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ABSTRACT

Augmenting large language models (LLMs) with browsing tools substantially
improves their potential as deep search agents to solve complex, real-world tasks.
Yet, open LLMs still perform poorly in such settings due to limited long-horizon
reasoning capacity with browsing tools and the lack of sufficiently difficult su-
pervised data. To address these challenges, we present DeepDive to advance
deep search agents. First, we propose a strategy to automatically synthesize
complex, difficult, and hard-to-find questions from open knowledge graphs. Sec-
ond, we apply end-to-end multi-turn reinforcement learning (RL) to enhance
LLMs’ long-horizon reasoning with deep search. To encourage diversity and
reduce redundancy, we design a redundancy penalty that discourages repeated
similar queries. Experiments show that DeepDive-32B achieves a new open-source
competitive result on BrowseComp, outperforming WebSailor, DeepSeek-R1-
Browse, and Search-o1. We demonstrate that multi-turn RL training improves
deep search ability and significantly contributes to the performance improvements
across multiple benchmarks. We observe that DeepDive enables test-time scaling
of tool calls and parallel sampling. Our code of DeepDive can be accessed at
https://anonymous.4open.science/r/DeepDive-CAC6/.
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Figure 1: Left: DeepDive-32B outperforms open-source deep search and proprietary models on
BrowseComp. Middle: DeepDive drives the model’s deep search ability with maximum tool calls,
which improves performance on BrowseComp. Right: Multi-turn reinforcement learning consistently
enhances DeepDive-32B on four deep search benchmarks.

1 INTRODUCTION

Large language models (LLMs)—trained with reinforcement learning (RL) using verifiable rewards—
have demonstrated strong performance in complex reasoning tasks, such as mathematics and coding
competitions(Wei et al., 2022; DeepSeek-AI et al., 2025; OpenAI, 2024b; 2025; Grok, 2025). As
real-world tasks become increasingly complex, integrating external tools like browsing expands
an LLM’s knowledge beyond its training corpus. This shift requires the LLM to execute as an
autonomous agent capable of handing complex tasks.

Notably, deep search agents are expected to reason over and search from hundreds of online sources
to locate complex, hard-to-find information, such as answering the questions in BrowseComp (Wei
et al., 2025). However, open models fall far behind proprietary LLMs such as OpenAI DeepResearch
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as deep search agents (Li et al., 2025b; Song et al., 2025; Li et al., 2025c; Wu et al., 2025a). We
attribute this gap to the shortage of hard-to-find data and the absence of multi-turn RL training.

BrowseComp

Please identify the fictional character who occasionally breaks the fourth wall with the audience, has a backstory involving help from
selfless ascetics, is known for his humor, and had a TV show that aired between the 1960s and 1980s with fewer than 50 episodes.

Blurry Entity: require both Browse and Reason

Figure 2: An illustrative example of BrowseComp (Wei et al., 2025) questions, which often demand
long-horizon reasoning and deep search integration across multiple blurry entities.

First, data-wise, most existing QA datasets usually feature relatively simple questions that do not
reflect true “hard-to-find” cases. For example, questions in HotpotQA (Yang et al., 2018) can often
be solved by searching for a few clear entities. In contrast, deep search questions such as those in
BrowseComp usually involve multiple blurry entities, requiring long-horizon reasoning and deep
search to reach the correct answer. Second, training-wise, how to effectively combine long-horizon
reasoning with deep search tool use remains an open question. Even strong reasoning models such
as DeepSeek-R1 (DeepSeek-AI et al., 2025) make only shallow tool calls and often suffer from
hallucinations (see Figure 1 Left). In addition, existing browsing agents that integrate browsing tools
are primarily designed to address direct search tasks. For example, systems like R1-Searcher (Song
et al., 2025), ReSearch (Chen et al., 2025), and DeepResearcher (Zheng et al., 2025) are mainly
trained and evaluated on datasets similar to HotpotQA, including 2WikiMultiHopQA (Ho et al.,
2020), Bamboogle (Press et al., 2022), and Musique (Trivedi et al., 2022).

To address these challenges, we present DeepDive to advance deep search agents. First, we automati-
cally generate challenging QA pairs from open knowledge graphs (KGs). Second, we use end-to-end
multi-turn RL to improve long-horizon reasoning in deep search scenarios.

On the data side, we address the lack of difficulty in QA datasets by automatically constructing
a deep search QA dataset from KGs, as they naturally support multi-hop connections, and each
entity has different attributes. By deliberately blurring some attributes of each entity during question
construction, we create a form of “blurry entity”. We then perform random walks on the KG to
extract long, multi-hop paths and use LLMs to further obfuscate key cues, making the QA pairs more
challenging. This data synthesis process produces data that effectively stimulates LLMs’ long-horizon
reasoning and deep search abilities.

On the training side, we adopt end-to-end multi-turn RL training to integrate reasoning with search
tool use. We employ the multi-turn GRPO (Shao et al., 2024) algorithm for RL, where the LLM
interacts with a web environment and receives rewards based on the final answer in the constructed
QA dataset. To encourage diverse exploration and prevent redundant search behavior, we design
a redundancy penalty that discourages repeated similar queries as measured by Jaccard similarity.
Figure 1 (middle) shows that the RL-trained model increases tool use more effectively than baselines
during inference, demonstrating test-time scaling of tool calls for improved deep search.

The DeepDive method is trained on two open models: GLM-Z1-9B-0414 (GLM et al., 2024) and
QwQ-32B (Team, 2025). The constructed data consists of 3,090 high-quality deep search QAs
derived from KGs. Built on this, DeepDive-32B reaches an accuracy of 15.3% on BrowseComp,
surpassing many open agents—WebSailor, Search-o1, and DeepSeek-R1-Browse—and achieving a
new open-source competitive result (see Figure 1 left). Experiments demonstrate that the performance
of the DeepDive models benefits significantly from the proposed end-to-end multi-turn RL training
(see Figure 1 right). We further validate across multiple challenging deep search QA benchmarks and
analyze test-time scaling for tool calls and parallel sampling.

The main contributions are summarized as follows:

• We propose an automated method to synthesize deep search QA pairs from open KGs.

• We introduce DeepDive, an end-to-end multi-turn RL framework with a redundancy penalty that
encourages diverse, efficient search.

• Built on open models, DeepDive-32B achieves 15.3% on BrowseComp and shows strong test-time
scaling in tool calls and parallel sampling.
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Figure 3: Overview of automated question–answer (QA) data synthesis from knowledge graphs
(KGs) for DeepDive. Deep search QA pairs are automatically constructed by performing random
walks over a knowledge graph and subsequently obfuscated using a large language model.

2 THE DEEPDIVE METHOD

We present DeepDive to advance the long-horizon information-seeking ability of deep search agents.
In DeepDive, we introduce two techniques, targeting the data construction and RL stages, respectively.
To generate a large-scale corpus of challenging deep-search QA pairs, we develop an automated
and controllable data synthesis method with knowledge graphs (KG) (see Figure 3). To enhance the
agent’s capabilities for long-horizon reasoning and browsing, we leverage the constructed data to
perform end-to-end multi-turn RL training (see Figure 4).

To mimic human web navigation, we establish an interaction framework as the learning environment
for our deep search agent. The agent follows an iterative cycle of reasoning, tool execution, and
observation, followed by ReAct (Yao et al., 2023) (see Figure 4).

Formally, at step t, the agent generates a chain-of-thought ct, executes a browsing action at, and
observes the web content ot. This process repeats until the agent determines it has collected sufficient
information and executes a terminating action aeos to give the final answer. The entire task execution
can be represented as a trajectory T :

T = [q, (c1, a1, o1) , . . . , (cm, am, om) , cans, aeos] , m ≤ n (1)

The action at is drawn from a browsing action space with three core operations: search, click,
and open. A search action to retrieve web page summaries with given keywords, a click action
to access specific pages from search results, and an open action to access specified URLs directly.

2.1 AUTOMATED DATA SYNTHESIS FROM KNOWLEDGE GRAPHS

Building deep search agents requires training data that goes beyond conventional multi-hop QA.
While datasets like HotpotQA involve predictable reasoning steps, true deep search agents should act
like human researchers who iteratively search, filter, and synthesize scattered evidence from the web.
This thus calls for complex, difficult, and hard-to-find questions that even domain experts need hours
to search and solve. Such complex training data is critical for developing agents to handle real-world
tasks where information is scattered, conflicting, and hard to locate.

However, the specific training data required to cultivate this skill is naturally scarce on the internet.
With manual annotation being prohibitively expensive and difficult to scale, synthetic data generation
emerges as the most efficient and scalable solution.

Knowledge Graphs with Hard-to-Find Information. Naturally, knowledge graphs (KGs) provide
a structured and semantically-rich environment for multi-hop reasoning, making them particularly
well-suited for generating supervision data for training deep search agents. First, verifiability: KGs
encode factual entity-relation triples that are inherently traceable and objective, ensuring answer
correctness and significantly improving data reliability compared to fully model-generated QA pairs.
Second, multi-hop structure: KGs allow us to explicitly control reasoning depth by performing
random walks of varying lengths, enabling the generation of questions requiring multiple inference
steps. Third, reasoning controllability: each entity node contains multiple attributes that can be

3
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selectively obscured (such as dates, names, or locations), thereby increasing ambiguity and preventing
models from exploiting shortcut solutions. This forces models to iteratively reason, search, and
validate before finding answers. In light of these advantages, we propose an automated KG-based
method to generate scalable, high-quality, and reasoning-intensive QA pairs.

Automated Data Synthesis from KGs. The main idea is to generate complex reasoning paths
from KGs. A knowledge graph is a directed graph G = (V,E) where V represents entities and
E ⊆ V ×V represents relationships between them (Ji et al., 2021). Each entity vi ∈ V has associated
attributes A(v) =

[
a0i , a

1
i , · · · , ati

]
.

To create questions that require deep reasoning and browsing, we generate paths by taking a random
walk through the graph. Starting from an initial node v0, we navigate through the graph for k steps to
form a path P = [v0, v1, . . . , vk], where each step (vi, vi+1) is a valid edge in the graph. We choose
a longer path length (e.g., k > 5 ) to increase the potential reasoning complexity. However, questions
generated solely based on the node sequence P tend to be too simple, similar to those in HotpotQA,
as their answers can be found by direct search.

To further increase the complexity and ambiguity of the questions, we enrich and obfuscate the
path by incorporating node attributes. Specifically, we combine each node vi in the path with its
corresponding attributes to form an attribute-rich path PA:

PA =
[(
v0,

[
a00, a

1
0, . . .

])
,
(
v1,

[
a01, a

1
1, . . .

])
, . . . ,

(
vk,

[
a0k, a

1
k, . . .

])]
(2)

Subsequently, we select an attribute aik from the terminal node of the path, vk, as the ground-truth
answer. An LLM is then employed to obfuscate the information along the entire attribute-rich path
PA. This process involves techniques such as generalizing specific dates into ranges. The final output
is a pair of challenging questions and answers (q, aik), generated as follows:

(q, aik) = LLM-obscure(PA) (3)

Improving Path Quality and Complexity. In a graph random walk, each step directly impacts
the quality of the final path, which in turn determines the complexity and logical soundness of the
generated QA pair. To improve path quality, we apply two constraints to the random walk process.

First, we filter candidate nodes by setting an appropriate out-degree range [dmin, dmax]. If a node’s
out-degree is excessively high, it tends to be overly popular, making answers too predictable for
the model. Conversely, nodes with low out-degree may hinder effective path expansion. Thus, the
candidate set of nodes for the next step N (vi) is defined as:

N (vi) = {u | (vi, u) ∈ E ∧ dmin ≤ d(u) ≤ dmax} (4)

Second, to ensure logical consistency of the path, we leverage an LLM to choose the next node.
Given the current path Pi = [v0, . . . , vi] , i < k, the LLM evaluates all candidates in N (vi) and
selects the most relevant next node to the existing path as vi+1:

vi+1 = LLM-select (Pi,N (vi)) (5)

Together, these constraints guide the random walk to produce reasoning paths that are both complex
and coherent, synthesizing high-quality QA pairs.

To further increase question difficulty, we implement an automated filter using a frontier model (e.g.,
GPT-4o (OpenAI, 2024a)) with basic search capabilities. Each question is tested four times—if the
model solves it in any attempt, the question is discarded. Only questions that fail all four attempts are
retained, ensuring our dataset contains exclusively challenging tasks requiring complex reasoning
and advanced web browsing rather than simple information lookups.

2.2 END-TO-END MULTI-TURN REINFORCEMENT LEARNING

Given the challenging QA dataset, we use end-to-end multi-turn reinforcement learning (RL) to train
the agent for deep search. Based on the standard GRPO algorithm for multi-turn RL, we enhance
the reward mechanism by combining strict rewards for correctness with a redundancy penalty to
encourage search diversity.

4
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Q Reason Tool Web Content Answer Reward

Multi-Turn Reasoning & Browsing

Strict Binary Reward 

Sim(1,2) = 2/4 = 0.5 
Average

…

Redundant Penalty

Sim(2,n) = 0/6 = 0.0 

{“query”: “google”}
Format Reward: 1.0

{“query”: “google”}}
(parse fail)
Format Reward: 0.0

Format Detect

Ground Truth: Inter 
Answer: Inter Corp.
Judge Reward: 1.0

Answer: IBM
Judge Reward: 0.0

Answer Judge 

All query pairs

w Loss w/o Loss 

query 1: deep neural network
query 2: neural network eval
        …

query n: deep search agent

Figure 4: Overview of multi-turn RL in DeepDive.

Multi-Turn RL. Unlike single-turn RL, where the model outputs a single response per question,
multi-turn RL lets the agent perform multiple reasoning and tool-use steps before arriving at a
final answer. We employ the Group Relative Policy Optimization (GRPO) algorithm (Shao et al.,
2024) to train the deep search agent. For each question q, we sample the tool calling trajectories
G from the current policy πθ. For each trajectory T , we then calculate a normalized advantage
Ai =

(
ri −mean{rk}Gk=1

)
/ std {rk}Gk=1, then the policy parameters θ are updated to maximize a

clipped objective function with a KL penalty:

L(θ) = 1

G

G∑
i=1

[min (ρiAi, clip (ρi, 1− ϵ, 1 + ϵ)Ai)− βKL (πθ∥πref)] (6)

This objective uses the importance ratio ρi = πθ(T )/πθold (T ), where ϵ controls the clipping range
and β weights the penalty for diverging from a reference policy πref.

Encouraging Diverse Search with Redundancy Penalty. Deep search tasks are inherently multi-
turn, as formalized in Eq. 1. Deep search tasks benefit significantly from diverse exploration strategies,
as different search queries can uncover complementary information and lead to a more comprehensive
understanding. To promote such diversity, we design a reward mechanism that encourages browsing
agents to explore varied search approaches while maintaining correctness.

Our approach combines two key components. First, we measure search diversity by analyzing
how similar queries are within a search trajectory. Given a trajectory T with all search queries
Q = [q1, q2, . . . , qT ], where each query qi contains keywords qi = {wi,1, wi,2, . . . , wi,ni

}, we
calculate the Jaccard similarity (Real & Vargas, 1996) between any two queries as: sim(qi, qj) =
|qi ∩ qj |/|qi ∪ qj |. The overall similarity across all queries in the trajectory is then computed as:

S(T ) =
1

T (T − 1)

∑
i ̸=j

sim(qi, qj), S(T ) ∈ [0, 1] (7)

This metric equals 1 when all queries are identical and 0 when all queries are completely disjoint.
Lower similarity indicates more diverse search exploration.

Second, we employ a strict binary reward to ensure trajectory correctness. A trajectory T receives
a +1 reward only when every step is correctly formatted, including the reason ci and the action
ai, and the final answer aeos matches the ground-truth a∗. Since entities may have multiple valid
representations, we use an LLM judge (Zheng et al., 2023) for answer verification. Formally, the
binary reward is defined as:

r(T ) =

{
1, (∀ i,Format (ci, ai)) ∧ Judge (aeos, a∗)
0, otherwise

(8)

We combine these components into our final reward function:
r′(T ) = r(T )− λ · S(T ) (9)

where λ < 1 controls how much we reward diverse queries. This formulation encourages agents to
explore a wider range of search strategies while maintaining a strong emphasis on the correctness of
the final answer, thereby fostering more efficient and comprehensive search behaviors.

5
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3 EXPERIMENTS

3.1 SETUP

Benchmarks. We evaluate DeepDive on four public and challenging deep search benchmarks:
BrowseComp (Wei et al., 2025), BrowseComp-ZH (Zhou et al., 2025), Xbench-DeepSearch (Xbench-
Team, 2025), and SEAL-0 (Pham et al., 2025).

Data Synthesis Details. We build synthetic datasets from two public knowledge graphs, KILT
(Petroni et al., 2020) and AMiner(Tang et al., 2012). First, we generate long-chain paths via random
walking with parameters set to k ∈ [5, 9], d = 3, dmin = 4, dmax = 8. We then use Gemini-2.5-Pro
(Team et al., 2023), leveraging its superior long-context ability, to obscure entities and synthesize
the QA pairs. This process yields 3,250 deep search QA pairs, which are randomly split into 1,016
samples for Supervised Fine-Tuning (SFT) and 2,234 for Reinforcement Learning (RL).

Training Details. We integrate the Serper API (Serper) for web search, which returns the top-10
pages for each query. The Jina API (Jina.ai, 2025) handles the click and open operations. Our training
process follows recent RL approaches for large language models (Guo et al., 2025; Hou et al., 2025;
Li et al., 2025a), starting with a cold-start phase. We leverage the Claude-4-Sonnet-Thinking model
(Anthropic, 2025a), which has tool-calling capabilities, to interact with browsing tools and generate
cold-start data through multiple attempts and reject sampling, yielding 858 high-quality SFT traces.

We choose two open models as our backbone models: GLM-Z1-9B-0414 (GLM et al., 2024) and
QwQ-32B (Team, 2025). Each model is trained for 3 epochs with a global batch size of 32, a learning
rate of 1× 10−5, and a maximum context length of 104,800.

During RL, we conduct training using the open-source Slime framework (Zhu et al., 2025) with all
2,234 data samples. The training configuration includes a rollout size of 8, 16 samples per prompt, a
global batch size of 128, a temperature of 1.0, and a maximum context length of 50,000 tokens. We
set the redundancy penalty coefficient to λ = 0.1. To promote exploration, we set the KL penalty
coefficient to β = 0 (Vassoyan et al., 2025) and employ a learning rate of 1× 10−6.

Evaluation. For datasets and models with previously-reported scores, we directly adopt the results
from their respective papers. For all other evaluations, we follow the LLM-as-Judge framework
(Zheng et al., 2023), employing Llama-3.1-70B (Dubey et al., 2024) to assess whether a model’s final
output matches the ground truth answer. To speed up evaluation during reinforcement learning (RL)
training, each checkpoint is assessed on a fixed, randomly pre-sampled subset of BrowseComp-266,
with a maximum of 75 turns. Once training saturates, we evaluate later checkpoints on the full
BrowseComp dataset (1,266 instances) with the turn limit raised to 128. For other benchmarks whose
total size is below 300, we evaluate on the entire dataset. To reduce variance and improve robustness,
every dataset is evaluated twice, and the average accuracy is reported as the final result.

3.2 OVERALL PERFORMANCE

Table 1 presents a comprehensive comparison between DeepDive and a range of baselines across
four challenging deep search benchmarks. From the results, we draw the following key observations:

Competitive among Open Deep Search Agents. The DeepDive-32B model excels on four
challenging deep search benchmarks. For the BrowseComp benchmark, it ranks just behind OpenAI’s
DeepResearch and far ahead of other open-source models or agents. While most open-source
models score under 10% on BrowseComp, DeepDive-32B achieved 15.3%. It also shows clear
advantages on SEAL-0 and XBench-DeepSearch, indicating effective use of browsing for complex
reasoning. The results also highlight the power of reinforcement learning (RL). The 32B model with
only SFT has already scored 9.5% on BrowseComp, RL then enhances the model’s core ability to
combine reasoning with search, resulting in stable performance growth over the SFT version on each
benchmark. Notably, these gains are less pronounced for the smaller 9B model, potentially because
of its limited reasoning capacity or a tendency to overfit on synthetic data during its training.

6
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Table 1: Evaluation of deep search QA benchmarks. Accuracy(%) is reported. * represents reported
performance from existing studies. bold: best among open-source models; underline: second best.

Model Reason Browse BrowseComp BrowseComp-ZH Xbench-DeepSearch SEAL-0

Proprietary Models

GPT-4o ✗ ✗ 0.9* 11.1 18.0* 0.9
GPT-4o ✗ ✓ 1.9* 12.8 30.0 9.1
Claude-3.7-Sonnet ✗ ✗ 2.3 11.8 12.0 2.7
Claude-3.7-Sonnet ✗ ✓ 4.5 14.2 29.0 14.4
o1 ✓ ✗ 9.9* 29.1* 38.0 11.7
Claude-4-Sonnet-Thinking ✓ ✗ 2.6 21.5 27.0 9.0
Claude-4-Sonnet-Thinking ✓ ✓ 14.7 30.8 53.0 37.8
Grok-DeepResearch ✓ ✓ - 12.9* 50.0* -
DeepResearch ✓ ✓ 51.5* 42.9* - -

Open-Source Models

GLM-Z1-9B-0414 ✗ ✗ 0.6 2.4 8.0 7.2
GLM-Z1-9B-0414 ✗ ✓ 0.6 1.7 3.0 2.7
QwQ-32B ✓ ✗ 1.7 13.5 10.7* 5.4
QwQ-32B ✓ ✓ 1.3 14.5 27.0 4.5
DeepSeek-R1-0528 ✓ ✗ 3.2 28.7 37.0 5.4

Search-o1-32B ✓ ✓ 2.8* 17.9* 25.0* -
WebDancer-32B ✓ ✓ 3.8* 18.0* 39.0* -
WebSailor-7B ✓ ✓ 6.7* 14.2* 34.3* -
WebSailor-32B ✓ ✓ 10.5* 25.5* 53.3* -

DeepDive-9B (sft-only) ✓ ✓ 5.6 15.7 35.0 15.2
DeepDive-9B ✓ ✓ 6.3 15.1 38.0 12.2
DeepDive-32B (sft-only) ✓ ✓ 9.5 23.0 48.5 23.9
DeepDive-32B ✓ ✓ 15.3 29.7 51.8 25.5
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Figure 5: Evaluation accuracy and tool
calls during RL training on a random subset
(BrowseComp-266).

RL Drives Deeper Search Strategies. Fig-
ure 5 illustrates the effect of reinforcement learn-
ing on DeepDive-32B through two key metrics:
model performance and tool call counts. Eval-
uation accuracy on a randomly sampled subset
(BrowseComp-266) consistently improves, accom-
panied by rising tool usage, indicating that the
model explores progressively deeper search strate-
gies. These results demonstrate that reinforcement
learning trained on our synthetic data successfully
enhances both performance and search depth, with
benefits generalizing to unseen samples.

3.3 TEST-TIME SCALING FOR DEEPDIVE

We evaluate the test-time scaling capabilities of our model from two perspectives: single attempt
scaling by increasing the tool call budget, and multiple attempt scaling through parallel sampling with
different answer selection strategies. These experiments demonstrate how additional computation at
inference time can substantially improve model performance.

Tool Call Scaling during Inference. Figure 6a and 6b show the impact of increasing the maximum
number of tool calls on BrowseComp and BrowseComp-ZH. Performance improves steadily as the
tool call budget grows. When the tool call limit reaches 16 or more, DeepDive-32B trained with
reinforcement learning clearly outperforms its SFT-only counterpart, demonstrating the benefit of RL
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for tool call scaling. The dotted line indicates the QwQ-32B baseline, which is relatively low on both
datasets. Although QwQ-32B achieves about 15 points on BrowseComp-ZH without tool use, our
model surpasses this baseline once the tool call budget exceeds 16.
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Figure 6: Test-time scaling results for DeepDive-32B. Left and Middle: Performance vs. maximum
tool calls on BrowseComp and BrowseComp-ZH (x-axis in log scale). Right: Parallel sampling
comparison on BrowseComp-266 (a randomly sampled subset), showing that selecting answers with
the fewest tool calls outperforms majority voting.

Parallel Sampling and Tool Call Voting. Beyond scaling the number of tool calls, we investigate
how parallel sampling can further improve performance. As shown in Figure 6c, majority voting,
which selects the most frequent answer (Wang et al., 2022), improves DeepDive-32B performance on
BrowseComp-266 from 12.0 to 18.8. We further analyze the distribution of tool calls across parallel
samples and observe that answers requiring fewer tool calls before submission tend to be more
accurate. This pattern likely occurs because the model stops earlier when confident in a good answer,
whereas additional calls often reflect uncertainty and lead to less reliable results. Based on this
observation, we propose selecting the answer with the fewest tool calls, which achieves a substantial
improvement from 12.0 to 24.8, approaching the theoretical upper bound of 37.6 (pass@8).

3.4 ABLATION STUDY

Reward Ablation We evaluate two components of our reward design under identical RL settings:
the strict format reward and the redundancy penalty. All models are assessed on BrowseComp-266 (a
randomly sampled subset) at regular intervals (every 40 steps from 40 to 240). In Figure 7a, removing
the format reward yields a curve that stays near 8.0 with almost no improvement, while adding the
format reward produces a steady upward trend that remains about 2 absolute points higher throughout
training. In Figure 7b and Figure 7c, adding the redundancy penalty increases accuracy in the later
training phase (about 20%) and reduces tool call counts by roughly 14% under the same conditions.
Overall, the strict format reward accelerates and stabilizes learning, and the redundancy penalty
prunes redundant searches, improving search efficiency without sacrificing performance.

40 80 120 160 200 240 280
Training Steps

6

8

10

12

Ac
cu

ra
cy

 (%
) 

w/ Format Reward
w/o Format Reward

(a) Format Reward Ablation

40 80 120 160 200 240 280
Training Steps

8

9

10

11

12

13

Ac
cu

ra
cy

 (%
) 

w/ Redundancy Penalty
w/o Redundancy Penalty

(b) Redundancy Penalty Ablation
(Accuracy, ↑ higher is better)

40 80 120 160 200 240 280
Training Steps

30

35

40

45

To
ol

-C
al

l C
ou

nt
s

w/ Redundancy Penalty
w/o Redundancy Penalty

(c) Redundancy Penalty Ablation
(Tool counts, ↓ lower is better)

Figure 7: Ablation of our reward design. All evaluations are on a sampled subset (BrowseComp-266).
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Synthetic Data Ablation We ablate our synthetic deep search QA data across SFT and RL, using
the same four benchmarks as the main experiments. We report accuracy (Acc) and average tool
calls (#Turn), where more tool calls indicate deeper search capability. As shown in Table 2, the
base QwQ-32B performs poorly with low accuracy and almost no tool use. SFT with HotpotQA
trajectories gives only modest gains, while SFT with synthetic data brings clear improvements across
all benchmarks, boosting both accuracy and tool usage. For RL, fixing the best SFT model, HotpotQA
yields only minor gains without changing usage patterns, whereas synthetic data drives large gains on
both metrics, especially on BrowseComp-266. In summary, our synthetic data proves essential for
both training stages, boosting performance and enabling long-horizon deep search capabilities.

Table 2: Ablation study of different training data. For efficiency, we evaluate a subset of BrowseComp
(BrowseComp-266), while the other three benchmarks are evaluated in full.

Backbone Model Training Data BrowseComp-266 BrowseComp-ZH XBench-DeepSearch SEAL-0

Acc #Turn Acc #Turn Acc #Turn Acc #Turn

Supervised Fine-tuning (SFT)

QwQ-32B
– 1.9 1.5 14.5 1.2 27.0 1.5 4.5 1.1
+ HotpotQA 4.9 20.2 13.5 11.1 35.0 8.1 18.0 8.0
+ our data 7.5 32.7 19.0 24.1 45.5 15.4 25.2 13.0

Reinforcement Learning (RL) from the best SFT model

DeepDive-32B (SFT only)
+ HotpotQA 9.2 33.2 22.7 23.3 47.0 15.1 21.6 13.6
+ our data 12.0 47.2 29.7 24.9 50.0 16.7 25.5 14.5

4 RELATED WORK

Reinforcement Learning for LLMs. Early reinforcement learning from human feedback (RLHF)
demonstrated how human preferences could align models with user intent (Ouyang et al., 2022).
Subsequent work shifted to verifiable reward signals to strengthen reasoning. Large-scale efforts such
as OpenAI’s o1 (OpenAI, 2024b) have empirically validated the effectiveness of verifiable-reward
RL, while a wave of algorithmic improvements broadens the toolkit: GRPO (Shao et al., 2024)
removes the critic model to simplify and stabilize training; DeepSeek’s R1 (DeepSeek-AI et al., 2025)
builds on GRPO to achieve strong reasoning performance; and DAPO (Yu et al., 2025) introduces
fine-grained RL adjustments for scalable, robust pipelines.

Deep Search Agents. ReAct Yao et al. (2023) first introduced a framework that combines reasoning
and action steps, boosting LLM performance on complex tasks. Recent deep research agents, like
DeepResearch (OpenAI, 2025) and Gemini Deep Research (Gemini, 2025), have reached near-expert
levels in information seeking and reasoning. Proprietary systems like DeepResearch (OpenAI,
2025) and Gemini Deep Research (Gemini, 2025) reach near-expert levels. Open-source efforts
include reinforcement learning approaches (ReSearch Chen et al. (2025), Search-o1 Li et al. (2025b),
WebThinker Li et al. (2025c), DeepResearcher Zheng et al. (2025), Search-R1 Jin et al. (2025), and
WebShaper Tao et al. (2025)) that optimize tool use and retrieval, and framework-based systems
(OpenDeepResearch (Hugging Face, 2025), TTD-DR (Han et al., 2025)) that target long-form
generation. A significant gap remains between open-source and proprietary models.

5 CONCLUSION

We present DeepDive that aligns deep reasoning with multi-turn web search through automated deep
search QA synthesis and end-to-end multi-turn reinforcement learning. Our data pipeline generates
ambiguity-rich, multi-hop questions with hidden cues, and our training introduces a redundancy
penalty to encourage diverse and efficient search. After the RL stage, DeepDive-32B achieves
15.3% accuracy on BrowseComp, setting a new competitive standard for open-source models while
surpassing larger agents and multiple strong proprietary baselines. Analyses show that complex
supervision and multi-turn RL jointly ground tool use, that performance scales with tool-call budgets
and parallel sampling, and that skills learned on hard problems transfer to simpler settings.
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Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
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A BASELINES

We compare DeepDive against a diverse set of models, grouped into two categories:

• Proprietary models: This group includes both non-browsing and browsing-capable models.
Non-browsing models consist of GPT-4o (OpenAI, 2024a), Claude-3.7-Sonnet (Anthropic,
2025b), Claude-4-Sonnet-Thinking (Anthropic, 2025a) and o1 (OpenAI, 2024b), which are
evaluated solely on their internal reasoning abilities. Browsing-capable proprietary models
include Grok-DeepResearch (x.ai, 2025), and OpenAI’s Deep Research (OpenAI, 2025).
Additionally, we extend select non-browsing models with our browsing tools to examine
performance gains via standard function calls.

• Open-source models: This group includes recent high-performing open-source models,
both with and without browsing capabilities. The non-browsing models consist of GLM-Z1-
9B-0414 (GLM et al., 2024), DeepSeek-R1-0528 (Guo et al., 2025) and QwQ-32B (Team,
2025). We compare our method with recent open-source web agents, including Search-o1
(Li et al., 2025b), WebDancer (Wu et al., 2025a), and WebSailor (Li et al., 2025a). To
ensure a fair comparison, we also enable standard function calling for GLM-Z1-9B-0414
and QwQ-32B, allowing them to browse during evaluation.

B GENERALIZATION ON SIMPLE SEARCH TASKS
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Figure 8: DeepDive-32B generalization on simple
search benchmarks.

While DeepDive is trained on synthetic data
based on knowledge graphs for challenging
tasks like BrowseComp and BrowseComp-
ZH, we evaluate its performance on simpler
search benchmarks: HotpotQA (Yang et al.,
2018), Frames (Krishna et al., 2024), and
WebWalker (Wu et al., 2025b), which involve
more direct, less ambiguous questions. We
compare DeepDive against two non-search
models (o4-mini and DeepSeek-R1-0528) and
two proprietary search-enabled models using
the same search engine. We evaluate 512
randomly selected HotpotQA questions and
full test sets for other benchmarks. Figure 8
shows that both DeepDive-32B (SFT-only)
and DeepDive-32B outperform all baselines, with reinforcement learning providing additional
improvements across all benchmarks. These results confirm DeepDive’s strong generalization and
search capabilities.

C ADDITIONAL STUDY: SEMI-AUTOMATED I.I.D. DEEP SEARCH QA
SYNTHESIS FOR RL

We perform an additional study to directly improve model performance on deep search benchmarks.
Straightforwardly, we can construct i.i.d. QA pairs with BrowseComp, whose questions are so
challenging that expert annotators have to spend hours solving them, ensuring that simple search
strategies are ineffective. However, reaching the depth and breadth of BrowseComp requires heavy
human effort in research, annotation, and data curation. To reduce annotation costs, we present a
semi-automated framework.

i.i.d. Data Synthesis. We adopt a semi-automated framework to reduce the burden on annotators,
where each annotator is supported by the OpenAI o3 model (OpenAI, 2025) equipped with search
capabilities and follows a four-stage process.

First, based on the nine topical domains defined in BrowseComp, the annotator collaborates with the
model to identify root domains that contain abundant factual and structured web content. Second,
the annotator explores various linked pages within each root domain using the model’s navigation
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and search features, and selects verifiable entities along with their associated attributes. Third, the
annotator conducts further targeted searches related to each selected entity and engages in multi-turn
interactions with the model to construct new challenging multi-hop questions. These questions
are carefully written to obscure key information while retaining verifiability. Fourth, the annotator
uses the model to attempt to answer the synthetic question. If the answer is incorrect or if multiple
plausible answers exist, the sample is discarded. The annotator also records the time taken by the
model to arrive at an answer in order to identify questions that are more difficult and of higher quality.
This workflow requires minimal prior knowledge from the annotator.

Through iterative model-guided discovery, question construction, and verification, annotators can
efficiently produce complex, high-quality deep search QA pairs. The same procedure is applied to
Chinese websites to enhance multilingual performance. As a result, we obtain a total of 2,997 English
and 275 Chinese challenging deep search QA pairs.

RL with i.i.d. Deep Search Data. We follow the same pipeline as Section 3, using SFT for cold-
start and difficulty-based filtering to build a high-quality subset for RL, with all training configurations
remaining identical to those before, except for the data. Table 3 presents the performance after
incorporating i.i.d. training data. Notably, the DeepDive-32B-RL model achieves an accuracy of
20.8% on the full BrowseComp benchmark, representing a 40% improvement over the previous best
score of 15.3% and significantly outperforming open-source alternatives. Owing to the inclusion of
Chinese content in the new training corpus, the new model also demonstrates considerable gains on
Chinese-language benchmarks, namely BrowseComp-ZH and Xbench-DeepSearch. Interestingly,
performance on SEAL-0 remains largely unchanged, which we attribute to the dataset’s focus on
recognizing and selecting among different search results, which is a challenge that highlights a key
area for future model enhancement.

Table 3: Effect of i.i.d. deep search QA data for DeepDive. DeepDive-32B Accuracy (%) on 4 deep
search benchmarks with and without i.i.d. data. bold: best performance; underline: second best.

Model data BrowseComp BrowseComp-ZH Xbench-DeepSearch SEAL-0

DeepDive-32B (sft-only) KG data 9.5 23.0 48.5 23.9
DeepDive-32B KG data 15.3 29.7 50.0 25.5

DeepDive-32B (sft-only) i.i.d data 11.4 26.6 47.5 22.5
DeepDive-32B i.i.d data 22.2 33.9 56.0 23.0

D DATA CONTAMINATION ANALYSIS

To ensure that the performance improvements are not the result of data leakage, we follow the
contamination analysis protocol introduced in LLaMA 2 (Touvron et al., 2023) and evaluate the
Human-in-the-Loop dataset used for training. For each evaluation sample, we tokenize the input
(excluding special tokens) and extract all contiguous 10-token n-grams. A token is considered
contaminated if it appears in any n-gram also found in the training corpus. The contamination rate
for a sample is defined as the proportion of contaminated tokens. Based on these rates, we categorize
each sample into four non-exclusive subsets: Clean (less than 20% contamination), Not Clean (20%
or more), Not Dirty (less than 80%), and Dirty (80% or more). As shown in Table 4, more than 97%
of the samples in the dataset are classified as Clean, and there are no samples in the Dirty category.
The results indicate that there is almost no test-data leakage in the constructed dataset for training.

Table 4: Contamination analysis of BrowseComp evaluation samples using different synthetic data.
Each sample is categorized based on the proportion of overlapping n-grams with the training set.

Data Type Contamination Rate Clean Not Clean Not Dirty Dirty

KG 2.6 99.0 1.0 100.0 0.0
i.i.d. 3.4 97.7 2.3 100.0 0.0
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E CASE STUDY

Reinforcement Learning Reshapes the Model’s Search Strategy Based on the sustained per-
formance improvement on the BrowseComp-266 evaluation set during RL training, we study the
model’s search behavior because most of its actions involve issuing retrieval queries. Similar to
human interaction with contemporary search engines like Google Search, which allow exact match
quoting, logical OR aggregation and term exclusion with a leading minus sign, the retrieval interface
used during training and evaluation supports these same advanced features. We therefore collected
every query generated by the model when solving the evaluation set and calculated three metrics: (1)
Quote Usage: the fraction of queries containing double quotes for exact phrase matching; (2) Minus
Usage: the fraction of queries containing a leading minus sign to exclude terms. (3) OR Usage: the
fraction of queries containing the OR operator to combine alternative terms; The evolution of these
metrics over training steps is plotted in Figure 9.
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Figure 9: Evolution of Quote Usage, Minus Usage and OR Usage over RL training steps on
BrowseComp-266.

From Figure 9, we observe that Quote Usage increases from around 30% to 40% at the early stage of
training, then gradually decreases to below 25%. OR Usage steadily grows from approximately 2% to
8%. In contrast, Minus Usage continues to rise from 14% to 18% throughout the training. This trend
suggests that the model initially learns to adopt the quoting strategy early in reinforcement learning,
but its advantage becomes less prominent over time, leading to a decline in usage. Meanwhile, the
model steadily improves its ability to use minus operators, and OR Usage remains stable between
0.8% and 1%, indicating limited but consistent application.

F USE OF LLMS

Large language models (LLMs) were used solely for language polishing and grammar refinement
during manuscript preparation. All research ideas, methodologies, experiments, and analyses were
independently conceived, designed, and validated by the authors.
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