Under review as a conference paper at ICLR 2026

DEEPDIVE: ADVANCING DEEP SEARCH AGENTS WITH
KNOWLEDGE GRAPHS AND MULTI-TURN RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Augmenting large language models (LLMs) with browsing tools substantially
improves their potential as deep search agents to solve complex, real-world tasks.
Yet, open LLMs still perform poorly in such settings due to limited long-horizon
reasoning capacity with browsing tools and the lack of sufficiently difficult su-
pervised data. To address these challenges, we present DeepDive to advance
deep search agents. First, we propose a strategy to automatically synthesize
complex, difficult, and hard-to-find questions from open knowledge graphs. Sec-
ond, we apply end-to-end multi-turn reinforcement learning (RL) to enhance
LLMs’ long-horizon reasoning with deep search. To encourage diversity and
reduce redundancy, we design a redundancy penalty that discourages repeated
similar queries. Experiments show that DeepDive-32B achieves a new open-source
competitive result on BrowseComp, outperforming WebSailor, DeepSeek-R1-
Browse, and Search-ol. We demonstrate that multi-turn RL training improves
deep search ability and significantly contributes to the performance improvements
across multiple benchmarks. We observe that DeepDive enables test-time scaling
of tool calls and parallel sampling. Our code of DeepDive can be accessed at
https://anonymous.4open.science/r/DeepDive—CAC6/.

70
N DeepDive-32B (SFT only)

15,3 BrowseComp —— DeepDive-32B 60 71 DeepDive-32B
15.0 . —@- DeepDive-32B (SFT-only)
s L15- QwQ-328 350
' 105 9 >40
10.0 9.5 T ®
o 10 £
£ - 530
9 75 0]
@ 8 : 20
4.5
5.0 (% 5.
25 1.9 10
0.0 L 0
N Ry 0g 16 32 64 128 o o1 0 RSN
s WO O 0 ®C 1S © Max Tool Calls ow® oo ° ce?”
oe® We e o0 ° oW

*f\oe“"w

Figure 1: Left: DeepDive-32B outperforms open-source deep search and proprietary models on
BrowseComp. Middle: DeepDive drives the model’s deep search ability with maximum tool calls,
which improves performance on BrowseComp. Right: Multi-turn reinforcement learning consistently
enhances DeepDive-32B on four deep search benchmarks.

1 INTRODUCTION

Large language models (LLMs)—trained with reinforcement learning (RL) using verifiable rewards—
have demonstrated strong performance in complex reasoning tasks, such as mathematics and coding
competitions(Wei et al.| 2022} [DeepSeek-Al et al., 2025; |OpenAl, 2024b; 20255 |Grok, [2025). As
real-world tasks become increasingly complex, integrating external tools like browsing expands
an LLM’s knowledge beyond its training corpus. This shift requires the LLM to execute as an
autonomous agent capable of handing complex tasks.

Notably, deep search agents are expected to reason over and search from hundreds of online sources
to locate complex, hard-to-find information, such as answering the questions in BrowseComp (Wei
et al., 2025)). However, open models fall far behind proprietary LLMs such as OpenAl DeepResearch

https://anonymous.4open.science/r/DeepDive-CAC6/

Under review as a conference paper at ICLR 2026

as deep search agents (Li et al., 2025b} |Song et al.| 2025} L1 et al., 2025c; Wu et al.| 2025a). We
attribute this gap to the shortage of hard-to-find data and the absence of multi-turn RL training.

BrowseComp

Please identify the fictional character who occasionally breaks the fourth wall with the audience, has a backstory involving help from

selfless ascetics, is known for his humor, and had a TV show that aired between the 1960s and 1980s with fewer than 50 episodes.

Blurry Entity: require both Browse and Reason

Figure 2: An illustrative example of BrowseComp (Wei et al., 2025)) questions, which often demand
long-horizon reasoning and deep search integration across multiple blurry entities.

First, data-wise, most existing QA datasets usually feature relatively simple questions that do not
reflect true “hard-to-find” cases. For example, questions in HotpotQA (Yang et al.| | 2018)) can often
be solved by searching for a few clear entities. In contrast, deep search questions such as those in
BrowseComp usually involve multiple blurry entities, requiring long-horizon reasoning and deep
search to reach the correct answer. Second, training-wise, how to effectively combine long-horizon
reasoning with deep search tool use remains an open question. Even strong reasoning models such
as DeepSeek-R1 (DeepSeek-Al et al., 2025) make only shallow tool calls and often suffer from
hallucinations (see Figure 1] Left). In addition, existing browsing agents that integrate browsing tools
are primarily designed to address direct search tasks. For example, systems like R1-Searcher (Song
et al., 2025)), ReSearch (Chen et al., 2025)), and DeepResearcher (Zheng et al.| [2025) are mainly
trained and evaluated on datasets similar to HotpotQA, including 2WikiMultiHopQA (Ho et al.|
2020), Bamboogle (Press et al.,[2022)), and Musique (Trivedi et al., [2022).

To address these challenges, we present DeepDive to advance deep search agents. First, we automati-
cally generate challenging QA pairs from open knowledge graphs (KGs). Second, we use end-to-end
multi-turn RL to improve long-horizon reasoning in deep search scenarios.

On the data side, we address the lack of difficulty in QA datasets by automatically constructing
a deep search QA dataset from KGs, as they naturally support multi-hop connections, and each
entity has different attributes. By deliberately blurring some attributes of each entity during question
construction, we create a form of “blurry entity”. We then perform random walks on the KG to
extract long, multi-hop paths and use LLMs to further obfuscate key cues, making the QA pairs more
challenging. This data synthesis process produces data that effectively stimulates LLMs’ long-horizon
reasoning and deep search abilities.

On the training side, we adopt end-to-end multi-turn RL training to integrate reasoning with search
tool use. We employ the multi-turn GRPO (Shao et al., [2024) algorithm for RL, where the LLM
interacts with a web environment and receives rewards based on the final answer in the constructed
QA dataset. To encourage diverse exploration and prevent redundant search behavior, we design
a redundancy penalty that discourages repeated similar queries as measured by Jaccard similarity.
Figure] (middle) shows that the RL-trained model increases tool use more effectively than baselines
during inference, demonstrating test-time scaling of tool calls for improved deep search.

The DeepDive method is trained on two open models: GLM-Z1-9B-0414 (GLM et al.| 2024) and
QwQ-32B (Team| [2025). The constructed data consists of 3,090 high-quality deep search QAs
derived from KGs. Built on this, DeepDive-32B reaches an accuracy of 15.3% on BrowseComp,
surpassing many open agents—WebSailor, Search-o1, and DeepSeek-R1-Browse—and achieving a
new open-source competitive result (see Figure[I]left). Experiments demonstrate that the performance
of the DeepDive models benefits significantly from the proposed end-to-end multi-turn RL training
(see Figure[I|right). We further validate across multiple challenging deep search QA benchmarks and
analyze test-time scaling for tool calls and parallel sampling.

The main contributions are summarized as follows:

* We propose an automated method to synthesize deep search QA pairs from open KGs.

* We introduce DeepDive, an end-to-end multi-turn RL framework with a redundancy penalty that
encourages diverse, efficient search.

* Built on open models, DeepDive-32B achieves 15.3% on BrowseComp and shows strong test-time
scaling in tool calls and parallel sampling.

Under review as a conference paper at ICLR 2026

Random Walk on KG Blur Attribute-Rich Path Synthesize Deep Search QA Pair

o - //’/;\\\ /"”\\\ /’/;\\\ AN T N
{ e 7 e T @T‘@ \‘ I Chosen Noch 3
N OFANOIO ANONANO W

- /
"I Filter Node

@ O
(1] ! \

| @ {OF
i> ! 2.\&’/ Y Question: Start with [®)] established in the
\ 3 \

i
Attribute i
late 19405, which [B)] who bom inthe | |]

L . . !] ;
J— S ::iyliSE)é.],;)What does winner ... gain :\ WT‘?{%T"V?’Q/:

Fuzzy Attribute

Origin Attributes ~ Fuzzy Attributes AR AR CIp

Figure 3: Overview of automated question—answer (QA) data synthesis from knowledge graphs
(KGs) for DeepDive. Deep search QA pairs are automatically constructed by performing random
walks over a knowledge graph and subsequently obfuscated using a large language model.

2 THE DEEPDIVE METHOD

We present DeepDive to advance the long-horizon information-seeking ability of deep search agents.
In DeepDive, we introduce two techniques, targeting the data construction and RL stages, respectively.
To generate a large-scale corpus of challenging deep-search QA pairs, we develop an automated
and controllable data synthesis method with knowledge graphs (KG) (see Figure[3). To enhance the
agent’s capabilities for long-horizon reasoning and browsing, we leverage the constructed data to
perform end-to-end multi-turn RL training (see Figure {4)).

To mimic human web navigation, we establish an interaction framework as the learning environment
for our deep search agent. The agent follows an iterative cycle of reasoning, tool execution, and
observation, followed by ReAct (Yao et al., 2023) (see Figure E])

Formally, at step ¢, the agent generates a chain-of-thought c,, executes a browsing action a;, and
observes the web content o,. This process repeats until the agent determines it has collected sufficient
information and executes a terminating action a..s to give the final answer. The entire task execution
can be represented as a trajectory 7 :

T = [q, (Cl7a1701)7"'7(CHL7a77L7077L)7Can57anS]7 m<n (H

The action a; is drawn from a browsing action space with three core operations: search, click,
and open. A search action to retrieve web page summaries with given keywords, a c1ick action
to access specific pages from search results, and an open action to access specified URLs directly.

2.1 AUTOMATED DATA SYNTHESIS FROM KNOWLEDGE GRAPHS

Building deep search agents requires training data that goes beyond conventional multi-hop QA.
While datasets like HotpotQA involve predictable reasoning steps, true deep search agents should act
like human researchers who iteratively search, filter, and synthesize scattered evidence from the web.
This thus calls for complex, difficult, and hard-to-find questions that even domain experts need hours
to search and solve. Such complex training data is critical for developing agents to handle real-world
tasks where information is scattered, conflicting, and hard to locate.

However, the specific training data required to cultivate this skill is naturally scarce on the internet.
With manual annotation being prohibitively expensive and difficult to scale, synthetic data generation
emerges as the most efficient and scalable solution.

Knowledge Graphs with Hard-to-Find Information. Naturally, knowledge graphs (KGs) provide
a structured and semantically-rich environment for multi-hop reasoning, making them particularly
well-suited for generating supervision data for training deep search agents. First, verifiability: KGs
encode factual entity-relation triples that are inherently traceable and objective, ensuring answer
correctness and significantly improving data reliability compared to fully model-generated QA pairs.
Second, multi-hop structure: KGs allow us to explicitly control reasoning depth by performing
random walks of varying lengths, enabling the generation of questions requiring multiple inference
steps. Third, reasoning controllability: each entity node contains multiple attributes that can be

Under review as a conference paper at ICLR 2026

selectively obscured (such as dates, names, or locations), thereby increasing ambiguity and preventing
models from exploiting shortcut solutions. This forces models to iteratively reason, search, and
validate before finding answers. In light of these advantages, we propose an automated KG-based
method to generate scalable, high-quality, and reasoning-intensive QA pairs.

Automated Data Synthesis from KGs. The main idea is to generate complex reasoning paths
from KGs. A knowledge graph is a directed graph G = (V, E) where V represents entities and
E C V x V represents relationships between them (Ji et al.,[2021)). Each entity v; € V has associated
attributes A(v) = [a,a},--- ,al].

Rt] » Y

To create questions that require deep reasoning and browsing, we generate paths by taking a random
walk through the graph. Starting from an initial node vy, we navigate through the graph for & steps to
form a path P = [vg, v1, .. .,], where each step (v;, v;41) is a valid edge in the graph. We choose
a longer path length (e.g., £ > 5) to increase the potential reasoning complexity. However, questions
generated solely based on the node sequence P tend to be too simple, similar to those in HotpotQA,
as their answers can be found by direct search.

To further increase the complexity and ambiguity of the questions, we enrich and obfuscate the
path by incorporating node attributes. Specifically, we combine each node v; in the path with its
corresponding attributes to form an attribute-rich path P4:

Py = [(vo, [ag,a(l), ..]) , (1)1, [a?,a}, ..]) sy (vk, [a%,ai, ..])] 2)

Subsequently, we select an attribute a}, from the terminal node of the path, vy, as the ground-truth
answer. An LLM is then employed to obfuscate the information along the entire attribute-rich path
P4. This process involves techniques such as generalizing specific dates into ranges. The final output
is a pair of challenging questions and answers (g, a},), generated as follows:

(¢,at) = LLM-obscure(P,) 3)

Improving Path Quality and Complexity. In a graph random walk, each step directly impacts
the quality of the final path, which in turn determines the complexity and logical soundness of the
generated QA pair. To improve path quality, we apply two constraints to the random walk process.

First, we filter candidate nodes by setting an appropriate out-degree range [dmin, @max]- If a node’s
out-degree is excessively high, it tends to be overly popular, making answers too predictable for
the model. Conversely, nodes with low out-degree may hinder effective path expansion. Thus, the
candidate set of nodes for the next step N (v;) is defined as:

N (v;) ={u| (vi,u) € EAdpin < d(u) < dmax} 4

Second, to ensure logical consistency of the path, we leverage an LLM to choose the next node.
Given the current path P; = [vg, ..., v;],i < k, the LLM evaluates all candidates in A/ (v;) and
selects the most relevant next node to the existing path as v;1:

vir1 = LLM-select (P;, N (v;)) 3)

Together, these constraints guide the random walk to produce reasoning paths that are both complex
and coherent, synthesizing high-quality QA pairs.

To further increase question difficulty, we implement an automated filter using a frontier model (e.g.,
GPT-40 (OpenAl} 2024a))) with basic search capabilities. Each question is tested four times—if the
model solves it in any attempt, the question is discarded. Only questions that fail all four attempts are
retained, ensuring our dataset contains exclusively challenging tasks requiring complex reasoning
and advanced web browsing rather than simple information lookups.

2.2 END-TO-END MULTI-TURN REINFORCEMENT LEARNING

Given the challenging QA dataset, we use end-to-end multi-turn reinforcement learning (RL) to train
the agent for deep search. Based on the standard GRPO algorithm for multi-turn RL, we enhance
the reward mechanism by combining strict rewards for correctness with a redundancy penalty to
encourage search diversity.

Under review as a conference paper at ICLR 2026

Multi-Turn Reasoning & Browsing w Loss D Wlo Loss Q
i} () () ()
=
_-- \
- \

- \

Strict Binary Reward Redundant Penalty

Format Detect £ Answer Judge
'o - ¢ query 1: deep neural network j Sim(1.2) = 2/4 O/SXVerage
{"query”: “google”} Ground Truth: Inter . ~ .) tm(l,2) =28 =0.
Format Reward: 1.0 Answer: Inter Corp. @ query 2: neural network eval E>S(T)
{rquery”: "google”}} Judge Reward: 1.0 Sim(2,n) = 0/6 = 0.0
(parse fail) Answer: IBM query n: deep search agent All query pairs
Format Reward: 0.0 Judge Reward: 0.0

»(T) =AS(T)

Figure 4: Overview of multi-turn RL in DeepDive.

Multi-Turn RL. Unlike single-turn RL, where the model outputs a single response per question,
multi-turn RL lets the agent perform multiple reasoning and tool-use steps before arriving at a
final answer. We employ the Group Relative Policy Optimization (GRPO) algorithm (Shao et al.|
2024) to train the deep search agent. For each question g, we sample the tool calling trajectories
G from the current policy my. For each trajectory 7, we then calculate a normalized advantage
A; = (ri — mean{r}{_,) /std {r}_,, then the policy parameters ¢ are updated to maximize a
clipped objective function with a KL penalty:

G
1 . .
L) = el Z [min (p; A;, clip (pi, 1 — €,1+ €) A;) — BKL (g || mret)] 6)
i=1
This objective uses the importance ratio p; = mg(T)/mg,, (T), where € controls the clipping range
and (8 weights the penalty for diverging from a reference policy mys.

Encouraging Diverse Search with Redundancy Penalty. Deep search tasks are inherently multi-
turn, as formalized in Eq.[I] Deep search tasks benefit significantly from diverse exploration strategies,
as different search queries can uncover complementary information and lead to a more comprehensive
understanding. To promote such diversity, we design a reward mechanism that encourages browsing
agents to explore varied search approaches while maintaining correctness.

Our approach combines two key components. First, we measure search diversity by analyzing
how similar queries are within a search trajectory. Given a trajectory 7 with all search queries
Q = [q1,42,--.,qr|, where each query ¢; contains keywords ¢; = {w;1,w;2,...,W;n,}, We
calculate the Jaccard similarity (Real & Vargas, |1996) between any two queries as: sim(g;, g;) =
lgi N g;j]/]gi U g;|. The overall similarity across all queries in the trajectory is then computed as:

1 .
S(T) = -1 ; sim(qi,q;), S(T) € [0,1] (7
i#j
This metric equals 1 when all queries are identical and 0 when all queries are completely disjoint.
Lower similarity indicates more diverse search exploration.

Second, we employ a strict binary reward to ensure trajectory correctness. A trajectory 7 receives
a +1 reward only when every step is correctly formatted, including the reason c¢; and the action
a;, and the final answer a.,s matches the ground-truth a*. Since entities may have multiple valid
representations, we use an LLM judge (Zheng et al., [2023) for answer verification. Formally, the
binary reward is defined as:

P (T) = 1, (Vi,Format (¢;,a;)) A Judge (Geos, a™)
~ 10, otherwise

®)

We combine these components into our final reward function:
r'(T) =r(T) = X-S(T) ©)
where A < 1 controls how much we reward diverse queries. This formulation encourages agents to

explore a wider range of search strategies while maintaining a strong emphasis on the correctness of
the final answer, thereby fostering more efficient and comprehensive search behaviors.

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 SETUP

Benchmarks. We evaluate DeepDive on four public and challenging deep search benchmarks:
BrowseComp (Wei et al.;2025)), BrowseComp-ZH (Zhou et al.,2025), Xbench-DeepSearch (Xbench-
Team), [2025)), and SEAL-0 (Pham et al.,[2025)).

Data Synthesis Details. We build synthetic datasets from two public knowledge graphs, KILT
(Petroni et al.l2020) and AMiner(Tang et al.,2012). First, we generate long-chain paths via random
walking with parameters set to k € [5,9], d = 3, dmin = 4, dmax = 8. We then use Gemini-2.5-Pro
(Team et al.| 2023), leveraging its superior long-context ability, to obscure entities and synthesize
the QA pairs. This process yields 3,250 deep search QA pairs, which are randomly split into 1,016
samples for Supervised Fine-Tuning (SFT) and 2,234 for Reinforcement Learning (RL).

Training Details. We integrate the Serper API (Serper) for web search, which returns the top-10
pages for each query. The Jina API (Jina.ai, |2025) handles the click and open operations. Our training
process follows recent RL approaches for large language models (Guo et al.| [2025; [Hou et al., 2025
Li et al}2025a), starting with a cold-start phase. We leverage the Claude-4-Sonnet-Thinking model
(Anthropic| 2025a), which has tool-calling capabilities, to interact with browsing tools and generate
cold-start data through multiple attempts and reject sampling, yielding 858 high-quality SFT traces.

We choose two open models as our backbone models: GLM-Z1-9B-0414 (GLM et al.,|[2024) and
QwQ-32B (Team, 2025). Each model is trained for 3 epochs with a global batch size of 32, a learning
rate of 1 x 10™°, and a maximum context length of 104,800.

During RL, we conduct training using the open-source Slime framework (Zhu et al., [2025) with all
2,234 data samples. The training configuration includes a rollout size of 8, 16 samples per prompt, a
global batch size of 128, a temperature of 1.0, and a maximum context length of 50,000 tokens. We
set the redundancy penalty coefficient to A = 0.1. To promote exploration, we set the KL penalty
coefficient to 3 = 0 (Vassoyan et al.,[2025) and employ a learning rate of 1 x 1076,

Evaluation. For datasets and models with previously-reported scores, we directly adopt the results
from their respective papers. For all other evaluations, we follow the LLM-as-Judge framework
(Zheng et al.| 2023), employing Llama-3.1-70B (Dubey et al.,[2024) to assess whether a model’s final
output matches the ground truth answer. To speed up evaluation during reinforcement learning (RL)
training, each checkpoint is assessed on a fixed, randomly pre-sampled subset of BrowseComp-266,
with a maximum of 75 turns. Once training saturates, we evaluate later checkpoints on the full
BrowseComp dataset (1,266 instances) with the turn limit raised to 128. For other benchmarks whose
total size is below 300, we evaluate on the entire dataset. To reduce variance and improve robustness,
every dataset is evaluated twice, and the average accuracy is reported as the final result.

3.2 OVERALL PERFORMANCE

Table [I] presents a comprehensive comparison between DeepDive and a range of baselines across
four challenging deep search benchmarks. From the results, we draw the following key observations:

Competitive among Open Deep Search Agents. The DeepDive-32B model excels on four
challenging deep search benchmarks. For the BrowseComp benchmark, it ranks just behind OpenAl’s
DeepResearch and far ahead of other open-source models or agents. While most open-source
models score under 10% on BrowseComp, DeepDive-32B achieved 15.3%. It also shows clear
advantages on SEAL-0 and XBench-DeepSearch, indicating effective use of browsing for complex
reasoning. The results also highlight the power of reinforcement learning (RL). The 32B model with
only SFT has already scored 9.5% on BrowseComp, RL then enhances the model’s core ability to
combine reasoning with search, resulting in stable performance growth over the SFT version on each
benchmark. Notably, these gains are less pronounced for the smaller 9B model, potentially because
of its limited reasoning capacity or a tendency to overfit on synthetic data during its training.

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of deep search QA benchmarks. Accuracy(%) is reported. * represents reported
performance from existing studies. bold: best among open-source models; underline: second best.

Model Reason Browse BrowseComp BrowseComp-ZH Xbench-DeepSearch SEAL-0
Proprietary Models

GPT-40 X X 0.9* 11.1 18.0%* 0.9
GPT-40 X v 1.9% 12.8 30.0 9.1
Claude-3.7-Sonnet X X 2.3 11.8 12.0 2.7
Claude-3.7-Sonnet X v 4.5 14.2 29.0 14.4
ol v X 9.9% 29.1% 38.0 11.7
Claude-4-Sonnet-Thinking v X 2.6 21.5 27.0 9.0
Claude-4-Sonnet-Thinking v 4 14.7 30.8 53.0 37.8
Grok-DeepResearch 4 4 - 12.9% 50.0%* -
DeepResearch v 4 51.5% 42.9% - -

Open-Source Models

GLM-Z1-9B-0414 X X 0.6 24 8.0 7.2
GLM-Z1-9B-0414 X v 0.6 1.7 3.0 2.7
QwQ-32B v X 1.7 13.5 10.7* 5.4
QwQ-32B v v 1.3 14.5 27.0 4.5
DeepSeek-R1-0528 v X 32 28.7 37.0 5.4
Search-01-32B v v 2.8% 17.9% 25.0% -
WebDancer-32B v v 3.8% 18.0%* 39.0% -
WebSailor-7B v v 6.7% 14.2% 34.3% -
WebSailor-32B v v 10.5% 25.5% 53.3* -
DeepDive-9B (sft-only) v v 5.6 15.7 35.0 15.2
DeepDive-9B v v 6.3 15.1 38.0 12.2
DeepDive-32B (sft-only) v v 9.5 23.0 48.5 239
DeepDive-32B v v 15.3 29.7 51.8 25.5

RL Drives Deeper Search Strategies. Fig-
ure |Slillustrates the effect of reinforcement learn-

12- —e— Eval Accuracy (%)
—4- Tool Call Counts

36

ing on DeepDive-32B through two key metrics: & 12 32
> =1

model performance and tool call counts. Eval- & ., % 3
uation accuracy on a randomly sampled subset 32 335

. . O 9 (]
(BrowseComp-266) consistently improves, accom- < i
panied by rising tool usage, indicating that the 2 @ P
model explores progressively deeper search strate- , .
gies. .These .results demonstratq that reinforcement 4 80 120 10 200 240 280
learning trained on our synthetic data successfully Training Steps

enhances both performance and search depth, with

benefits generalizing to unseen samples. Figure 5: Evaluation accuracy and tool

calls during RL training on a random subset

(BrowseComp-266).
3.3 TEST-TIME SCALING FOR DEEPDIVE

We evaluate the test-time scaling capabilities of our model from two perspectives: single attempt
scaling by increasing the tool call budget, and multiple attempt scaling through parallel sampling with
different answer selection strategies. These experiments demonstrate how additional computation at
inference time can substantially improve model performance.

Tool Call Scaling during Inference. Figure[6aland[6b|show the impact of increasing the maximum
number of tool calls on BrowseComp and BrowseComp-ZH. Performance improves steadily as the
tool call budget grows. When the tool call limit reaches 16 or more, DeepDive-32B trained with
reinforcement learning clearly outperforms its SFT-only counterpart, demonstrating the benefit of RL

Under review as a conference paper at ICLR 2026

for tool call scaling. The dotted line indicates the QwQ-32B baseline, which is relatively low on both
datasets. Although QwQ-32B achieves about 15 points on BrowseComp-ZH without tool use, our
model surpasses this baseline once the tool call budget exceeds 16.

—A— DeepDive-32B 35" —&— DeepDive-32B 40 37.6%
—@- DeepDive-32B (SFT-only) —@—- DeepDive-32B (SFT-only)

QwQ-32B QwQ-32B

—@— Pass@K (Upper Bound)
_35. —&— Fewest Tool Calls
N Majority Voting

=
v
w
o

Success Rate (%)
w
Success Rate (%)
= N
g9
Success Rate (%
N N
e v

N
v

10- 24.8%

18.8%

] Ay 1571209

=
o

8 16 32 64 128 8 16 32 64 128 i 2 4 8
Max Tool Calls Max Tool Calls K (Number of Samples)
(a) BrowseComp (b) BrowseComp-ZH (c) Parallel Sampling

Figure 6: Test-time scaling results for DeepDive-32B. Left and Middle: Performance vs. maximum
tool calls on BrowseComp and BrowseComp-ZH (x-axis in log scale). Right: Parallel sampling
comparison on BrowseComp-266 (a randomly sampled subset), showing that selecting answers with
the fewest tool calls outperforms majority voting.

Parallel Sampling and Tool Call Voting. Beyond scaling the number of tool calls, we investigate
how parallel sampling can further improve performance. As shown in Figure |6c| majority voting,
which selects the most frequent answer (Wang et al., 2022)), improves DeepDive-32B performance on
BrowseComp-266 from 12.0 to 18.8. We further analyze the distribution of tool calls across parallel
samples and observe that answers requiring fewer tool calls before submission tend to be more
accurate. This pattern likely occurs because the model stops earlier when confident in a good answer,
whereas additional calls often reflect uncertainty and lead to less reliable results. Based on this
observation, we propose selecting the answer with the fewest tool calls, which achieves a substantial
improvement from 12.0 to 24.8, approaching the theoretical upper bound of 37.6 (pass@8).

3.4 ABLATION STUDY

Reward Ablation We evaluate two components of our reward design under identical RL settings:
the strict format reward and the redundancy penalty. All models are assessed on BrowseComp-266 (a
randomly sampled subset) at regular intervals (every 40 steps from 40 to 240). In Figure[7a] removing
the format reward yields a curve that stays near 8.0 with almost no improvement, while adding the
format reward produces a steady upward trend that remains about 2 absolute points higher throughout
training. In Figure[/bland Figure|/c| adding the redundancy penalty increases accuracy in the later
training phase (about 20%) and reduces tool call counts by roughly 14% under the same conditions.
Overall, the strict format reward accelerates and stabilizes learning, and the redundancy penalty
prunes redundant searches, improving search efficiency without sacrificing performance.

13

—@— w/ Format Reward] —@- w/ Redundancy Penalty 45- —8— w/ Redundancy Penalty
12- —A— wj/o Format Reward 12 —&— w/o Redundancy Penalty —A&— wj/o Redundancy Penalty
9]
— b
S s S .00
9;. 10- Tu- 3
O) S
e g =
S 5 10- O 35-
g g 3
<& < o e
30-
6- 81
40 80 120 160 200 240 280 40 80 120 160 200 240 280 40 80 120 160 200 240 280
Training Steps Training Steps Training Steps
(a) Format Reward Ablation (b) Redundancy Penalty Ablation (c) Redundancy Penalty Ablation
(Accuracy, 1T higher is better) (Tool counts, | lower is better)

Figure 7: Ablation of our reward design. All evaluations are on a sampled subset (BrowseComp-266).

Under review as a conference paper at ICLR 2026

Synthetic Data Ablation We ablate our synthetic deep search QA data across SFT and RL, using
the same four benchmarks as the main experiments. We report accuracy (Acc) and average tool
calls (#Turn), where more tool calls indicate deeper search capability. As shown in Table [2] the
base QwQ-32B performs poorly with low accuracy and almost no tool use. SFT with HotpotQA
trajectories gives only modest gains, while SFT with synthetic data brings clear improvements across
all benchmarks, boosting both accuracy and tool usage. For RL, fixing the best SFT model, HotpotQA
yields only minor gains without changing usage patterns, whereas synthetic data drives large gains on
both metrics, especially on BrowseComp-266. In summary, our synthetic data proves essential for
both training stages, boosting performance and enabling long-horizon deep search capabilities.

Table 2: Ablation study of different training data. For efficiency, we evaluate a subset of BrowseComp
(BrowseComp-266), while the other three benchmarks are evaluated in full.

Backbone Model Training Data BrowseComp-266 BrowseComp-ZH XBench-DeepSearch SEAL-0

Acc #Turn Acc #Turn Acc #Turn Acc #Turn

Supervised Fine-tuning (SFT)

- 1.9 1.5 14.5 1.2 27.0 1.5 4.5 1.1
QwQ-32B + HotpotQA 49 20.2 13.5 11.1 35.0 8.1 180 8.0
+ our data 7.5 32.7 19.0 24.1 45.5 154 252 13.0

Reinforcement Learning (RL) from the best SFT model

+ HotpotQA 9.2 332 227 233 47.0 15.1 21.6 136

DeepDive-32B (SFT only)
+ our data 12.0 47.2 29.7 24.9 50.0 16.7 25.5 145

4 RELATED WORK

Reinforcement Learning for LLMs. Early reinforcement learning from human feedback (RLHF)
demonstrated how human preferences could align models with user intent (Ouyang et al., [2022]).
Subsequent work shifted to verifiable reward signals to strengthen reasoning. Large-scale efforts such
as OpenATI’s ol (OpenAlL[2024b) have empirically validated the effectiveness of verifiable-reward
RL, while a wave of algorithmic improvements broadens the toolkit: GRPO (Shao et al., [2024)
removes the critic model to simplify and stabilize training; DeepSeek’s R1 (DeepSeek-Al et al.,[2025)
builds on GRPO to achieve strong reasoning performance; and DAPO (Yu et al.|[2025)) introduces
fine-grained RL adjustments for scalable, robust pipelines.

Deep Search Agents. ReAct|Yao et al.| (2023) first introduced a framework that combines reasoning
and action steps, boosting LLM performance on complex tasks. Recent deep research agents, like
DeepResearch (OpenAll 2025) and Gemini Deep Research (Gemini, [2025), have reached near-expert
levels in information seeking and reasoning. Proprietary systems like DeepResearch (OpenAll
2025) and Gemini Deep Research (Gemini, 2025) reach near-expert levels. Open-source efforts
include reinforcement learning approaches (ReSearch |Chen et al.| (2025), Search-ol |Li et al.| (2025b),
WebThinker Li et al.| (2025c)), DeepResearcher Zheng et al.|(2025), Search-R1 Jin et al.| (2025)), and
WebShaper [Tao et al.| (2025)) that optimize tool use and retrieval, and framework-based systems
(OpenDeepResearch (Hugging Face, 2025), TTD-DR (Han et al.| [2025)) that target long-form
generation. A significant gap remains between open-source and proprietary models.

5 CONCLUSION

We present DeepDive that aligns deep reasoning with multi-turn web search through automated deep
search QA synthesis and end-to-end multi-turn reinforcement learning. Our data pipeline generates
ambiguity-rich, multi-hop questions with hidden cues, and our training introduces a redundancy
penalty to encourage diverse and efficient search. After the RL stage, DeepDive-32B achieves
15.3% accuracy on BrowseComp, setting a new competitive standard for open-source models while
surpassing larger agents and multiple strong proprietary baselines. Analyses show that complex
supervision and multi-turn RL jointly ground tool use, that performance scales with tool-call budgets
and parallel sampling, and that skills learned on hard problems transfer to simpler settings.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Building with Extended Thinking in Claude 4 Models. https://docs.anthropic,
com/en/docs/build-with-claude/extended-thinking, 2025a. Accessed July 16,
2025.

Anthropic. Claude 3.7 Sonnet, 2025b. URL |https://www.anthropic.com/news/
claude-3-"7-sonnet.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. ReSearch: Learning to
reason with search for LLMs via reinforcement learning. arXiv preprint arXiv:2503.19470, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and et al. DeepSeek-R1: Incen-
tivizing reasoning capability in LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948,
2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The Llama 3 herd of models.
CoRR, abs/2407.21783, 2024.

Gemini. Gemini deep research. https://gemini.google/overview/deep—-research,
2025.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Grok. Grok 4. https://x.ai/news/grok—4,2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Rujun Han, Yanfei Chen, Zoey CuiZhu, Lesly Miculicich, Guan Sun, Yuanjun Bi, Weiming Wen,
Hui Wan, Chunfeng Wen, Solene Maitre, et al. Deep researcher with test-time diffusion. arXiv
preprint arXiv:2507.16075, 2025.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
ga dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
Dong. Advancing language model reasoning through reinforcement learning and inference scaling.
arXiv preprint arXiv:2501.11651, 2025.

Hugging Face. Open-source deep research — freeing our search agents. Hugging Face Blog, 2025.
URL: https://huggingface.co/blog/open-deep-research.

10

https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://gemini.google/overview/deep-research
https://x.ai/news/grok-4
https://huggingface.co/blog/open-deep-research

Under review as a conference paper at ICLR 2026

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE transactions on neural networks and
learning systems, 33(2):494-514, 2021.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Jina.ai. Jina, 2025. URL https://jina.ai/l

Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler, Shyam
Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of retrieval-
augmented generation. arXiv preprint arXiv:2409.12941, 2024.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong
Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-human
reasoning for web agent, 2025a. URL https://arxiv.org/abs/2507.02592,

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-ol: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025b.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. WebThinker: Empowering large reasoning models with deep research capability.
arXiv preprint arXiv:2504.21776, 2025c.

OpenAl. Hello GPT-40, 2024a. URL https://openai.com/index/hello—gpt—-40/l

OpenAl. Learning to reason with LLMs, 2024b. URL https://openai.com/index/
learning-to-reason-with—-11lms/\

OpenAl. Introducing openai 03 and o4-mini, 2025. URL https://openai.com/index/
introducing-o3-and-o4-mini/\

OpenAl. Deep research: Autonomous web-research agent. https://openai.com/index/
introducing—-deep—-research/, 2025.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, pp. 27730-27744, 2022.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, et al. Kilt: a benchmark for knowledge
intensive language tasks. arXiv preprint arXiv:2009.02252, 2020.

Thinh Pham, Nguyen Nguyen, Pratibha Zunjare, Weiyuan Chen, Yu-Min Tseng, and Tu Vu. Sealqa:
Raising the bar for reasoning in search-augmented language models, 2025. URL https://
arxiv.org/abs/2506.01062.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Raimundo Real and Juan M Vargas. The probabilistic basis of jaccard’s index of similarity. Systematic
Biology, 45(3):380-385, 1996. doi: 10.1093/sysbio/45.3.380.

Serper. Serper: Google search api. https://serper.dev, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

11

https://jina.ai/
https://arxiv.org/abs/2507.02592
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://arxiv.org/abs/2506.01062
https://arxiv.org/abs/2506.01062
https://serper.dev

Under review as a conference paper at ICLR 2026

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592, 2025.

Jie Tang, Jing Zhang, Limin Yao, Zhong Yu, Juanzi Li, Li Zhang, Zhong Su, Dong Wang, and Qiang
Yang. Arnetminer: A comprehensive academic search and mining platform. In Proceedings of
the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
1231-1239. ACM, 2012.

Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via
information-seeking formalization. arXiv preprint arXiv:2507.15061, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://gqwenlm.github.io/blog/qwg—-32b/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539-554, 2022.

Jean Vassoyan, Nathanaél Beau, and Roman Plaud. Ignore the kl penalty! boosting exploration on
critical tokens to enhance rl fine-tuning. arXiv preprint arXiv:2502.06533, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, pp. 2482424837, 2022.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Yong Jiang, Pengjun Xie, et al. Webdancer: Towards autonomous information seeking
agency. arXiv preprint arXiv:2505.22648, 2025a.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang, Yulan
He, Deyu Zhou, Pengjun Xie, and Fei Huang. Webwalker: Benchmarking llms in web traversal,
2025b. URL https://arxiv.org/abs/2501.07572.

x.al. Grok 3 beta — the age of reasoning agents, 2025. URL |https://x.ai/news/grok-3l
Xbench-Team. Xbench-deepsearch, 2025. URL https://xbench.org/agi/aisearch.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

12

https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2501.07572
https://x.ai/news/grok-3
https://xbench.org/agi/aisearch

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, and et al. DeepResearcher: Scaling deep research via
reinforcement learning in real-world environments. arXiv preprint arXiv:2504.03160, 2025.

Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling
Jin, Chenxuan Xie, Meng Cao, et al. Browsecomp-zh: Benchmarking web browsing ability of
large language models in chinese. arXiv preprint arXiv:2504.19314, 2025.

Zilin Zhu, Chengxing Xie, Xin Lv, and slime Contributors. slime: An llm post-training framework for
rl scaling. https://github.com/THUDM/slime, 2025. GitHub repository. Corresponding
author: Xin Lv.

13

https://github.com/THUDM/slime

Under review as a conference paper at ICLR 2026

A BASELINES

We compare DeepDive against a diverse set of models, grouped into two categories:

* Proprietary models: This group includes both non-browsing and browsing-capable models.
Non-browsing models consist of GPT-40 (OpenAll 20244), Claude-3.7-Sonnet (Anthropic
2025b)), Claude-4-Sonnet-Thinking (Anthropic, [2025a)) and o1 (OpenAl 2024b)), which are
evaluated solely on their internal reasoning abilities. Browsing-capable proprietary models
include Grok-DeepResearch (x.ai, [2025)), and OpenAlI’s Deep Research (OpenAll 2025).
Additionally, we extend select non-browsing models with our browsing tools to examine
performance gains via standard function calls.

* Open-source models: This group includes recent high-performing open-source models,
both with and without browsing capabilities. The non-browsing models consist of GLM-Z1-
9B-0414 (GLM et al.| 2024), DeepSeek-R1-0528 (Guo et al.,|2025) and QwQ-32B (Team,
2025)). We compare our method with recent open-source web agents, including Search-ol
(L1 et al., 2025b), WebDancer (Wu et al., 2025al), and WebSailor (Li et al., [2025a). To
ensure a fair comparison, we also enable standard function calling for GLM-Z1-9B-0414
and QwQ-32B, allowing them to browse during evaluation.

B GENERALIZATION ON SIMPLE SEARCH TASKS

While DeepDive is trained on synthetic data
based on knowledge graphs for challenging
tasks like BrowseComp and BrowseComp-
ZH, we evaluate its performance on simpler
search benchmarks: HotpotQA (Yang et al.,
2018)), Frames (Krishna et al.l [2024), and
WebWalker (Wu et al., [2025b), which involve
more direct, less ambiguous questions. We
compare DeepDive against two non-search
models (04-mini and DeepSeek-R1-0528) and
two proprietary search-enabled models using Hotporon Fromes ebHaler
the same search engine. We evaluate 512
randomly selected HotpotQA questions and
full test sets for other benchmarks. Figure §]
shows that both DeepDive-32B (SFT-only)
and DeepDive-32B outperform all baselines, with reinforcement learning providing additional
improvements across all benchmarks. These results confirm DeepDive’s strong generalization and
search capabilities.

Score (%)

Figure 8: DeepDive-32B generalization on simple
search benchmarks.

C ADDITIONAL STUDY: SEMI-AUTOMATED 1.1.D. DEEP SEARCH QA
SYNTHESIS FOR RL

We perform an additional study to directly improve model performance on deep search benchmarks.
Straightforwardly, we can construct i.i.d. QA pairs with BrowseComp, whose questions are so
challenging that expert annotators have to spend hours solving them, ensuring that simple search
strategies are ineffective. However, reaching the depth and breadth of BrowseComp requires heavy
human effort in research, annotation, and data curation. To reduce annotation costs, we present a
semi-automated framework.

i.i.d. Data Synthesis. We adopt a semi-automated framework to reduce the burden on annotators,
where each annotator is supported by the OpenAl 03 model (OpenAl, |2025) equipped with search
capabilities and follows a four-stage process.

First, based on the nine topical domains defined in BrowseComp, the annotator collaborates with the
model to identify root domains that contain abundant factual and structured web content. Second,
the annotator explores various linked pages within each root domain using the model’s navigation

14

Under review as a conference paper at ICLR 2026

and search features, and selects verifiable entities along with their associated attributes. Third, the
annotator conducts further targeted searches related to each selected entity and engages in multi-turn
interactions with the model to construct new challenging multi-hop questions. These questions
are carefully written to obscure key information while retaining verifiability. Fourth, the annotator
uses the model to attempt to answer the synthetic question. If the answer is incorrect or if multiple
plausible answers exist, the sample is discarded. The annotator also records the time taken by the
model to arrive at an answer in order to identify questions that are more difficult and of higher quality.
This workflow requires minimal prior knowledge from the annotator.

Through iterative model-guided discovery, question construction, and verification, annotators can
efficiently produce complex, high-quality deep search QA pairs. The same procedure is applied to
Chinese websites to enhance multilingual performance. As a result, we obtain a total of 2,997 English
and 275 Chinese challenging deep search QA pairs.

RL with i.i.d. Deep Search Data. We follow the same pipeline as Section [3] using SFT for cold-
start and difficulty-based filtering to build a high-quality subset for RL, with all training configurations
remaining identical to those before, except for the data. Table [3] presents the performance after
incorporating i.i.d. training data. Notably, the DeepDive-32B-RL model achieves an accuracy of
20.8% on the full BrowseComp benchmark, representing a 40% improvement over the previous best
score of 15.3% and significantly outperforming open-source alternatives. Owing to the inclusion of
Chinese content in the new training corpus, the new model also demonstrates considerable gains on
Chinese-language benchmarks, namely BrowseComp-ZH and Xbench-DeepSearch. Interestingly,
performance on SEAL-0 remains largely unchanged, which we attribute to the dataset’s focus on
recognizing and selecting among different search results, which is a challenge that highlights a key
area for future model enhancement.

Table 3: Effect of i.i.d. deep search QA data for DeepDive. DeepDive-32B Accuracy (%) on 4 deep
search benchmarks with and without i.i.d. data. bold: best performance; underline: second best.

Model data BrowseComp BrowseComp-ZH Xbench-DeepSearch SEAL-0
DeepDive-32B (sft-only) KG data 9.5 23.0 48.5 239
DeepDive-32B KG data 15.3 29.7 50.0 25.5
DeepDive-32B (sft-only) i.i.d data 11.4 26.6 47.5 22.5
DeepDive-32B i.i.d data 22.2 33.9 56.0 23.0

D DATA CONTAMINATION ANALYSIS

To ensure that the performance improvements are not the result of data leakage, we follow the
contamination analysis protocol introduced in LLaMA 2 (Touvron et al.,[2023) and evaluate the
Human-in-the-Loop dataset used for training. For each evaluation sample, we tokenize the input
(excluding special tokens) and extract all contiguous 10-token n-grams. A token is considered
contaminated if it appears in any n-gram also found in the training corpus. The contamination rate
for a sample is defined as the proportion of contaminated tokens. Based on these rates, we categorize
each sample into four non-exclusive subsets: Clean (less than 20% contamination), Not Clean (20%
or more), Not Dirty (less than 80%), and Dirty (80% or more). As shown in Table@ more than 97%
of the samples in the dataset are classified as Clean, and there are no samples in the Dirty category.
The results indicate that there is almost no test-data leakage in the constructed dataset for training.

Table 4: Contamination analysis of BrowseComp evaluation samples using different synthetic data.
Each sample is categorized based on the proportion of overlapping n-grams with the training set.

Data Type Contamination Rate Clean Not Clean Not Dirty Dirty

KG 2.6 99.0 1.0 100.0 0.0
iid. 34 91.7 23 100.0 0.0

15

Under review as a conference paper at ICLR 2026

E CASE STUDY

Reinforcement Learning Reshapes the Model’s Search Strategy Based on the sustained per-
formance improvement on the BrowseComp-266 evaluation set during RL training, we study the
model’s search behavior because most of its actions involve issuing retrieval queries. Similar to
human interaction with contemporary search engines like Google Search, which allow exact match
quoting, logical OR aggregation and term exclusion with a leading minus sign, the retrieval interface
used during training and evaluation supports these same advanced features. We therefore collected
every query generated by the model when solving the evaluation set and calculated three metrics: (1)
Quote Usage: the fraction of queries containing double quotes for exact phrase matching; (2) Minus
Usage: the fraction of queries containing a leading minus sign to exclude terms. (3) OR Usage: the
fraction of queries containing the OR operator to combine alternative terms; The evolution of these
metrics over training steps is plotted in Figure[9]

Quote Usage Minus Sign Usage OR Operator Usage
40,0 _ 18.0 _
Q) o o
& 170 10
[chas £816.0 8
5 5 S o
o 1%} LU,
©30.0 g 150 S
a a a
14.0
25.0 0.6

100 200 300 400 100 200 300 400 ’ 100 200 300 400
Training Steps Training Steps Training Steps

Figure 9: Evolution of Quote Usage, Minus Usage and OR Usage over RL training steps on
BrowseComp-266.

From Figure[9] we observe that Quote Usage increases from around 30% to 40% at the early stage of
training, then gradually decreases to below 25%. OR Usage steadily grows from approximately 2% to
8%. In contrast, Minus Usage continues to rise from 14% to 18% throughout the training. This trend
suggests that the model initially learns to adopt the quoting strategy early in reinforcement learning,
but its advantage becomes less prominent over time, leading to a decline in usage. Meanwhile, the

model steadily improves its ability to use minus operators, and OR Usage remains stable between
0.8% and 1%, indicating limited but consistent application.

F USE oF LLMS

Large language models (LLMs) were used solely for language polishing and grammar refinement
during manuscript preparation. All research ideas, methodologies, experiments, and analyses were
independently conceived, designed, and validated by the authors.

16

	Introduction
	The DeepDive Method
	Automated Data Synthesis from Knowledge Graphs
	End-to-End Multi-Turn Reinforcement Learning

	Experiments
	Setup
	Overall Performance
	Test-Time Scaling for DeepDive
	Ablation Study

	Related Work
	Conclusion
	Baselines
	Generalization on Simple Search Tasks
	Additional Study: Semi-Automated i.i.d. Deep Search QA Synthesis for RL
	Data Contamination Analysis
	Case Study
	use of LLMs

