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Abstract

As AI systems advance beyond human capabilities, scalable oversight becomes critical: how
can we supervise AI that exceeds our abilities? A key challenge is that human evaluators may
form incorrect beliefs about AI behavior in complex tasks, leading to unreliable feedback and
poor value inference. To address this, we propose modeling evaluators’ beliefs to interpret
their feedback more reliably. We formalize human belief models, analyze their theoretical
role in value learning, and characterize when ambiguity remains. To reduce reliance on
precise belief models, we introduce “belief model covering” as a relaxation. This motivates
our preliminary proposal to use the internal representations of adapted foundation models
to mimic human evaluators’ beliefs. These representations could be used to learn correct
values from human feedback even when evaluators misunderstand the AI’s behavior. Our
work suggests that modeling human beliefs can improve value learning and outlines practical
research directions for implementing this approach to scalable oversight.
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1 Introduction

In recent years, reinforcement learning from human feedback (RLHF) (Christiano et al., 2017) and varia-
tions like direct preference optimization (Rafailov et al., 2023) have become a practical approach for aligning
language models (Ziegler et al., 2020; Stiennon et al., 2022; Bai et al., 2022; Ouyang et al., 2022). These tech-
niques have then been used in the alignment of large-scale foundation models like ChatGPT (OpenAI, 2022)
and GPT-4 (OpenAI et al., 2024), Gemini (Gemini Team, 2023), Llama (Touvron et al., 2023; Grattafiori
et al., 2024), and Claude (Bai et al., 2022; Anthropic, 2023a;b).

RLHF uses feedback of human evaluators on AI behavior to give information about desired behavior. But as
AI systems become more capable, they may eventually outstrip our ability to evaluate them. The problem of
scalable oversight therefore asks how to effectively teach our preferences to AI systems when they become
more capable than ourselves (Amodei et al., 2016; Christiano et al., 2018; Irving et al., 2018; Leike et al.,
2018; Bowman et al., 2022). Conceptually, if human evaluators lack the capacity to fully understand the
AI’s behavior, then this may incentivize the AI to perform behavior that the human evaluator only believes
to be good, possibly at the expense of actual value.

Recent work has in fact revealed problems with RLHF that stem from erroneous human beliefs about AI
behavior. In an early example (Amodei et al., 2017), an AI was supposed to grasp a ball with a robot hand in
a simulation. The evaluators, who looked at a video of the behavior, sometimes believed that the hand was
grasping the ball when it was in fact only in front of it, leading to positive feedback for the wrong behavior.
In Cloud et al. (2024), a synthetic overseer in a baseline setting is unaware of whether a reached goal is a
diamond (positive) or ghost (negative), leading the policy to learn to approach the ghost. Denison et al.
(2024) shows a language model modifying a file unbeknownst to a synthetic evaluator, successfully deceiving
it into believing a checklist has been accomplished. Similar models have also been shown to mislead humans
who are limited in their time or competence to evaluate question answering or programming tasks, leading
them to believe that the performance is better than it is (Wen et al., 2024).

Given the crucial role of evaluator beliefs in erroneous feedback, in this theoretical work, we are exploring
the idea to model human beliefs about AI behavior. Our idea is that if we knew what the human believes
the AI has done in its environment, then we could properly relate the human’s feedback to that believed
behavior instead of to the actual behavior. For example, imagine the robot hand from Amodei et al. (2017)
is in front of the ball and the human evaluator gives positive feedback. Additionally, assume we know the
human believes the ball was actually grasped. If so, then we know that the human thinks grasping the ball
is positive, and can incentivize this behavior from now on.

But what are beliefs? In classical work on partial observability, beliefs are formalized as probability distri-
butions over environment states (Kaelbling et al., 1998), possibly including models of other agents (Gmy-
trasiewicz & Doshi, 2005). In Lang et al. (2024), human evaluator beliefs are given by probability distribu-
tions over state sequences in the AI’s environment. They show in theoretical toy examples that modeling
such beliefs can help to learn effectively from feedback. However, in reality it is unrealistic that humans
form probability distributions over entire state sequences, and it would be prohibitive to specify such a belief
explicitly. We think it is more realistic that humans think in terms of features, which we conceptualize as
higher-level and independent properties of trajectories in an environment. We then model a human belief
about an AI’s behavior as a vector of feature strengths.

This leads to our notion of a human belief model, which we introduce in Section 2. This model, together
with feedback on observations, then theoretically allows to infer the return function over trajectories up to an
inherent ambiguity, which we characterize in terms of the human belief model. The ambiguity disappears
when the model is complete, which holds, in particular, when the human’s beliefs of all observations
linearly cover the feature combinations that are possible in the environment (Theorem 2.13). We then
analyze conceptual toy examples of non-complete and complete models and consequences for the resulting
return function inference.

We would like to use human belief modeling in practice to make concrete progress on scalable oversight.
However, realistically, we cannot model human beliefs precisely; after all, we do not even have an explicit
specification of the human’s feature set! In Section 3, we thus relax the requirement of exact modeling
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by investigating belief models that can represent all return functions and feedback functions that are
compatible with the true belief model. We then say that these models cover the true belief model. When
such a model is complete, it can replace the true model for the return function inference (Theorem 3.2). In
a conceptual example, we analyze a human with symmetry-invariant features, which we can cover with a
complete model that assumes symmetry-invariant reward functions.

We also characterize model coverage by the existence of what we call model morphisms and linear belief-
compatible ontology translations (Theorem 3.5). Intuitively, this means that if one can linearly translate
from the specified model’s features to the human’s features in a way that is compatible with their beliefs
about observations, then coverage holds. The notion of a linear ontology translation is strikingly similar to
work in the field of mechanistic interpretability on sparse autoencoders (Cunningham et al., 2023; Bricken
et al., 2023), which linearly map from the internal representation space of language models to a space of
human-interpretable features.

Inspired by this connection, in Section 3.4, we make a preliminary proposal to use adapted foundation models
to construct a belief model that covers the true human belief model. The resulting training scheme would
work like typical reinforcement learning from human feedback, but use an adapted foundation model with
internal representations that mimic the human’s beliefs of the AI’s behavior. After learning the reward
model, it can then be applied during policy optimization by using a more capable foundation model for
creating the internal representations. Our theory specifies precise conditions under which the procedure
leads to a correct return function. This training scheme does not assume the human to fully understand
the behavior they evaluate and is not based on amplification of the human’s capabilities, which we think
provides a new angle to make progress on the problem of scalable oversight.

Finally, in our discussion in Section 4, we summarize our work, survey related work, motivate theoretical
and empirical future work, and conclude.

2 Human belief models

In this section we define the notion of human belief models that can help to infer return functions from the
human’s feedback.

In Section 2.1 we start by explaining our conventions and some preliminaries for linear algebra. We recom-
mend also experienced readers to briefly skim this section to understand our notation. In Section 2.2, we
briefly define Markov decision processes and slightly adapt them: We do not make the assumption that the
return function over trajectories comes from a reward function. This allows us to be slightly more general.
In Section 2.3, we then introduce the notion of the human’s ontology, which is a map that assigns a vector of
feature strengths to each trajectory. Our crucial assumption is that the return function evaluates a trajectory
by summing up the rewards of each feature, weighted by the feature strengths. This allows us to recover
classical reward functions as a special case.

In reinforcement learning, the goal is to maximize the return function, but we assume this function to be
unknown: It represents the implicit values of a human evaluator and needs to be inferred from the human’s
feedback. In Section 2.4, we explain the human to give feedback based on forming a (possibly incorrect) belief
over features from observations. We call the resulting feedback the observation return function. In Section 2.5
we then explain how our problem setup connects to the general problem of scalable oversight and motivate
our solution approach: It is based on leveraging human belief models to better interpret the human’s feedback;
we introduce them in Section 2.6. When a model of the human’s beliefs is known, one can infer the return
function from the human’s feedback up to an ambiguity, which we characterize in Section 2.7. We also define
complete human belief models, for which the ambiguity vanishes, and characterize them in Theorem 2.13.
In Section 2.8, we introduce the dual notion of faithfulness. In Section 2.9, we study conceptual examples
that give an intuition for when the ambiguity does, or does not, vanish.
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2.1 Conventions and preliminaries for linear algebra

Let X be a set. For x ∈ X, we define the delta function δx : X → R as usual by

δx(x′) =
{

1, x′ = x,

0, else .

Let R be the real numbers. Then RX denotes the vector space of functions from X to R, which one can also
view as column-vectors indexed by x ∈ X. For a function v ∈ RX , we write v(x) for the entry of v at position
x ∈ X. The standard basis functions of RX are given by {ex}x∈X with ex = δx. Then every function v ∈ RX
can be written as v =

∑
x∈X v(x) · ex. We define the standard scalar product 〈·, ·〉 : RX ×RX → R by

〈v, w〉 :=
∑
x∈X

v(x)w(x).

Let A : RX → RY be a linear map. Then we view A also as a matrix with matrix elements Ayx :=[
A(ex)

]
(y) ∈ R for x ∈ X, y ∈ Y . We write Ay ∈ RX for the row of A at index y ∈ Y , which is the function

with entries Ay(x) = Ayx. Consequently, if v ∈ RX and y ∈ Y , then we obtain[
A(v)

]
(y) =

∑
x∈X

v(x)
[
A(ex)

]
(y) =

∑
x∈X

Ayxv(x) = 〈Ay, v〉 .

This corresponds to the typical way that linear functions can be represented as matrix-vector products. If
V ⊆ RX is a vector subspace, then we write A|V : V → RY for the restriction of A to V, which is simply
given by (A|V)(v) = A(v) for all v ∈ V. We denote the kernel and image of A : RX → RY by

ker(A) :=
{
v ∈ RX

∣∣ A(v) = 0
}
⊆ RX ,

im(A) :=
{
w ∈ RY

∣∣ ∃v ∈ RX : A(v) = w
}
⊆ RY .

I.e., they are the set of functions in RX that are sent to zero by A, and the set of functions in RY that are
hit by A, respectively. Both are vector subspaces of their respective surrounding vector spaces. We explain
basic properties of kernels and images in Appendix A.2 and will refer to those results when needed.

Sometimes, our linear functions “come from” a deterministic function in the other direction. I.e., if h : Y → X
is a function, then we define the linear dual function h∗ : RX → RY for v ∈ RX and y ∈ Y by[

h∗(v)
]
(y) := v

(
h(y)

)
. (1)

The matrix elements are then given by

h∗yx =
[
h∗(ex)

]
(y) = ex

(
h(y)

)
=
{

1, h(y) = x,

0, else.
(2)

For two linear maps A : RX → RY and B : RY → RZ , we write their composition as B ◦ A : RX → RZ ,
which has matrix elements (B ◦A)zx =

∑
y∈Y BzyAyx for x ∈ X, z ∈ Z. This also implies

(B ◦A)z =
∑
y∈Y

BzyAy. (3)

Finally, whenever we draw a diagram of (usually linear) functions in this paper, the diagram commutes,
meaning that all directed pathways from one node to another node are the same function. For example, in
a diagram of the form
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RY

RX RZ

B

C

A

we have C = B ◦A. The only exceptions to this convention are Equations (22) and (28) in the appendix.

2.2 Preliminaries on Markov Decision Processes

Much prior work involving human feedback, especially in RLHF, considers the contextual bandit frame-
work (Ziegler et al., 2020). However, we are motivated to contribute to a theory that will apply to advanced
AI systems interacting with more complex environments, as this is where we expect most of the risks of
advanced AI to be. We thus work in the setting of an MDP (S,A, T , P0, T,G), with a finite set of states
S and actions A, a transition kernel T : S × A → ∆(S), an initial state distribution P0 ∈ ∆(S), a
finite time horizon T ∈ {0, 1, 2, 3, . . . }, and the human’s implicit return function G, which we clarify
after defining trajectories below. We fix this generic MDP for the rest of the paper.

We now define trajectories. In the rest of the paper, whenever we have a state-action sequence ξ ∈ (S ×
A)T × S present in some context and then write about states and actions s0, a0, . . . , sT−1, aT−1, sT , then
they implicitly refer to the states and actions in ξ. Then the set of trajectories be given by

Ξ =
{
ξ ∈ (S ×A)T × S

∣∣ ξ is possible
}
⊆ (S ×A)T × S,

where we call a state-action sequence ξ possible if P0(s0) > 0 and T (st | st−1, at−1) > 0 for all t ≥ 1. Then
the return function is a function G ∈ RΞ.

Note that this formalism does not assume that G decomposes into a reward function R : S ×A×S → R. In
other words, the formalism allows for human preferences that do not satisfy the reward hypothesis (Bowling
et al., 2022) and is thus slightly more general than typical reinforcement learning settings.

Policies are functions π : S → ∆(A). A policy π together with the MDP induces a distribution Pπ ∈ ∆(Ξ)
over trajectories by sampling initial states from P0, actions from π, and transitions from T . The policy
evaluation function is then given by

J(π) := E
ξ∼Pπ(·)

[
G(ξ)

]
. (4)

The goal in reinforcement learning is to find a policy π that maximizes this evaluation function.

2.3 The human’s ontology and reward object

We assume that the return function G : Ξ→ R encodes what a given human cares about. We imagine that
G measures the quality of each trajectory linearly in certain feature strengths associated to each trajectory;
here, features are high-level return-relevant concepts.

More precisely, we assume the human comes equipped with a finite feature set Ω. The human’s ontology
is a function λ : Ξ → RΩ that encodes for each trajectory ξ ∈ Ξ and feature ω ∈ Ω the extent

[
λ(ξ)

]
(ω) to

which the feature ω is present in the trajectory ξ. As we discuss in greater detail in Section 2.4, these feature
strengths λ(ξ) are idealized, i.e., the human may not be able to compute them. In the general theory, we
allow them to be negative, though it may help to imagine them to be non-negative. The human’s reward
object is a fixed function RΩ ∈ RΩ that assigns to each feature ω ∈ Ω the degree RΩ(ω) to which the human
likes this feature. The return function G : Ξ → R evaluates a trajectory by summing up the quality of all
features, weighted by the extent to which they appear in the trajectory:

G(ξ) =
∑
ω∈Ω

[
λ(ξ)

]
(ω) ·RΩ(ω) =

〈
λ(ξ), RΩ

〉
. (5)
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Let Λ : RΩ → RΞ be given by
[
Λ(R̃Ω)

]
(ξ) :=

〈
λ(ξ), R̃Ω

〉
. Then Λ is a linear function from which we

can recover λ using the matrix elements of Λ:
[
λ(ξ)

]
(ω) = Λξω (Proposition A.1). We slightly abuse the

terminology by referring to both λ : Ξ→ RΩ and Λ : RΩ → RΞ as the human’s ontology. This representation
of the ontology satisfies Λ(RΩ) = G.
Example 2.1 (Classical reward functions). Assume that the human’s feature set is Ω = S ×A×S, i.e., the
set of all state-action-state transitions. Then the reward object RΩ = R ∈ RS×A×S is a reward function in
the classical sense. Let γ ∈ [0, 1] be a discount factor and define the ontology Λ = Γ : RS×A×S → RΞ by

[
Γ(R̃)

]
(ξ) =

T−1∑
t=0

γtR̃(st, at, st+1).

G = Γ(R) is then given by the discounted sum of rewards of individual transitions in a trajectory, as is
typical in reinforcement learning. The matrix elements of the ontology Γ are given by

Γξ,(s,a,s′) =
[
Γ(e(s,a,s′))

]
(ξ) =

T−1∑
t=0

γte(s,a,s′)(st, at, st+1) =
T−1∑
t=0

γtδ(s,a,s′)(st, at, st+1),

In other words, the extent to which the “feature” (s, a, s′) is present in the trajectory ξ is simply the discounted
number of times that it appears.
Remark 2.2 (Linearity assumption). Equation (5) encodes that the true return function is linear in the
features of the human’s ontology. This is an important assumption that simplifies our theory substantially,
but it also means that our results might hinge on the assumption being true. Is this justified?

First of all, linearity assumptions in reward learning are common, for example in Ng et al. (2000); Abbeel &
Ng (2004); Ziebart et al. (2008) for inverse reinforcement learning or in parts of Song et al. (2024) for the
case of preference finetuning. Additionally, a priori, our linearity assumption is quite flexible. For example,
if the feature set is large enough, then any function can be considered linear in such features, as the case
of classical reward functions in Example 2.1 demonstrates: In that case, the return functions are linear in
features given by state-action-state transitions.

Yet later in this work, we don’t only want to theoretically assume the human’s return function to obey a
linearity assumption — we also want to be able to concretely model the underlying features. If the features
that allow for a linear return function get increasingly complex, we expect it to become more difficult to
model those correctly in practice. We thus consider it an open question to what extent assuming linearity is
appropriate, and we hope for future theoretical work that relaxes this assumption (cf. Section 4.3).

2.4 The human’s feature belief and observation return function

In standard reinforcement learning, it is typically assumed that we know the return function G to be max-
imized by a policy. However, G is the implicit return function of a given human. We must thus rely on
feedback by the human to infer information about G. A naive idea would be to show the human each tra-
jectory ξ, ask them to evaluate it by computing G(ξ), and to use these returns to train a policy. There are
three challenges with this plan:

(i) The human might not have access to the full trajectory ξ or all trajectories ξ ∈ Ξ. For example, in
complex environments, they would usually only receive partial observations.

(ii) Even if ξ were fully accessible, the human might not have the capacity to compute the features λ(ξ).
For example, if ξ encodes a proof-attempt of a mathematical conjecture and ω encodes “correctness”,
then the human may not have the competence to determine the extent

[
λ(ξ)

]
(ω) to which ξ is correct.

(iii) Even if the human could fully compute λ(ξ), they may not have full access to their reward object RΩ
in order to then compute G(ξ) as an explicit number.

To address (i), we assume a set of observations O that the human can receive. They may come from an
observation function O : Ξ→ O, as in some examples from Amodei et al. (2017); Lang et al. (2024); Cloud
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et al. (2024); Denison et al. (2024). For example, O(ξ) could be a sequence of observation segments, one
for each time-step. Alternatively, O could be a set of simulations to probe the human’s opinion on specific
situations that may be present in real trajectories . We can also imagine O to be a subset of Ξ. For example,
it can make sense to only show trajectories to the human if they are able to correctly evaluate them, as in
easy-to-hard generalization (Sun et al., 2024; Hase et al., 2024; Ding et al., 2024). In any case, we assume O
to be a fixed set of observations where, for the most part, we are agnostic about the process that generates
them.

To address (ii), we assume the human then has a feature belief function, i.e. a function ε : O → RΩ that
encodes for each o ∈ O the extent

[
ε(o)

]
(ω) to which the human believes the feature ω to be present in the

observation o or an associated unknown trajectory ξ. Even if O = Ξ, we can have ε 6= λ, which reflects that
the human may believe the features of a trajectory to be different from what they actually are.

The human then judges observations o ∈ O according to the observation return function GO ∈ RO. It
evaluates an observation by summing up the quality of all features, weighted by the extent to which the
human believes them to be present:

GO(o) :=
∑
ω∈Ω

[
ε(o)

]
(ω) ·RΩ(ω) =

〈
ε(o), RΩ

〉
. (6)

Let E : RΩ → RO be given by
[
E(R̃Ω)

]
(o) :=

〈
ε(o), R̃Ω

〉
. Then as for Λ, E is a linear function from which

we can recover ε using the matrix elements of E :
[
ε(o)

]
(ω) = Eoω (Proposition A.1). We again slightly abuse

the terminology by referring to both ε : O → RΩ and E : RΩ → RO as the human’s feature belief function.
This representation of the featre belief function satisfies E(RΩ) = GO.

To address (iii), in RLHF it is typically assumed that the human can make choices between observa-
tions (Christiano et al., 2017) that implicitly reflect the underlying return function (or, on our case, ob-
servation return function). We discuss this setting in Appendix B for the special case that all relevant linear
functions are row-constant. However, in the main paper, we do not want to overcomplicate the theory and
assume that the human can directly compute GO. In principle, if we would show each o ∈ O to the human,
we could then record the entire observation return function GO. Thus, we assume GO, which represents the
human’s feedback, to be fully known.
Remark 2.3 (Comparison to other work involving partial observations). Since we work with a set of ob-
servations O, we should clarify that we do not work in a classical POMDP setting. In POMDPs (Kaelbling
et al., 1998), the agent only partially observes the environment, and may then keep track of a belief state for
making decisions in the environment and maximizing reward. In contrast, we work in an MDP setting in
which the agent’s policy π : S → ∆(A) fully observes the environment state s ∈ S, see Section 2.2. It is the
human evaluator who may observe the environment only partially for evaluating the policy.

More closely related is the framework of I-POMDPs (Gmytrasiewicz & Doshi, 2005), which is a multi-agent
setting in which each agent maintains a belief over not only the environment, but also over other agents and
their beliefs. Recent work on partially observable assistance games (Emmons et al., 2024) provides a special
case that is more similar to our setting by considering an agent and a human in a shared environment in which
the agent is trying to maximize the human’s latent reward function. In that work, the human is assumed
to form a calibrated belief over entire environment states, whereas we consider potentially faulty beliefs
over trajectory features. We think it might be useful to attempt a synthesis of both settings (cf. Sections 4.2
and 4.3.1).

2.5 Connection to the problem of scalable oversight

In this interlude, we explain how the setup that we developed over the previous subsections relates to the
problem of scalable oversight (Amodei et al., 2016; Christiano et al., 2018; Irving et al., 2018; Leike et al.,
2018; Bowman et al., 2022). We also motivate our solution approach of modeling human beliefs.

Scalable oversight is the general problem of how to oversee AI systems when they are more capable than the
human overseers. While it is difficult to directly model the capabilities of AI systems, we can at least note
that highly capable AI systems will plausibly act in large-scale environments and perform behaviors whose
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precise meaning may not be adequately understood by humans. This can be modeled in the setting that we
developed earlier:

• Scale: If the AI acts in an environment with trajectories ξ ∈ Ξ, human overseers may not be able to
observe the entirety of the trajectories. We model this by a set of potentially smaller observations
o ∈ O on which humans give feedback.

• Understanding: We model the human’s understanding of an observation by its feature belief ε(o) ∈
RΩ. In cases where an observation o ∈ O belongs to a trajectory ξ ∈ Ξ in the environment (e.g., by
observing a subset or other transformation of the trajectory), a gap in the human’s understanding
can be characterized by ε(o) 6= λ(ξ): The human’s understanding of the observation is different from
the true features of the corresponding trajectory.

How do these assumptions impact the return function inference? Naively, if we did not properly account for
the human’s limitations, we might assume that the human directly observes the full trajectory ξ and assesses
it correctly. If we then try to learn a return function G̃ : Ξ→ R and observe the human’s feedback GO(o),
we make the inference G̃(ξ) = GO(o) =

〈
ε(o), RΩ

〉
, which can differ from the true return G(ξ) =

〈
λ(ξ), RΩ

〉
since ε(o) 6= λ(ξ). Now, assume there is a feature ω ∈ Ω that is very bad (RΩ(ω)� 0) and present in the true
trajectory (

[
λ(ξ)

]
(ω) > 0), but not in the human’s belief of the corresponding observation (

[
ε(o)

]
(ω) = 0).

Then this feature leads to a large negative contribution to G(ξ), but not to GO(o), which can lead to an
overestimation of the inferred return for ξ:

G̃(ξ) =
〈
ε(o), RΩ

〉
>
〈
λ(ξ), RΩ

〉
= G(ξ).

Thus, in the policy optimization phase using the inferred return function G̃, ξ may be positively reinforced,
leading to a policy with potentially bad performance as judged by the true return function G. This phe-
nomenon is analyzed in a special case under the name deceptive inflation in Lang et al. (2024), and might
also lie at the heart of the empirical failures observed in Amodei et al. (2017); Denison et al. (2024); Wen
et al. (2024); Williams et al. (2024).

In our work, we attempt to solve this problem by viewing GO(o) =
〈
ε(o), RΩ

〉
not as an estimate for the

true return of a trajectory ξ, but instead as evidence for the human’s reward object RΩ. The idea is that we
assume to know the human’s faulty belief ε(o), which means that GO(o) =

〈
ε(o), RΩ

〉
is a linear equation

that can be used to narrow down the space of possibilities for RΩ. Once RΩ is sufficiently determined, and
if λ(ξ) is also known, we can then infer the true return function G using the equation G(ξ) =

〈
λ(ξ), RΩ

〉
.

This approach complements other work on scalable oversight, which usually falls into the regime of amplified
oversight (Leike et al., 2018; Saunders et al., 2022; Irving et al., 2018). Such work attempts to improve the
human’s ability to give accurate feedback, whereas our work attempts to learn the correct return function
from potentially inaccurate feedback by leveraging additional information in the form of a known model of
the human’s beliefs. We then get closer to reality by relaxing the assumption of knowing the human’s beliefs
in Section Section 3.

2.6 The definition of human belief models

In order to infer the return function G from the human’s feedback GO, we assume the features Ω, ontology
Λ, and feature belief function E are all known; additionally, we assume we may have a priori knowledge
of a vector subspace of valid reward objects V ⊆ RΩ in which RΩ resides: RΩ ∈ V. This may come
from any a priori knowledge, e.g. of certain symmetries in the environment that leave rewards invariant
(cf. Example 2.19 and Section 3.3). This leads to the following notion:
Definition 2.4 (Human belief model, representing). Let Ξ be the set of trajectories in an MDP and O the
fixed set of observations that a human evaluator receives. Then a human belief model (or belief model,
or model, for short) is a tupleM = (Ω,Λ, E ,V), where:

• Ω is a set called feature set;

• Λ : RΩ → RΞ is a linear function, called ontology;

9
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• E : RΩ → RO is a linear function, called feature belief function;

• and V ⊆ RΩ is a vector subspace, called space of valid reward objects.

A human belief model M represents the true return function G : Ξ → R and observation return function
GO : O → R if there is a reward object RΩ ∈ V with G = Λ(RΩ) and GO = E(RΩ).

When appropriate, we will also use the representation λ : Ξ → RΩ with
[
λ(ξ)

]
(ω) = Λξω and ε : O → RΩ

with
[
ε(o)

]
(ω) = Eoω of the ontology and feature belief function, respectively (cf. Proposition A.1). We

visualize a modelM = (Ω,Λ, E ,V) as

RΞ RΞ

RΩ

⊆

V
or RΩ

RO RO,

Λ

E

Λ

E

where we use the latter version in the special case that V = RΩ.
Remark 2.5 (Which human belief model?). A priori, there can be many human belief models M̂ =
(Ω̂, Λ̂, Ê , V̂) that can represent the true return function G and the human’s feedback GO. For example, in Sec-
tion 3.3 we will discuss a situation with three different models, and in Appendix C one with many more. In
fact, there is always a trivial belief model that can represent G and GO: View R as the R-vectorspace R{?}
of functions from a one-element set {?} to R. Associate to G : Ξ → R = R{?} and GO : O → R = R{?}

via Proposition A.1 the linear functions lin(G) : R{?} → RΞ and lin(GO) : R{?} → RO given by[
lin(G)

]
(r · e?) := r ·G,

[
lin(GO)

]
(r · e?) := r ·GO

for r ∈ R and the only basis vector e?. Then, define the human belief model

M :=
(
{?}, lin(G), lin(GO), R{?}

)
with the feature set {?}. This represents G and GO with the reward object e? ∈ R{?} since

[
lin(G)

]
(e?) = G

and
[

lin(GO)
]
(e?) = GO. Intuitively, the feature ? then means “goodness”, the “ontology” G : Ξ → R{?}

measures the extent to which “goodness” is present in a trajectory, and the “feature belief function” GO :
O → R{?} measures how much goodness the human believes to be present in an observation. This trivial
model is not very interesting for our purposes since assuming that the human belief model is known would
then presuppose knowledge of G itself — which is the return function that we want to infer based on feedback
GO.

A belief model M = (Ω,Λ, E ,V) is more interesting if Ω consists of a variety of meaningful concepts such
that G and GO decompose linearly over these features, in such a way that:

(i) It is easier to know the modelM than to know the return function G;

(ii) GivenM and GO, it is easy to determine G.

For the rest of this section, we imagine to know the “true” belief model M, which we assume to have these
properties. Note that these are philosophical assumptions that guide how we talk about M and how we
imagine its application. But mathematically, all of our claims here and in the upcoming sections are correct
wheneverM represents G and GO.

In Section 3, we then relax the requirement (i) of “knowledge” ofM, and specifically in Section 3.4 we make
a proposal for model specification using foundation models. We then also show how G could in principle be
learned by learning GO via supervised learning.

10
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Example 2.6. Assume the setting from Example 2.1, in which Ω = S ×A×S and Λ = Γ : RS×A×S → RΞ.
In this example we add a feature belief function to specify a full human belief model.

Assume the human comes equipped with a belief function b : O → RΞ that assigns a probability distribution
over trajectories b(o) ∈ ∆(Ξ) ⊆ RΞ to each observation o ∈ O. For example, this could be a posterior belief
if o is sampled by first sampling a trajectory ξ according to some policy and then computing the observation
as o = O(ξ) for an obervation function O : Ξ → O. Then we assume that the feature belief function
ε : O → RS×A×S computes, for each o ∈ O and (s, a, s′) ∈ S × A × S, the expected discounted number of
times that the transition (s, a, s′) appears in the trajectory ξ that gave rise to observation o:[

ε(o)
]
(s, a, s′) :=

∑
ξ∈Ξ

[
b(o)

]
(ξ) · Γξ,(s,a,s′) .

We now determine the matrix form of ε. Let B : RΞ → RO be the linear function given by
[
B(G)

]
(o) :=〈

b(o), G
〉
, which has matrix elements Boξ =

[
b(o)

]
(ξ) by Proposition A.1. We obtain

Eo,(s,a,s′) =
[
ε(o)

]
(s, a, s′) =

∑
ξ∈Ξ

Boξ Γξ,(s,a,s′) = (B ◦Γ)o,(s,a,s′).

Thus, E = B ◦Γ.

Finally, assume that the set of valid reward objects is simply given by V = RS×A×S . Then, in total, our
model is given by (Ω,Λ, E ,V) = (S ×A× S, Γ, B ◦Γ, RS×A×S):

RΞ

RS×A×S

RO.

Γ

B ◦Γ

One can compare this with Lang et al. (2024) and realize that our result coincides with their belief model,
thus showing that we generalize their work.

2.7 Complete belief models and the ambiguity

In this whole subsection, we fix an MDP with trajectories Ξ, observations O, and corresponding return
function G ∈ RΞ and observation return function GO ∈ RO. We also fix a human belief model M =
(Ω,Λ, E ,V) that represents G and GO with an implicit reward object RΩ ∈ V: Λ(RΩ) = G and E(RΩ) = GO.
We can visualize the model together with the reward object and return functions as follows:

G RΞ

RΩ ∈ RΩ

⊆

V

GO RO.

Λ

E

Λ

E

We are concerned with the following question:
Question 2.7. Assume the human belief model M and the human feedback, in the form of the observation
return function GO, are known. Under what conditions, or to what extent, can we infer the return function
G?

11
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In Section 3, we will relax the assumption that the belief model is known precisely.

The idea for the answer is as follows: When trying to infer G from GO, we make use of the knowledge that
they are connected by the unknown reward object RΩ ∈ V. Thus, one can first try to determine a reward
object R̃Ω ∈ V with the correct observation return function E(R̃Ω) = GO. Then the question is whether the
corresponding return function Λ(R̃Ω) equals the true return function G. They differ by the return function
G′ = Λ(R̃Ω)−G. The ambiguity will then be defined as the set of all these differences, and the question will
be how to characterize it and when it vanishes, leading to the notion of a complete human belief model.
Definition 2.8 (Feedback-compatible, ambiguity). We define the set of return functions that are feedback-
compatible with GO as

FCM(GO) :=
{
G̃ ∈ RΞ ∣∣ ∃R̃Ω ∈ V : E(R̃Ω) = GO and Λ(R̃Ω) = G̃

}
.

We define the ambiguity left in the return function G after the observation return function GO is known by

AmbM(G,GO) :=
{
G′ ∈ RΞ ∣∣ G′ = G̃−G for G̃ ∈ FCM(GO)

}
.

Then clearly, we have
FCM(GO) = G+ AmbM(G,GO).

This leaves open the question of how to characterize the ambiguity and when it vanishes.
Proposition 2.9 (Ambiguity characterization). We have

AmbM(G,GO) = Λ(ker(E) ∩ V).

Proof. For one direction, let G′ ∈ AmbM(G,GO). Then G′ = Λ(R̃Ω) − G for R̃Ω ∈ V with E(R̃Ω) = GO.
By the linearity of E we obtain

E(R̃Ω −RΩ) = E(R̃Ω)−GO = 0

and thus R̃Ω −RΩ ∈ ker(E) ∩ V. Since Λ is linear, we obtain

G′ = Λ(R̃Ω)−G = Λ(R̃Ω)−Λ(RΩ) = Λ(R̃Ω −RΩ) ∈ Λ(ker(E) ∩ V).

For the other direction, let G′ ∈ Λ(ker(E) ∩ V). Then G′ = Λ(R′Ω) for R′Ω ∈ ker(E) ∩ V. Define R̃Ω :=
RΩ +R′Ω ∈ V. By the linearity of E and by R′Ω ∈ ker(E) we obtain

E(R̃Ω) = E(RΩ) + E(R′Ω) = GO + E(R′Ω) = GO.

Finally, the linearity of Λ shows

G′ = Λ(R′Ω) = Λ(R̃Ω −RΩ) = Λ(R̃Ω)−Λ(RΩ) = Λ(R̃Ω)−G.

This shows G′ ∈ AmbM(G,GO).

See Proposition B.6 for a version of the preceding proposition where the feedback is given by a choice
probability function instead of GO. See Appendix C.4 for the ambiguities of many human belief models.
Remark 2.10. In light of the previous proposition, it turns out that the ambiguity does not depend on the
true return function and observation return function, and we can thus simply write it as AmbM.
Example 2.11. We continue Example 2.6, with the model given by M = (S × A × S,Γ,B ◦Γ,RS×A×S).
Proposition 2.9 implies that the ambiguity is given by AmbM = Γ(ker(B ◦Γ)) = ker(B) ∩ im(Γ). Interested
readers can find characterizations of this ambiguity in examples and special cases in Lang et al. (2024).
See Sections 2.9 and 3.3 for self-contained examples of ambiguity characterizations in our work.

It is important to know when the ambiguity disappears, which is captured as completeness in the following
definition.

12
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Definition 2.12 (Completeness). We call the human belief modelM = (Ω,Λ, E ,V) complete if ker(E)∩V ⊆
ker(Λ) ∩ V, i.e. if AmbM = Λ(ker(E) ∩ V) = 0 (cf. Proposition 2.9).

We will explain in Interpretation 2.14 why we call this property completeness. We find equivalent and
sufficient conditions of completeness in the following theorem:
Theorem 2.13 (Completeness characterization). Remember the representations λ : Ξ → RΩ and ε : O →
RΩ of the ontology Λ : RΩ → RΞ and feature belief function E : RΩ → RO, respectively. Consider the
following four statements:

1. M is complete.

2. There exists a linear function Z : RO → RΞ with Λ|V = Z ◦ E|V .

3. There exists a linear function Z : RO → RΞ with Λ = Z ◦ E.

4. For all ξ ∈ Ξ, λ(ξ) ∈ RΩ is contained in the span of the image of ε: λ(ξ) ∈
{∑

o∈O Zoε(o) | Zo ∈ R
}
.

Then 1 and 2 are equivalent, and 3 and 4 are equivalent and imply 1 and 2:

1 2 3 4

Furthermore, the linear function Z from 2 and 3 satisfies G = Z(GO). Finally, if V = RΩ, then all four
statements are equivalent.

Proof. Note that ker(Λ) ∩ V = ker(Λ|V) and ker(E) ∩ V = ker(E|V). Thus, the equivalence of statements 1
and 2 immediately follow from Proposition A.3. That 3 implies 2 is obvious.

Now assume statement 4. For all ξ ∈ Ξ and o ∈ O, let Zξo ∈ R be coefficients with

λ(ξ) =
∑
o∈O

Zξoε(o).

This implies
Λξω =

∑
o∈O

ZξoEoω.

Define the linear function Z : RO → RΞ to have the matrix elements Zξo. Then the previous equation
implies Λ = Z ◦ E , proving statement 3. That 3 implies 4 follows by reversing these arguments.

Assume statement 2. Then

G = Λ|V(RΩ) =
(
Z ◦ E|V

)
(RΩ) = Z

(
E(RΩ)

)
= Z(GO).

That all statements are equivalent if V = RΩ is clear.

Interestingly, for complete models, the preceding proposition shows that G = Z(GO) for a linear function Z
that only depends on the human belief modelM, thus showing once more that we can infer G from GO if
the model is complete. Since Z may be impractical to find, it may however be more useful to determine G
as the unique feedback-compatible return function by first finding R̃Ω with E(R̃Ω) = GO.
Interpretation 2.14. Overall, we have thus answered Question 2.7: When the human belief model is known,
then G can be inferred from GO up to the ambiguity AmbM = Λ(ker(E) ∩ V), which vanishes if the model
M is complete. Looking back at the definition of feedback-compatible return functions, G is then determined
as G = Λ(R̃Ω) for any R̃Ω ∈ V that gives rise to the human’s feedback: E(R̃Ω) = GO. For completeness, we
then found further equivalent and sufficient conditions in Theorem 2.13.
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We now explain why we chose the name completeness. By Theorem 2.13, statement 4, a sufficient condition
for completeness is the existence of coefficients Zξo ∈ R such that for all ξ ∈ Ξ, we can write λ(ξ) as a linear
combination of the ε(o):

λ(ξ) =
∑
o∈O

Zξoε(o).

This means that the observation-dependent feature beliefs ε(o) span the true feature strengths of trajectories.
In this sense, the belief model is “complete”: The human’s interpretations of observations sufficiently entail
true features of trajectories in the MDP. It is thus not a surprise that completeness implies that the ambiguity
disappears, and thus that we can infer the return function from the observation return function GO.

2.8 Faithful belief models

Let againM = (Ω,Λ, E ,V) be a human belief model for an MDP together with trajectories Ξ and observa-
tions O, and let RΩ ∈ V with G = Λ(RΩ), GO = E(RΩ). Here, we briefly study the notion of faithfulness of
human belief models, which is dual to completeness. It captures the idea that any two reward objects that
cannot be distinguished by their return functions should also not differ in their observation return functions
if the human’s feedback reflects a belief over the actual trajectories in the MDP. We now define the notion
and then come back to this interpretation in Interpretation 2.17.
Definition 2.15 (Faithfulness). We call the human belief modelM faithful if ker(Λ) ∩ V ⊆ ker(E) ∩ V.

Many human belief models we study in this paper are faithful. The model from Example 2.11 is faithful
since ker(Γ) ⊆ ker(B ◦Γ). All models from Section 3.3 are faithful. In Appendix C.2 we study several
more faithful human belief models. We can find a characterization of faithfulness that is completely dual
to Theorem 2.13:
Proposition 2.16 (Faithfulness characterization). Remember the representations λ : Ξ→ RΩ and ε : O →
RΩ of the ontology Λ : RΩ → RΞ and feature belief function E : RΩ → RO, respectively. Consider the
following four statements:

1. M is faithful.

2. There exists a linear function Y : RΞ → RO with E|V = Y ◦Λ|V .

3. There exists a linear function Y : RΞ → RO with E = Y ◦Λ.

4. For all o ∈ O, ε(o) ∈ RΩ is contained in the span of the image of λ: ε(o) ∈
{∑

ξ∈Ξ Yξλ(ξ) | Yξ ∈ R
}
.

Then 1 and 2 are equivalent, and 3 and 4 are equivalent and imply 1 and 2:

1 2 3 4

Furthermore, the linear function Y from 2 and 3 satisfies GO = Y (G). Finally, if V = RΩ, then all four
statements are equivalent.

Proof. The proof is analogous to the one for Theorem 2.13.

Interpretation 2.17. By Proposition 2.16, a sufficient condition for faithfulness is the existence of coeffi-
cient Yoξ ∈ R such that for all o ∈ O, we can write ε(o) as a linear combination of the λ(ξ):

ε(o) =
∑
ξ∈Ξ

Yoξλ(ξ).

We can suggestively interpret Yoξ as the human’s “belief” that the true trajectory ξ was responsible for the
observation o.1 Under this interpretation, the feature strengths ε(o) are like an “expected value” of true

1Though note that Y is usually not unique and Yo ∈ RΞ is usually not an actual probability distribution over ξ.
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feature strengths, given the human’s beliefs. Thus, the feature beliefs encoded by ε are “faithful” to a belief
over the actual MDP. This interpretation is especially valid for Example 2.6, where Y is given by B, and
thus Yoξ = Boξ =

[
b(o)

]
(ξ) is the probability of the trajectory ξ, given o.

Faithfulness is also philosophically reasonable for a related reason. Assume RΩ, R̃Ω ∈ V are two reward objects
with Λ(RΩ) = Λ(R̃Ω). Then the resulting return functions coincide in their evaluation of all trajectories.
It would then be reasonable to assume that they also coincide in their evaluation of observations, insofar as
observations give information about a state of affairs in the actual MDP: E(RΩ) = E(R̃Ω). This requires
that Λ(RΩ − R̃Ω) = 0 implies E(RΩ − R̃Ω) = 0, which exactly means that ker(Λ) ∩ V ⊆ ker(E) ∩ V, i.e.
the faithfulness of the model. However, since human evaluators do not necessarily have feature beliefs that
are rational to this extent, and since this property is not needed in the rest of our theory, we do not assume
faithfulness of our human belief models in the general theory.

2.9 Conceptual examples

We now present some simple conceptual examples to illustrate the theory, and especially the ambiguity. We
will not define entire MDPs but only those parts of the formalism that are necessary to reason about the
ambiguity. In all our examples, we assume O ⊆ Ξ, i.e., observations are entire trajectories: They are fully
observed. This brings other factors than observability into the focus, like the human’s understanding of the
trajectories, and whether there is enough data. We refer to Section 3.3 for a concrete examples where the
MDP is fully defined and a possibly remaining ambiguity stems from partial observability. Interested readers
can also find more such examples in Lang et al. (2024).

In all examples, we have a feature set Ω = {ω1, ω2, ω3, ω4} whose meaning will vary in each scenario. We
also have observations o1, o2, o3, o4, o5, though the observation set O ⊆ Ξ is sometimes only a subset of
{o1, o2, o3, o4, o5}. We will make use of the feature belief function ε : O → RΩ ∼= R4. We represent each ε(o)
as a row-vector with entries ε(o)i =

[
ε(o)

]
(ωi) as follows:

ε(o1) = (1, 0, 0, 1)
ε(o2) = (0, 1, 0, 1)
ε(o3) = (0, 0, 1, 1)
ε(o4) = (0, 3, 0, 2)
ε(o5) = (0, 0, 0, 1).

(7)

In all examples, we assume Ξ, V, and Λ (and thus overall M = (Ω,Λ, E ,V)) to also be known, though we
do not make them explicit.
Example 2.18 (Simple Completeness). The goal is to create children stories ξ ∈ Ξ that appeal to a specific
child Alice. We assume that it is known that children care about the presence or absence of exactly the
following four features Ω = {ω1, ω2, ω3, ω4}:

• ω1: Rule-breaking.

• ω2: Non-linear story-telling.

• ω3: Scariness.

• ω4: Moral lessons.

We show Alice four stories O = {o1, o2, o3, o4} ⊆ Ξ that give rise to this feature belief function (cf. Equa-
tion (7)):

E : RΩ → RO, E =


1 0 0 1
0 1 0 1
0 0 1 1
0 3 0 2

 . (8)
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Conceptually, we assume these are the true feature strengths, meaning that λ(o) = ε(o) for all o ∈ O, i.e.,
Alice perceives the “true” amount of the four features for each story. The matrix elements mean that o1
contains rule-breaking and moral lessons, but the story-telling is linear and the story is not scary. o4 is very
non-linear and contains quite some moral lessons, but shows no rule-breaking or scariness. Since the rows
of Equation (8) form a basis of RΩ, we obtain{∑

o∈O
Zoε(o) | Zo ∈ R

}
= RΩ,

and so by Theorem 2.13 it follows that the model is complete. Thus, the ambiguity vanishes and we can infer
the return function from Alice’s feedback GO on the stories in O (cf. Interpretation 2.14).

We demonstrate this now explicitly. Assume RΩ is Alice’s (a priori unknown) reward object, and that the
resulting observation return function GO = E(RΩ) ∈ RO is given by Alice’s explicit feedback on the four
stories o1, . . . , o4 as follows:

GO(o1) = −3, GO(o2) = 1, GO(o3) = 0, GO(o4) = 4. (9)

Representing RΩ and GO as column-vectors, this means:
1 0 0 1
0 1 0 1
0 0 1 1
0 3 0 2

 ·RΩ = E(RΩ) = GO =


−3
1
0
4

 .

This results in

RΩ =


1 0 0 1
0 1 0 1
0 0 1 1
0 3 0 2


−1

·


−3
1
0
4

 =


1 −3 0 1
0 −2 0 1
0 −3 1 1
0 3 0 −1

 ·

−3
1
0
4

 =


−2
2
1
−1

 .

Thus, we recovered Alice’s reward object: She positively values non-linear story-telling (2) and scariness (1)
but does not like moral lessons (−1) or rule-breaking (−2). Together with the knowledge of the ontology Λ
to associate features to stories, we can create more enjoyable stories for Alice.

This example shows that knowledge of return-relevant features and a successful modeling of the feature belief
function can go a long way to determine the correct return function: We essentially need only four “data
points” (in the form of observation returns GO(o)) to determine G.
Example 2.19 (Completeness from symmetries). We assume the same situation as in Example 2.18 except
this time, we assume that we only have three observations O = {o1, o2, o4}:

E : RΩ → RO, E =

1 0 0 1
0 1 0 1
0 3 0 2

 . (10)

Note that the third row now represents ε(o4) since o3 is not in O. Assume we have a priori information
that children who like scariness do not like moral lessons and vice versa; i.e., it is known that Alice’s reward
object satisfies the following equation:

RΩ(ω3) = −RΩ(ω4).

The set of all reward functions with this property forms a vector subspace V ⊆ RΩ. It turns out that this
implies ker(E) ∩ V = {0}. Indeed, let R′Ω ∈ ker(E) ∩ V. Then E(R′Ω) = 0 implies R′Ω(ω1) = R′Ω(ω2) =
R′Ω(ω4) = 0, and R′Ω ∈ V implies R′Ω(ω3) = −R′Ω(ω4) = 0. With ker(E) ∩ V = 0, the ambiguity vanishes:
AmbM = Λ(ker(E) ∩ V) = 0. Thus, the model is complete and the return function can be inferred from
Alice’s feedback GO on O = {o1, o2, o4} (cf. Interpretation 2.14).
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Example 2.20 (Ambiguity from undetected vulnerabilities). The goal is to correctly evaluate coding-agents
to produce valid and safe code blocks ξ ∈ Ξ. We assume that exactly the following four features are relevant
for evaluating code:

• ω1: Code-vulnerability.

• ω2: Syntax error.

• ω3: Simplicity.

• ω4: Validity.

We show the human evaluator four code-blocks O = {o2, o3, o4, o5} ⊆ Ξ that give rise to this feature belief
function (cf. Equation (7)):

E : RΩ → RO, E =


0 1 0 1
0 0 1 1
0 3 0 2
0 0 0 1

 .

Crucially, we can assume that o5 does contain a code-vulnerability, but the human does not detect it. In other
words, the ontology λ : Ξ → RΩ assigns the feature strengths λ(o5) = (1, 0, 0, 1) 6= (0, 0, 0, 1) = ε(o5). If the
human had detected the code-vulnerability, then o5 would be mathematically equivalent to o1 in Example 2.18,
the model would be complete, and the ambiguity would disappear.

However, this is not the case. Assuming V = RΩ, we obtain that ker(E) ∩ V 6= {0} contains the reward
object R′Ω ∈ RΩ with R′Ω(ω1) = 1 and R′Ω(ω) = 0 for all ω 6= ω1. With RΩ being the unknown true reward
object and R̃Ω := RΩ + R′Ω we then have E(R̃Ω) = E(RΩ) = GO, and so we cannot distinguish between the
reward object R̃Ω and the true reward object RΩ from the human’s feedback. Let G = Λ(RΩ) be the true
return function. Then the return function G̃ = Λ(R̃Ω) = G+ Λ(R′Ω) ∈ FCM(G) is feetback-compatible and
satisfies:

G̃(ξ) = G(ξ) +
[
Λ(R′Ω)

]
(ξ)

= G(ξ) +
〈
λ(ξ), R′Ω

〉
= G(ξ) +

[
λ(ξ)

]
(ω1).

This return function positively rewards code-vulnerabilities and can result from an attempt to infer G from
GO.
Example 2.21 (Rescuing the return inference). Consider Example 2.20, but with the code block o1 added
to the observations, leading to all five observations O = {o1, . . . , o5}. This results in the following feature
belief function (cf. Equation (7)):

E : RΩ → RO, E =


1 0 0 1
0 1 0 1
0 0 1 1
0 3 0 2
0 0 0 1

 .

Then ker(E) = 0 and thus the ambiguity disappears: Λ(ker(E) ∩ V) = 0, leading to a correct return function
inference (cf. Interpretation 2.14). This example highlights that even when the human misinterprets some
observations (in our example: o5), the correct return function can sometimes be inferred as long as the
human’s feature beliefs over all observations have enough coverage.

3 Human belief model covering

So far, we assumed that the true belief model is known precisely, and studied when this allows to recover the
return function on trajectories from the human’s feedback on observations. Knowing the true belief model
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might not be realistic, and so we need to relax this condition. One possibility is to only require that we
specify a belief model that can cover (i.e., represent) all return functions and observation return functions
that are represented by the true model. If it does, and if it is complete (meaning the ambiguity disappears),
then we can intuitively use such a model for a correct return function inference. In Section 3.1, we define
this notion of belief model covering. We show that the ambiguity of a covering model is at least as large as
the ambiguity of the true model. If the ambiguity disappears, the covering model can be used to infer the
correct return function from the human’s feedback (Theorem 3.2).

In Section 3.2, we then find an equivalent condition of belief model covering, based on our notion of a
morphism between belief models. In many examples in this paper we have a natural morphism that accounts
for a model covering. In the same theorem, we also find a sufficient condition for the existence of a morphism
in terms of a linear ontology translation from the covering model to the covered model that also respects
feature beliefs (Theorem 3.5). If such an ontology translation exists, then the covering model has the capacity
to simultaneously linearly represent the covered model’s concepts and beliefs.

In Section 3.3, we study a detailed example of belief model covering: We consider a human with an ontology
that is invariant under symmetry transformations in the environment, which implies that we can cover the
human’s model with a model that assumes symmetry-invariant reward functions. We also demonstrate that
this covering model has a vanishing ambiguity, improving upon the ambiguity of a model that considers
general reward functions. In Section 3.4, we conclude with a practical proposal for how to find a belief
model that covers the true human model, based on using foundation models for the ontology and feature
belief function. That the resulting belief model might cover the true human model is motivated by research
on sparse autoencoders (Cunningham et al., 2023; Bricken et al., 2023), which we will interpret as linear
ontology translations.

In this whole section, we assume an MDP together with trajectories Ξ and observations O as given.

3.1 Human belief model covering and its implications

Definition 3.1 (Belief model covering). Let M = (Ω,Λ, E ,V) and M̂ = (Ω̂, Λ̂, Ê , V̂) be two human belief
models. Then we say that M̂ coversM if for all v ∈ V there exists v̂ ∈ V̂ with Λ̂(v̂) = Λ(v) and Ê(v̂) = E(v).

This means that M̂ can represent all return functions Λ(v) and observation return functions E(v) that are
represented byM. We can visualize this as follows:

Λ(v) = Λ̂(v̂) RΞ

∀v ∃v̂ ∈ RΩ

⊆

V

RΩ̂

⊆

V̂

E(v) = Ê(v̂) RO

Λ

E

Λ̂

Ê

Λ

E

Λ̂

Ê

(11)

Theorem 3.2. Let M = (Ω,Λ, E ,V) and M̂ = (Ω̂, Λ̂, Ê , V̂) be two human belief models, and assume that
M̂ covers M. We think of M as the “true” human belief model representing G = Λ(RΩ) and GO = E(RΩ)
with a reward object RΩ ∈ V. Then we have:

1. AmbM ⊆ AmbM̂.

2. IfM also covers M̂, then AmbM = AmbM̂.

3. There is an RΩ̂ ∈ V̂ with Ê(RΩ̂) = GO and Λ̂(RΩ̂) = G, and so M̂ also represents G and GO.

18



Published in Transactions on Machine Learning Research (08/2025)

4. Assume M̂ is complete. Then every reward object R̃Ω̂ ∈ V̂ with Ê(R̃Ω̂) = GO also satisfies Λ̂(R̃Ω̂) =
G. In other words, the set of feedback compatible return functions is given by FCM̂(GO) = {G}.

Proof. By Proposition 2.9, we have AmbM = Λ(ker(E) ∩ V) and AmbM̂ = Λ̂
(

ker(Ê) ∩ V̂
)
. To prove claim

1, let G′ = Λ(R′Ω) ∈ AmbM, where R′Ω ∈ ker(E) ∩ V. Then by the definition of M̂ coveringM, there exists
an R′

Ω̂
∈ V̂ with Λ̂(R′

Ω̂
) = Λ(R′Ω) = G′ and Ê(R′

Ω̂
) = E(R′Ω) = 0. The latter implies R′

Ω̂
∈ ker(Ê) ∩ V̂, and

so G′ = Λ̂(R′
Ω̂

) ∈ Λ̂(ker(Ê) ∩ V̂) = AmbM̂. This proves claim 1.

Claim 2 then immediately follows from claim 1. Claim 3 is also immediate by the definition of M̂ covering
M and using that GO = E(RΩ) and G = Λ(RΩ).

Now we prove claim 4. Thus, assume M̂ is complete and let R̃Ω̂ ∈ V̂ be a reward object with Ê(R̃Ω̂) = GO.
By claim 3, there exists an RΩ̂ ∈ V̂ with Ê(RΩ̂) = GO and Λ̂(RΩ̂) = G. It follows R̃Ω̂ −RΩ̂ ∈ ker(Ê) ∩ V̂ ⊆
ker(Λ̂) ∩ V̂, where we use that M̂ is complete in the last step. Consequently, we have

Λ̂(R̃Ω̂) = Λ̂(RΩ̂) = G,

thus proving the claim.

In Theorem B.8 we present a version of the preceding theorem for the case that feedback is given by a choice
probability function instead of GO. In Appendix C.4, we see several applications of the first two statements
of the theorem to determine inclusions and equalities of ambiguities.

We can interpret Theorem 3.2 as follows: Given a “true” modelM, but using a covering model M̂, we lose
something since the ambiguity of M̂ is possibly larger. However, M̂ is able to represent the true return
function and observation return function, and if the ambiguity of M̂ disappears, then the set of return
functions compatible with the human’s feedback that can be inferred using M̂ is exactly {G}. In other
words, we can then infer G from the human’s feedback and M̂ without knowing the true human belief model
M, thus relaxing the assumptions baked into Question 2.7. In Section 3.4 we discuss hypotheses for finding
a covering belief model M̂ in practice.

3.2 Morphisms of human belief models and ontology translations

One drawback of the definition of a belief model covering is that it is hard to directly test: One would need
to iterate over all v ∈ V to check whether there exists a v̂ ∈ V̂ that gives rise to the same return function and
observation return function as v. This analysis could be simplified if we could find one function Φ : RΩ → RΩ̂

that maps each v ∈ V directly to v̂ ∈ V̂. The covering property would then translates to properties of such
functions. We state these properties in the following definition:
Definition 3.3 (Morphism of human belief models). LetM = (Ω,Λ, E ,V) and M̂ = (Ω̂, Λ̂, Ê , V̂) be human
belief models. Then a linear function Φ : RΩ → RΩ̂ is called a morphism of human belief models if the
following holds:

1. Φ(V) ⊆ V̂.

2. Λ|V = Λ̂ ◦ Φ|V .

3. E|V = Ê ◦ Φ|V .

We write the morphism also as Φ :M→ M̂.

The following visualization, an adaptation of Equation (11), makes intuitive that the existence of a morphism
is equivalent to belief model covering; we will prove this in Theorem 3.5:
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Λ(v) = Λ̂
(
Φ(v)

)
RΞ

v Φ(v) ∈ RΩ

⊆

V

RΩ̂

⊆

V̂

E(v) = Ê
(
Φ(v)

)
RO

Φ

Λ

E

Λ̂

Ê

Λ

E

Φ

Λ̂

Ê

We now work toward a sufficient condition for belief model morphisms that we call linear ontology trans-
lations. For this relationship, recall the form λ : Ξ → RΩ, ε : O → RΩ of the ontology and feature belief
function of a belief model M = (Ω,Λ, E ,V), respectively. Recall from Equation (5) that for a reward ob-
ject v ∈ V and trajectory ξ ∈ Ξ, the corresponding return is given by

[
Λ(v)

]
(ξ) =

〈
λ(ξ), v

〉
. Under this

viewpoint, property 2 of belief model morphisms Φ implies that for all v ∈ V and ξ ∈ Ξ, we have〈
λ̂(ξ),Φ(v)

〉
=
〈
λ(ξ), v

〉
,

and similar for ε and ε̂. By a defining property of transpose matrices (also called adjoints), we obtain for all
v ∈ V and ξ ∈ Ξ: 〈

ΦT λ̂(ξ), v
〉

=
〈
λ(ξ), v

〉
,

and thus ΦT ◦ λ̂ = λ. This equation means that we can interpret ΦT as a translation from the ontology λ̂ to
the ontology λ. We define:

Definition 3.4 (Linear ontology translation). Let λ : Ξ→ RΩ, ε : O → RΩ and λ̂ : Ξ→ RΩ̂, ε̂ : O → RΩ̂

be two pairs of an ontology and a feature belief function. A linear function Ψ : RΩ̂ → RΩ with Ψ ◦ λ̂ = λ is
called a linear ontology translation from λ̂ to λ. Furthermore, we call it belief-compatible with ε̂ and
ε if we also have Ψ ◦ ε̂ = ε.

These notions are connected in the following Theorem:
Theorem 3.5. LetM = (Ω,Λ, E ,V) and M̂ = (Ω̂, Λ̂, Ê , V̂) be two human belief models. Let λ, ε, λ̂, ε̂ be the
alternative representations of the ontologies and feature belief functions. Consider the following statements:

1. M̂ coversM.

2. There exists a morphism of belief models Φ :M→ M̂.

3. There exists a function Φ : RΩ → RΩ̂ with Λ̂ ◦ Φ = Λ and Ê ◦ Φ = E.

4. There is a function Ψ : RΩ̂ → RΩ that is a linear ontology translation from λ̂ to λ that is also
belief-compatible with ε̂ and ε.

Then 1 and 2 are equivalent, and 3 and 4 are equivalent and both imply 1 and 2:

1 2 3 4

Ψ from 4 can be defined as Ψ = ΦT for Φ from 3. If V = RΩ, then all four statements are equivalent.
Finally, if 2 holds and Φ(V) = V̂, thenM also covers M̂ and AmbM = AmbM̂.
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Proof. The implication from the second to the first statement follows immediately from setting v̂ := Φ(v) in
the definition of belief model covering. For the other direction, consider the following diagram:

V̂

V RΞ ⊕RO.

g

f

In this diagram, we define f := (Λ|V , E|V) and g := (Λ̂|V̂ , Ê |V̂). Then statement 1 is equivalent to im(f) ⊆
im(g). By Proposition A.4, there is thus a linear function φ : V → V̂ with g ◦ φ = f :

V̂

V RΞ ⊕RO.

g

f

φ

Extend φ arbitrarily to a linear function Φ : RΩ → RΩ̂ with Φ|V = φ, e.g., by extending a basis on V to a
basis on all of RΩ. Then for all v ∈ V, the diagram shows that we have(

Λ(v), E(v)
)

=
(
Λ̂(Φ(v)), Ê(Φ(v))

)
.

Consequently, Λ|V = Λ̂ ◦ Φ|V and E|V = Ê ◦ Φ|V . Thus, Φ is a morphism of belief models.

That statements 3 and 4 are equialent and Ψ can be chosen as ΦT follows from Proposition A.2. That 3
implies 2 is clear. That all statements are equivalent if V = RΩ is also clear.

For the final statement, assume that 2 holds and that Φ(V) = V̂. Then for all v̂ ∈ V̂ there is v ∈ V with
Φ(v) = v̂. Since Φ is a morphism, this results in

Λ(v) = Λ̂
(
Φ(v)

)
= Λ̂(v̂),

E(v) = Ê
(
Φ(v)

)
= Ê(v̂),

showing thatM covers M̂. AmbM = AmbM̂ then follows from statement 2 in Theorem 3.2.

In Appendix C, we show that human belief models, together with their morphisms, form a category (Lane,
1998). In Appendix C.4 we then construct a large diagram of human belief models together with their
natural morphisms, which then also allows for an analysis of their ambiguities.

The preceding theorem shows that a sufficient condition for Φ : M → M̂ to be a human belief model
morphism is for ΦT : RΩ̂ → RΩ to be a belief-compatible ontology translation: ΦT ◦ λ̂ = λ and ΦT ◦ ε̂ = ε.
Intuitively, this means that our model M̂ is “expressive” enough to allow for the true model’s concepts and
beliefs to be linearly represented. We will draw more connections to linearly represented beliefs and concepts
in Section 3.4.

3.3 An example of symmetry-invariant features and reward functions

We now study an MDP with natural symmetries in the environment. We can then reasonably assume the
human’s ontology to be invariant under these symmetries. We explain how one can cover the resulting human
belief model with a model that distinguishes between symmetry-related states, but compensates for it by
assuming that the valid reward functions are symmetry-invariant (van der Pol et al., 2021). The ambiguity
in this covering model will disappear, while the ambiguity of a third model that allows for generic reward
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functions does not. This demonstrates the usefulness of both covering belief models and a careful choice of
the vector space of valid reward objects. In particular, the analysis shows that encoding a priori knowledge
of symmetries into the human belief model can be fruitful for inferring the correct return function from the
human’s feedback.

We proceed by first defining the MDP, set of trajectories, and observations. Afterward, we define all three
belief models together with their morphisms, demonstrating model coverage. Finally, we conclude with the
ambiguity analysis.

3.3.1 Specification of the MDP, Ξ, and O

Our MDP is a 2x2 gridworld with a movable hand H and a fixed button B, inspired by the robot-hand
example from Amodei et al. (2017). States look like this:

H

B
(12)

In total, the set of states S has sixteen elements, one for each combination of the position of H and B. The
set of action is given by A = {L,R,U,D, P}, where the first four actions move the hand: L to the left, R to
the right, U upward, and D downward. P does not change the state, and is conceptually meant to “press”
the button if the hand and button are in the same position. If a movement goes toward an adjacent wall in
the gridworld, then the state also does not change. This specifies the transition function T : S × A → S.
P0, the initial state distribution, is a uniform distribution over the following four states:

H

B

H

B H

B

H

B

(13)

The time horizon is T = 3. The unknown true return function is given by

G(ξ) =
2∑
t=0

R(st, at),

where R(st, at) = 1 if the hand H and button B are in the same position in st and if at = P , and R(st, at) = 0
otherwise. In other words, the return function rewards pressing the button. This completely specifies the
MDP (S,A, T , P0, T,G).

The Trajectories Ξ are given by all sequences of four states and three actions that start with a state sampled
from P0, and where each transition is compatible with the description above. The observations O of the
human evaluator are given by views “from below”. We assume the human does not observe movement actions
(but may be able to infer them if the hand visibly changes position), but does observe whether the button
was pressed. Formally, O = O(Ξ) for a surjective function O : Ξ → O that projects the view and removes
movement information, as we suggestively depict for an example trajectory ξ and its observation O(ξ) in
this figure:
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H

B

R H

B

D

HB

P

HB

7→

O

H B HB HB
P

HB

See Appendix D.1 for some mathematical details.

3.3.2 Three human belief models and their morphisms

Crucially, we assume that the human evaluator does not use state-action pairs as features in the ontology,
but instead representatives of symmetry-equivalence classes of state-action pairs. This is reasonable since
we can a priori assume that the human evaluator does not care about the orientation of the scene. In other
words, we consider the symmetry group G = D4 of the square, which identifies two state-action pairs if they
are related by a rotation of 0◦, 90◦, 180◦, or 270◦, or a reflection along the vertical, horizontal, or one of the
diagonal axes. This leads to just three representative states

s0 =
HB

, s1 =
H B

, s2 =
H

B
. (14)

Overall, the set of representative state-action pairs is given by S ×A =
⋃2
i=0{si} × Ai with A0 = A2 =

{L,D, P} and A1 = {L,R,U,D, P}.2 Let h : S × A → S ×A map each state-action pair to the unique
representative. Details on everything discussed so far can be found in Appendix D.2.

We define the human’s ontology λ : Ξ→ RS×A via

[
λ(ξ)

]
(s, a) :=

2∑
t=0

δ(s,a)(h(st, at)),

which is the number of times that, up to symmetry, the state-action pair (s, a) appears in the trajectory
ξ. Interestingly, this ontology is invariant under transforming trajectories ξ via symmetries since h is in-
variant under transforming state-action pairs. Set Λ : RS×A → RΞ as the linear function correponding
to λ via Proposition A.1, and let Γ : RS×A → RΞ be the function from Example 2.1 without discount-
ing (γ = 1).3 Finally, let h∗ : RS×A → RS×A be the function h∗(R) := R ◦ h (see also the discussion
surrounding Equation (1)). Then in Equation (24) we show

Λ = Γ ◦h∗. (15)

Let b : O → ∆(Ξ) ⊆ RΞ be the human’s trajectory belief function, where we define b(o) as the uniform
distribution over all ξ ∈ Ξ that get observed as o: O(ξ) = o (cf. Equation (25)). We then define the human’s
feature belief function ε : O → RS×A by[

ε(o)
]
(s, a) :=

∑
ξ∈Ξ

[
b(o)

]
(ξ) ·

[
λ(ξ)

]
(s, a).

2s0 and s2 have fewer representative actions since L and U , and also R and D, are related by the reflection along the diagonal
axis from top left to bottom right. This transformation leaves the state invariant and maps between the actions.

3Note the small difference that now we consider reward functions that only depend on state-action pairs instead of state-
action-state transitions.
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This is the expected number of times that, up to symmetry, the state-action pair (s, a) occurs in a trajectory
that led to observation o. Set E : RS×A → RO and B : RΞ → RO as the linear functions correponding to ε
and b via Proposition A.1. Then as a consequence of Equation (15), we obtain

E = B ◦Γ ◦h∗, (16)

as we show in Equation (26).

Finally, we assume that we have a priori knowledge that the human’s reward object lies in the subvectorspace
V ⊆ RS×A given by reward objects R with R(s, a) = 0 whenever a 6= P . In other words, we know that only
the pressing-action can be rewarded, but we do not know a priori that it is only rewarded when the hand
is over the button. Furthermore, define V ′ ⊆ RS×A likewise as reward functions with R(s, a) = 0 whenever
a 6= P . Consider the commutative diagram

RΞ

RS×A

⊆

V

RS×A

⊆

h∗(V)

RS×A

⊆
V′

RO.

Γ ◦h∗

B ◦Γ ◦h∗

h∗

Γ

B ◦Γ

id
RS×A

Γ

B ◦Γ

This establishes three human belief models

M1 = (S ×A, Γ ◦h∗, B ◦Γ ◦h∗, V),
M2 = (S ×A, Γ, B ◦Γ, h∗(V)),
M3 = (S ×A, Γ, B ◦Γ, V ′),

together with the morphisms

M1 M2 M3.
h∗ id

RS×A

Our aim will be to show that the ambiguities ofM1 andM2 will vanish since these models leverage a priori
knowledge of symmetries, while the ambiguity ofM3 will not vanish. Intuitively,M1 is the true belief model
of a human evaluator with symmetry-invariant features. M2 is the model that we “specify” and with which
we “cover” the true belief model. That it indeed coversM1 follows from Theorem 3.5 and the existence of
the morphism h∗ :M1 →M2.

Write g.(s, a) for the action of a symmetry-transformation g ∈ G = D4 of the square on a state-action pair
(s, a) (cf Appendix D.2). Then the set of valid reward objects ofM2 is given by

h∗(V) =
{
R ∈ RS×A

∣∣ ∀g ∈ G : R(g.(s, a)) = R(s, a) and ∀a 6= P : R(s, a) = 0
}
. (17)

In other words, it is the set of symmetry-invariant reward functions that don’t reward actions unequal to P .
Such reward functions play a role in symmetry-invariant reinforcement learning (van der Pol et al., 2021).
Finally, M3 is the same model, but with a larger set of valid reward functions that are not necessarily
symmetry-invariant.

Mathematically, all three models are faithful by Proposition 2.16. As an aside, they are also balanced
(Definition B.2) by Lemma B.3, which essentially means that the ontology and feature belief functions are
row-constant. The three models and their morphisms are also closely related to the three models MFF ,
MS×A×SF , andMS×A×SS×A×S that we study in Appendix C.4.
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3.3.3 The ambiguity analysis

We now analyze the ambiguities of the three models M1,M2, and M3. Since the morphism h∗ maps the
set of valid reward objects V ofM1 precisely to the valid reward objects h∗(V) ofM2, by Theorem 3.5,M1
andM2 have the same ambiguity. Thus, let us analyze the ambiguities ofM1 andM3.

ForM1, Proposition 2.9 shows that the ambiguity is given by (Γ ◦h∗)
[

ker(B ◦Γ ◦h∗)∩V
]
. For showing that

it vanishes, we simply show ker(B ◦Γ ◦h∗) ∩ V = ker(E) ∩ V = 0. Thus, let R ∈ RS×A be a reward object
in V with E(R) = 0. We need to show R = 0. Recall the representative states s0, s1, s2 from Equation (14).
Since R ∈ V, we have R(s, a) = 0 for all s ∈ {s0, s1, s2} and all a 6= P , and so we simply need to show
R(si, P ) = 0 for all i = 0, 1, 2. Consider the following three observations:

o0 = H B H B HB
P

HB

o1 = H B H B
P

H B
P

H B

o2 = H B
P

H B
P

H B
P

H B

Then it is easy to show that
[
E(R)

]
(o2) = 0 implies R(s2, P ) = 0 since (s2, P ) is, up to symmetry, the only

state-action pair that is compatible with the observation o2. Then,
[
E(R)

]
(o1) = 0 implies R(s1, P ) = 0

since (s1, P ) is the only state-action pair other than (s2, P ) that is compatible with the observation o1 and
could a priori have a non-zero contribution to the reward. Finally,

[
E(R)

]
(o0) = 0 implies R(s0, P ) = 0 for

similar reasons. We present details of these arguments in Appendix D.3. Overall, we have thus showed that
R = 0, and thus ker(E)∩V = 0, which implies AmbM1 = Λ(ker(E)∩V) = 0 (cf. Proposition 2.9). SinceM1
andM2 have the same ambiguities, also our covering modelM2 has vanishing ambiguity: AmbM2 = 0.

Now we show that the ambiguity of M3 does not vanish. Consider the following two states, which are
symmetry-transformed versions of state s1 from Equation (14):

s′1 =
H

B
, s′′1 =

H

B
.

Then, let R′ : S ×A → R be the reward function with

R′(s, a) =


1, s = s′1 and a = P

−1, s = s′′1 and a = P

0, else.

Clearly, we have R′ ∈ V ′. Then note that for all observations o, we have (B ◦Γ)o,(s′1,P ) = (B ◦Γ)o,(s′′1 ,P ), for
symmetry reasons.4 Thus, we have

[
(B ◦Γ)(R′)

]
(o) = 0 for all o ∈ O, as we detail in Equation (27). This

shows 0 6= R′ ∈ ker(B ◦Γ)∩V ′, and consequently 0 6= Γ(R′) ∈ Γ(ker(B ◦Γ)∩V ′) = AmbM3 (Proposition 2.9),
proving the claim that the ambiguity is nontrivial. Crucially, in order to construct R′, we needed to allow
that the symmetry-related state-action pairs (s′1, P ) and (s′′1 , P ) have different rewards.

4For showing this, recall that (B ◦Γ)o,(s,a) is simply the expected number of times that state-action pair (s, a) appears in a
trajectory that gives rise to observation o. For each trajectory, the up-down mirrored trajectory creates the same observation,
leading to the aforementioned symmetry.
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3.3.4 Conclusion of the example

This example highlights that a priori knowledge of symmetry-invariant reward functions (via model M2
with its ambiguity h∗(V), see Equation (17)) or symmetry-invariant features (via model M1) can help to
infer the correct return function from the human’s feedback. We highlight again that one could in practice
work with model M2 even if M1 were the “true” model, the reason being that M2 covers M1 and has
a vanishing ambiguity. Future work could analyze this case in more detail, by developing a more general
theory of symmetry-invariant human belief models.

3.4 A proposal for belief model covering in practice

So far, our discussion has been purely theoretical: We showed that if a model M̂ =
(
Ω̂, Λ̂, Ê , V̂

)
is complete

and covers the true belief modelM = (Ω,Λ, E ,V), then the true return function G can can be inferred from
the human’s feedback GO (Theorem 3.2, statement 4). This raises the following two questions:

1. How can M̂ be specified?

2. How can G be determined in practice, using M̂ and GO?

We now give preliminary answers to these questions in Sections 3.4.1 and 3.4.2, based on using foundation
models for both the ontology Λ̂ and the feature belief function Ê . We hope our ideas can inspire future
empirical work.

3.4.1 Defining M̂ for answering question 1

To answer question 1, first, one needs to choose an MDP together with trajectories Ξ, and observations O.
Ideally, whole trajectories ξ ∈ Ξ or parts of them, and all observations, can be “tokenized” so that one can
feed them into foundation models. Let λ̂ : Ξ→ RΩ̂ be a foundation model, which we interpret as a function
from trajectories to an internal representation space with |Ω̂|-many neurons.5 Then, define Λ̂ : RΩ̂ → RΞ as
the linear function corresponding to λ̂ according to Proposition A.1.

For λ̂ to be a valid ontology that is part of a belief model that covers the true model, by Theorem 3.5, we need
there to exist an (implicit) linear ontology translation Ψ : RΩ̂ → RΩ. There is substantial prior work showing
that human concepts are represented linearly in foundation model’s representation spaces (Mikolov et al.,
2013; Park et al., 2024b; Turner et al., 2024; Nanda et al., 2023; Wang et al., 2023; Gurnee & Tegmark,
2024). Most relevant to our claims, sparse autoencoders (Cunningham et al., 2023; Bricken et al., 2023)
directly construct a linear transformation that maps from a foundation model’s representation space to a
space of human-interpretable features, thus constructing a function akin to our (only implicitly needed)
linear ontology translation Ψ.

Notably, λ̂ needs to be a capable foundation model for such a linear function to have any hope to be an exact
ontology translation. After all, imagine we show λ̂ the Riemann hypothesis: If it is not vastly superhuman,
then it cannot determine whether this hypothesis is true, which we consider an important feature that likely
appears in the human’s ontology λ. Since we are concerned with scalable oversight, which is about the
problem of ensuring alignment of future, powerful AI systems, we assume λ̂ to be very capable, and thus
that Ψ is an exact ontology translation. Overall, this gives some preliminary confidence that for a capable
foundation model λ̂ : Ξ → RΩ̂, there will exist a linear ontology translation Ψ : RΩ̂ → RΩ, such that
Ψ ◦ λ̂ = λ.

Now, let ε̂ : O → RΩ̂ be another foundation model (in the proposals below it will be an adaptation of λ̂).
Then, define Ê : RΩ̂ → RO as the linear functions corresponding to ε̂ according to Proposition A.1. Set
V̂ = RΩ̂. Set M̂ =

(
Ω̂, Λ̂, Ê , V̂

)
.

5This means that we remove the output functionality from this model.
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Why or when would this be a useful specification? As discussed before, we need M̂ to be complete and
to cover the (implicit) “true” belief model M. Based on sufficient conditions we found in Theorem 3.5
and Theorem 2.13, we thus need to ensure the following two properties:

(i) The ontology translation Ψ : RΩ̂ → RΩ is belief-respecting: Ψ ◦ ε̂ = ε.

(ii) For all ξ ∈ Ξ, λ̂(ξ) is contained in the span of the image of ε̂: λ̂(ξ) ∈
{∑

o∈O Zoε̂(o) | Zo ∈ R
}
.

Ensuring (i). This is the most speculative part of our proposal. Crucially, if the human does not recognize
the presence of a feature in o ∈ O due to limited capabilities, then ε̂ should ideally also not recognize this
feature so that translating from one ontology into the other respects beliefs. Conceptually, this means that
ε̂ should simulate, in the feature space Ω̂, the human’s beliefs and understanding. We make three proposals:

• For research prototyping, one could restrict to a problem with “pure partial observability”. In other
words, choose a setting where observations are given as o = O(ξ) for trajectories ξ ∈ Ξ, and where
potentially superhuman capabilities do not make it easier to infer further return-relevant aspects of ξ
from O(ξ). This is intuitively the case if information is simply entirely “missing” from observations.
Then, simply choose ε̂ := λ̂, applied to observations instead of trajectories. In this case, the fact that
crucial information is equally obstructed to the human with feature belief function ε and to the AI
with ε̂ should ensure that the ontology translation also correctly translates feature beliefs: Ψ◦ ε̂ = ε.

• Now consider a setting that may go beyond “pure partial observability”. One speculative idea for
how to construct ε̂ is to prepend a “belief prompt” bp to inputs of λ̂ that nudges the model to think
more in the way a human evaluator would think (Park et al., 2024a):

ε̂(o) := λ̂bp(o) := λ̂(bp, o).

An example of such a prompt would be

bp = “Think about the following input like a typical human evaluator:”

Alternatively, one could potentially achieve this by finetuning λ̂ to obtain ε̂. Unfortunately, while
foundation models can simulate the behavior of specific people in their outputs, it is unclear whether
this also reflects in their internal representations. For example, prior work shows that the truth-
value of statements can sometimes be linearly predicted from internal representations even when
the model lies, leading to the potential for AI lie detectors (Azaria & Mitchell, 2023; Burns et al.,
2023b). However, other work trains a foundation model to predict human behavior in experiments
and finds it to have internal representations that can predict human neural activity when engaging
in the same task (Binz et al., 2024).

• Alternatively, one could also consider defining ε̂ := λ̂early as an earlier training checkpoint of λ̂.
Being an earlier training checkpoint, ε̂ would then be less capable than λ̂, leading to the potential
that it has the same blindspots in understanding observations o ∈ O as the human evaluator.

Ensuring (ii). To ensure that for all ξ ∈ Ξ we have λ̂(ξ) ∈
{∑

o∈O Zoε̂(o) | Zo ∈ R
}
, it is important to

ensure that the image of ε̂ : O → RΩ̂ is “large”, i.e., spans as much as possible of the representation space.
To form more intuitions on this, note that by Theorem 3.2, M̂ being complete (which would be implied by
property (ii)) requires also the true belief model M to be complete. Again, by Theorem 2.13, a sufficient
condition for this is that for all ξ ∈ Ξ, λ(ξ) ∈

{∑
o∈O Zoε(o) | Zo ∈ R

}
. In particular, any “bad” feature

ω ∈ Ω that can ever be present in a trajectory (meaning
[
λ(ξ)

]
(ω) 6= 0) needs to also sometimes be believed

to be present by the human (meaning there exists an o ∈ O with
[
ε(o)

]
(ω) 6= 0). This is a relaxation from the

requirement that the human understands all observations perfectly, but it does mean that there needs to be
a variety of observations o ∈ O that the human understands well enough to detect their diverse underlying
problems. It will depend on the specific MDP and setup of an experiment to reason about how to ensure or
purposefully violate this property.
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3.4.2 Learning G using M̂ and GO for answering question 2

Now that we have discussed preliminary approaches for how to specify a complete model M̂ =
(
Ω̂, Λ̂, Ê , V̂

)
that covers the true belief modelM, we can turn to the question of how to useM and the human’s feedback
GO : O → R to determine the true return function G. By statement 4 in Theorem 3.2, we can determine G
as G = Λ̂(RΩ̂) for RΩ̂ ∈ R

Ω̂ with Ê(RΩ̂) = GO.

We now unpack that. Remembering the relation between Λ̂ and the foundation model λ̂, and Ê and the
foundation model ε̂ via Proposition A.1, we want to determine RΩ̂ such that for all o ∈ O, we have

GO(o) =
[
Ê(RΩ̂)

]
(o) =

〈
ε̂(o), RΩ̂

〉
. (18)

This can be achieved by attaching RΩ̂ as a linear reward probe to the representation space of ε̂ and learning
the function GO by supervised learning, with all parameters except the reward head being frozen.

In the case that GO cannot be directly evaluated but that it is indirectly accessible in the form of choice
probabilities between observations, one can learn RΩ̂ by logistic regression as in Christiano et al. (2017).
See Appendix B.2 for a possible correspondence between Ê(RΩ̂) and the resulting choice probabilities. No-
tably, the approach via logistic regression, however, loses a theoretical guarantee: Namely, GO can at best
be learned up to an additive constant. If ε̂ and λ̂ were balanced (meaning that the total weight of feature
strengths is constant over all observations and trajectories, respectively), this would lead to the inferred G
also being correct up to an additive constant by Proposition B.6. Since additive constants in return func-
tions are inconsequential for policy optimization, this would be fine. However, typically the representation
spaces of foundation models are not normalized, the balancedness property does not hold, and this guarantee
breaks. It is then an empirical question to what extent this breakage is an issue or how to resolve it.

After successful learning, we can then compute the true return function G for ξ ∈ Ξ as:

G(ξ) =
[
Λ̂(RΩ̂)

]
(ξ) =

〈
λ̂(ξ), RΩ̂

〉
. (19)

In other words, we attach the learned linear reward probe RΩ̂ to the representation space of λ̂ and use it to
compute returns. These can then be used to train a policy to maximize the policy evaluation function Equa-
tion (4) via standard reinforcement learning techniques.

3.4.3 Further remarks

Looking at the definition of the human belief model M̂, we see that it includes the ontology Λ̂ : RΩ̂ → RΞ

and feature belief function Ê : RΩ̂ → RO. These can be extremely large matrices. However, since in the
process of training RΩ̂ and computing G, we only need to be able to query the resulting observation return
function and return function on specific observations and trajectories as in Equations (18) and (19), the
matrices never need to be stored or used in their entirety. Thus, the size of the matrices is not a concern.

We also remark on a special case we mentioned before: If we are in a case of “pure” partial observability
where observations o ∈ O contain no information that λ̂ understands better than the human, then we
proposed to simply set ε̂ := λ̂, applied to observations o ∈ O. In that case, the procedure we describe is
essentially classical RLHF, with the only — crucial — difference that during training of RΩ̂, we only show
observations, instead of full trajectories, to the reward model. This prevents a model misspecification where
the data the model reads differs from what the human sees, and could theoretically allow generalization
to data ξ ∈ Ξ. Lang et al. (2024) consider naive RLHF, where the initialized return function reads entire
trajectories during training time while the human’s view is obstructed, leading to issues of deceptive inflation
and overjustification after policy optimization.

3.4.4 Limitations for the proposal

We conclude by summarizing the limitations of the proposal in its current form. At the very foundations, it
assumes that real humans are compatible with a suitable belief model as defined in this work, that human
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values are captured by return functions over trajectories, and that the model allows for a linear decomposition
of the return function over features. All of these assumptions are speculative and may need refinement.

The proposal then assumes that M̂ is an exact covering belief model for the latent human belief model. In
particular, it is assumed that λ̂ reads entire trajectories and allows for the existence of a linear ontology
translation to the true human ontology. Finally, the feature belief function ε̂ needs to “translate” to the true
human belief, and it is unclear whether our proposals can achieve this sufficiently. To achieve completeness,
the proposal also requires careful environment design to ensure that the beliefs ε̂(o) “cover” the feature
combinations λ̂(ξ) sufficiently.

In conclusion, substantial future work is needed to validate the utility of the proposal. We propose such
work in Section 4.3 for many of the limitations above.

4 Discussion

In this discussion, we summarize our work, survey related work, propose ideas for future work, and conclude.

4.1 Summary

In this work, we have introduced the notion of a human belief model, based on modeling a human’s ontology
and feature belief function. The goal of such a model is to aid the inference of the human’s implicit return
function from feedback. In our framework, the feedback, in the form of an observation return function, is
viewed as carrying information about the reward of features that the human believes to be associated with
an observation. Once the feature rewards, in the form of a reward object within a valid set, are inferred, they
can be used together with the human’s ontology to infer a return function. We defined and characterized
the resulting ambiguity in the return function in terms of the belief model and showed that for complete
models, the ambiguity disappears. Complete models have an important sufficient condition in terms of a
linear coverage of the features of any trajectory by feature beliefs of observations (Theorem 2.13). This
shows that for observations that are varied enough and provide ample information in total, a correct return
function inference is possible, which we demonstrated in simple conceptual examples in Section 2.9.

Since the human belief model is not known in practice, we then introduced the notion of belief model coverage.
Here, a model M̂ covers another model M if M̂ can represent all return functions and observation return
functions that can be expressed inM. If a complete model covers the true belief model, then it can be used
for the return function inference just as well (Theorem 3.2). We then characterized belief model coverage
in terms of belief model morphisms, and found an important sufficient condition given by the existence of
a linear translation from the covering model’s ontology to the true model’s ontology that is also compatible
with the feature belief functions (Theorem 3.5). We then studied a conceptual example of a human with
symmetry-invariant feature beliefs, which we could cover with a model whose completeness stems from the
valid reward functions being symmetry-invariant.

Finally, in Section 3.4 we sketched a proposal for how to find covering human belief models in practice,
by using foundation models for both the human’s ontology and feature belief function. For the latter, it is
important to ensure that the foundation model has a similar understanding of the observtions as the human
evaluator, for which we sketched out three proposals. That the resulting belief model might cover the true
belief model relies on prior research on the linear representation hypothesis, which provides evidence that a
belief-respecting linear ontology translation could indeed exist.6 Our hope is that our proposal can help to
find covering models that are easier to determine than the return function itself, which might subsequently
be learned with modest effort as an approach to scalable oversight (cf. Section 2.5).

4.2 Related work

Other human modeling approaches. The human belief models we introduce in this work are largely
about modeling a human’s ontology and feature belief function for learning from the human’s feedback.

6We emphasize again that our theory only requires its existence and no explicit specification of this ontology translation.
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Similar work (Marklund & Roy, 2024) is about the special case of humans observing partial trajectories and
forming beliefs over the rest of the trajectory.

There is also work that models aspects about humans different from their beliefs. For example, reward-
rational choice (Jeon et al., 2020) requires modeling human choice probabilities for choices over various
options like trajectory-pairs, language-utterances, or initial environment states. An example of this frame-
work is inverse reinforcement learning (Ng et al., 2000), which has also been considered in partially observable
environments (Choi & Kim, 2011). Reward-rational choice can be regarded a special case of assistance prob-
lems (Fern et al., 2014; Hadfield-Menell et al., 2016; Shah et al., 2021), which requires a model of the human’s
action selection in a cooperative two-player game. This framework has recently been generalized to a par-
tially observable setting (Emmons et al., 2024). Much of this work makes specific assumptions about the
human’s model, e.g. by assuming a Boltzmann-rational or optimal selection of choices. Zhi-Xuan et al.
(2024) instantiates a version of assistance games in which a human’s utterance is modeled using a language
model. Finally, Hatgis-Kessell et al. (2025) researches how to influence human evaluators to conform with a
theoretical model of human choices. Compared to all this work, we model human beliefs about AI behavior
instead of human actions or choices.7 In Section 4.3.1 we propose research directions to combine these types
of work.

Deception in AI. Our work generalizes the human belief modeling from Lang et al. (2024), which is
meant to address deceptive AI behavior that also surfaces in recent empirical work for cases where humans
lack evaluative capacity (Cloud et al., 2024; Denison et al., 2024; Wen et al., 2024; Williams et al., 2024).
Deception in AI systems can also occur for various other reasons (Park et al., 2024c), e.g., when language
agents are put under pressure (Scheurer et al., 2023). An important theoretical concern is deceptive align-
ment, in which an AI system follows the given goals while actually planning a later takeover (Hubinger
et al., 2019). Recent work (Greenblatt et al., 2024) substantiates this concern by showing that the language
model Claude plays along with a new harmful goal for the purpose of preventing that the learning process
updates its safety behavior in the long-term. Finally, deception has also been formalized for structural causal
games (Ward et al., 2023).

Surfacing latent knowledge. In Section 3.4, we already mentioned sparse autoencoders (Cunningham
et al., 2023; Bricken et al., 2023), which construct an explicit linear transformation from a foundation model’s
representation space to human-interpretable features, which is in the spirit of a linear ontology translation
(Definition 3.4). Instead of decoding the AI’s entire ontology in a human-interpretable way, other paradigms
seek to construct a reporter that can be queried for specific information (Christiano et al., 2021). In this
direction, recent work builds toward AI lie detectors by finding internal linear representations of truth (Burns
et al., 2023b; Azaria & Mitchell, 2023; Marks & Tegmark, 2024), with alternative interpretations of such
findings discussed in Liu et al. (2023). Other work linearly predicts concepts like harmfulness (Zou et al.,
2024), theft advice (Roger, 2023), the activation of a harmful backdoor (MacDiarmid et al., 2024), and
concepts related to honesty and power, among others (Zou et al., 2023).

Amplified oversight. While our work aims to learn from feedback of humans who potentially lack capabil-
ities, work on amplified oversight tries to increase the human’s evaluation capabilities through AI assistance
to achieve scalable oversight. Recursive reward modeling is the general proposal to train AI models by
reward modeling and then using their assistance to evaluate the next generation of AIs (Leike et al., 2018).
Saunders et al. (2022) shows that model-written critiques of summaries can help humans find flaws that
they would have missed on their own. This raises the question why to trust the critiquing AI, which leads
to the idea to, in turn, criticize the critic. Recursively, this leads to a debate in which the debaters are
trained to produce arguments that are persuasive to a human judge (Irving et al., 2018). This requires for
debates to surface true and useful information to the human judges, which has found support for reading
comprehension tasks (Michael et al., 2023). Optimizing debaters to be persuasive then increases the human’s
ability to identify the truth (Khan et al., 2024; Kenton et al., 2024). Finally, some work uses AI to directly
give feedback based on a constitution (Bai et al., 2022) or model spec (Guan et al., 2025), thus removing
humans from the evaluation process.

7Only in Appendix B do we consider human choices.
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Easy-to-hard and weak-to-strong generalization. Instead of amplifying the evaluator capabilities,
other work for scalable oversight relies on easy examples that humans can reliably evaluate, which then
requires the reward model to generalize to data that is harder to evaluate (Sun et al., 2024). Language
models have also shown to generalize tasks like STEM questions from easy to hard data (Hase et al.,
2024). Weak-to-strong generalization differs by trying to generalize from weak evaluation on potentially
hard data (Burns et al., 2023a). Our proposal from Section 3.4 can be considered an approach to weak-to-
strong generalization since we aim to learn a correct return function G from feedback of an evaluator with
potentially faulty beliefs. Since weak supervision is plausibly cheaper to obtain than strong supervision,
there is also work that investigates tradeoffs to find the correct allocation of a fixed budget to label data
with different data labeling qualities (Mallen & Belrose, 2024).

In Appendix E, we briefly interpret amplified oversight, easy-to-hard generalization, and classical RLHF
together with weak-to-strong generalization in terms of our theoretical framework by interpreting their
underlying evaluator belief modeling assumptions and reasoning about their ambiguities and learned return
functions.

4.3 Future work

4.3.1 Theory extensions

Several extensions and generalizations of our theory could be studied in future work. We assumed that we
can exactly specify a belief model that covers the true human belief model. Future work could develop an
approximate theory, where there is a quantifiable error in the belief model. This could proceed along similar
lines as Lang et al. (2024, Theorem 5.4), where the belief matrix is perturbed by a known error, leading to a
quantifiable error in the inferred return function. Furthermore, we assumed that the human’s return function
is linear in the features of trajectories. One could study non-linear models, which would also theoretically
ground the use of non-linear reward probes instead of the linear probes we propose in Section 3.4. We
also assumed that learned return functions can read entire trajectories, which might be unrealistic for very
complex environments. It would thus be interesting to develop a theory based on a second set of observations
O′ for the learned return function and the trained policy. In the practical proposal, this would also mean
that we cannot assume to have a foundation model λ̂ that translates to the human’s true ontology — instead,
it would represent another feature belief function. Relaxing the capabilities of the foundation model could
also help to model a case in which the human evaluator has information that is hidden from the learned
return function or resulting policy.

The ambiguity is a measure of the information that is available in the feedback, given a belief model, for
determining the human’s return function. Future work could theoretically study concrete learning proce-
dures, which are about extracting said information. One could, for example, study training distributions over
the observations O to determine sample complexity bounds for the error of the resulting return function,
or the regret of the resulting policy. This is theoretically interesting since the usage of the learned return
function in policy optimization involves two shifts compared to the return function’s learning process: First,
it needs to evaluate trajectories instead of observations, making use of an ontology instead of a feature belief
function; and second, the policy optimization leads to a further distribution shift over trajectories, which
can in turn lead to increased regret even if the return function seemed accurate before (Fluri et al., 2024).
Finally, if there is remaining ambiguity, it would also be desirabe to study protocols for choosing a return
function within the ambiguity, possibly using a priori knowledge about “human-like” return functions that
is not captured by our notion of valid reward objects.

Going beyond our framework, one could attempt a synthesis with work that models the human’s action
selection, which we discussed at the start of Section 4.2. For example, one could consider reward-rational
choice or assistance games under the assumption that humans form beliefs based on observations. Emmons
et al. (2024) does a first step in this direction by assuming humans form rational beliefs based on knowledge
of a prior of the agent’s policy. In that framework, they then study the notion of information interference,
which leads to an increase in the human’s uncertainty about the world state. If future work were to study
more general, possibly faulty, belief models for humans in partially observable assistance games, this could
make it possible to go beyond information interference to study deception.
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4.3.2 Empirical work

We would be interested in attempts to instantiate our proposal from Section 3.4. One could test the proposal
in settings with synthetic humans with a known ontology and feature belief function, which can for small
MDPs allow to compute the ambiguity explicitly. This should make it possible to make concrete predictions
about experimental results. It would also be interesting to study settings with partial observability in which
capable AI does not have an advantage over humans in understanding the meaning of the observations.
As we discussed in our proposal, that should allow to use the same foundation model for the ontology and
feature belief function, with the latter only applied to observations. This could then be compared with
a baseline of “naive” RLHF in which the initialized return function reads entire trajectories during the
learning process, similar to the conceptual examples from Lang et al. (2024). It would be interesting to
study different levels of observability to dial the ambiguity up or down. We also encourage to break some of
our theoretical assumptions, e.g., by using non-linear reward probes. Finally, it would be desirable to learn
how our approach can be combined with approaches in the direction of amplified oversight, easy-to-hard
generalization, or weak-to-strong generalization discussed in Section 4.2. For example, a combination of our
work with easy-to-hard generalization could seek to only train the reward probe on data where the human
beliefs are modeled correctly by ε̂, which should be a superset of easy data.

Instead of studying the whole pipeline, one could also empirically assess the underlying assumptions. The
most precarious assumption is that it is possible to construct a feature belief function ε̂, for which we discuss
proposals in Section 3.4.1. In situations that are not purely based on partial observability, we proposed
to prompt or finetune the model to step “into the shoes” of a human evaluator, or to use earlier training
checkpoints of a model to decrease its capabilities to that of a human evaluator (assuming future models
that would otherwise be superhuman). For this to work, there needs to be a linear ontology translation that
is compatible with ε̂ and the human’s true feature belief function ε. One could test this empirically by using
sparse autoencoders (Cunningham et al., 2023; Bricken et al., 2023) trained on an unobstructed capable
foundation model, and evaluating the resulting human-readable features when applied to ε̂.

4.4 Conclusion

In this work we theoretically showed that if we could model human beliefs about AI behavior, then under
certain conditions, this could help for the correct inference of human goals from human feedback. Since the
theory applies even in cases where the human’s beliefs are erroneous and based on partial observations, it
is relevant to a setting of scalable oversight where the AI is more capable than the human overseers. We
hope that future work will build on our theory, empirically study our practical proposal, or engage in other
research on how to make AI systems safe and aligned with the goal of reducing the risks of advanced AI.
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Appendices
In the appendices, we present mathematical details and content that goes beyond the main text. Appendix A
lists preliminary results on linear algebra together with their proofs. In Appendix B, we present a theory of
balanced belief models and the ambiguity for feedback that is given by binary choices between observations.
This complements the core theory from Sections 2 and 3, where the feedback is given by an observation
return function. In Appendix C, we complement Section 3 by showing that human belief models and their
morphisms form a category, and we construct a variety of natural models composing a diagram. Appendix D
contains further mathematical details for the example in Section 3.3 on symmetry-invariant belief models
and reward functions. Finally, Appendix E interprets some of the related work from Section 4.2 in our
framework.

A Preliminary results on linear algebra

For general notation and conventions on linear algebra, see Section 2.1.

A.1 Different representations of linear functions

Let X,Y be two sets. Then by Lin(RX ,RY ) we denote the set of all linear maps F : RX → RY . By
Maps(Y,RX), we denote the set of all (simple) maps, or functions, f : Y → RX . Intuitively, these encode
the same information: A linear function F , when represented as a matrix, is a collection of rows indexed
by y ∈ Y , which are “picked out” by a function f : Y → RX . This correspondence is made precise in the
following proposition, which is a “transposed” version of the classical statement that linear functions on
vector spaces correspond to functions on a basis:
Proposition A.1. Define the two functions

Maps(Y,RX) Lin(RX ,RY )

lin

map

as follows: For f ∈ Maps(Y,RX), v ∈ RX and y ∈ Y , we define[[
lin(f)

]
(v)
]
(y) := 〈f(y), v〉 .

For F ∈ Lin(RX ,RY ), y ∈ Y and x ∈ X, we define[[
map(F )

]
(y)
]
(x) := Fyx.

Then lin(f) has matrix elements
lin(f)yx =

[
f(y)

]
(x)

for x ∈ X and y ∈ Y . Furthermore, lin and map are mutually inverse bijections.

Proof. First, note that for each f ∈ Maps(Y,RX), lin(f) : RX → RY is indeed a linear function since the
scalar product is linear in the second component. Its matrix elements are given by

lin(f)yx =
[[

lin(f)
]
(ex)

]
(y) = 〈f(y), ex〉 =

[
f(y)

]
(x).

Now we show that lin and map are mutually inverse bijections, i.e., lin ◦map = idLin(RX ,RY ) and map ◦ lin =
idMaps(Y,RX). Indeed, for F ∈ Lin(RX ,RY ), x ∈ X, and y ∈ Y , we have[

(lin ◦map)(F )
]
yx

=
[

lin(map(F ))
]
yx
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=
[[

lin(map(F ))
]
(ex)

]
(y)

=
〈[

map(F )
]
(y), ex

〉
=
[[

map(F )
]
(y)
]
(x)

= Fyx

Since linear functions are fully characterized by their matrix elements, this shows (lin ◦map)(F ) = F , and
thus lin ◦map is the identity.

For the other direction, for f ∈ Maps(Y,RX), y ∈ Y , and x ∈ X, we have[[
(map ◦ lin)(f)

]
(y)
]
(x) =

[[
map(lin(f))

]
(y)
]
(x)

= lin(f)yx
=
[
f(y)

]
(x).

This shows that (map ◦ lin)(f) = f , and so map ◦ lin is also the identity.

Proposition A.2. Let X, X̂, Y be sets and F : RX → RY , F̂ : RX̂ → RY , and Φ : RX → RX̂ be linear
functions. Let f = map(F ) : Y → RX and f̂ = map(F̂ ) : Y → RX̂ be the functions corresponding to F and
F̂ by Proposition A.1. Let ΦT : RX̂ → RX be the transpose of Φ, with matrix elements ΦT

xx̂
= Φ

x̂x
. Then

F = F̂ ◦ Φ if and only if f = ΦT ◦ f̂ :

RX̂ RX̂

⇐⇒

RX RY RX Y

F̂
ΦTΦ

F f

f̂

Proof. We have

F = F̂ ◦ Φ ⇐⇒ ∀y ∈ Y, x ∈ X : Fyx = (F̂ ◦ Φ)yx =
∑
x̂∈X̂

F̂
yx̂

Φ
x̂x

⇐⇒ ∀y ∈ Y, x ∈ X :
[
f(y)

]
(x) =

∑
x̂∈X̂

ΦT
xx̂

[
f̂(y)

]
(x̂) =

〈
ΦTx , f̂(y)

〉
=
[
ΦT
(
f̂(y)

)]
(x) =

[
(ΦT ◦ f̂)(y)

]
(x)

⇐⇒ f = ΦT ◦ f̂ .

That was to show.

A.2 Properties of kernels and images of linear functions

The following two propositions list basic and well-known properties of kernels and images that we use in the
paper:
Proposition A.3. Let A : V → U and B : V → W be linear functions. Then the following statements are
equivalent:

1. ker(A) ⊆ ker(B);
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2. There exists a linear function C : U → W with C ◦A = B:

V W

U

A

B

C

Proof. Clearly, the second claim implies the first. So now assume 1. Let {u1, . . . , um} be a basis for im(A)
and complement it to a basis {u1, . . . , un} for all of U , where n ≥ m. For each i ∈ {1, . . . ,m}, let vi ∈ V be
any element with A(vi) = ui. Define C(ui) := B(vi) for i ∈ {1, . . . ,m} and C(ui) = 0 if i > m. Linearly
extend C to a linear function C : U → W.

To show that C ◦A = B, let v ∈ V be arbitrary. Then A(v) ∈ im(A), and thus there exist coefficients λi ∈ R
for i ∈ {1, . . . ,m} with

A(v) =
m∑
i=1

λiu
i.

Note that

A

(
v −

m∑
i=1

λiv
i

)
= A(v)−

m∑
i=1

λiA(vi) = A(v)−
m∑
i=1

λiu
i = 0

Thus, v −
∑m
i=1 λiv

i ∈ ker(A) ⊆ ker(B). Consequently, we obtain

B(v) = B

(
m∑
i=1

λiv
i

)
=

m∑
i=1

λiB(vi) =
m∑
i=1

λiC(ui)

= C

(
m∑
i=1

λiu
i

)
= C

(
A(v)

)
= (C ◦A)(v).

This shows C ◦A = B, and thus the claim.

Proposition A.4. Let A : U → W and B : V → W be linear functions. Then the following statements are
equivalent:

1. im(A) ⊆ im(B).

2. There exists a “lift”, i.e., a linear map C : U → V with B ◦ C = A:

V

U W.

B

A

C

Proof. It can easily be checked that the second claim implies the first. For the other direction, let {u1, . . . , un}
be a basis for U . For i ∈ {1, . . . , n}, choose vi ∈ V with B(vi) = A(ui), which exists since im(A) ⊆ im(B).
Define C : U → V as the unique linear function with C(ui) = vi for i ∈ {1, . . . , n}. We obtain

A(ui) = B(vi) = B
(
C(ui)

)
= (B ◦ C)(ui).

Since linear functions are determined on a basis, it follows A = B ◦ C, proving the claim.
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B Balanced human belief models and choices

In this appendix, we present the core theory from Section 2 and Section 3 for the case that the feedback is
in the form of choices instead of the observation return function GO. To still get a useful theory, we will
then need to assume our human belief models to be balanced to ensure that constants are “propagated”
appropriately through the model. In this whole appendix, we fix an MDP with a set of trajectories Ξ and
observations O.

B.1 Balanced belief models

Definition B.1 (Row-constant). Let X, and Y be sets. We call a linear function A : RX → RY row-
constant if for all y, y′ ∈ Y we have 0 6=

∑
x∈X Xyx =

∑
x∈X Xy′x.

Definition B.2 (Balanced). LetM = (Ω,Λ, E ,V) be a human belief model. We callM balanced if Λ and
E are row-constant, and if V ⊆ RΩ contains all constant functions.

Λ and E being row-constant means that the corresponding functions λ : Ξ→ RΩ and ε : O → RΩ (cf. Propo-
sition A.1) map to vectors of feature strengths with a constant total weighting, as is for example the case for
probability distributions. That V contains all constant functions is often naturally the case. To demonstrate
this in a simple example we first prove the following lemma:
Lemma B.3. Let X,Y, Z be sets and A : RX → RY , B : RY → RZ be row-constant linear functions. Then
the composition B ◦A : RX → RZ is also row-constant.

Proof. Let a, b be the row-sums of A and B, respectively. Then for all z ∈ Z, we obtain∑
x∈X

(B ◦A)zx =
∑
x∈X

∑
y∈Y

BzyAyx =
∑
y∈Y

Bzy
∑
x∈X

Ayx = b · a 6= 0,

which shows the claim.

Example B.4. We continue Example 2.6 and show that the model is balanced. Note that for all ξ ∈ Ξ, we
have ∑

(s,a,s′)∈S×A×S

Γξ,(s,a,s′) =
∑

(s,a,s′)∈S×A×S

T−1∑
t=0

γtδ(s,a,s′)(st, at, st+1)

=
T−1∑
t=0

γt
∑

(s,a,s′)∈S×A×S

δ(s,a,s′)(st, at, st+1)

=
T−1∑
t=0

γt

6= 0.8

Thus, Γ is row-constant. B is also row-constant since all rows are probability distributions, and so Lemma B.3
implies that also E = B ◦Γ is row-constant. V = RS×A×S also clearly contains all constant functions.
Overall, this means the model (S ×A× S,Γ,B ◦Γ,RS×A×S) is balanced.

For more examples of balanced human belief models, see Appendix C.2.

B.2 The ambiguity for balanced belief models and choices

Let σ : R → (0, 1) be any known bijective function with σ(r) + σ(−r) = 1 for all r ∈ R (e.g., the sigmoid
function). For o, o′ ∈ O, we define the probability that a human with feature belief function E : RΩ → RO

and reward object R̃Ω ∈ RΩ prefers o over o′ by

P R̃Ω
E (o � o′) := σ

([
E(R̃Ω)

]
(o)−

[
E(R̃Ω)

]
(o′)
)
. (20)
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For the rest of the section, we fix a human belief modelM = (Ω,Λ, E ,V). Furthermore, we fix the implicit
true reward object RΩ ∈ V together with the return function G = Λ(RΩ), the observation return function
GO = E(RΩ) and the choice probability function PO := PRΩ

E that serves as our operationalization of
“feedback”.

We use the following adaptation of Definition 2.8:
Definition B.5. We define the set of return functions that are feedback-compatible with PO as

FCM(PO) :=
{
G̃ ∈ RΞ ∣∣ ∃R̃Ω ∈ V : P R̃Ω

E = PO and Λ(R̃Ω) = G̃
}
.

We define the ambiguity left in the return function G after the choice probability function PO is known by

AmbM(G,PO) :=
{
G′ ∈ RΞ ∣∣ G′ = G̃−G for G̃ ∈ FCM(PO)

}
.

Clearly, we have
FCM(GO) = G+ AmbM(G,PO).

Recall the ambiguity AmbM(G,GO) defined in Definition 2.8. We obtain:
Proposition B.6. Assume M = (Ω,Λ, E ,V) is balanced. Let 1 ∈ RΞ denote the function that is constant
1. Then:

AmbM(G,PO) = AmbM(G,GO) +
{
c · 1 | c ∈ R

}
= Λ

(
ker(E) ∩ V

)
+
{
c · 1 | c ∈ R

}
.

Proof. The second equality follows from Proposition 2.9, so we are left with proving the first. By abuse of
notation, we will write 1 for the three functions that are constant 1 on Ξ, O, or Ω.

Let G′ ∈ AmbM(G,PO). Then G′ = Λ(R̃Ω)−G for R̃Ω ∈ V with P R̃Ω
E = PO. The latter means the following

for all o, o′ ∈ O:
σ
([
E(R̃Ω)

]
(o)−

[
E(R̃Ω)

]
(o′)
)

= σ
([
E(RΩ)

]
(o)−

[
E(RΩ)

]
(o′)
)
.

Since σ is invertible, we obtain[
E(R̃Ω)

]
(o)−

[
E(R̃Ω)

]
(o′) =

[
E(RΩ)

]
(o)−

[
E(RΩ)

]
(o′)

Fix any o′ ∈ O and set cO :=
[
E(R̃Ω)

]
(o′)−

[
E(RΩ)

]
(o′). Then for all o ∈ O, we have[

E(R̃Ω)
]
(o) =

[
E(RΩ)

]
(o) + cO.

Or, equivalently:
E(R̃Ω) = E(RΩ) + cO · 1 = GO + cO · 1.

Since E is row-constant, there exists a cΩ ∈ R with E(cΩ · 1) = cO · 1. This implies

E(R̃Ω − cΩ · 1) = GO.

We also have R̃Ω − cΩ · 1 ∈ V since V contains all constant functions. Furthermore, Λ(cΩ · 1) = cΞ · 1 for
another constant cΞ ∈ R since Λ is row-constant. Overall, we thus obtain

G′ = Λ(R̃Ω)−G = Λ(R̃Ω − cΩ · 1)−G+ cΞ · 1 ∈ AmbM(G,GO) +
{
c · 1 | c ∈ R

}
.

For the other direction, let G′ ∈ AmbM(G,GO) +
{
c · 1 | c ∈ R

}
. Then G′ = G̃−G+ cΞ · 1 for G̃ = Λ(R̃Ω)

with R̃Ω ∈ V with E(R̃Ω) = GO. We have

G̃+ cΞ · 1 = Λ(R̃Ω + cΩ · 1)
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for a constant cΩ ∈ R with Λ(cΩ ·1) = cΞ ·1. Since V contains all constant functions, we have R̃Ω +cΩ ·1 ∈ V.
We also have

P R̃Ω+cΩ·1
E = P R̃Ω

E = PO

since the constant gets cancelled out in the definition of the choice probabilities, and since E(R̃Ω) = GO. All
of this implies

G′ =
(
G̃+ cΞ · 1

)
−G ∈ AmbM(G,PO).

That proves the claim.

Note that for the purpose of policy optimization it is not an issue that the ambiguity has an “irreducible”
constant term since this does not change the ordering of policies under the policy evaluation function J(π) =
Eξ∈Pπ(·)[G(ξ)].
Remark B.7. In light of the previous proposition, it turns out that the ambiguity does not depend on the
true return function and choice probabilities, and we can thus write it as AmbMP = AmbM(G,PO). The “P”
is added to distinguish from the ambiguity AmbM = AmbM(G,GO) that we study in the main paper.

Using this result, we also obtain a version of Theorem 3.2, with the ambiguity replaced by the one we use in
this appendix:
Theorem B.8. Let M = (Ω,Λ, E ,V) and M̂ = (Ω̂, Λ̂, Ê , V̂) be two balanced human belief models and
assume that M̂ coversM. We think ofM as the “true” human belief model with reward object RΩ ∈ V and
corresponding return function G = Λ(RΩ) and choice probability function PO = PRΩ

E . Then we have:

1. AmbMP ⊆ AmbM̂P .

2. IfM also covers M̂, then AmbMP = AmbM̂P .

3. There is an RΩ̂ ∈ V̂ with P
R

Ω̂

Ê
= PO and Λ̂(RΩ̂) = G.

4. Assume M̂ is complete. Then every reward object R̃Ω̂ ∈ V̂ with P
R̃

Ω̂

Ê
= PO also satisfies Λ̂(R̃Ω̂) =

G+ cΞ · 1 for a constant cΞ ∈ R.

Proof. Statements 1 and 2 follow from the ambiguity characterization in Proposition B.6 and the analogous
statements in Theorem 3.2. Statements 3 and 4 can be proved with similar arguments as the corresponding
statements in Theorem 3.2.

C A diagram in the category of human belief models

Let us consider an MDP together with a fixed set of trajectories Ξ and observations O. Then in Definition 2.4,
we defined the notion of a human belief modelM = (Ω,Λ, E ,V). In Definition 3.3, we then introduced the
notion of a morphism Φ : M → M̂ between human belief models, which is defined as a linear function
Φ : RΩ → RΩ̂ such that Φ(V) ⊆ V ′, Λ̂ ◦Φ|V = Λ and Ê ◦Φ|V = E . This notion turned out important since it
is equivalent to model covering (Definition 3.1), which implies that the covering model can be used for the
return function inference from human feedback (Theorem 3.2), especially if its ambiguity disappears.

Belief models for fixed sets of trajectories Ξ and observations O, together with their morphisms, form a
category (Lane, 1998), meaning that they satisfy the following simple properties:

• Composition: Assume M1,M2,M3 are three human belief models and Φ : M1 → M2, Φ′ :
M2 →M3 morphisms between them. Then also the composition Φ′ ◦Φ :M1 →M3 is a morphism.

• Identities: For any human belief model M = (Ω,Λ, E ,V), the identity idRΩ : M → M is a
morphism.
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• Associativity: (Φ′′ ◦Φ′) ◦Φ = Φ′′ ◦ (Φ′ ◦Φ) for any three morphisms that can be composed in the
specified order.

All of these properties can be trivially checked, and so human belief models and their morphisms indeed
form a category.

In this appendix, we want to write down a simple commutative diagram of morphisms in this category. Here,
a diagram means a graph of human belief models and morphisms between them. For this to be commutative
means that any pathway from one human belief model to another is the same morphism. We prepare
this in Appendix C.1 by writing down all linear functions from which the functions Λ, E , and Φ will be
constructed. In Appendix C.2 we then specify the resulting human belief models and briefly consider their
properties. In Appendix C.3 we interpret the matrix elements that appear in the feature belief functions of
all models. Finally, in Appendix C.4, we write down the resulting commutative diagram and the resulting
relations for the ambiguities.

C.1 Preparing the models

We build on Example 2.6. The idea is that we consider reward objects at four different levels: Return
functions, classical reward functions, and return- and reward functions of abstractions of trajectories and
transitions that the human might care about. By modeling the human as having features at all four of these
different levels, we can create a multitude of human belief models.

Let B : RΞ → RO be the matrix corresponding to a trajectory-belief function b : O → ∆(Ξ) ⊆ RΞ

via Proposition A.1. Let Γ : RS×A×S → RΞ be the linear function mapping reward functions to their
corresponding return functions.

Let F be a set of “abstractions of transitions” and h : S × A × S → F a function mapping each transition
to its abstraction. Write reward objects over abstractions as RF ∈ RF . Then we obtain the induced map

h∗ : RF → RS×A×S , RF 7→ RF ◦ h.

h∗(RF ) measures a transition (s, a, s′) by evaluating RF at the transition’s abstraction: RF (h(s, a, s′)).
Thus, h∗(RF ) is guaranteed to give the same reward to transitions with the same abstraction.

We can then also consider the space of abstraction sequences FT together with the function hT : Ξ → FT
given by

hT (s0, a0, . . . , sT−1, aT−1, sT ) :=
(
h(s0, a0, s1), . . . , h(sT−1, aT−1, sT )

)
.

Write return functions over abstraction sequences as GFT ∈ RF
T . hT then gives rise to the dual function

hT
∗

: RF
T

→ RΞ, GFT 7→ GFT ◦ hT .

Thus, hT∗(GFT ) evaluates a trajectory by evaluating the sequence of abstractions using GFT . As before,
two trajectories with the same sequences of abstractions then obtain the same return.

Recall the function Γ : RS×A×S → RΞ mapping a reward function to the corresponding return function.
Then we obtain an analogous function for reward objects on abstractions:

ΓF : RF → RF
T

,
[
ΓF (RF )

]
(f1, . . . , fT ) :=

T−1∑
t=0

γtRF (ft).

Proposition C.1. The diagram

RS×A×S RΞ RO

RF RF
T

Γ B

ΓF

h∗ hT
∗ (21)

of linear functions commutes, meaning that all pathways with the same start and end are the same function.
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Proof. We have[
(Γ ◦h∗)(RF )

]
(s0, a0, . . . , aT−1, sT ) =

[
Γ
(
h∗(RF )

)]
(s0, a0, . . . , aT−1, sT )

=
T−1∑
t=0

γt
[
h∗(RF )

]
(st, at, st+1)

=
T−1∑
t=0

γtRF
(
h(st, at, st+1)

)
=
[
ΓF (RF )

](
h(s0, a0, s1), . . . , h(sT−1, aT−1, sT )

)
=
[
ΓF (RF )

](
hT (s0, a0, . . . , sT−1, aT−1, sT )

)
=
[
hT
∗(

ΓF (RF )
)]

(s0, a0, . . . , aT−1, sT )

=
[
(hT

∗
◦ ΓF )(RF )

]
(s0, a0, . . . , aT−1, sT ).

This shows Γ ◦h∗ = hT
∗ ◦ ΓF . Consequently, the diagram commutes.

The idea will be that the rows of B, B ◦Γ, B ◦hT∗ and B ◦Γ ◦h∗ = B ◦hT∗ ◦ΓF all correspond (via Proposi-
tion A.1) to feature beliefs over trajectories, transitions, trajectory abstractions, and transition abstractions,
respectively. We explain this interpretation in detail in Appendix C.3. All of these functions “factorize” over
trajectories, but of course this need not be the case in reality: A realistic human could have an intrinsic belief
over state transitions, sequences of abstractions, or single abstractions, without this belief “factorizing” in a
rational way over state sequences.

Thus, let the following be an extended version of the diagram from Proposition C.1, with new linear functions
B′,B′′,B′′′. This extension is now not necessarily commutative anymore:

RS×A×S RΞ RO

RF RF
T

Γ

B′

B

ΓF

B′′′

h∗ hT
∗

B′′
(22)

To interpret B′,B′′,B′′′ on similar grounds as B, it makes sense to assume that they are row-constant
(Definition B.1), but otherwise they can be arbitrary.

C.2 Various human belief models

We take the previous diagrams as the starting point to construct human belief models Remember that a belief
model is of the formM = (Ω,Λ, E ,V). The sets Ξ,S ×A×S, F , and FT are four different possible feature
sets Ω. Λ is given by a composition of linear functions that maps to RΞ. E is given by a composition mapping
to RO. The space V is either given by the full vector space RΩ, or by images of functions mapping to RΩ.
Overall, using the diagram from Proposition C.1, this leads to the following 9 models, with the superscript
denoting the feature space, and the subscript indicating where the valid reward objects “originate from”:

MFF :=
(
F , Γ ◦h∗, B ◦Γ ◦h∗, RF

)
MS×A×SS×A×S :=

(
S ×A× S, Γ, B ◦Γ, RS×A×S

)
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MS×A×SF :=
(
S ×A× S, Γ, B ◦Γ, im(h∗)

)
MF

T

FT :=
(
FT , hT

∗
, B ◦hT

∗
, RF

T )
MF

T

F :=
(
FT , hT

∗
, B ◦hT

∗
, im(ΓF )

)
MΞ

Ξ :=
(
Ξ, idRΞ , B, RΞ)

MΞ
S×A×S :=

(
Ξ, idRΞ , B, im(Γ)

)
MΞ
FT :=

(
Ξ, idRΞ , B, im(hT

∗
)
)

MΞ
F :=

(
Ξ, idRΞ , B, im(Γ ◦h∗)

)
For example,MS×A×SS×A×S is the model from Example 2.6;MS×A×SF is the same model, but with valid reward
functions restricted to those that only “care about” abstractions; MΞ

Ξ is a model in which the features are
given by full trajectories, and there are no restrictions on the valid return functions; etc.

Now, B′ naturally gives rise to the following three models, which we color differently to distinguish them
more easily:

M′FF =
(
F , Γ ◦h∗, B′ ◦h∗, RF

)
M′S×A×SF =

(
S ×A× S, Γ, B′, im(h∗)

)
M′S×A×SS×A×S =

(
S ×A× S, Γ, B′, RS×A×S

)
.

Similarly, B′′ gives rise to the following three models:

M′′FF =
(
F , hT

∗
◦ ΓF , B′′ ◦ΓF , RF

)
M′′F

T

F =
(
FT , hT

∗
, B′′, im(ΓF )

)
M′′F

T

FT =
(
FT , hT

∗
, B′′, RF

T )
Finally, B′′′ gives rise to a single model:

M′′′FF =
(
F , Γ ◦h∗, B′′′, RF

)

Note that all component linear functions appearing in any of these models (identities,
h∗,Γ,ΓF , hT

∗
,B, . . . ,B′′′) are row-constant. By Lemma B.3 then, also all compositions are row-

constant, which then implies that all 16 models are balanced, as defined in Definition B.2. The first 9
models are also faithful (Definition 2.15) since all feature belief functions factorize as in Proposition 2.16,
with Y given by B in all cases. The other 7 models will typically not be faithful.

C.3 Interpreting the matrix elements

We now interpret the different feature belief functions that appeared in the nine first models of the previous
subsection. Recall that the linear function B : RΞ → RO “comes from” a function b : O → ∆(Ξ) ⊆ RΞ.
Thus, all matrix elements Boξ can be interpreted as a probability

[
b(o)

]
(ξ) for the trajectory ξ when viewing

observation o. We now explain similar interpretations for the matrix elements of all the other feature belief
functions:

B ◦Γ: It contains matrix elements

(B ◦Γ)o,(s,a,s′) =
∑
ξ

[
b(o)

]
(ξ)

T−1∑
t=0

γtδ(s,a,s′)(st, at, st+1),

the expected discounted number of times the transition (s, a, s′) is present in the trajectory.
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B ◦hT∗ : Write f for (f1, . . . , fT ). Then this contains matrix elements

(B ◦hT
∗
)of =

∑
ξ∈Ξ

[
b(o)

]
(ξ)hT

∗

ξf

=
∑
ξ∈Ξ

[
b(o)

]
(ξ)δf (hT (ξ))

=
∑

ξ : hT (ξ)=f

[
b(o)

]
(ξ)

=
[
b(o)

](
(hT )−1(f)

)
=
[
b(o)hT

]
(f).

In the second to last step, we view b(o) as a probability distribution that, when evaluated on a set, evaluates to
the sum of the probabilities of the set’s elements. In the last step, we use the definition of the distributional
law of a random variable X with respect to a probability distribution P on the sample space: PX(x) =
P (X−1(x)). The result is the believed probability, after observing o, of a trajectory with sequence of
abstractions f .

Finally, we look at the matrix B ◦Γ ◦h∗ (for which we give two slightly different formulas): The matrix
elements are given as

(B ◦Γ ◦h∗)of =
∑

(s,a,s′)∈S×A×S

(B ◦Γ)o,(s,a,s′) · h∗(s,a,s′),f

=
∑

(s,a,s′) : h(s,a,s′)=f

∑
ξ∈Ξ

[
b(o)

]
(ξ)

T−1∑
t=0

γtδ(s,a,s′)(st, at, st+1)

=
∑
ξ∈Ξ

[
b(o)

]
(ξ)

T−1∑
t=0

γt
∑

(s,a,s′) : h(s,a,s′)=f

δ(s,a,s′)(st, at, st+1)

=
∑
ξ∈Ξ

[
b(o)

]
(ξ)

T−1∑
t=0

γtδf (h(st, at, st+1)).

This is the expected discounted number of times that one encounters the abstraction f . Using that Γ ◦h∗ =
hT
∗ ◦ ΓF by Proposition C.1, we can also write this as

(
B ◦hT

∗
◦ ΓF

)
of

=
∑

f∈FT
(B ◦hT

∗
)of · (ΓF )ff

=
∑

f∈FT

[
b(o)hT

]
(f)

T∑
t=0

γtδf (ft).

This can also be described as the expected discounted number of times that one encounters the abstraction
f .

C.4 The resulting commutative diagram

Building on Appendix C.2, the following is a commutative diagram of belief models and model morphisms,
with four differently colored “connected components”; one can sometimes use Proposition C.1 in the process
of showing that every linear function in the diagram is a morphism of belief models, and that the final
diagram commutes:
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M′S×A×SS×A×S MS×A×SS×A×S MΞ
S×A×S MΞ

Ξ

M′S×A×SF MS×A×SF MΞ
F MΞ

FT

M′FF MFF MFTF MFTFT

M′′′FF M′′FF M′′FTF M′′FTFT

Γ id
RΞ

id
RS×A×S id

RS×A×S

Γ

id
RΞ

id
RΞ

id
RΞ

h∗ h∗

ΓF

hT
∗

id
RFT

hT
∗

ΓF id
RFT

For example, the following diagram visualizes the fact that h∗ :MFF →MS×A×SF is a morphism:

RΞ

RF

⊆

RF

RS×A×S

⊆

im(h∗)

RO.

Γ ◦h∗

h∗

B ◦Γ ◦h∗

Γ

B ◦Γ

This gives rise to the following diagram of ambiguities:

Γ(ker(B′)) Γ
(

ker(B ◦Γ)
)

= ker(B) ∩ im(Γ) ⊆ ker(B)

Γ
(

ker(B′) ∩ im(h∗)
)

Γ
(

ker(B ◦Γ) ∩ im(h∗)
)

= ker(B) ∩ im(Γ ◦h∗) ⊆ ker(B) ∩ im
(
hT
∗)

(Γ ◦h∗)
(

ker(B′ ◦h∗)
)

(Γ ◦h∗)
(

ker(B ◦Γ ◦h∗)
)

= hT
∗( ker(B ◦hT∗) ∩ im(ΓF )

)
⊆ hT

∗( ker(B ◦hT∗)
)

(Γ ◦h∗)
(

ker(B′′′)
) (

hT
∗ ◦ ΓF

)(
ker(B′′ ◦ΓF )

)
= hT

∗( ker(B′′) ∩ im(ΓF )
)

⊆ hT
∗( ker(B′′)

)

⊆ ⊆ ⊆ ⊆

= = = =

The ambiguities are computed using Proposition 2.9, and the inclusions and equalities of ambiguities follow
from Theorem 3.2 and Theorem 3.5. Here, the ambiguity Γ

(
ker(B ◦Γ)

)
= ker(B) ∩ im(Γ) is the special

case discussed in depth in Lang et al. (2024). Note that the modelsMFF ,MS×A×SF andMS×A×SS×A×S are closely
related to the modelsM1,M2 andM3 from Section 3.3.

Assume we would use one of these models in practice. The further right or up it is in the diagram, the more
ambiguity there is, but it is then also more likely that the model covers the true belief model (should it
appear in the diagram in the first place). Thus, there is a trade-off between covering the true belief model,
and keeping the ambiguity small.

D Details on the example with invariant features

Here, we present more mathematical details for Section 3.3. This appendix is not self-contained and we
recommend reading it alongside the section in the main paper.

51



Published in Transactions on Machine Learning Research (08/2025)

D.1 Details on the MDP and observations

Formally, the states are given by S = ({L,R}×{U,D})2, with the first component being the hand-position,
and the second component being the button position. For example, the state in Equation (12) is given by
((L,U), (R,D)).

Furthermore, we define functions PosH : S → {L,R} × {U,D} and PosB : S → {L,R} × {U,D} as the first
and second projection. These are the position of a “hand” H and a “button” B, in a 2x2 gridworld. Then
the state s from Equation (12) satisfies PosH(s) = (L,U) and PosB(s) = (R,D).

The set of trajectories is formally given by Ξ = (S ×A)3 × S. The set of observations is formally given by

O =
[
{L,R}2 × {P, P}

]3
× {L,R}2.

Here, P means that it was not observed that a button was pressed.

D.2 Details on the belief models and symmetries

Let G = D4 be the dihedral group of order 8, i.e., the symmetry group of the square. It is given by

G = D4 =
{
e, r, r2, r3, f, rf, r2f, r3f

}
,

where r is a clockwise rotations by 90◦ and f is a flip over the horizontal axis. In compositions, we apply f
first. G acts on S ×A by individually acting on states and actions:

g.(s, a) := (g.s, g.a),

where g.s = g.(PosH(s),PosB(s)) := (g.PosH(s), g.PosB(s)), where on the generators g = r and g = f we
have

r.(L,U) = (R,U), r.(R,U) = (R,D), r.(R,D) = (L,D), r.(L,D) = (L,U)
f.(L,U) = (L,D), f.(R,U) = (R,D), f.(R,D) = (R,U), f.(L,D) = (L,U).

This specifies the action on states. On actions, we specify

r.L = U, r.U = R, r.R = D, r.D = L, r.P = P.

f.L = L, f.U = D, f.R = R, f.D = U, f.P = P.

Thus, the “pressing” action remains invariant.

With this group action, we obtain a set of equivalence classes of state-action pairs, given by S ×A. A set of
representatives for the equivalence classes is given by(

{s0} × As0
)
∪
(
{s1} × As1

)
∪
(
{s2} × As2

)
, (23)

where
s0 = ((R,D), (R,D)), s1 = ((L,D), (R,D)), s2 = ((L,U), (R,D)),

and where the (state-dependent) set of actions are given by

As0 = As2 = {L,D, P}, As1 = {L,R,U,D, P}.

We then have a function
h : S ×A →

⋃
i∈{0,1,2}

{si} × Asi

that maps each state-action pair to a representative, given by h(s, a) = g.(s, a) for the unique g ∈ D4
for which g.(s, a) is in the set of representatives from Equation (23). Via h, we now identify S ×A with⋃
i∈{0,1,2}{si} × Asi .
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Equation (15) can be showed by

Λξ,(s,a) =
[
λ(ξ)

]
(s, a)

=
2∑
t=0

δ(s,a)(h(st, at))

=
∑

(s′,a′)∈S×A

δ(s,a)(h(s′, a′))
2∑
t=0

δ(s′,a′)(st, at)

=
∑

(s′,a′)∈S×A

h∗(s′,a′),(s,a) Γξ,(s′,a′)

=
∑

(s′,a′)∈S×A

Γξ,(s′,a′) h∗(s′,a′),(s,a)

= (Γ ◦h∗)ξ,(s,a).

(24)

For the matrix elements of h∗, we used Equation (1).

The human’s belief E(s, a | o) for (s, a) ∈ S ×A and o ∈ O is then given as follows: The human has a
uniform prior B(s) = P0 over possible start-states sampled from P0, and a uniform prior over possibly next
actions given the current state, leading to a prior distribution over B(ξ) ∈ ∆(Ξ). Then, upon seeing o, the
human implicitly computes a posterior belief over trajectories compatible with the observation, simply given
by

B(ξ | o) ∝ δo(O(ξ)) ·B(ξ). (25)
Equation (16) can be showed by

Eo,(s,a) =
[
ε(o)

]
(s, a)

=
∑
ξ∈Ξ

[
b(o)

]
(ξ) ·

[
λ(ξ)

]
(s, a)

=
∑
ξ∈Ξ

Boξ ·Λξ,(s,a)

= (B ◦Λ)o,(s,a)

= (B ◦Γ ◦h∗)o,(s,a)

(26)

D.3 Details on the ambiguity analysis for M2

In all these computations, recall Equation (6) and the sentence following it for computing E(R)(o) for an
observation o.

Recall the observation o2:

o2 = H B
P

H B
P

H B
P

H B

Since we assumed that the starting state is one of the states in Equation (13), the human has the belief[
ε(o2)

]
(s2, P ) = 3, i.e., the human is certain that, up to symmetry, the hand performed a pressing action

three times in s2. Thus,

0 =
[
E(R)

]
(o2) =

[
ε(o2)

]
(s2, P ) ·R(s2, P ) = 3 ·R(s2, P )

This implies R(s2, P ) = 0.

Recall observation o1:

o1 = H B H B
P

H B
P

H B
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Now, the first action could either not change anything, or horizontally align H and B. An action that does
not change anything is more likely (chance 2/3 since there are two actions, in the direction of two different
adjacent walls, that achieve this, which both correspond to action L up to symmetry), and so we obtain[

ε(o1)
]
(s2, L) = 2/3,

[
ε(o1)

]
(s2, P ) = 4/3,[

ε(o1)
]
(s2, D) = 1/3,

[
ε(o1)

]
(s1, P ) = 2/3.

Compare also with (26). Thus, we obtain

0 =
[
E(R)

]
(o1)

= 2/3 ·R(s2, L) + 4/3 ·R(s2, P ) + 1/3 ·R(s2, D) + 2/3 ·R(s1, P )
= 2/3 ·R(s1, P ).

Here, we used that R(s2, P ) = 0 by what we showed before, and R(s2, L) = R(s2, D) = 0 since R(s, a) = 0
whenever a 6= P (i.e., since R ∈ V). Thus, we have R(s1, P ) = 0 as well.

Finally, we look at the observation sequence o0 given as follows:

o0 = H B H B HB
P

HB

Again, there is a chance of 2/3 that the first action does not change anything. Given the first step, everything
which follows is deterministic, leading to these feature beliefs:[

ε(o0)
]
(s2, L) = 2/3,

[
ε(o0)

]
(s2, R) = 2/3,

[
ε(o0)

]
(s1, P ) = 2/3[

ε(o0)
]
(s2, D) = 1/3,

[
ε(o0)

]
(s1, R) = 1/3,

[
ε(o0)

]
(s0, P ) = 1/3.

Compare again with (26). This means that

0 =
[
E(R)

]
(o0)

= 2/3 ·R(s2, L) + 2/3 ·R(s2, R) + 2/3 ·R(s1, P )+
+ 1/3 ·R(s2, D) + 1/3 ·R(s1, R) + 1/3 ·R(s0, P )

= 1/3 ·R(s0, P ).

Here, we used that R(s1, P ) by what we showed before, together, again, with the fact that R(s, a) = 0 for
all a 6= P . That shows R(s0, P ) = 0.

D.4 Details on the ambiguity analysis for M3

We have

[
(B ◦Γ)(R′)

]
(o) = (B ◦Γ)o,(s′1,P ) ·R′(s′1, P ) + (B ◦Γ)o,(s′′1 ,P ) ·R′(s′′1 , P )

= (B ◦Γ)o,(s′1,P ) − (B ◦Γ)o,(s′′1 ,P )

= 0
(27)

In the computation, the second step follows from the definition of R′. The last step follows from the symmetry
remarked on before.

E Mathematical interpretations of related work in our framework

In this appendix, we briefly interpret some of the related work from Section 4.2 in our framework for
the special case that they learn linear reward probes. Note that these interpretations are not meant to
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capture everything there is to say about that work — the summaries we provide are quite coarse. In all
examples below, we assume access to a very capable foundation model λ̂ : Ξ → RΩ̂ that allows for a linear
ontology translation Ψ : RΩ̂ → RΩ to the human’s ontology λ, as in Section 3.4.1: Ψ ◦ λ̂ = λ. Define
Φ := ΨT : RΩ → RΩ̂, which then satisfies Λ̂ ◦Φ = Λ by Proposition A.2. In all approaches below, we define
ε̂ and assume that the return function is learned with the same method as in Section 3.4.2. Notably, in all
of the approaches one essentially just defines ε̂ := λ̂, i.e., no explicit modeling of humans is performed.

E.1 Amplified oversight and eliciting latent knowledge

In amplified oversight, one amplifies the human to give accurate feedback, which means we can assume
O = Ξ and ε = λ. One approach to achieve this would be to essentially define ε := Ψ ◦ λ̂ by giving the
human access to the linear ontology translation Ψ for understanding the foundation model’s thoughts. This
would roughly be in the spirit of eliciting latent knowledge (Christiano et al., 2021), where the human can
query a reporter to give information about arbitrary latent knowledge of an AI.

Accordingly, one can also choose ε̂ = λ̂, leading to the following coverage diagram:

RΞ

RΩ RΩ̂

RΞ

Λ

Λ

Φ

Λ̂

Λ̂

The ontologies and feature belief functions are then the same, which automatically means that the ambiguity
disappears: Λ

(
ker(Λ)

)
= 0.

E.2 Easy-to-hard generalization

In this setting, O ⊆ Ξ is a subset of trajectories that the human correctly understands. Thus, for ξ ∈ O,
one has ε(ξ) = λ(ξ), and so ε = λ|O is simply a restriction. In this setting, one can also set ε̂ = λ̂|O. Now,
let Λ| and Λ̂| be the linear functions corresponding to λ|O and λ̂|O, respectively, via Proposition A.1. One
obtains the following diagram:

RΞ

RΩ RΩ̂

RO

Λ

Λ|

Φ

Λ̂

Λ̂|

For Φ in this diagram to be a morphism, we need that the lower diagram commutes. With Proposition A.2,
this follows from the assumption that ΦT = Ψ is an ontology translation: Ψ ◦ λ̂ = λ implies Ψ ◦ λ̂|O = λ|O.
The ambiguity is now given by Λ̂

(
ker(Λ̂|)

)
. By using Theorem 2.13, this ambiguity disappears if and only

if for all ξ ∈ Ξ, we have λ̂(ξ) ∈
{∑

ξ∈Ξ Zξλ̂(ξ) | Zξ ∈ R
}
. Thus, the ambiguity vanishes if the trajectories

that the human understands have enough variety in the vector space of feature strengths.

E.3 Classical RLHF and weak-to-strong generalization

In classical RLHF, without any safeguards, one just uses the model ε̂ = λ̂ as the feature belief function even
though ε 6= λ and hopes for the best:
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RΞ

RΩ RΩ̂

RΞ

Λ

E

Φ

Λ̂

Λ̂

(28)

In this case, the lower triangle does not commute since Λ̂ ◦ Φ 6= E , which, using Proposition A.2, is due to
Ψ ◦ λ̂ = λ 6= ε. This means that the second model does not cover the true belief model, and so the guarantee
from Theorem 3.2 breaks. In fact, the return function that would be inferred using this model is GO, the
observation return function itself (cf. the definition of feedback-compatible return functions, Definition 2.8,
applied to this faulty model). Lang et al. (2024) extensively discuss failure modes in this case, called
deceptive inflation and overjustification. We note that weak-to-strong generalization (Burns et al., 2023a),
when used without additional techniques, also considers this setting, but tries to ensure that the learning
process or λ̂ contains inductive biases that steer the learning process to learn G anyway.
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