.59
CIFAR-10 20.67 69.49 34.65 17.18
CIFAR-100 30.00 48.19 53.16 26.97
15 MNIST 69.44 10.36 5.38 1.56
CIFAR-10 39.49 76.98 48.11 36.38
CIFAR-100 36.94 72.48 51.03 38.75
DiNO-S 2—3 MNIST 93.04 58.24 37.95 27.62
CIFAR-10 86.16 94.11 82.37 75.26
CIFAR-100 86.39 93.78 82.28 75.29
34 MNIST 92.33 62.78 38.18 27.52
CIFAR-10 84.70 94.37 81.93 74.69
CIFAR-100 83.72 94.10 82.02 74.59
45 MNIST 91.64 57.39 36.97 26.02
CIFAR-10 70.87 93.65 80.38 73.84
CIFAR-100 T71.51 92.98 79.96 73.54
9—10 MNIST 83.39 38.85 20.20 13.10
CIFAR-10 45.69 88.70 61.71 50.46
CIFAR-100 60.57 76.58 76.77 61.29
1-3 MNIST 90.60 22.30 11.76 5.47
CIFAR-10 78.51 89.72 74.58 65.04
CIFAR-100 79.80 89.28 74.75 64.92
35 MNIST 87.54 24.55 11.93 6.67
CIFAR-10 63.66 87.17 66.16 58.36
CIFAR-100 64.26 84.40 66.43 58.51
2—4 MNIST 90.54 19.14 9.99 4.99
CIFAR-10 62.32 88.03 68.53 59.23
CIFAR-100 64.89 86.98 68.54 59.15
8 — 10 MNIST 80.88 22.27 10.30 6.25
CIFAR-10 25.67 85.07 48.44 35.42
CIFAR-100 29.81 67.51 67.59 47.97
9—11 MNIST 27.79 9.93 7.30 1.67
CIFAR-10 15.94 59.66 19.22 7.62
CIFAR-100 15.71 40.73 32.06 12.17
25 MNIST 82.67 10.77 5.85 2.85
CIFAR-10 49.78 73.83 46.89 38.80
CIFAR-100 48.24 67.62 46.85 38.36
7—10 MNIST 75.50 15.89 10.43 4.24
CIFAR-10 17.75 76.55 36.68 21.94
CIFAR-100 19.13 53.86 55.80 33.79
1-=5 MNIST 68.07 11.29 6.29 1.74
CIFAR-10 49.25 56.93 31.06 22.86
CIFAR-100 47.81 47.83 30.78 21.78

23

	Introduction
	Related work
	Redundant Blocks Approximation
	Experiments
	Block Similarities
	Redudant Block Approximation
	Downstream Task: Classification

	Conclusion
	Appendix
	Reproducibility statement
	Implementation details
	Translators
	Tools & technologies

	Additional Experiments

