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Abstract
Random features (Rahimi & Recht, 2007), based
on Monte Carlo (MC) method, is one of the most
popular approximation techniques to accelerate
kernel methods. We show for a class of kernels,
including Gaussian kernels, quasi-Monte Carlo
(QMC) methods can be used in place of MC to im-
prove the approximation error from OP (1/

√
M)

to O(1/M) (up to logarithmic factors), for esti-
mating both the kernel function itself and the as-
sociated integral operator, whereM is the number
of features being used. Furthermore, we demon-
strate the advantage of QMC features in the case
of kernel ridge regression, where theoretically,
fewer random features suffice to guarantee the
same convergence rate of the excess risk. In prac-
tice, the QMC kernel approximation approach is
easily implementable and shows superior perfor-
mance, as supported by the empirical evidence
provided in the paper.

1. Introduction
Kernel methods offer a mathematically well-founded and
practically powerful nonparametric modeling framework
for a wide range of problems in machine learning (Wahba,
1990; Schölkopf & Smola, 2002; Cucker & Smale, 2002).
Random features (Rahimi & Recht, 2007) is one of the
most popular approximation techniques to accelerate kernel
methods. Its idea proceeds as follows: first suppose a kernel
function K : X × X → R (where X is a subset of Rd) has
an integral representation:

K(x,x′) =

∫
Ω

ψ(x, ω)ψ(x′, ω)dπ(ω), (1)

where π is a probability measure over some space Ω and
ψ(·, ·) is a function on X×Ω. Note that an integral represen-
tation in the form of (1) exists under very mild conditions
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(see e.g., Proposition A.8 in Appendix). Explicit examples
include any shift invariant kernel K(x,x′) = h(x − x′),
for which Bochner’s theorem (Bochner, 1933) implies the
existence of a finite non-negative symmetric Borel measure
µ on Rd such that

h(x− x′) =

∫
Rd

e−i(x−x′)⊤ωdµ(ω)

=

∫
Rd

∫ 2π

0

1

π
cos
(
x⊤ω + b

)
cos
(
(x′)⊤ω + b

)
dbdµ(ω).

(2)
Shift invariant kernels cover many popular kernels such as

1. Gaussian kernel e−∥σ(x−x′)∥2
2/2: µ ∼ N(0, σ2Id).

2. Laplacian kernel e−∥γ(x−x′)∥1 : µ has Lebesgue den-
sity

∏d
i=1

1
πγ(1+(ωi/γ)2)

(Cauchy distribution).

3. Cauchy kernel
∏d

i=1
1

1+(xi−x′
i)

2/λ2 : µ has Lebesgue

density λ
2 e

−λ∥ω∥1 (Laplace distribution).

Given the kernel function has integral representation (1),
K(x,x′) can be approximated by

KM (x,x′) =
1

M

M∑
i=1

ψ(x, ωi)ψ(x
′, ωi), (3)

with ω1, . . . , ωM i.i.d. from π. Note that (3) is an inner
product on RM . This reduces the computational complex-
ity of the kernel ridge regression (O(n3) in time; O(n2)
in space) to that of the ordinary ridge regression on RM

(O(nM2 +M3) in time; O(nM) in space), if M ≪ n.

For kernel ridge regression, suppose (X, Y ) ∈ X × R
follows a distribution PXY with marginal distributions PX

and PY . Given the kernel function K, the integral operator
L : L2(PX) → L2(PX) is defined as:

Lf(x) := EX∼PX
[K(X,x)f(X)] . (4)

If the true regression function in the kernel ridge regression
belongs to the range of Lr (here r ∈ [1/2, 1] can be viewed
as a complexity or smoothness parameter), then Rudi &
Rosasco (2017) shows that M ≍ n

2r
2r+1 (up to logarithmic

factors) random features can ensure the same convergence
rate of the excess risk as the exact kernel ridge regression.
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Halton Sequence Random Points (iid)

Figure 1. Left: the first 25 points of the two-dimensional Halton
sequence. Right: 25 i.i.d. random points from Unif[0, 1]2.

Our contributions: In this paper, we show that compared
with the random error bound from Monte Carlo (MC)
method: |K(x, x′) − KM (x, x′)| = OP (1/

√
M) (Dick

et al., 2013), quasi-Monte Carlo (QMC) method uses a de-
terministic sequence ω1, . . . , ωM to achieve a deterministic
error bound |K(x, x′)−KM (x, x′)| = O(logaM/M) for
some integer a under some conditions (Theorems 2.2 and
2.5) — this convergence rate is much faster and non-random
— and such an improvement holds true for a class of kernels
including the Gaussian kernel and Cauchy kernel mentioned
above. The improved approximation to the kernel also leads
to improved approximations of the integral operator and the
spectrum of the kernel matrix (see Propositions 2.6 and 2.7).
Further, we demonstrate the usefulness of QMC features
in the application of kernel ridge regression, by showing
that with QMC method, M ≈ n

1
2r+1 is enough to guaran-

tee the same convergence rate of the excess risk as exact
kernel ridge regression (Theorem 2.2). This is an enormous
reduction from MC based random features (which require
M ≈ n

2r
2r+1 ) when r > 1/2 (i.e., the true regression func-

tion has a smoothness condition beyond simply lying in
the reproducing kernel Hilbert space1, a.k.a. RKHS, associ-
ated with the kernel K; see Section 3 for more details). In
practice, the QMC kernel approximation approach is easily
implementable and demonstrates superior performance, as
supported by empirical evidence provided in the paper.

1.1. Quasi-Monte Carlo Method

QMC is a powerful tool in numerical integration. Its pri-
mary focus is to approximate integrals over the unit cube
with respect to the uniform measure. In order to approxi-
mate

∫
[0,1]d

f(x)dx with a sum 1
M

∑M
i=1 f(xi), MC uses

i.i.d. random {xi}Mi=1, while QMC uses some well-chosen

1The RKHS (Aronszajn, 1950) H is a space of function over X
consisting of span{K(x, ·) : x ∈ X} and their limits, equipped
with an inner product given by ⟨K(x, ·),K(x′, ·)⟩H = K(x,x′).

deterministic {xi}Mi=1 that are spread out “more uniformly”
in a certain sense. In this section, we will cover some back-
ground that is necessary for subsequent discussions. More
details can be found in textbooks such as Niederreiter (1992)
and Owen (2023). We first introduce an important inequality
in QMC:

Theorem 1.1 (Koksma-Hlawka inequality, Hlawka, 1961).
Suppose f : [0, 1]d → R has bounded variation in the sense
of Hardy and Krause VHK(f).2 Then for any x1, . . . ,xM ∈
[0, 1]d, we have∣∣∣∣∣
∫
[0,1]d

f(x)dx− 1

M

M∑
i=1

f(xi)

∣∣∣∣∣ ≤ VHK(f)D∗({xi}Mi=1),

where D∗({xi}Mi=1) is the star discrepancy3 of the point set
{xi}Mi=1.

QMC is useful thanks to the existence of some low-
discrepancy sequences. One notable example is the Halton
sequence h1,h2, . . . which satisfies

D∗({hi}Mi=1) ≤ CH(d)(logM)d/M (5)

for some CH(d) > 0 that depends on d, and all M ≥ 2
(Halton, 1964; Atanassov, 2004). This is a substantial im-
provement from random sampling, whose star discrepancy
is of order OP (M

−1/2). It may be seen from Figure 1
that points from Halton sequence appear “more uniform”
than i.i.d. points from the uniform distribution. In practice,
Halton sequence can be easily generated from an elegant
formula and is directly accessible in major computational
softwares. Compared with other QMC sequences, Halton
sequence has a distinct feature: it avoids the boundary of
the unit cube (Owen, 2006). This characteristic makes it
particularly useful in approximating a class of shift-invariant
kernels, including the Gaussian kernel and Cauchy kernel
(see Section 2.1 for details). Hence, the Halton sequence
will be the primary choice of QMC sequence in this paper.

Other low-discrepancy QMC sequences include Sobol’ se-
quence (Sobol’, 1967) and Faure sequence (Faure, 1982),
which were combined by Niederreiter (1987) to formulate
the concepts of digital nets and sequences. Note that digital
sequences also satisfy (5), but with CH(d) replaced by a dif-
ferent constant (Niederreiter, 1992, Theorem 4.17). The lead

2In one-dimension, Hardy-Krause variation coincides with the
usual total variation. In general dimensions, VHK(f ; [0, 1]

d) =∑
I⊂{1,...,d},I ̸=∅

∫
[0,1]|I|

∣∣∣ ∂f
∂uI

∣∣
uj=1,j /∈I

∣∣∣duI , provided that f has
all the related derivatives. For definition in general situation, see
e.g., Niederreiter (1992); Owen (2005).

3The star discrepancy of the point set {xi}Mi=1 is defined as

D∗({xi}Mi=1) := supt∈[0,1]d

∣∣∣Vol(Jt)− |{i∈{1,...,M}:xi∈Jt}|
M

∣∣∣,
where Jt := [0, t1) × [0, t2) × · · · × [0, td) and Vol(Jt) :=∏d

i=1 ti is the volume.

2



QMC Features

constant on the dominating term (logM)d/M (for digital
sequences) used to be much smaller than that for the Halton
sequences for large d, but that was changed by Atanassov
(2004) who considerably sharpened the bounds for Hal-
ton squence (the constant was shown to converge to 0 as
d→ ∞). It is conjectured that the O((logM)d/M) rate for
star discrepancy decay is optimal for infinite sequences, and
Schmidt (1972) proved this in the case d = 1. For d > 1,
the question remains open; a lower bound (logM)

d
2 /M

was provided by Roth (1954), which was slightly improved
by Baker (1999).

When applying QMC to kernel approximation, a negative
result was found by Avron et al. (2016) that the integral
representation (2) from Bochner’s theorem, when written as
an integral over the unit cube, has infinite variation. Con-
sequently, the Koksma-Hlawka inequality (Theorem 1.1)
cannot provide a meaningful bound.

To overcome this difficulty, we show that for a class of shift
invariant kernels including the Gaussian kernel, even though
the integrand has infinite variation, the singularity is mild, so
the approximation error can still be well controlled. Our re-
sult relies on the geometry of Halton sequence that it avoids
the boundary of the unit cube (Owen, 2006). In addition to
shift invariant kernels, We also provide examples of non-
shift invariant kernels which have integral representation (1)
with the integrand having bounded variation. Our results
continue to hold true for such non-shift invariant kernels.

1.2. Related Literature

Kernel methods provide a mathematically rigorous non-
parametric modeling approach that finds applications across
a broad spectrum of machine learning (Fukumizu et al.,
2004; Belkin et al., 2006; Fukumizu et al., 2009; Sriperum-
budur et al., 2011; Gretton et al., 2012; Fukumizu et al.,
2013; Klebanov et al., 2020; Huang et al., 2022). Despite
being remarkably effective in small and medium size prob-
lems with certain optimal statistical results (Kimeldorf &
Wahba, 1970; Schölkopf et al., 2001; Caponnetto & De Vito,
2007), exact kernel methods become infeasible for large
scale problems due to its time and memory requirements
(Rudi & Rosasco, 2017). To overcome this difficulty, vari-
ous approximation techniques have been proposed (Smola,
2000; Williams & Seeger, 2000; Rahimi & Recht, 2007).
One notable approach is random features (RF) (Rahimi &
Recht, 2007) which have been well-understood theoretically
(Sutherland & Schneider, 2015; Sriperumbudur & Szabó,
2015; Choromanski et al., 2018; Jacot et al., 2020; Lanthaler
& Nelsen, 2023). In particular, RF demonstrates nice gener-
alization properties, achieving the same rate of prediction
accuracy as the exact kernel ridge regression estimator but
at a much lower computational cost (Rudi & Rosasco, 2017;
Li et al., 2019; Mei et al., 2022; Liu et al., 2022). In this

paper, we show that with QMC, the computational cost can
be further reduced.

QMC is effective for numerical integration, which was born
in the 1950s and 1960s (Korobov, 1963) from the success-
ful attempt to achieve a faster convergence rate than MC.
Contemporary reviews of QMC can be found in the books
of Niederreiter (1992); Leobacher & Pillichshammer (2014)
and articles of Owen (2005); Dick et al. (2013).

Efforts have been made to employ QMC to random fea-
tures: Yang et al. (2014) and Avron et al. (2016) consid-
ered shift-invariant kernels, and found that Koksma-Hlawka
inequality cannot be applied due to the integrand having
unbounded variation; they instead proposed a framework
based on a modified discrepancy measure called box dis-
crepancy. QMC points on the high-dimensional sphere were
adopted in Lyu (2017), which can be used to approximate
shift and rotation invariant kernels and the arc-cosine ker-
nels. Applying QMC to the graph kernels and graph random
features was considered in Reid et al. (2023). Nevertheless,
none of the above proposals provides a deterministic error
bound of the kernel approximation in finite samples, nor do
they show whether QMC could attain comparable perfor-
mance as the exact kernel computation in learning problems,
while reducing computational costs. We aim to answer these
questions in this paper.

1.3. Organization

In Section 2, we describe how QMC can be used to ap-
proximate a kernel function, and provide a deterministic
approximation error bound (of the same order as that in the
QMC literature) in finite samples. In Section 3, we show
that the same error rate in kernel ridge regression can be
achieved with much lower computational costs (compared
with the exact computation and MC based random features).
Simulation evidence will be given in Section 4. Proofs of
our results, further discussions, additional simulation studies
and real data examples are provided in Appendices A-D.

2. Approximate Kernel Functions with QMC
In this section, we show how QMC can be used to ap-
proximate kernel functions, and provide deterministic error
bounds for the approximation. In Section 2.1, we consider
shift invariant kernels; in Section 2.2, we consider non-shift
invariant kernels. Approximation error bounds for the as-
sociated integral operator and the spectrum of the kernel
matrix will be given in Section 2.3.

2.1. Shift Invariant Kernels

Recall that we are considering kernels on a space X ⊂ Rd.
We assume that the µ from Bochner’s theorem (2) is a
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probability measure with independent components4, with
the i-th component having cumulative distribution function
Φi(t) (i = 1, 2, . . . , d). Let Φ(t) := (Φ1(t), . . . ,Φd(t))

⊤,
and Φ−1(t) := (Φ−1

1 (t), . . . ,Φ−1
d (t))⊤, where Φ−1

i (t) de-
notes the inverse function of the monotone function Φi(t).
By a change of variable, (2) reduces to

K(x,x′) = h(x− x′) =∫
[0,1]d+1

2 cos
(
x⊤Φ−1(t) + 2πb

)
cos

(
(x′)⊤Φ−1(t) + 2πb

)
dbdt.

(6)
Therefore, the integral representation (1) holds with
ω = (t, b) following Unif[0, 1]d+1 and ψ(x, ω) =√
2 cos

(
x⊤Φ−1(t) + 2πb

)
. We propose to set ω1, . . . , ωM

as the first M points in the Halton sequence, and define the
approximate kernel function KM (·, ·) as in (3).

As t approaches the boundary of [0, 1]d, the integrand in
(6) oscillates back and forth and has unbounded variation.
We therefore need a condition to characterize the situation
where the singularity is mild so that K can still be well-
approximated by KM :
QMC Condition 1. K(·, ·) is shift invariant with Φi defined
as above (i = 1, . . . , d) satisfying d

dtΦ
−1
i (t) ≤ Ci

min(t,1−t)

for some constant Ci > 0 and all t ∈ (0, 1). X is compact.

QMC Condition 1 helps control the derivatives of the inte-
grand in (6) as t approaches the boundary of [0, 1]d. Two
important kernels that satisfy QMC Condition 1 are given
by the proposition below: (see Appendix A.1 for a proof)
Proposition 2.1. The Gaussian kernel and Cauchy kernel
over a compact domain satisfy QMC Condition 1.

Gaussian kernel and Cauchy kernel over a compact domain
are examples of universal kernels (Micchelli et al., 2006),
i.e., the function class associated with the kernel can approx-
imate (uniformly) any continuous function arbitrarily well.
This property makes them particularly useful in machine
learning applications such as kernel ridge regression, where
an unknown regression function needs to be estimated from
data. Laplacian kernel, although being universal, unfortu-
nately does not satisfy QMC Condition 1. The following
theorem (proved in Appendix B.1) shows that if QMC Con-
dition 1 is satisfied, then the approximation error of KM to
K is of order 1/M , up to logarithmic factors.
Theorem 2.2. Suppose K(·, ·) satisfies QMC Condition 1.
Then there exists a constant C > 0 (depending on X ⊂ Rd

and K) such that for any x,x′ ∈ X and M ≥ 2,

|KM (x,x′)−K(x,x′)| ≤ C(logM)2d+1

M
.

This error rate is significantly better than that of the MC-

4This assumption has been adopted in previous works (e.g.,
Avron et al., 2016) and is satisfied for many common kernels.

based random features, which is of order OP (1/
√
M).

Remark 2.3 (On the proof of Theorem 2.2). The general
idea is to study the singularity of the integrand (6) near the
boundary of the unit cube, which will be mild if QMC Con-
dition 1 holds true. The classical Koksma-Hlawka inequal-
ity (Theorem 1.1) can then be applied to a large sub-cube
within the unit cube. The fact that Halton sequence avoids
the boundary of the unit cube (Owen, 2006) is useful, which
ensures that the first M points of the Halton sequence do
not lie too close to the boundary.
Remark 2.4 (On the constant C). The exact expression
of the error bound can be found in our proof (in Ap-
pendix B.1). In particular, the constant multiplied to the
dominating term (logM)2d+1

M is CH(d + 1)22d+1B, where
CH(d + 1) is the constant from the Halton sequence (5),
and B = 4πmaxu⊂{1,...,d}

{
max

|u|
x,y∈X {∥x − y∥∞, ∥x +

y∥∞}
∏

i∈u Ci

}
, with the convention that (max{·})0 = 1.

2.2. Non-Shift Invariant Kernels

For non-shift invariant kernels, Bochner’s theorem is no
longer applicable. Consequently, whether K(·, ·) possesses
an integration representation in the form of (1) needs to be
considered on a case-by-case basis. In this section, we will
provide a collection of non-shift invariant kernels which
have representation (1), and QMC can be applied.

Motivated by the Koksma-Hlawka inequality (Theorem 1.1),
we introduce the following general condition:
QMC Condition 2. Suppose there exists a function ψ :
X × [0, 1]p → R such that

K(x,x′) =

∫
[0,1]p

ψ(x, ω)ψ(x′, ω)dω,

and for any x,x′ ∈ X , g(ω) = ψ(x, ω)ψ(x′, ω) is of
bounded Hardy-Krause variation VHK(g) ≤ C0, for some
C0 > 0.

Note that if all derivatives of g are well-bounded, then
VHK(g) can be bounded; see footnote 2. When QMC Con-
dition 2 is satisfied, we set ω1, . . . , ωM as the first M points
in the Halton sequence, and define the approximate ker-
nel function KM (·, ·) as in (3). A direct application of the
Koksma-Hlawka inequality (Theorem 1.1) yields the fol-
lowing error bound:
Theorem 2.5. Suppose K(·, ·) satisfies QMC Condition 2.
Let CH(p) be the Halton sequence constant as in (5). For
any x, x′ ∈ X and M ≥ 2, we have

|KM (x,x′)−K(x,x′)| ≤ CH(p) · (logM)p

M
.

One may notice that the Halton sequence is not essential
here for Theorem 2.5; other QMC sequences can also be
used, though the constant in front of (logM)p/M may vary.
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In the following, we present some kernels for which QMC
Condition 2 is satisfied, and thereby Theorem 2.5 is valid.
Example 1 (Min kernel). For u, v ∈ [0, 1],

K(u, v) = min{u, v} =

∫ 1

0

1t<u1t<vdt.

1t<u1t<v = 1t<min{u,v} is of bounded variation 1. Min
kernel is the covariance kernel of the Brownian motion, and
is also the distance kernel in one-dimension — a famous
example of a characteristic, but not universal kernel (Sejdi-
novic et al., 2013). High-dimensional min kernel is also
available, by taking the product of univariate min kernels.
Example 2 (Brownian bridge). For u, v ∈ [0, 1],

K(u, v) = min{u, v}−uv =

∫ 1

0

(1t<u−u)(1t<v−v)dt.

The integrand (1t<u − u)(1t<v − v) has variation bounded
by 3. The Brownian bridge kernel has been used to analyze
average-case errors in numerical problems (Ritter, 2000).
Example 3 (Iterative kernel). Suppose K1(·, ·) is a continu-
ous kernel on [0, 1]d, and µ is a positive integrable function
on [0, 1]d. The iterative kernel (Courant & Hilbert, 1953,
Section III.5.3) of K1 is defined as

K2(x, z) :=

∫
[0,1]d

K1(x, t)K1(z, t)µ(t)dt.

If the Hardy-Krause variation of the integrand fx,z(t) :=
K1(x, t)K1(z, t)µ(t) is bounded by some C0 > 0 for all
x, z ∈ [0, 1]d, then QMC Condition 2 is satisfied. A suffi-
cient condition for the existence of such aC0 is that there ex-
ists a constant C̃0 > 0 such that for all u ⊂ {1, . . . , d} and
x, z, t ∈ [0, 1]d, |(

∏
i∈u

∂
∂ti

)fx,z(t)| ≤ C̃0. If K1 has Mer-
cer series (w.r.t. µ): K1(x, z) =

∑∞
i=1 λiei(x)ei(z), then it

can be shown that K2(x, z) =
∑∞

i=1 λ
2
i ei(x)ei(z) (which

is smoother than the original K1). See Appendix A.2.1 for
more detailed discussions.
Example 4 (Natural cubic spline). For u, v ∈ [0, 1],

K(u, v) =

∫ 1

0

(u ∧ t− ut)(v ∧ t− vt)dt

=


1

6
u(1− v)(1− u2 − (1− v)2), 0 ≤ u ≤ v ≤ 1

1

6
v(1− u)(1− v2 − (1− u)2), 0 ≤ v ≤ u ≤ 1

.

The integrand above has variation bounded by 4. For any
fixed value of v, it is a natural cubic spline that interpolates
zero at u = 0 and u = 1. This kernel is also the iterative
kernel of Brownian bridge with µ(t) ≡ 1.
Example 5 (Product kernel). Suppose for i = 1, . . . , d,
Ki(u, v) =

∫ 1

0
ψi(u, t)ψi(v, t)dt satisfies QMC Condi-

tion 2 with |ψi(u, t)| ≤ κi for some κi and all u, t. Then

K(u,v) =

d∏
i=1

Ki(ui, vi) =

∫
[0,1]d

ψ(u, t)ψ(v, t)dt,

where ψ(x, t) =
∏d

i=1 ψi(xi, ti), satisfies QMC Condi-
tion 2. See Appendix A.2.2 for the detailed proof.

Example 5 allows us to construct high-dimensional kernels
that satisfy QMC Condition 2 with Examples 1-4.

2.3. Approximate Integral Operator and Kernel Matrix

When the kernel function K(·, ·) is well approximated by
KM (·, ·), the associated integral operator and the kernel
matrix can also be well approximated. Recall the integral
operator L defined in (4). Define its approximation LM :
L2(PX) → L2(PX) as

LMf(x) := EX∼PX
[KM (X,x)f(X)] .

The following result (proved in Appendix B.2) shows that
the error in estimating the kernel function propagates to that
in estimating the integral operator:

Proposition 2.6. Suppose two kernels K and KM satisfy

sup
x,x′∈X

|K(x,x′)−KM (x,x′)| ≤ C · (logM)a

M

for some positive constants C and a. Then we have

∥LM − L∥ ≤ C · (logM)a

M
,

where ∥ · ∥ denotes the operator norm.

Proposition 2.6 will be useful in showing the superior perfor-
mance of QMC features (compared with MC based random
features) in kernel ridge regression (see Section 3).

Another advantage of using QMC features concerns the
spectral approximation of the kernel matrix:

Proposition 2.7 (Spectrum approximation). Suppose two
kernels K and KM satisfy

sup
x,x′∈X

|K(x,x′)−KM (x,x′)| ≤ C · (logM)a

M

for some constants C, a > 0. Let K := [K(xi,xj)](i,j) ∈
Rn×n, KM := [KM (xi,xj)](i,j) ∈ Rn×n, and λ,∆ > 0.
When M

(logM)a ≥ Cn
∆λ , we have

(1−∆)(K+λIn) ⪯ KM+λIn ⪯ (1+∆)(K+λIn). (7)

Compare with (MC based) random features that require M
to be of order n

∆2λ to achieve a ∆-spectral approximation
(7) with high probability (Avron et al., 2017, Theorem 7),
QMC features only require M of order n

∆λ (ignoring loga-
rithmic factors). Moreover, (7) holds true with probability 1.
Such a spectral bound is useful in analyzing the statistical
performance of some downstream learning tasks (see e.g.,
Musco & Musco, 2017, Appendix E).
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3. Application in Kernel Ridge Regression
In this section, we will show how QMC features introduced
in Section 2 can be used to further accelerate the computa-
tion of kernel ridge regression (compared with MC random
features), while still maintaining the same statistical accu-
racy. We will first give a brief review on the kernel ridge
regression with random features, and then provide the theo-
retical results for our method.

3.1. Brief Review on Kernel Ridge and Random Feature

Brief Review on Kernel Ridge Regression. Consider the
usual setting where we have n i.i.d. samples (xi, yi)

n
i=1

drawn from a joint distribution PXY on X × R. The goal
is to learn the regression function f⋆(X) = E[Y |X] which
minimizes the expected risk E(f) = E[Y − f(X)]2. Given
a kernel K, denote the reproducing kernel Hilbert space
associated with K by H. The kernel ridge regression (KRR)
defines a penalized estimator for the above learning problem

f̂λ := argmin
f∈H

{
1

n

n∑
i=1

(yi − f(xi))
2 + λ∥f∥2H

}
(8)

for some λ > 0, and has the explicit solution

f̂λ(x) =

n∑
i=1

α̂iK(xi,x), α̂αα = (K+ nλIn)
−1y (9)

where K = [K(xi,xj)](i,j) ∈ Rn×n, In is the n× n iden-
tity matrix, y = (y1, . . . , yn)

⊤, and α̂αα = (α̂1, . . . , α̂n)
⊤.

Statistically, the KRR estimator (8) is minimax rate optimal
for the sqaure loss E(·) over H (Schölkopf & Smola, 2002;
Caponnetto & De Vito, 2007). Computationally, the time
and space complexities of KRR are of order O(n3) and
O(n2), respectively, which could be costly when n is large.

Brief Review on KRR with Random Features. Recall from
Section 1 that when the kernel function K has an integral
representation K(x,x′) =

∫
Ω
ψ(x, ω)ψ(x′, ω)dπ(ω) as in

(1), one could use a Monte Carlo integration KM (x,x′) =

ϕϕϕM (x)⊤ϕϕϕM (x′) = 1
M

∑M
i=1 ψ(x, ωi)ψ(x

′, ωi) as in (3) to
approximate K, where the ωi’s are i.i.d. sampled from π,
and ϕϕϕM (x) := M−1/2(ψ(x, ω1), . . . , ψ(x, ωM ))⊤. Sub-
stituting KM = [KM (xi,xj)](i,j) for K in the KRR esti-
mator (9) gives the random feature kernel ridge regression
(RF-KRR) estimator (Rudi & Rosasco, 2017; Avron et al.,
2017). The time and space complexities of RF-KRR are
O(nM2+M3) andO(nM), respectively, which indicates a
reduction in computational cost compared to (9) if M ≪ n.
Furthermore, this computational gain does not bring an ad-
ditional cost in statistical error: Rudi & Rosasco (2017)
shows that RF-KRR with M ≍ n

2r
2r+1 (up to logarithmic

factors) guarantees the same error rate as the exact KRR,
where r ∈ [ 12 , 1] is a measure of complexity to be rigorously
defined in Section 3.3 below.

3.2. Kernel Ridge Regression with QMC Features

The nice properties of RF-KRR rely on the fact that KM

approximates K with an OP (M
−1/2) error rate when sam-

pling ψ(x, ωi) with i.i.d. ωi. Enlightened by the even bet-
ter error O(M−1) QMC approximation (up to logarithmic
factors) of KM to K as shown in Theorems 2.2 and 2.5,
we naturally consider the quasi-Monte Carlo feature ker-
nel ridge regression (QMCF-KRR) estimator by employing
KM in lieu of K in the KRR estimator (9), where KM is
the QMC approximation to K. Through algebraic transfor-
mations (Bach, 2017), we have the explicit formula of the
QMCF-KRR estimator given by

f̂λ,M (x) = ϕϕϕM (x)⊤
(
Φ̂ΦΦ

⊤
MΦ̂ΦΦM + nλIM

)−1

Φ̂ΦΦ
⊤
My (10)

where Φ̂ΦΦM := (ϕϕϕM (x1), . . . ,ϕϕϕM (xn))
⊤ ∈ Rn×M , with

ϕϕϕM (x) still defined as M−1/2(ψ(x, ω1), . . . , ψ(x, ωM ))⊤

but ωi’s are now generated from a QMC sequence.

From (10) it is clear that, the time and space complexities
of QMCF-KRR, like those of the RF-KRR estimator, are
O(nM2 +M3) and O(nM), respectively. It remains to
answer the question: how large should M be to guarantee
good statistical accuracy? In the next subsection, we show
that to achieve the same error rate as RF-KRR and the
exact KRR, QMCF-KRR requires only M ≍ n

1
2r+1 (up

to logarithmic factors) number of random features, which
further reduces the computational cost compared with RF-
KRR while maintaining the same statistical accuracy.

3.3. Theoretical Results for QMCF-KRR

Under the settings of Kernel Ridge Regression in subsection
3.1, for f̂λ,M as defined by (10), we will establish the sta-
tistical excess error rate in terms of E(f) = E[Y − f(X)]2

over the class H. To formally state our result, we postulate
the following regularity conditions:

KRR Condition 1. (i) K(x,x′) is continuous and has the
integral representation (1), in which |ψ(x, ω)| ≤ κ for some
constant κ > 0. Assume X has full support on X , and
ω 7→ ψ(·, ω), as a map from Ω to L2(PX), is continuous.

(ii) π in (1) is the uniform distribution over [0, 1]p for some
p ≥ 1, and quasi-Monte Carlo method is used for approxi-
mating the kernel as in (3), from which we have

sup
x,x′∈X

|K(x,x′)−KM (x,x′)| ≤ C · log
aM

M

for some positive constants C and a (see Theorems 2.2, 2.5).

KRR Condition 2. The distribution of Y satisfies a Bern-
stein condition: there exist positive constants σ and D such
that E[|Y |k | X] ≤ 1

2k!σ
2Dk−2 for all k ≥ 2.

KRR Condition 3. There exists r ∈ [1/2, 1] such that
fH = Lrg for some g ∈ L2(PX), where fH solves

6
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minf∈H E(f), and L is the integral operator defined in (4).
Let R := max{∥g∥L2(PX), 1} be a positive constant.
Remark 3.1 (On the conditions). In KRR Condition 1(i),
the continuity of K and the full support of X are stan-
dard assumptions for a Mercer kernel, which implies that
H is essentially ranL1/2 (see Theorem A.7 in the Ap-
pendix). The continuity of ω 7→ ψ(·, ω) ∈ L2(PX) is
weaker than the continuity of ψ(x, ω) (which was assumed
in Rudi & Rosasco 2017); it includes min kernel where
ψ(x, ω) = 1ω<x is not continuous in the usual sense. For
the boundedness assumption of ψ, we note that all examples
in Section 2 have bounded feature functions. KRR Condi-
tion 1(ii), as shown in Theorems 2.2 and 2.5, is satisfied
under the case of either QMC Condition 1 or 2. KRR Con-
dition 2 is a moderate and usual condition on the tail of
the response distribution, which holds when the conditional
distribution of Y is sub-exponential. KRR Condition 3 is
widely-used in the kernel machine literature (Smale & Zhou,
2003; Caponnetto & De Vito, 2007), whose implications
manifest in two folds. First, it assumes the existence of
a minimizer fH of the loss E(·) in the class H. Second,
it further assumes that fH lies in the range of Lr. Here
r ∈ [1/2, 1] is interpreted as a measure of complexity of fH,
and can be intuitively understood as a smoothness parame-
ter: the larger r is, the smoother fH is, as L is a convolution.
In particular, r = 1/2 represents the basic case, equivalent
to assuming only that fH exists in H (see Theorem A.7 in
the Appendix).

Thoerem 3.2 below (proved in Appendix C) establishes the
statistical error rate of the proposed QMCF-KRR estimator
(10).
Theorem 3.2. Assume KRR Conditions 1, 2, 3. Let λ =
C̃n−

1
2r+1 ∈ (0, e−1], and f̂λ,M be defined as in (10). Then

M = loga(1/λ)
λ = n

1
2r+1 loga(n

1
2r+1 /C̃)/C̃ is enough to

guarantee that, for any δ ∈ (0, 1], there exists n0 (of order
(log 1

δ )
1+ 1

2r ), such that when n ≥ n0, with probability at
least 1− δ, the excess risk

E(f̂λ,M )− inf
f∈H

E(f) ≤ C1n
− 2r

2r+1 log2
6

δ
, (11)

where C1 is a constant depending only on κ, σ,D,R, r, C̃,
C and a (see Appendix C.2 for the exact expression of C1).

Remark 3.3 (Implications of Theorem 3.2). Our error
bound (11) achieves the same error rate as in exact
KRR (Caponnetto & De Vito, 2007, Theorem 1) and
RF-KRR (Rudi & Rosasco, 2017, Theorem 2). How-
ever, our QMC approach is computationally more effi-
cient in smoother or less complexity cases: RF-KRR
(Rudi & Rosasco, 2017, Theorem 2) requires M ≍
n

2r
2r+1 log 108κ2n

δ many random features to achieve an ex-
cess risk of C̃1n

− 2r
2r+1 log2 18

δ , while our QMCF-KRR
method needs only M = n

1
2r+1 loga(n

1
2r+1 /C̃)/C̃ many
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Figure 2. Min kernel and Gaussian kernel over [0, 1]2, and their
approximated versions using QMC and MC based random features.

features. Recall that r ∈ [1/2, 1]. The improvement in
the required number of features is reflected in two aspects.
Firstly, when r is greater than 1/2, QMCF-KRR allows for
a substantial reduction in the rate of M , which indicates a
sharp diminution in computational costs. For the ease of
understanding, when ignoring the constants and logarith-
mic terms, QMCF-KRR requires M ≍ n

1
2r+1 , which is

of smaller order than the n
2r

2r+1 number of features needed
by RF-KRR to achieve the same statistical error rate. Sec-
ondly, as QMC generates a non-random sequence of ωi’s,
the choice of M in QMCF-KRR does not depend on the
“small probability” δ (as opposed to RF-KRR), which fa-
cilitates a more straightforward selection of M in practical
applications with theoretical guarantees.

4. Simulations
In this section, we demonstrate the usefulness of QMC
features in kernel approximation and kernel ridge regres-
sion through simulations. Additional simulation studies and
real data examples will be referred to Appendix D. Hal-
ton sequence implemented in the SciPy package in Python
(Virtanen et al., 2020) is used.

4.1. Visualization of Kernel Approximation

We consider the (non-shift invariant) min kernel min{x, x′}
and the (shift invariant) Gaussian kernel exp(−|x − x′|2).
For the min kernel, we use the integral representation as
in Example 1. For Gaussian kernel, we use the integral
representation (6) from Bochner’s theorem. The values
of the kernel functions over [0, 1]2 are shown in the left
column of Figure 2, with the approximated kernels from
QMC and MC shown in the middle column and the right
column, respectively. Here the MC plot is produced using

7
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one realization of M i.i.d. random features. Figure 2 is in
grayscale: brighter pixels correspond to larger values. It
can be seen that with M = 25 features, QMC method has
already provided a reasonably good approximation to the
true kernel function. Whereas for MC, the same number of
random features are clearly not enough to well approximate
the kernel.

4.2. Simulations on Kernel Ridge Regression

In this subsection, we compare the performances of RF-
KRR and QMCF-KRR. It has been shown in Theorem 3.2
that the QMC approach is guaranteed to be more efficient
than the MC approach in smoother cases, where r ∈ [1/2, 1]
is large. Therefore, we will present simulations for cases
where r = 1 to support our findings here. In fact, we observe
that even in cases where r = 1/2, the QMC approach can
still have superior performance compared with MC. These
additional simulations are given in Appendix D.1.

The training and test data are generated from Y = f(X) +
ε, where f is the regression function, X ∼ Unif[0, 1]d,
and ε ∼ N(0, 1). We consider two choices of kernels: (i)
the min kernel K(x,x′) =

∏d
i=1 min(xi, x

′
i), and (ii) the

Gaussian kernel K(x,x′) = exp(− 1
2σ2 ∥x− x′∥22), with

the bandwidth σ set as the median of ∥X−X′∥ (computed
numerically), where X,X′ i.i.d. ∼ Unif[0, 1]d.

By definition, a function in ranLr for r = 1 has
the form f̃(x) =

∫
K(x, z)g(z)dPX(z) for some g ∈

L2(PX). For the min kernel, we set g(z) = (
∏d

i=1 zi)
1
d

as the geometric mean function, which leads to f̃(x) =

( d
d+1 )

d
∏d

j=1

(
xj − d

2d+1x
2+ 1

d
j

)
, and for the Gaussian

kernel, we set g(z) = exp( 1
2σ2 ∥z∥22), which yields

f̃(x) = σ2d exp(− 1
2σ2 ∥x∥22)

∏d
j=1

exp(xj/σ
2)−1

xj
. To ap-

proximately control the signal-noise-ratio, we set the regres-
sion function f(x) = Cf̃ · f̃(x) for some constant Cf̃ such
that Ef(X) = 5. The kernel ridge regularization parameter
is set as λ = 0.25n−

1
2r+1 .

In Figures 3 and 4, we plot the test mean square error (MSE)
against the number of random features, for exact KRR, RF-
KRR and QMCF-KRR. For each combination of kernel and
d, 106 test data points are first generated and held fixed. We
consider 1000 realizations of training samples of size 104.
For each of the realization, we fit a kernel ridge regression
and compute its test error (i.e., MSE on the test set). The
solid lines in Figures 3, 4 are obtained by averaging over
the 1000 realizations. We also provide confidence bands
using the 25% and 75% error quantiles from the 1000 real-
izations. For the MC method, the randomness comes from
re-generating the training set and the MC random features.
Whereas for the QMC method, it only comes from the train-
ing set re-generation as the QMC features are deterministic.
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Figure 3. Gaussian Kernel (r = 1): the test MSE against the
number of random features for exact KRR, RF-KRR and QMCF-
KRR.
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Figure 4. Min Kernel (r = 1): the test MSE against the number of
random features, for exact KRR, RF-KRR and QMCF-KRR.

It can be seen from Figures 3 and 4 that for all combinations
of kernel and d, QMC features exhibit superior performance
in kernel ridge regression: it achieves the same generaliza-
tion error as MC random features with much fewer random
features (smaller M ), and converges to the error of the exact
KRR at a much faster rate. Note that the confidence bands
of QMC method are almost negligible, showing very stable
performance compared with the MC method, and in many
cases, their confidence bands do not intersect. Similar phe-
nomena are observed even when r = 0.5. We refer readers
to Appendix D.1 for more details.

Superior performance of QMC is also observed in real data,
where RF-KRR is often seen to have a wide confidence
band. For some real-world examples, see Appendix D.2.
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Note that the reported plots (Figures 3, 4) are for d ∈ [1, 4],
which are all low-dimensional, as we observe that QMC fea-
tures are most effective when the dimension of the ambient
space X is low, which aligns with the practical discovery
that the best use case for QMC often arises when the in-
tegrand can be well approximated by a sum of functions
involving only a small number of its input variables (Owen,
2023; Adcock & Brugiapaglia, 2022). Ongoing research
has been studying the high-dimensional situations where
QMC methods will be successful (Dick et al., 2013), with
a famous empirical finding by Paskov & Taub (1995) that
showed integrands from finance in 360 dimensions could be
well integrated by QMC. However, for the examples above,
we do not observe ideal performance of the QMC features in
high-dimensional cases where d > 10 (see Appendix D.3).
In practice, a dimension reduction prior to applying the
methodology may be helpful. Exploring the effectiveness
of QMC features in high dimensions could be an interesting
research direction to pursue in the future.
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√
n) random features. In Ad-

vances in Neural Information Processing Systems, vol-
ume 31, 2018.

Uzilov, A. V., Keegan, J. M., and Mathews, D. H. De-
tection of non-coding RNAs on the basis of predicted
secondary structure formation free energy change. BMC
Bioinformatics, 7:1–30, 2006.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
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A. Some Further Discussions
In this section, we elaborate on some parts of the main text that were initially deferred so as not to impede the flow of the
paper.

A.1. Kernels Satisfying QMC Condition 1

Here we provide a proof for Proposition 2.1 (i.e., Gaussian kernel and Cauchy kernel over a compact domain satisfy QMC
Condition 1).

A.1.1. GAUSSIAN KERNEL

To show that Gaussian kernel over a compact domain satisfies QMC Condition 1, we first show the following lemma:

Lemma A.1. If Φ is the distribution function of the standard normal distribution, then there exists C > 0 such that

d

dt
Φ−1(t) ≤ Cmin(t, 1− t)−1, for all t ∈ (0, 1). (A.1)

Proof. Note that d
dtΦ

−1(t) = 1
ϕ(Φ−1(t)) =

1
ϕ(Φ−1(1−t)) , where ϕ is the density function of the standard normal distribution.

Therefore, by the symmetry about t = 1/2, we only need to consider t ∈ (0, 1/2] in (A.1), which reduces to

1

ϕ(Φ−1(t))
≤ Ct−1.

Let x = Φ−1(t) ∈ (−∞, 0]. The above inequality is equivalent to

Φ(x) ≤ Cϕ(x).

If x ≤ −1, then

Φ(x)

ϕ(x)
=

∫ x

−∞ ϕ(u)du

ϕ(x)
<

1√
2π

1
|x|e

− x2

2

ϕ(x)
=

1

|x|
≤ 1.

If −1 < x ≤ 0, then
Φ(x)

ϕ(x)
≤ Φ(0)

ϕ(−1)
.

Hence, by taking C = max
(
1, Φ(0)

ϕ(−1)

)
, the inequality (A.1) holds.

For a Gaussian kernel with a general bandwidth, the cumulative distribution function Φi(t) (as defined in QMC Condition 1)
is given by Φi(t) = Φ(t/σ) for some σ > 0. Therefore, Φ−1

i (t) = σΦ−1(t). By Lemma A.1, d
dtΦ

−1
i (t) ≤ Ci

min(t,1−t) for
all t ∈ (0, 1), where Ci = σC.

A.1.2. CAUCHY KERNEL

For Cauchy kernel K(x,x′) =
∏d

i=1
1

1+λ2(xi−x′
i)

2 , Φi(t) (as defined in QMC Condition 1) is the cumulative distribution

function of the symmetrized exponential distribution (a.k.a. Laplace distribution) with Lebesgue density ϕi(x) = λ
2 e

−λ|x|.
Therefore, Φi(x) =

1
2e

λx1x≤0 +
(
1− 1

2e
−λx

)
1x>0, and Φ−1

i (t) = λ−1(log(2t)1t≤1/2 − log(2(1− t))1t≥1/2). By taking
the derivative w.r.t. t, we have

d

dt
Φ−1

i (t) = λ−1

(
1

t
1t≤1/2 +

1

1− t
1t≥1/2

)
≤ 2λ−1 min(t, 1− t)−1.

Therefore, Cauchy kernel over a compact domain satisfies QMC Condition 1.
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A.2. Kernels Satisfying QMC Condition 2

A.2.1. ITERATIVE KERNEL

Suppose K1(·, ·) is a continuous kernel on [0, 1]d, and µ is a positive integrable function on [0, 1]d. The iterative kernel
(Courant & Hilbert, 1953, Section III.5.3) of K1 is defined as

K2(x, z) :=

∫
[0,1]d

K1(x, t)K1(z, t)µ(t)dt.

QMC Condition 2 holds if the Hardy-Krause variation of fx,z(t) := K1(x, t)K1(z, t)µ(t) is bounded by some C0 > 0 for
all x, z ∈ [0, 1]d. A sufficient condition for the existence of such a C0 is that there exists a constant C̃0 > 0 such that for all
u ⊂ {1, . . . , d} and x, z, t ∈ [0, 1]d, |(

∏
i∈u

∂
∂ti

)fx,z(t)| ≤ C̃0, due to the fact that (Niederreiter, 1992, Section 2.2):

VHK(f ; [0, 1]
d) =

∑
I⊂{1,...,d},I ̸=∅

∫
[0,1]|I|

∣∣∣∣∣ ∂f∂uI
∣∣∣∣
uj=1,j /∈I

∣∣∣∣∣duI .
Note that µ can be viewed as a Lebesgue density function and thus induces a strictly positive and finite Borel measure on
[0, 1]d, with the measure of a set B defined as

∫
B
µ(x)dx. Recall the integral operator L : L2(µ) → L2(µ) defined as:

Lf(x) :=

∫
[0,1]d

K1(x, t)f(t)µ(t)dt.

Mercer’s theorem (Steinwart & Scovel, 2012) implies that there exists a continuous orthonormal basis {ei} of L2(µ)
consisting of eigenfunctions of the integral operator L, with corresponding nonnegative eigenvalues {λi} satisfying∑

i λi < +∞. Moreover,
K1(x,y) =

∑
i

λiei(x)ei(y),

where the convergence is absolute and uniform.

Observe that

K2(x, z) =

∫
[0,1]d

K1(x, t)K1(z, t)µ(t)dt =

∫
[0,1]d

K1(x, t)
∑
i

λiei(t)ei(z)µ(t)dt.

Since supx,t∈[0,1]d |K1(x, t)| <∞ by the continuity of K1, and the convergence of Mercer’s series is absolute and uniform,
we can exchange the summation and integration to obtain

K2(x, z) =
∑
i

∫
[0,1]d

K1(x, t)λiei(t)ei(z)µ(t)dt

=
∑
i

λiei(z)

∫
[0,1]d

K1(x, t)ei(t)µ(t)dt

=
∑
i

λiei(z)Lei(x)

=
∑
i

λ2i ei(z)ei(x).

We can see that the integral operators of K1 and K2 share the same set of eigenfunctions, while the eigenvalues of K2 (i.e.,
{λ2i }) decay faster than those of K1 (i.e., {λi}).

A.2.2. PRODUCT KERNEL

Here we give a proof for Example 5 in Section 2.2: if for i = 1, . . . , d, Ki(u, v) =
∫ 1

0
ψi(u, t)ψi(v, t)dt satisfies QMC

Condition 2 and |ψi(u, t)| ≤ κi for some κi and all u, t, then

K(u,v) :=

d∏
i=1

Ki(ui, vi) =

∫
[0,1]d

ψ(u, t)ψ(v, t)dt,
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where ψ(x, t) =
∏d

i=1 ψi(xi, ti), satisfies QMC Condition 2.

Definition A.2 (Vitali Variation). Consider a rectangle [a,b] := [a1, b1]×· · ·× [ad, bd] ⊂ Rd and a function f : [a,b] → R.
Define

∆hk
(f,x) := f(x1, . . . , xk + hk, . . . , xd)− f(x1, . . . , xk, . . . , xd),

and, recursively,
∆h1h2...hk

(f,x) := ∆hk

(
∆h1...hk−1

,x
)
.

Consider the collection Πk of finite ordered families πk of points t1k < t2k < . . . < tNk+1
k ∈ [ak, bk]. Denote hik = ti+1

k − tik.
The Vitali variation of f is defined as

V[a,b](f) := sup
(π1,...,πd)∈Π1×···×Πd

N1∑
i1=1

· · ·
Nd∑

in=1

∣∣∣∆
h
i1
1 ···hid

n

(
f, (xi11 , . . . , x

id
n )
)∣∣∣ .

Note that on R1, Vitali variation coincides with the usual notion of total variation. If fi : [ai, bi] → R has total variation
V[ai,bi](fi), then from Definition A.2 we deduce that f(x) =

∏d
i=1 fi(xi) has Vitali variation V[a,b](f) =

∏d
i=1 V[ai,bi](fi).

With this fact, we can prove the following proposition.

Proposition A.3. Consider a rectangle [a,b] := [a1, b1]× · · · × [ad, bd] ⊂ Rd, and fi : [ai, bi] → R has total variation
V[ai,bi](fi) ≤ Ci and |fi(bi)| ≤ κi. Then the Hardy-Krause variation of f(x) :=

∏d
i=1 fi(xi) is bounded by C =∑

u⊂{1,...,d},u̸=∅
∏

i∈u Ci

∏
j /∈u κj .

Proof. By Owen (2005, Definition 2), the Hardy-Krause variation can be written in terms of Vitali variation:

VHK(f ; [a,b]) =
∑

u⊂{1,...,d},u ̸=∅

V[au,bu]f(xu;b−u) ≤
∑

u⊂{1,...,d},u̸=∅

∏
i∈u

Ci

∏
j /∈u

κj .

Here, −u denotes the complement {1, . . . , d}\u; xu denotes the sub-vector from x by taking all xj with j ∈ u; xu : b−u

denotes a vector y ∈ Rd with yj = xj for j ∈ u and yj = bj for j /∈ u; and when b−u is held fixed, f(xu : b−u) is a
function of xu, and this function is denoted by f(xu;b−u).

By applying Proposition A.3 to fi(t) = ψi(u, t)ψi(v, t) and [a,b] = [0, 1]d, we see that the product kernel in Example 5
satisfies QMC Condition 2.

A.3. A Review of Concepts from Functional Analysis

We start with a brief review of some notions from functional analysis that will be important for subsequent discussions; see
e.g., Rynne & Youngson (2008); Aubin (2011) for a detailed study of these concepts. By a bounded linear operator A from
a Hilbert space F to a Hilbert space G we mean a linear map A : F → G such that, for some L ≥ 0, ∥Av∥G ≤ L∥v∥F , for
all v ∈ F . The smallest L such that the previous inequality holds is called the operator norm of A, denoted by ∥A∥. There
is a unique bounded operator A∗ : G → F , called the adjoint of A, such that ⟨u,Av⟩G = ⟨A∗u, v⟩F , for all u ∈ G, v ∈ F .
Let ranA := {Av : v ∈ F} denote the range of the operator A and kerA := {v ∈ F : Av = 0} denote the kernel of A. A
bounded linear operator A from a Hilbert space H to itself is nonnegative if ⟨u,Au⟩H ≥ 0 for all u ∈ H. We say that A is
self-adjoint if A∗ = A. Suppose that H is separable with orthonormal basis {ei}i≥1. Then the trace of a non-negative A is
defined as tr(A) :=

∑
i⟨Aei, ei⟩H. For a nonnegative operator A, if tr(A) <∞, then A is said to be a trace-class operator.

A compact operator from a Hilbert space F to another Hilbert space G is a linear operator L such that the image under L
of any bounded subset of F is a relatively compact subset (has compact closure) of G. Such an operator is necessarily a
bounded operator, and thus is continuous. For a bounded linear operator L from a Hilbert space F to another Hilbert space
G, L is compact if and only if L∗ is compact, and they are also equivalent to LL∗ being compact or L∗L being compact.
For every compact self-adjoint operator L from a Hilbert space H to itself, the spectral theorem states that there exists an
orthonormal basis {xi} of H consisting of eigenvectors of L, i.e., Lxi = λixi where nonzero λi’s are at most countable
and converge to 0. If furthermore L is nonnegative, then Lr with r > 0 can be defined by Lrxi = λrixi for all i.

Let F and G be separable Hilbert spaces. Let {fi}i∈I to be an orthonormal basis for F , and let {gj}j∈J be an orthonormal
basis for G; here I and J are indexing sets being either finite or countably infinite.

15



QMC Features

Definition A.4 (Hilbert-Schmidt operators). The Hilbert-Schmidt norm of a compact operator L : G → F is defined to be

∥L∥2HS :=
∑
j∈J

∥Lgj∥2F .

The operator L is Hilbert-Schmidt when this norm is finite. The Hilbert-Schmidt operators mapping from G to F form a
Hilbert space, written HS(G,F), with inner product

⟨L,M⟩HS :=
∑
j∈J

⟨Lgj ,Mgj⟩F , (A.2)

which is independent of the orthonormal basis chosen. Here L : G → F and M : G → F are two Hilbert-Schmidt operators.

A.4. A Review of Mercer Kernels

By a kernel function K : X × X → R we mean a symmetric and nonnegative definite function such that K(x, ·) is a
(real-valued) measurable function on X , for all x ∈ X . Denote by H the reproducing kernel Hilbert space associated with
K, and ⟨·, ·⟩H the associated inner product . Then H is a Hilbert space of real-valued functions on X such that, for any
f ∈ H, we have f(x) = ⟨f,K(x, ·)⟩H, for all x ∈ X ; this is usually referred to as the reproducing property of the kernel
K. Let µ be a measure on X .

Definition A.5 (Mercer kernel). We call a kernel K : X × X → R a Mercer kernel (w.r.t. µ) if it is continuous and∫
X K(x,x)dµ(x) <∞.

If X is a separable space and K is continuous, then H is separable; see e.g., Hein & Bousquet (2004, Theorem 7), Steinwart
& Christmann (2008, Lemma 4.33). Therefore, a Mercer kernel on X ⊂ Rd automatically induces a separable RKHS.

Definition A.6 (Inclusion operator). Suppose K is a Mercer kernel. Define the inclusion operator I : H → L2(µ) by
identifying a function in H as a function in L2(µ), i.e., I(f) = f ∈ L2(µ). Note that ∥If∥2L2(µ) =

∫
X f

2(x)dµ(x) ≤∫
X ∥f∥2H · ∥K(x, ·)∥2Hdµ(x) =

∫
X K(x,x)dµ(x) · ∥f∥2H, which implies I is a bounded linear operator. Its adjoint operator

I∗ : L2(µ) → H is given by:

I∗g(x) = ⟨I∗g,K(x, ·)⟩H = ⟨g, IK(x, ·)⟩L2(µ) =

∫
X
K(x, t)g(t)dµ(t).

An important property of the inclusion operator I is that it is injective as long as µ is supported on the entire X . To see this,
suppose f ∈ H with If = 0. The continuity of K implies that f is continuous. If a continuous function has L2(µ) norm
being 0, then it must be identically 0. Hence, the injectivity is shown.

It follows from a direct verification that the integral operator defined in (4) is L = II∗. Let L1/2 be the unique self-adjoint
nonnegative square root operator of L (see Appendix A.3 for the definition). Then L1/2 induces an isometry from L2(µ) to
I(H):

Theorem A.7 (Isometry induced by L1/2). Suppose K is a Mercer kernel (w.r.t. µ) and µ has full support on X . Then L1/2

induces an isometry from (kerL1/2)⊥ to I(H), where I(H) is equipped with the inner product ⟨I(f), I(g)⟩ := ⟨f, g⟩H for
f, g ∈ H.

Proof. Let I be the inclusion operator defined above, and {en}n≥1 be an orthonormal basis of H. Observe that

tr(I∗I) =
∑
n

⟨en, I∗Ien⟩H =
∑
n

⟨Ien, Ien⟩L2(µ) =
∑
n

∫
e2n(x)dµ(x) =

∑
n

∫
⟨K(x, ·), en⟩2Hdµ(x)

=

∫
∥K(x, ·)∥2Hdµ(x) =

∫
K(x,x)dµ(x) <∞.

Hence, I∗I is trace-class and therefore a compact operator. As a result, I, I∗, II∗ are all compact operators. By the spectral
theorem of the compact self-adjoint operator on a Hilbert space, there exists an orthonormal basis {fi}i≥1 of L2(µ) which
are eigenvectors of II∗. Assume that {λi}i≥1 are the corresponding eigenvalues, i.e., II∗fi = λifi for all i. Since I is
injective (by the fact that K is a Mercer kernel and µ has full support), we have (ran I∗)⊥ = ker I = {0}. Therefore,
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the closure of ran I∗ is the entire H. Moreover, ⟨I∗fi, I∗fj⟩H = ⟨fi, II∗fj⟩L2(µ) = ⟨fi, λjfj⟩L2(µ) = 0 for i ̸= j, and
⟨I∗fi, I∗fi⟩H = ⟨fi, II∗fi⟩L2(µ) = ⟨fi, λifi⟩L2(µ) = λi. Hence, {gi = I∗fi/

√
λi : λi > 0} is an orthonormal basis of

H.

We first establish the bijection between (kerL1/2)⊥ and I(H). Any function in (kerL1/2)⊥ can be uniquely written as∑
i aifi with

∑
i a

2
i < ∞, where fi corresponds to a positive eigenvalue λi > 0. This function is mapped by L1/2 to∑

i

√
λiaifi. On the other hand, any function in H can be uniquely written as

∑
i aigi with

∑
i a

2
i < ∞, which gets

mapped to
∑

i

√
λiaifi by I . Therefore, a bijection between (kerL1/2)⊥ and H is established, by mapping

∑
i aifi to∑

i aigi. Note that for any {ai}i≥1, {bi}i≥1 satisfying
∑

i a
2
i <∞ and

∑
i b

2
i <∞, we have〈∑

i

aifi,
∑
i

bifi

〉
L2(µ)

=
∑
i

aibi =

〈∑
i

aigi,
∑
i

bigi

〉
H

.

This shows that the bijection preserves inner products, and is therefore an isometry.

A direct consequence of Theorem A.7 is the existence of an integral representation in the form of (1):

Proposition A.8 (Existence of integral representation). Suppose K is a Mercer kernel and µ has full support on X . Then
there exists ψ : X × X → R such that

K(x,x′) =

∫
X
ψ(x, ω)ψ(x′, ω)dµ(ω).

Proof. From Theorem A.7, there exists an isometry between H and a subspace of L2(µ). Suppose K(x, ·) is mapped to
ψ(x, ·) ∈ L2(µ) under this isometry. Then

K(x,x′) = ⟨K(x, ·),K(x′, ·)⟩H = ⟨ψ(x, ·), ψ(x′, ·)⟩L2(µ) =

∫
X
ψ(x, ω)ψ(x′, ω)dµ(ω).

B. Proofs of the Results in Section 2
The main idea of the proof of Theorem 2.2 is to find a low variation function f̃ that coincides with the integrand f in (6) on
a “large set”, and apply the classical Koksma-Hlawka inequality (Theorem 1.1) to f̃ . QMC Condition 1 is used to control
both VHK(f̃) and the behavior the integrand outside the “large set”. The fact that Halton sequence avoids the boundary of
the unit cube (Owen, 2006) will be useful, which allows us to claim f̃ = f on the first n points of the Halton sequence.

B.1. Proof of Theorem 2.2

We first introduce some notations: for a non-empty set u ⊂ {1, . . . , d+ 1} and a function f on Rd+1, ∂uf(x) represents
(
∏

j∈u ∂/∂xj)f(x). Let −u denote the complement {1, . . . , d+ 1}\u, and xu denote the sub-vector from x by taking all
xj with j ∈ u. For x, z ∈ [0, 1]d+1, xu : z−u denotes a vector y ∈ Rd+1 with yj = xj for j ∈ u and yj = zj for j /∈ u.
When z−u is held fixed, then f(xu : z−u) is a function of xu, and this function is denoted by f(xu; z−u).

Observe that the integrand in (6) can be re-written as

f(t, b) = cos
(
(x− x′)⊤Φ−1(t)

)
− cos

(
(x+ x′)⊤Φ−1(t) + 4πb

)
.

Let D = maxx,y∈X ,i∈{1,...,d}{|xi − yi|, |xi + yi|}. Then for any non-empty set u ⊂ {1, . . . , d+1} and (t, b) ∈ (0, 1)d+1,

|∂uf(t, b)| ≤ 4πD|u\{d+1}|
∏

i∈u\{d+1}

d

dti
Φ−1

i (ti).

Theorem 2.2 is a direct consequence of the following lemma:
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Lemma B.1. Suppose f : (0, 1)d+1 → R satisfies |∂uf(x)| ≤ B
∏

i∈u\{d+1}
1

min(xi,1−xi)
for some B > 0 and any

non-empty set u ⊂ {1, . . . , d+ 1}. Let h1, . . . ,hn be the first n points of the (d+ 1)-dimensional Halton sequence. There
exists a constant C(d) depending only on d such that for all n ≥ 2,∣∣∣∣∣

∫
[0,1]d+1

f(x)dx− 1

n

n∑
i=1

f(hi)

∣∣∣∣∣ ≤ BC(d)
(log n)2d+1

n
.

Proof of Lemma B.1. The main idea is to find a low variation function f̃n that coincides with f on a “large set” Kn, so that
the classical Koksma-Hlawka inequality (Theorem 1.1) can be applied to f̃n. Outside Kn, f can be controlled with the
given bounds on the derivatives. Note that if h1, . . . ,hn ∈ Kn, then∣∣∣∣∣
∫
[0,1]d+1

f(x)dx− 1

n

n∑
i=1

f(hi)

∣∣∣∣∣ ≤
∫
[0,1]d+1

|f(x)− f̃n(x)|dx+D∗({hi}ni=1)VHK(f̃n) +
1

n

n∑
i=1

|f̃n(hi)− fn(hi)|

=

∫
[0,1]d+1

|f(x)− f̃n(x)|dx+D∗({hi}ni=1)VHK(f̃n).

(B.1)
We will construct f̃n,Kn, and bound each term on the right-hand side above.

Let c = (1/2, . . . , 1/2)⊤ ∈ Rd+1. We can write f(x) as an integral

f(x) = f(c) +
∑
u̸=∅

∫
[cu,xu]

∂uf(zu : c−u)dzu.

For εn ∈ (0, 1/2) and Kn = [εn, 1− εn]
d+1, we use the same low variation extension f̃n of f as in Owen (2006, Equation

2.9):

f̃n(x) = f(c) +
∑
u ̸=∅

∫
[cu,xu]

1zu:c−u∈Kn∂
uf(zu : c−u)dzu.

Then f̃n coincides with f on Kn. By definition (see e.g., Owen, 2005, Definition 2), the Hardy-Krause variation of f̃n over
[0, 1]d+1 is:

VHK(f̃n; [0, 1]
d+1) =

∑
u̸=∅

V[0u,1u]f̃n(xu;1−u), (B.2)

where V[a,b](·) is the Vitali variation. Note that the Vitali variation satisfies the bound (see e.g., Owen, 2005, Proposition 13)

V[a,b](g) ≤
∫
[a,b]

|∂{1,...,p}g(x)|dx, for g(·) defined on a hyperrectangle [a,b] ⊂ Rp. (B.3)

Plugging the bound (B.3) into the definition (B.2), we obtain

VHK(f̃n; [0, 1]
d+1) ≤

∑
u ̸=∅

∫
[εn,1−εn]|u|

|∂uf(xu : c−u)|dxu

≤
∑
u ̸=∅

∫
[εn,1−εn]|u|

B
∏

j∈u\{d+1}

min(xj , 1− xj)
−1dxu

= B
∑
u ̸=∅

((1− 2εn) · 1d+1∈u + 1d+1/∈u)
∏

j∈u\{d+1}

2(log(1/2)− log εn)

≤ B
∑
u ̸=∅

∏
j∈u\{d+1}

2(log(1/2)− log εn).
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We may simplify the above sum by considering whether d+ 1 ∈ u:∑
u ̸=∅

∏
j∈u\{d+1}

2(log(1/2)− log εn)

=
∑

u̸=∅,u⊂{1,...,d}

∏
j∈u

2(log(1/2)− log εn) +
∑

u⊂{1,...,d+1},d+1∈u

∏
j∈u\{d+1}

2(log(1/2)− log εn)

=

−1 +

d∏
j=1

(1 + 2 log(1/2)− 2 log εn)

+

d∏
j=1

(1 + 2 log(1/2)− 2 log εn)

≤ 2

d∏
j=1

(1 + 2 log(1/2)− 2 log εn) = 2(1 + 2 log(1/2)− 2 log εn)
d.

Therefore, we obtain the following bound for VHK(f̃n; [0, 1]
d+1):

VHK(f̃n; [0, 1]
d+1) ≤ 2B(1− 2 log 2− 2 log εn)

d. (B.4)

The star discrepancy of the (d+ 1)-dimensional Halton sequence satisfies

D∗({hi}ni=1) ≤ CH(d+ 1) · (log n)
d+1

n
, for n ≥ 2, (B.5)

where CH(d+ 1) is a constant depending on the dimension d+ 1 (see e.g., Niederreiter, 1992, Theorem 3.6 and Atanassov,
2004). Hence, it remains to bound the term

∫
[0,1]d+1 |f(x)− f̃n(x)|dx in (B.1). Observe that for x ∈ (0, 1)d+1,

|f(x)− f̃n(x)| ≤
∑
u̸=∅

∣∣∣∣∣
∫
[cu,xu]

1zu:c−u /∈Kn
|∂uf(zu : c−u)|dzu

∣∣∣∣∣
≤
∑
u̸=∅

∣∣∣∣∣∣
∫
[cu,xu]

1zu:c−u /∈Kn
B

∏
j∈u\{d+1}

min(zj , 1− zj)
−1dzu

∣∣∣∣∣∣
≤ B

∑
u̸=∅

∣∣∣∣∣∣
∫
[cu,xu]

∏
j∈u\{d+1}

min(zj , 1− zj)
−1dzu

∣∣∣∣∣∣ .
By considering whether d+ 1 ∈ u, we have

∑
u̸=∅

∣∣∣∣∣∣
∫
[cu,xu]

∏
j∈u\{d+1}

min(zj , 1− zj)
−1dzu

∣∣∣∣∣∣
=

∑
u ̸=∅,u⊂{1,...,d}

∣∣∣∣∣∣
∫
[cu,xu]

∏
j∈u\{d+1}

min(zj , 1− zj)
−1dzu

∣∣∣∣∣∣
+

∑
u⊂{1,...,d+1},d+1∈u

∣∣∣∣∣∣
∫
[cu,xu]

∏
j∈u\{d+1}

min(zj , 1− zj)
−1dzu

∣∣∣∣∣∣
=

∑
u ̸=∅,u⊂{1,...,d}

∏
j∈u

| log(1/2)− log(min(xj , 1− xj))|

+
∑

u⊂{1,...,d+1},d+1∈u

|1/2− xd+1|
∏

j∈u\{d+1}

| log(1/2)− log(min(xj , 1− xj))|

= −1 +

d∏
j=1

(
1 + | log(1/2)− log(min(xj , 1− xj))|

)
+ |1/2− xd+1| ·

d∏
j=1

(
1 + | log(1/2)− log(min(xj , 1− xj))|

)
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≤ 3

2

d∏
j=1

(
1 + | log(1/2)− log(min(xj , 1− xj))|

)
.

Therefore, |f(x) − f̃n(x)| ≤ 3B
2

∏d
j=1

(
1 + | log(1/2) − log(min(xj , 1 − xj))|

)
. Recall that f̃n coincides with f on

Kn = [εn, 1− εn]
d+1. Hence, we have∫

(0,1/2)d+1

|f(x)− f̃n(x)|dx ≤ 3B

2

∫
(0,1/2)d+1\[εn,1/2]d+1

d∏
j=1

(1 + log(1/2)− log(xj))dx

≤ 3B

2

d∑
j=1

∫ εn

0

(1 + log(1/2)− log(xj))dxj

∫
(0,1/2)d

∏
k∈{1,...,d}\{j}

(1 + log(1/2)− log(xk))dx−j

+
3B

2

∫ εn

0

dxd+1

d∏
k=1

∫ 1/2

0

(1 + log(1/2)− log(xk))dxk

=
3B

2

d∑
j=1

((2− log 2)εn − εn log εn) ·
1

2
1d−1 +

3B

2
εn · 1d

=
3Bεn
4

(
2 + (2− log 2)d− d log εn

)
.

The same argument can be applied to all 2d+1 subcubes of (0, 1)d+1, which yields∫
(0,1)d+1

|f(x)− f̃n(x)|dx ≤ 3 · 2d−1Bεn
(
2 + (2− log 2)d− d log εn

)
. (B.6)

Finally, we use the fact that Halton sequence avoids the boundary of the unit cube: by choosing εn = 1
n(n+1)

∏d
j=1 p

−1
j ,

h1, . . . ,hn belong to Kn = [εn, 1 − εn]
d+1 (Owen, 2006, Theorem 3.1). Now, we can apply the above bounds on∫

[0,1]d+1 |f(x)− f̃n(x)|dx (B.6), D∗({hi}ni=1) (B.5), and VHK(f̃n) (B.4) back to (B.1) to obtain:

∣∣∣∣∣
∫
[0,1]d+1

f(x)dx− 1

n

n∑
i=1

f(hi)

∣∣∣∣∣ ≤
∫
[0,1]d+1

|f(x)− f̃n(x)|dx+D∗({hi}ni=1)VHK(f̃n)

≤ 3 · 2d−1Bεn
(
2 + (2− log 2)d− d log εn

)
+ CH(d+ 1) · (log n)

d+1

n
· 2B(1− 2 log 2− 2 log εn)

d

≤ BC(d)
(log n)2d+1

n
,

for some C(d) > 0 and all n ≥ 2.

Note that the coefficient of the dominating term (logn)2d+1

n is CH(d+ 1)22d+1B.

B.2. Proof of Proposition 2.6

For any g ∈ L2(PX), we have

∥(LM − L)g∥2L2(PX) =

∥∥∥∥∫ (KM (·,x)−K(·,x))g(x)dPX(x)

∥∥∥∥2
L2(PX)

=

∫
(KM (z,x)−K(z,x))(KM (z,x′)−K(z,x′))g(x)g(x′)dPX(x)dPX(x′)dPX(z)

≤ C2 log2aM

M2

∫
|g(x)g(x′)|dPX(x)dPX(x′)

≤ C2 log2aM

M2
∥g∥2L2(PX).

Therefore, by the definition of operator norm, ∥LM − L∥ = supg∈L2(PX)

∥(LM−L)g∥L2(PX)

∥g∥L2(PX)
≤ C loga M

M .
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B.3. Proof of Proposition 2.7

Note that the ∆-spectral approximation (7) is equivalent to

K−∆(K+ λIn) ⪯ KM ⪯ K+∆(K+ λIn).

Let K+ λIn = V⊤Σ2V be the eigen-decomposition of K+ λIn. By multiplying by Σ−1V on the left and V⊤Σ−1 on
the right, it suffices to show that

∥Σ−1V(KM −K)V⊤Σ−1∥2 ≤ ∆,

where ∥ · ∥2 denotes the matrix L2 norm, or the spectral norm. Since the eigenvalues of K+ λIn is lower bounded by λ, we
have that ∥Σ−1∥2 ≤ 1√

λ
. Together with the facts that (i) ∥UAV ∥2 = ∥A∥2 for any orthogonal matrices U, V , and (ii) the

spectral norm is upper bounded by the Frobenius norm, we have that

∥Σ−1V(KM −K)V⊤Σ−1∥2 ≤ 1

λ
∥V(KM −K)V⊤∥2

=
1

λ
∥KM −K∥2 ≤ 1

λ
∥KM −K∥F

≤ 1

λ

√
n2C2(logM)2a

M2
≤ ∆.

C. Proofs of the Results in Section 3
The goal of this section is to prove Theorem 3.2. We will first define some useful operators and clarify some notions about
the excess risk with the inclusion operator notations in subsection C.1, and then provide the proof in subsection C.2.

C.1. Preliminaries

Some Useful Operators. We first introduce some useful operators between Hilbert spaces (Rudi & Rosasco, 2017).

Definition C.1. Recall ϕϕϕM (x) = M−1/2(ψ(x, ω1), . . . , ψ(x, ωM ))⊤ and the approximated kernel KM (x,x′) =
ϕϕϕM (x)⊤ϕϕϕM (x′). Define:

• SM : RM → L2(PX), (SMβ)(·) = ϕϕϕM (·)⊤β.

• S∗
M : L2(PX) → RM , (S∗

Mg)i =
1√
M

∫
X ψ(x, ωi)g(x)dPX(x).

• LM : L2(PX) → L2(PX), (LMg)(·) =
∫
X KM (·, z)g(z)dPX(z).

• CM : RM → RM , CM =
∫
X ϕϕϕM (x)ϕϕϕM (x)⊤dPX(x).

• ĈM : RM → RM , ĈM = 1
n

∑n
i=1ϕϕϕM (xi)ϕϕϕM (xi)

⊤.

• ŜM : RM → Rn, ŜM = 1√
n
(ϕϕϕM (x1), . . . ,ϕϕϕM (xn))

⊤.

• Ŝ∗
M : Rn → RM , Ŝ∗

M = 1√
n
(ϕϕϕM (x1), . . . ,ϕϕϕM (xn)).

It follows from direct verification that S∗
M is the adjoint of SM , Ŝ∗

M is the adjoint of ŜM , LM = SMS
∗
M , CM = S∗

MSM ,
and ĈM = Ŝ∗

M ŜM . Let CK = I∗I where I is the inclusion operator defined in Appendix A.4. Recall (from Appendix A.4)
that L = II∗. From Caponnetto & De Vito (2007) and Rudi & Rosasco (2017), we have that L,CK , LM , CM , ĈM are
trace class operators, and I, SM , ŜM are compact operators.

Excess Risk. Recall the excess risk: E(f̂λ,M )− inff∈H E(f) defined in (11), where E(f) = E[Y − f(X)]2. In order to
more clearly distinguish between the inner products ⟨·, ·⟩H and ⟨·, ·⟩L2(PX), we identify f ∈ H as If ∈ L2(PX) when
the associated inner product is ⟨·, ·⟩L2(PX), where I is the inclusion operator (introduced in Appendix A.4). With these
notations, the excess risk is (more rigorously) written as E(f̂λ,M )− inff∈H E(If).
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Recall that f⋆(X) = E[Y |X]. A variance-bias decomposition of the risk gives:

E(f) = E[(Y − f(X))2] = E[(Y − f⋆(X) + f⋆(X)− f(X))2]

= E[(Y − f⋆(X))2] + E[(f⋆(X)− f(X))2].
(C.1)

Therefore, the existence of an fH ∈ H that minimizes E(If) (KRR Condition 3) is equivalent to the existence of an IfH in
I(H) being closest to f⋆ in L2(PX) distance. In other words, let P : L2(PX) → L2(PX) be the projection operator from
L2(PX) to the closure of I(H) in L2(PX); if KRR Condition 3 holds, we have IfH = Pf⋆ = Lrg.

Hence, from (C.1) we can re-write the excess risk as follows (the last equality follows from Pythagorean theorem and the
fact that f̂λ,M ∈ I(H)):

E(f̂λ,M )− inf
f∈H

E(If) = E(f̂λ,M )− E(IfH)

= ∥f⋆ − f̂λ,M∥2L2(PX) − ∥f⋆ − Pf⋆∥2L2(PX) = ∥f̂λ,M − Pf⋆∥2L2(PX).
(C.2)

C.2. Proof of Theorem 3.2

For any operator T on some space S , define Tλ := T + λIS , where IS denotes the identity operator on S . For S = RM , IS
is the M ×M identity matrix IM . The regression function f̂λ,M (x) defined in (10) can then be written as

f̂λ,M = SM (ĈM + λIM )−1Ŝ∗
My/

√
n = SM Ĉ

−1
M,λŜ

∗
My/

√
n, where y = (y1, . . . , yn)

⊤. (C.3)

Using the operators introduced in the previous subsection, we define

f̃ = I(CK + λIH)−1I∗Pf⋆ = IC−1
K,λI

∗Pf⋆ and (C.4)

f̃M = SM (CM + λIM )−1S∗
MPf⋆ = SMC

−1
M,λS

∗
MPf⋆. (C.5)

Here, f̂λ,M can be viewed as the empirical version of f̃M , and f̃M can be viewed as the random feature approximation of f̃ .
With triangle inequality, we decompose the excess risk (C.2) into ∥f̂λ,M − Pf⋆∥L2(PX) ≤ E1 + E2 + E3, where

E1 := ∥f̃ − Pf⋆∥L2(PX),

E2 := ∥f̃M − f̃∥L2(PX),

E3 := ∥f̂λ,M − f̃M∥L2(PX).

(C.6)

In the above decomposition (C.6), E1, E2, E3 may be understood as follows:

• E1 is the bias introduced by the ridge regression penalty, which also appears in the analysis of the exact kernel ridge
regression (De Vito et al., 2005), and is not affected by the application of random feature approximation.

• E2 is the random feature computational error arising from approximating the kernel K with KM . It is worth noting
that it is in this term that our error rate has substantial improvement compared to the bound for the Monte Carlo random
features (Rudi & Rosasco, 2017).

• E3 is the variance coming from n i.i.d. draws from the population. While E3 exhibits an error rate comparable to that
in the Monte Carlo random feature case, our analysis differs in several aspects. In particular, results that hold almost
surely may need to be replaced by results that hold surely, and some bounds also have tighter and non-random versions
under the QMC setting.

In the following, we will bound these three terms respectively. Throughout the paper, norms without subscripts are
considered operator norms unless otherwise specified.

Bound for E1: The following expressions

f̃ = LL−1
λ Pf⋆, f̃M = LML

−1
M,λPf⋆
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follow from the definitions of f̃ , f̃M in (C.4), (C.5), together with the identity that: for a bounded linear operator
A : H1 → H2,

A∗(AA∗ + cIH2
)−1 = (A∗A+ cIH1

)−1A∗. (C.7)

From KRR Condition 3, we have that Pf⋆ = Lrg with ∥g∥L2(PX) ≤ R. By the identity L(L + λIL2(PX))
−1 =

IL2(PX) − λ(L+ λIL2(PX))
−1, we have

E1 = ∥LL−1
λ Pf⋆ − Pf⋆∥L2(PX) = ∥(LL−1

λ − IL2(PX))Pf⋆∥L2(PX) = ∥ − λL−1
λ Pf⋆∥L2(PX)

= ∥ − λL−1
λ Lrg∥L2(PX)

≤ λ · ∥L−1+r
λ ∥ · ∥L−r

λ Lr∥ · ∥g∥L2(PX)

≤ λ · λ−1+r · 1 ·R
= Rλr.

Bound for E2: Denote a general identity operator whose associated space is unspecified by I. By the algebraic identities
A(A+ λI)−1 = I− λ(A+ λI)−1 and A−1 −B−1 = A−1(B −A)B−1, we have that

(LL−1
λ − LML

−1
M,λ)Pf⋆ = λ(L−1

M,λ − L−1
λ )Pf⋆ = λL−1

M,λ(L− LM )L−1
λ Pf⋆.

From KRR Condition 3, we have that Pf⋆ = Lrg with ∥g∥L2(PX) ≤ R. From KRR Condition 1 and Proposition 2.6, we
have that ∥L− LM∥ ≤ C · loga M

M . Therefore,

E2 = ∥(LL−1
λ − LML

−1
M,λ)Pf⋆∥L2(PX) = ∥λL−1

M,λ(L− LM )L−1
λ Lrg∥L2(PX)

≤ λ∥L−1
M,λ∥ · ∥L− LM∥ · ∥L−1+r

λ ∥ · ∥L−r
λ Lr∥ · ∥g∥L2(PX)

≤ λ · λ−1 · C logaM

M
· λ−1+r · 1 ·R

= Rλ−1+rC logaM

M
.

Bound for E3: Recall that f̂λ,M = SM Ĉ
−1
M,λŜ

∗
My/

√
n and f̃M = SMC

−1
M,λS

∗
MPf⋆. With triangle inequality, we

decompose E3 into E3 ≤ E31 + E32 + E33, where

E31 = ∥SM Ĉ
−1
M,λ(Ŝ

∗
My/

√
n− S∗

Mf⋆)∥L2(PX), (C.8)

E32 = ∥SM Ĉ
−1
M,λS

∗
M (IL2(PX) − P )f⋆∥L2(PX), (C.9)

E33 = ∥SM (Ĉ−1
M,λ − C−1

M,λ)S
∗
MPf⋆∥L2(PX). (C.10)

We will show that E32 = 0, and when 19κ2

n log 3n
2δ ≤ λ ≤ min{∥L∥ − C loga M

M , 1/e} and n ≥ max{405κ2, 67κ2 log 3κ2

2δ }
(the constants a, κ and C are from KRR Condition 1), with probability at least 1− δ,

E31 ≤ 3

2
·

4Dκ log 6
δ√

λn
+

√
8σ2κ2 log 6

δ

λn

 , (C.11)

E33 ≤ 3

2
·
√
C (1 + a)

a
+ 1 ·

(
4Rκ2r+1 log

6

δ
+ 2Rκ2r

√
log

6

δ

)
1√
nλ

. (C.12)

The proofs of the bounds for E31, E32 and E33 are given in Appendix C.3.

Combining the bounds: Combining the bounds for E1, E2 and E3 above, we have that when 19κ2

n log 3n
2δ ≤ λ ≤
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min{∥L∥ − C loga M
M , 1/e} and n ≥ max{405κ2, 67κ2 log 3κ2

2δ }, with probability at least 1− δ:∣∣∣∣E(f̂λ,M )− inf
f∈H

E(f)
∣∣∣∣1/2 = ∥f̂λ,M − Pf⋆∥L2(PX) ≤ E1 + E2 + E3

≤ Rλr +Rλ−1+rC logaM

M

+
3

2
·

4Dκ log 6
δ√

λn
+

√
8σ2κ2 log 6

δ

λn


+

3

2
·
√
C (1 + a)

a
+ 1 ·

(
4Rκ2r+1 log

6

δ
+ 2Rκ2r

√
log

6

δ

)
1√
nλ

.

As M = loga(1/λ)
λ and λ ∈ (0, 1/e], we can derive that C loga M

λM ≤ C (1 + a)
a; see (C.16). Thus we may further bound the

right-hand side by:

∣∣∣∣E(f̂λ,M )− inf
f∈H

E(f)
∣∣∣∣1/2 ≤

(
6Dκ log

6

δ
+ 3κσ

√
2 log

6

δ
+ 3Rκ2r

√
C (1 + a)

a
+ 1

(
2κ log

6

δ
+

√
log

6

δ

))
1√
nλ

+R (C (1 + a)
a
+ 1)λr.

Let λ = C̃n−
1

2r+1 . When n ≥ C2 max
{
(log 1

δ )
1+ 1

2r , 1
}

for a large enough constant C2 depending on κ,C, a, ∥L∥, C̃ and

r (but not on δ), all the above conditions on n and λ are satisfied. Since 1 ≤
√

log 6
δ ≤ log 6

δ for δ ≤ 1, the above bound

can be further upper bounded: E(f̂λ,M )− inff∈H E(f) ≤ C1n
− 2r

2r+1 log2 6
δ , where

C1 =

[(
6Dκ+ 3

√
2κσ + 3Rκ2r(2κ+ 1)

√
C (1 + a)

a
+ 1

)
1√
C̃

+R (C (1 + a)
a
+ 1) C̃r

]2
.

C.3. Proof of Theorem 3.2: Proof of Bounds for E31, E32 and E33

We prove the bound (C.11) in Appendix C.3.1, E32 = 0 in Appendix C.3.2, and the bound (C.12) in Appendix C.3.3. Some
supporting technical lemmas are presented in Appendix C.3.4.

C.3.1. PROOF OF BOUND FOR E31

Recall that ∥ · ∥ is the operator norm; in particular, for a vector v ∈ RM , ∥v∥ is its vector ℓ2-norm. From the expression
of E31 in (C.8), we have E31 ≤ b1 ·A, where b1 = ∥SM Ĉ

−1
M,λC

1/2
M,λ∥, and A = ∥C−1/2

M,λ (Ŝ∗
My/

√
n− S∗

Mf⋆)∥. We bound
these two terms respectively.

Bounding b1: We have

b21 = ∥SM Ĉ
−1
M,λC

1/2
M,λ∥

2

= ∥C1/2
M,λĈ

−1
M,λS

∗
MSM Ĉ

−1
M,λC

1/2
M,λ∥

= ∥C1/2
M,λĈ

−1
M,λCM Ĉ

−1
M,λC

1/2
M,λ∥

≤ ∥C1/2
M,λĈ

−1/2
M,λ ∥ · ∥Ĉ−1/2

M,λ C
1/2
M ∥ · ∥C1/2

M Ĉ
−1/2
M,λ ∥ · ∥Ĉ−1/2

M,λ C
1/2
M,λ∥

= ∥Ĉ−1/2
M,λ C

1/2
M,λ∥

2 · ∥Ĉ−1/2
M,λ C

1/2
M ∥2.

Note that ∥Ĉ−1/2
M,λ C

1/2
M ∥ ≤ ∥Ĉ−1/2

M,λ C
1/2
M,λ∥·∥C

−1/2
M,λ C

1/2
M ∥ ≤ ∥Ĉ−1/2

M,λ C
1/2
M,λ∥. Therefore, we have that b21 ≤ ∥Ĉ−1/2

M,λ C
1/2
M,λ∥4

and thus b1 ≤ ∥Ĉ−1/2
M,λ C

1/2
M,λ∥2.
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A direct application of Proposition C.5 (with A = ĈM , B = CM ) gives us b1 ≤ 1

1−λmax(C
−1/2
M,λ (CM−ĈM )C

−1/2
M,λ )

.

In order to bound 1

1−λmax(C
−1/2
M,λ (CM−ĈM )C

−1/2
M,λ )

, we verify the conditions needed to apply Proposition C.4. Re-

call that ϕϕϕM (x) = M−1/2(ψ(x, ω1), . . . , ψ(x, ωM ))⊤, CM = E[ϕϕϕM (X) ⊗ ϕϕϕM (X)] (from Definition C.1), and
ĈM = 1

n

∑n
i=1[ϕϕϕM (xi) ⊗ ϕϕϕM (xi)]. For v := ϕϕϕM (X), we have ⟨v, C−1

M,λv⟩ ≤ ∥v∥2∥C−1
M,λ∥ ≤ κ2

λ . Hence, F∞(λ)

in Proposition C.4 can be taken as κ2

λ . From Proposition C.4, for any τ > 0, when 19κ2

n log n
2τ ≤ λ ≤ ∥CM∥ and

n ≥ max{405κ2, 67κ2 log κ2

2τ }, we have

λmax(C
−1/2
M,λ (CM − ĈM )C

−1/2
M,λ ) ≤ 1

3

with probability at least 1− τ . Note that

∥CM∥ = ∥S∗
MSM∥ = ∥SMS

∗
M∥ = ∥LM∥ ≥ ∥L∥ − ∥L− LM∥ ≥ ∥L∥ − C logaM

M
.

Summarizing the above conditions, when 19κ2

n log n
2τ ≤ λ ≤ ∥L∥ − C loga M

M and n ≥ max{405κ2, 67κ2 log κ2

2τ }, we have
b1 ≤ 1

1−1/3 = 3/2 with probability at least 1− τ .

Bounding A: By the definition of Ŝ∗
M (see Definition C.1), we have that Ŝ∗

My/
√
n = n−1

∑n
i=1ϕϕϕM (xi)yi. Therefore,

C
−1/2
M,λ (Ŝ∗

My/
√
n− S∗

Mf⋆) =
1

n

n∑
i=1

(C
−1/2
M,λ ϕϕϕM (xi)yi − C

−1/2
M,λ S∗

Mf⋆).

To bound the above sum by concentration inequalities, we apply Proposition C.2 with zi := C
−1/2
M,λ ϕϕϕM (xi)yi and µ :=

C
−1/2
M,λ S∗

Mf⋆ ∈ RM , whose conditions are verified as follows. First, we verify that Ezi = µ:

Ezi = C
−1/2
M,λ E[ϕϕϕM (xi)yi] = C

−1/2
M,λ E[ϕϕϕM (xi)E[yi | xi]] = C

−1/2
M,λ E[ϕϕϕM (xi)f⋆(xi)] = C

−1/2
M,λ S∗

Mf⋆ = µ.

Next, we bound the k-th moment (k ≥ 2) of zi using KRR Condition 2:

E∥zi∥k = E[∥C−1/2
M,λ ϕϕϕM (xi)yi∥k] = E[∥C−1/2

M,λ ϕϕϕM (xi)∥k · |yi|k] = E[∥C−1/2
M,λ ϕϕϕM (xi)∥k · E[|yi|k | xi]]

≤ E[∥C−1/2
M,λ ϕϕϕM (xi)∥k] ·

1

2
k!σ2Dk−2.

Recall that ϕϕϕM (x) =M−1/2(ψ(x, ω1), . . . , ψ(x, ωM ))⊤ and ψ is bounded by κ (KRR Condition 1). Hence,

∥C−1/2
M,λ ϕϕϕM (xi)∥2 ≤ 1

λ
∥ϕϕϕM (xi)∥2 ≤ κ2

λ
.

Therefore,

E∥zi∥k ≤ E[∥C−1/2
M,λ ϕϕϕM (xi)∥k] ·

1

2
k!σ2Dk−2

≤
(
κ2

λ

) k
2

· 1
2
k!σ2Dk−2

=
1

2
k!

(
σκ√
λ

)2(
Dκ√
λ

)k−2

.

(C.13)

By Jensen’s inequality, triangle inequality, and generalized Hölder’s inequality, we have

E∥zi − µ∥k = E∥zi − Ezi+1∥k ≤ E∥zi − zi+1∥k

≤ E[(∥zi∥+ ∥zi+1∥)k] ≤ E[2k−1(∥zi∥k + ∥zi+1∥k)] = 2kE∥zi∥k.

With our bound for E∥zi∥k in (C.13),

E∥zi − µ∥k ≤ 2kE∥zi∥k ≤ 1

2
k!

(
2σκ√
λ

)2(
2Dκ√
λ

)k−2

.
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Now, we are ready to apply Proposition C.2. With probability at least 1− τ , we have that

A = ∥C−1/2
M,λ (Ŝ∗

My/
√
n− S∗

Mf⋆)∥ =

∥∥∥∥∥ 1n
n∑

i=1

zi − µ

∥∥∥∥∥ ≤
4Dκ log 2

τ√
λn

+

√
8σ2κ2 log 2

τ

λn
.

Combining the bound b1 ≤ 3/2 with the above bound on A, by setting τ to be δ/3, we have that (C.11) holds with
probability at least 1− 2δ/3 when 19κ2

n log 3n
2δ ≤ λ ≤ ∥L∥ − C loga M

M and n ≥ max{405κ2, 67κ2 log 3κ2

2δ }.

C.3.2. PROOF OF E32 = 0

Let ψω denote the function ψ(·, ω). Observe that for f, g ∈ L2(PX), we have

⟨f, Lg⟩L2(PX) =

∫
f(x)K(x, z)g(z)dPX(x)dPX(z)

=

∫
f(x)ψ(x, ω)ψ(z, ω)g(z)dPX(x)dPX(z)dπ(ω)

=

∫
⟨f, ψω⟩L2(PX)⟨g, ψω⟩L2(PX)dπ(ω).

We will use the isometric isomorphism between the Hilbert tensor product space L2(PX) ⊗ L2(PX) and the space of
Hilbert-Schmidt operators from L2(PX) to itself (see e.g., Aubin 2011, Section 12). In particular, this isomorphism
Φ : H1 ⊗H2 → HS(H2,H1) is given by ⟨f,Φ(a)g⟩H1 = ⟨a, f ⊗ g⟩H1⊗H2 for a ∈ H1 ⊗H2, f ∈ H1, g ∈ H2; and if
a = f̃ ⊗ g̃ for f̃ ∈ H1 and g̃ ∈ H2, then ⟨a, f ⊗ g⟩H1⊗H2

= ⟨f̃ , f⟩H1
· ⟨g̃, g⟩H2

.

Therefore, with this isomorphism, we can write

⟨f, Lg⟩L2(PX) =

∫
⟨f, ψω⟩L2(PX)⟨g, ψω⟩L2(PX)dπ(ω)

=

∫
⟨f, (ψω ⊗ ψω)g⟩L2(PX)dπ(ω)

=

〈
f,

∫
ψω ⊗ ψωdπ(ω)g

〉
L2(PX)

.

Note that the last equality follows from the fact that if X is Bochner integrable, then Eφ(X) = φ(EX) for any bounded
linear functional φ (see e.g., Cohn, 2013, Appendix E). The HS norm of

∫
ψω ⊗ψωdπ(ω) is finite since ψ(x, ω) is bounded

(KRR Condition 1). Hence, we have that

L =

∫
ψω ⊗ ψωdπ(ω). (C.14)

Since P is the projection operator onto the closure of I(H), which is ranL1/2 by Theorem A.7, we have that (IL2(PX) −
P )L1/2 = 0. Let {ei}i≥1 be an orthonormal basis of L2(PX). Note that IL2(PX) − P is self-adjoint. Hence, we have

0 = tr
(
(IL2(PX) − P )L(IL2(PX) − P )

)
=
∑
i

⟨(IL2(PX) − P )L(IL2(PX) − P )ei, ei⟩L2(PX)

=
∑
i

⟨L(IL2(PX) − P )ei, (IL2(PX) − P )ei⟩L2(PX)

=
∑
i

〈∫
ψω ⊗ ψωdπ(ω)(IL2(PX) − P )ei, (IL2(PX) − P )ei

〉
L2(PX)

=
∑
i

∫ 〈
ψω, (IL2(PX) − P )ei

〉2
L2(PX)

dπ(ω) =

∫
∥(IL2(PX) − P )ψω∥2L2(PX)dπ(ω).

Hence, (IL2(PX) − P )ψω = 0 for Lebesgue almost every ω ∈ [0, 1]p. Since ω 7→ ψω ∈ L2(PX) is continuous (KRR
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Condition 1), we have that (IL2(PX) − P )ψω = 0 for all ω ∈ [0, 1]p. Consequently, for any β ∈ RM , we have

⟨β, S∗
M (IL2(PX) − P )f⋆⟩RM =

1√
M

M∑
i=1

βi⟨(IL2(PX) − P )ψωi , f⋆⟩L2(PX) = 0.

This shows that E32 = ∥SM Ĉ
−1
M,λS

∗
M (IL2(PX) − P )f⋆∥L2(PX) = 0.

C.3.3. PROOF OF BOUND FOR E33

From KRR Condition 3, we have Pf⋆ = IfH = Lrg, where g ∈ L2(PX). From the definition of E33 in (C.10), together
with the equality A−1 −B−1 = A−1(B −A)B−1, we have

E33 = ∥SM (Ĉ−1
M,λ − C−1

M,λ)S
∗
MPf⋆∥L2(PX)

= ∥SM Ĉ
−1
M,λ(CM − ĈM )C−1

M,λS
∗
MPf⋆∥L2(PX)

= ∥SM Ĉ
−1
M,λC

1/2
M,λC

−1/2
M,λ (CM − ĈM )C−1

M,λS
∗
ML

1/2
M,λL

−1/2
M,λ L

rg∥L2(PX)

≤ ∥SM Ĉ
−1
M,λC

1/2
M,λ∥ · ∥C

−1/2
M,λ (CM − ĈM )∥ · ∥C−1

M,λS
∗
ML

1/2
M,λ∥ · ∥L

−1/2
M,λ L

1/2∥ · ∥Lr−1/2∥ · ∥g∥L2(PX).

From KRR Condition 3, we have ∥g∥L2(PX) ≤ R. Note that

∥L1/2∥2 = sup
∥f∥L2(PX)=1

∥L1/2f∥2L2(PX) = sup
∥f∥L2(PX)=1

⟨Lf, f⟩L2(PX)

= sup
∥f∥L2(PX)=1

〈∫
ψω ⊗ ψωdπ(ω)f, f

〉
L2(PX)

= sup
∥f∥L2(PX)=1

∫
⟨ψω, f⟩2L2(PX)dπ(ω)

≤ sup
∥f∥L2(PX)=1

∫
∥ψω∥2L2(PX) · ∥f∥

2
L2(PX)dπ(ω) ≤ κ2,

where the second line follows from (C.14), and the last inequality is based on the boundedness of ψ (KRR Condition 1).
This implies that all eigenvalues of L are in [0, κ2]. Therefore, we have ∥Lr−1/2∥ ≤ κ2r−1 for r ≥ 1/2.

From (C.7) we have SM (S∗
MSM + λIM )−2 = (SMS

∗
M + λIL2(PX))

−2SM . Thus,

∥C−1
M,λS

∗
ML

1/2
M,λ∥

2 = ∥L1/2
M,λSMC

−2
M,λS

∗
ML

1/2
M,λ∥ = ∥L1/2

M,λSM (S∗
MSM + λIM )−2S∗

ML
1/2
M,λ∥

= ∥L1/2
M,λ(SMS

∗
M + λIL2(PX))

−2SMS
∗
ML

1/2
M,λ∥

= ∥L1/2
M,λ(LM + λIL2(PX))

−2LML
1/2
M,λ∥

= ∥L−3/2
M,λ LML

1/2
M,λ∥ = ∥LML

−3/2
M,λ L

1/2
M,λ∥ = ∥LML

−1
M,λ∥ ≤ 1.

Here, we use the fact that LM and L−3/2
M,λ commute, as they share the same set of eigen-vectors.

Combining the bounds above, we have that

E33 ≤ ∥SM Ĉ
−1
M,λC

1/2
M,λ∥ · ∥C

−1/2
M,λ (CM − ĈM )∥ · 1 · ∥L−1/2

M,λ L
1/2∥ · κ2r−1 ·R = Rκ2r−1b1b2B, (C.15)

where b2 = ∥L−1/2
M,λ L

1/2∥, B = ∥C−1/2
M,λ (CM − ĈM )∥, and ∥SM Ĉ

−1
M,λC

1/2
M,λ∥ is the term b1 already defined and bounded

in Appendix C.3.1. In what follows we bound b2 and B respectively.
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Bounding b2: From KRR Condition 1 and Proposition 2.6, we have that ∥L− LM∥ ≤ C · loga M
M . Therefore,

b2 = ∥L−1/2
M,λ L

1/2∥ =

√
∥L−1/2

M,λ LL
−1/2
M,λ ∥

≤
√

∥L−1/2
M,λ (L− LM )L

−1/2
M,λ ∥+ ∥L−1/2

M,λ LML
−1/2
M,λ ∥

≤
√

∥L−1/2
M,λ (L− LM )L

−1/2
M,λ ∥+ 1

≤
√
∥L−1/2

M,λ ∥ · ∥L− LM∥ · ∥L−1/2
M,λ ∥+ 1

≤
√
C logaM

λM
+ 1.

Recall that M = loga(1/λ)
λ . We have

C logaM

λM
=

C loga
(

loga(1/λ)
λ

)
loga(1/λ)

=
C (log(1/λ) + log(loga(1/λ)))

a

loga(1/λ)
(C.16)

= C

(
1 + a

log log(1/λ)

log(1/λ)

)a

≤ C (1 + a)
a
, (C.17)

where we have used a loose bound that log log(1/λ)
log(1/λ) ≤ 1 for λ ∈ (0, 1/e]. In conclusion, when λ ∈ (0, 1/e], we have

b2 ≤
√
C(1 + a)a + 1. Note that this is a deterministic rather than a probabilistic bound.

Bounding B: To bound B = ∥C−1/2
M,λ (CM − ĈM )∥, we apply Proposition C.3 with v = z = ϕϕϕM (X) and vi = zi =

ϕϕϕM (Xi). We first verify its conditions: ∥v∥ = ∥z∥ ≤ κ by |ψ(x, ω)| ≤ κ from KRR Condition 1; for v = ϕϕϕM (X),
Q = Ev ⊗ v = CM , we have ∥(CM + λI)−1/2v∥2 ≤ ∥v∥2λ−1 ≤ κ2λ−1. Hence we can take F̃∞(λ) = κ2λ−1. By
definition,

Ñ (λ) = tr
(
(Q+ λI)−1Q

)
= tr

(
(Q+ λI)−1Ev ⊗ v

)
= E[v⊤(Q+ λI)−1v]

≤ ess supv∈H ∥(Q+ λI)−1/2v∥2 ≤ F̃∞(λ).

Thus, by Proposition C.3, for any τ > 0, with probability at least 1− τ ,

B = ∥C−1/2
M,λ (CM − ĈM )∥ ≤ ∥C−1/2

M,λ (CM − ĈM )∥HS ≤
4κ2 log 2

τ

n
√
λ

+

√
4κ4 log 2

τ

nλ

≤

(
4κ2 log

2

τ
+

√
4κ2 log

2

τ

)
1√
nλ

.

Combining the bound on b1 in Appendix C.3.1 and b2 ≤
√
C(1 + a)a + 1 with the above bound on B and setting τ to be

δ/3, we have from (C.15) that

E33 ≤ Rκ2r−1b1b2B ≤ 3

2
·
√
C (1 + a)

a
+ 1 ·

(
4Rκ2r+1 log

6

δ
+ 2Rκ2r

√
log

6

δ

)
1√
nλ

with probability 1− 2δ/3, which proves the statement of (C.12).

Moreover, combining the bounds on b1, b2, A and B, we have that (C.11) and (C.12) hold simultaneously with probability
at least 1− δ when 19κ2

n log 3n
2δ ≤ λ ≤ min{∥L∥ − C loga M

M , 1/e} and n ≥ max{405κ2, 67κ2 log 3κ2

2δ }.

C.3.4. SUPPLEMENTARY TECHNICAL LEMMAS

Proposition C.2 (Bernstein’s inequality, Rudi & Rosasco 2017, Appendix B, Proposition 2). Let z1, . . . , zn be a sequence
of i.i.d. random vectors on a separable Hilbert space H. Assume µ = Ezi exists and there exist σ,D ≥ 0 such that

E∥zi − µ∥kH ≤ 1

2
k!σ2Dk−2, for all k ≥ 2, i ∈ {1, . . . , n}.
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Then for any δ ∈ (0, 1], with probability at least 1− δ,∥∥∥∥∥ 1n
n∑

i=1

zi − µ

∥∥∥∥∥
H

≤
2D log 2

δ

n
+

√
2σ2 log 2

δ

n
.

Proposition C.3 (Rudi & Rosasco 2017, Appendix D, Proposition 5). Let H, K be two separable Hilbert spaces and
(v1, z1), . . . , (vn, zn) ∈ H × K be n i.i.d. random vectors such that ∥v∥H ≤ κ and ∥z∥K ≤ κ almost surely for some
constant κ > 0. Let Q = Ev ⊗ v, T = Ev ⊗ z, and Tn = 1

n

∑n
i=1 vi ⊗ zi. Define

F̃∞(λ) := ess supv∈H ∥(Q+ λI)−1/2v∥2, Ñ (λ) := tr
(
(Q+ λI)−1Q

)
.

For any 0 < λ < ∥Q∥ and any τ > 0, with probability at least 1− τ , the following holds

∥(Q+ λI)−1/2(T − Tn)∥HS ≤
4
√

F̃∞(λ)κ log 2
τ

n
+

√
4κ2Ñ (λ) log 2

τ

n
.

Proposition C.4 (Rudi & Rosasco 2017, Appendix D, Proposition 6). Let v1, . . . , vn be n i.i.d. random vectors on a
separable Hilbert space H such that Q = Ev ⊗ v is trace-class, and for any λ > 0, there exists a constant F∞(λ) <∞
such that ⟨v, (Q + λI)−1v⟩ ≤ F∞(λ) almost surely. Let Qn = 1

n

∑n
i=1 vi ⊗ vi and take 0 < λ ≤ ∥Q∥. Then for any

δ ≥ 0, the following holds with probability at least 1− 2δ:

∥(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2∥ ≤ 2β(1 + F∞(λ))

3n
+

√
2βF∞(λ)

n
,

where β = log 4 trQ
λδ . Moreover, with the same probability,

λmax

(
(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2

)
≤ 2β

3n
+

√
2βF∞(λ)

n
.

Consequently, if ∥v∥ ≤ κ almost surely, when 19κ2

n log n
4δ ≤ λ ≤ ∥Q∥ and n ≥ max

{
405κ2, 67κ2 log κ2

2δ

}
, with

probability at least 1− δ, we have

λmax

(
(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2

)
≤ 1/3.

Proposition C.5 (Rudi & Rosasco 2017, Appendix D, Proposition 8). Let H be a separable Hilbert space, A, B be two
bounded self-adjoint positive linear operators on H, and λ > 0. Then

∥(A+ λI)−1/2B1/2∥ ≤ ∥(A+ λI)−1/2(B + λI)1/2∥ ≤ (1− β)−1/2,

where β = λmax

[
(B + λI)−1/2(B −A)(B + λI)−1/2

]
satisfies β ≤ λmax(B)

λmax(B)+λ < 1.

D. Additional Simulation Studies and Real Data Examples
D.1. Additional Simulation Studies

Here, we present results corresponding to the r = 0.5 case as mentioned in Section 4.2. Similar to what we did before,
the training and test data are generated from Y = f(X) + ε, where f is the regression function, X ∼ Unif[0, 1]d, and
ε ∼ N(0, 1). We consider two choices of kernels: (i) the min kernel K(x,x′) =

∏d
i=1 min(xi, x

′
i), and (ii) the Gaussian

kernel K(x,x′) = exp(− 1
2σ2 ∥x− x′∥22), with the bandwidth σ set as the median of ∥X−X′∥ (computed numerically),

where X,X′ i.i.d. ∼ Unif[0, 1]d.

From Theorem A.7, when r = 0.5, ranLr is essentially H. Therefore, for the min kernel, we set f̃(x) = 2K(1d,x) −
K( 341d,x)+2K( 121d,x)−K( 141d,x), and for the Gaussian kernel, we set f̃(x) = K( 131d,x)+K( 231d,x). In both cases,
we have f̃ ∈ ranLr. To approximately control the signal-noise-ratio, we set the regression function as f(x) = Cf̃ · f̃(x)
for some constant Cf̃ such that Ef(X) = 5. The kernel ridge regularization constant is set as λ = 0.25n−

1
2r+1 .
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Figure 5. Gaussian Kernel (r = 0.5): the test MSE against the
number of random features for KRR, RF-KRR and QMCF-KRR.
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Figure 6. Min Kernel (r = 0.5): the test MSE against the number
of random features, for KRR, RF-KRR and QMCF-KRR.
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Figure 7. The test MSE against the number of random features for the ‘Cadata’ data set.

We plot the test MSE against the number of random features, for exact KRR, RF-KRR and QMCF-KRR in Figures 5 and 6.
For each combination of kernel and d, 106 test data are first generated and held fixed. We consider 1000 realizations of
training samples of size 104. For each of the realization, we fit a kernel ridge regression and compute its test error. The MSE
(solid lines) in Figure 3 and 4 are obtained by averaging over the 1000 realizations. We also provide confidence bands using
the 25% and 75% error quantiles from the 1000 realizations.

It is observed that, empirically, the case with r = 0.5 case exhibits patterns similar to those of the r = 1 case in Section 4.2,
which demonstrates the superior performance of QMC features.

D.2. Real Data

We consider the following two real-world examples in this subsection.

Cadata (Pace & Barry, 1997): In this data set (n = 20640, d = 6), the response is the log of the median house price, and
the predictors are median income, housing median age, total rooms, total bedrooms, population, and households. We first
perform a random train-test split, allocating 25% of the data to the test set. The response is normalized to have mean 0, and
all predictors are normalized to have mean 0 and variance 1, using statistics from the training set. Gaussian kernel is used
with the bandwidth empirically set as the median of pairwise distance within the training set.

Cod-rna (Uzilov et al., 2006): This benchmark dataset (n = 59535 (train) + 271617 (test), d = 8) was developed for
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Figure 8. The test MSE against the number of random features for the ‘Cod-rna’ data set.

detecting non-coding RNAs. The response is binary with imbalanced class sizes: in the training set there are 39690 ‘-1’s and
19845 ‘1’s; in the test set there are 181078 ‘-1’s and 90539 ‘1’s. Eight predictors are available: ∆G◦

total value computed by
the Dynalign algorithm (Uzilov et al., 2006), the length of shorter sequence, and respective ‘A’, ‘U’, ‘C’ frequencies of
sequence 1 and sequence 2. We normalize all predictors to have mean 0 and variance 1, using statistics from the training set.
The Gaussian kernel is used with the bandwidth empirically set as the median of pairwise distance within 10000 random
samples from the training set.

Note that our result (Theorem 3.2) depends on λ of order between n−1/2 and n−1/3. Thus, for the above two data sets
(Cadata: n−1/2 ≈ 0.007, n−1/3 ≈ 0.037; Cod-rna: n−1/2 ≈ 0.004, n−1/3 ≈ 0.026) we consider three choices of λ that
are approximately within this range: λ = 0.0001, 0.001, 0.01. We let M vary from 200 to 1000. Given the randomness of
the MC approach, we repeated the RF-KRR process 1000 times with 1000 different seeds; subsequently, we plotted the
mean test MSE along with the 95% confidence band (for RF-KRR). The results are shown in Figures 7 and 8.

We observe that for all choices of λ: (i) As M increases, the MSE of QMCF-KRR decreases quickly and converges to
that of the exact KRR. (ii) When M is not too small (M > 200 for Cadata; M > 400 for Cod-rna), QMC outperforms the
average performance of MC. (iii) RF-KRR has a very wide confidence band. In terms of providing a high probability MSE
upper bound, QMCF-KRR significantly outperforms RF-KRR. For example, when λ = 0.01, the high probability (97.5%
quantile) MSE upper bound for RF-KRR with M = 1000 is comparable to that of QMCF-KRR with M ≈ 200.

D.3. Simulation Results in High Dimensions

We have seen superior performance of QMC features compared with classical random features in low-dimensional settings
(in Section 4, Appendix D.1, and Appendix D.2). In this subsection, we present simulation results of RF-KRR and
QMCF-KRR in higher dimensions. These results show that the performance of QMC features may be less satisfactory as
the dimension increases.

We will follow the same simulation setting as in Section 4.2 and Appendix D.1. We consider both r = 1 and r = 1/2.
The training and test data are generated from Y = f(X) + ε, where f is the regression function, X ∼ Unif[0, 1]d, and
ε ∼ N(0, 1). We consider the Gaussian kernel K(x,x′) = exp(− 1

2σ2 ∥x− x′∥22), with the bandwidth σ set as the median
of ∥X−X′∥ (computed numerically), where X,X′ i.i.d. ∼ Unif[0, 1]d.

For r = 1, we use the same regression function f(x) as in Section 4.2. For r = 0.5, we use the same regression function
f(x) as in Appendix D.1. The kernel ridge regularization parameter is set as λ = 0.25n−

1
2r+1 .

In Figures 9 and 10, we plot the test MSE against the number of random features, for exact KRR, RF-KRR and QMCF-KRR.
For each combination of r and d, 106 test data are first generated and held fixed. We consider 1000 realizations of training
samples of size 104. For each of the realization, we fit a kernel ridge regression and compute its test error (i.e., MSE on the
test set). The solid lines in Figures 9, 10 are obtained by averaging over the 1000 realizations. We also provide confidence
bands using the 25% and 75% error quantiles from the 1000 realizations. For the MC method, the randomness comes from
re-generating the training set and the MC random features. Whereas for the QMC method, it only comes from the training
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Figure 9. Negative results in higher dimensions: the test MSE
against the number of random features for exact KRR, RF-KRR
and QMCF-KRR. Gaussian Kernel is used with r = 1.
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Figure 10. Negative results in higher dimensions: the test MSE
against the number of random features, for exact KRR, RF-KRR
and QMCF-KRR. Gaussian Kernel is used with r = 0.5.

set re-generation as the QMC features are deterministic.

It can be seen from Figures 9 and 10 that for both r = 1 and r = 0.5, QMC features may not outperform classical random
features as the dimension increases, which aligns with the practical observation that the best use case for QMC often arises
when the integrand can be well approximated by a sum of functions involving only a small number of its input variables
(Owen, 2023; Adcock & Brugiapaglia, 2022). As the dimension increases, the improvement of QMC over MC may be less
significant or even worse, as seen in Figures 9 and 10 for d = 30, 50 and 100. Nevertheless, for suitably large M , it can be
seen that the MSE of QMCF-KRR still decreases quickly, approaching the performance of the exact KRR.
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