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Abstract

Learning an effective global model on private and
decentralized datasets has become an increasingly
important challenge of machine learning when
applied in practice. Existing distributed learning
paradigms, such as Federated Learning, enable this
via model aggregation which enforces a strong
form of modeling homogeneity and synchronic-
ity across clients. This is however not suitable
to many practical scenarios. For example, in dis-
tributed sensing, heterogeneous sensors reading
data from different views of the same phenomenon
would need to use different models for different
data modalities. Local learning therefore happens
in isolation but inference requires merging the lo-
cal models to achieve consensus. To enable con-
sensus among local models, we propose a feature
fusion approach that extracts local representations
from local models and incorporates them into a
global representation that improves the prediction
performance. Achieving this requires addressing
two non-trivial problems. First, we need to learn
an alignment between similar feature components
which are arbitrarily arranged across clients to en-
able representation aggregation. Second, we need
to learn a consensus graph that captures the high-
order interactions between local feature spaces and
how to combine them to achieve a better prediction.
This paper presents solutions to these problems and
demonstrates them in real-world applications on
time series data such as power grids and traffic
networks.

1 INTRODUCTION

To improve the scalability and practicality of machine learn-
ing applications in situations where training data are becom-

ing increasingly decentralized and proprietary, Federated
Learning (FL) [McMahan et al., 2017, Yang et al., 2019a,
Li et al., 2019, Kairouz et al., 2019] has been proposed as
a new model training paradigm that allows data owners to
collaboratively train a common model without having to
share their private data with others. The FL formalism is
therefore poised to resolve the computation bottleneck of
model training on a single machine and the risk of privacy
violation, in light of recent policies such as the General Data
Protection Regulation [Albrecht, 2016].

However, FL requires a strong form of homogeneity and
synchronicity among the data owners (clients) that might not
be ideal in practice. First, it requires all clients to agree in ad-
vance to a common model architecture and parameterization.
Second, it requires clients to synchronously communicate
their model updates to a common server, which assembles
the local updates into a global learning feedback. This is
rather restrictive in cases where different clients draw obser-
vations from different data modalities of the phenomenon
being modeled. It leads to heterogeneous data complexities
across clients, which in turn requires customized forms of
modeling. Otherwise, enforcing a common model with high
complexity might not be affordable to clients with low com-
pute capacity; and vice versa, switching to a model with low
complexity might result in the failure to unlock important
inferential insights from data modalities.

A variant of FL [Hardy et al., 2017, Hu et al., 2019, Chen
et al., 2020], named vertical FL (VFL), has been proposed
to address the first challenge, which embraces the concept
of vertically partitioned data. This concept is figuratively
named through cutting the data matrix vertically along the
feature axis, rather than the data axis. Existing approaches
maintain separate local model parameters distributed across
clients and global parameters on a central server. All pa-
rameters are then learned together, which causes a practical
drawback:

Coordination overhead among clients and the central
server, such as engineering protocols that enable multi-
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ple rounds of communication (i.e., synchronicity) and
coordination effort (i.e., homogeneity) to converge on
universal choices of models and training algorithms,
would be required, which can be practically expensive
depending on the scale of the application.

To mitigate both constraints on homogeneity and synchronic-
ity1 satisfactorily, we ask the following question and subse-
quently develop an answer to it:

Can we separate global consensus prediction from local
model training?

As shown later in our experiments, we will address this ques-
tion in a real-world context of the national electricity grid,
over which thousands of phasor measurement units (PMUs)
were deployed to monitor the grid condition and data were
recorded in real-time by each PMU [Smartgrid.gov]. PMU
measurements, as time series data, are owned by several
parties, each of which may employ different technologies
leading to heterogeneous recordings under varying sampling
frequencies and measured attributes. These data can be used
to train machine learning models that identify grid events
(e.g., fault, oscillation, and generator trip). Such an event
detection system relies on collective series measurements at
the same time window but distributed across owners. Using
VFL to build a common model on such decentralized and
heterogeneous data is plausible but not practical, because of
a lack of autonomy to facilitate coordination among owners.

Main Contribution. To resolve the challenge, we introduce
a feature fusion perspective to this setting, which aims to
minimize coordination among clients and maximize their
autonomy via a local–global model framework. Therein,
each client trains a customized local model with its data
modalities. The training is independent and incurs no coor-
dination. Once trained, local feature representations of each
client can then be extracted from the penultimate layer of the
corresponding local models. Then, a central server collects
and aggregates these representations into a more holistic
global representation, used to train a model for global in-
ference. There are two technical challenges that need to be
addressed to substantiate the envisioned framework.

C1. There is an ambiguity regarding the correspon-
dence between components of local feature representa-
tions across different clients. This ambiguity arises be-
cause local models were trained separately in isolation and
there is no mechanism to enforce that their induced feature
dimensions would be aligned. As a matter of fact, it is pos-
sible to permute the induced feature dimensions without
changing the prediction outcome. Thus, if two models are
trained separately, they might end up looking at the same
feature space but with permuted dimensions.

1Note that in our case, synchronicity requires co-training
among clients which is a weaker constraint than its usual mean-
ing of further requiring clients to synchronize their updates per
iteration.

C2. There are innate local interactions among subsets of
clients that need to be accounted for. Naively concatenat-
ing or averaging the local feature representations accounts
for the global interaction but ignores such local interactions,
which are important to boost the accuracy of global predic-
tion as shown later in our experiments.

To address C1, note that the feature dimension alignment
problem is discrete in nature; furthermore, there is no direct
feedback to optimize for such alignment. To sidestep this
challenge, we develop a neuralized alignment layer whose
parameters are differentiable and can therefore be part of a
larger network, including the feature aggregation and pre-
diction layers, which can be trained end-to-end via gradient
back-propagation (Section 4). To address C2, we employ
graph neural networks as the global inference model, where
the graph corresponds to the explicit or implicit relational
structure of the data owners. As such a graph might not be
given in advance, we treat the combinatorial graph structure
as a random variable of a product of Bernoulli distributions
whose (differentiable) parameters can also be optimized via
gradient-based approach (Section 5). The technical contri-
butions of this work are summarized below.

1. We formalize a feature fusion perspective for distributed
learning, in settings where data is vertically partitioned. This
is an alternative view to VFL but as elaborated above, is
more applicable when iterative training synchronicity is not
possible among clients (Section 2).

2. We formulate a federated feature fusion (F3) framework
that consists of a network of pre-trained local models and
a central model that collects and fuses the local feature
representations (induced from these pre-trained models) to
generate a global model with better predictive performance
(Section 3). This is achieved via addressing C1 (Section 4)
and C2 (Section 5) above.

3. We demonstrate experiments with four real-life data sets,
including power grids and traffic networks, and show the
effectiveness of the proposed framework (Section 7).

2 PROBLEM FORMULATION

Federated Feature Fusion (F3) is a new but more practical
setup for VFL [Hu et al., 2019, Chen et al., 2020]; it aims to
enable collaboration between data owners that possess pri-
vate access to different sets of features describing the same
set of training data points. However, unlike VFL which re-
quire clients to synchronize their training processes [Yang
et al., 2019b, Li et al., 2021, Fu et al., 2021, Cheng et al.,
2021, Hu et al., 2019, Diao et al., 2021] in multiple itera-
tions of communication, F3 allows data owners to train their
own local models in isolation and only requires one round
of communication in which local feature representations
induced from the heterogeneously pre-trained local models
are shared with a trusted server for feature fusion.



Relation to FL with Heterogeneous Clients. We note that
similar ideas on extending federated learning to accommo-
date clients with heterogeneous models [Tan et al., 2022b,a,
Lin et al., 2020, Chen et al., 2022] has been proposed. How-
ever, these methods are still restricted to horizontal settings.
Local models still need to operate on the same feature space
and some of which also require client models to be trained
together via multiple rounds of communication. As such,
their focuses are on addressing different forms of hetero-
geneities: (1) heterogeneous data distributions; (2) hetero-
geneous model architectures; and (3) heterogeneous pre-
training, which are all important but are different from fea-
ture heterogeneities, which is a new form of heterogeneities
we are seeking to address.

To further emphasize on the novelty of our setting and so-
lution significance, we review and discuss the formulation
of VFL and F3 below, which argues with concrete, real-life
examples why the F3 setting is more practical and how this
practicality would entail significant technical challenges that
necessitate new solutions in Sections 4 and 5.

Federated Learning with Vertically Partitioned Data.
From a data perspective, the decentralized nature of data in
VFL is a transposition to that of the traditional horizontal
federated learning (HFL) [McMahan et al., 2017]. Instead
of owning the same set of features for different sets of data
points as in HFL, the data owners in VFL now own different
sets of features for the same set of data points; and they
share a common label set of these data points.

From the existing literature, two lines of work are noted.
One takes the data matrix literally – by assuming tabular
data and studying linear models – where model parameters
have natural correspondence to the data parts [Hardy et al.,
2017, Nock et al., 2018, Heinze et al., 2014, 2016]. Often,
these approaches are hard to generalize to complex data
with many owners. Another line of work advocates the use
of models with modular structure in which separate parts of
the model are responsible to locally aggregate different sets
of local features owned by different owners; and a global pa-
rameterization is used to combine these local features. This
is similar in spirit to F3 but require clients to synchronize
the training processes of their assigned model parts, which
incurs expensive communication and creates dependence
among the clients [Hu et al., 2019, Chen et al., 2020].2

Mathematically, for each datum xk with label yk, let xik be
the feature set of the datum that the i-th owner possesses.
That is, xk = (x1

k,x
2
k, . . . ,x

n
k ) with n data owners. VFL

aims to find aggregation parameter w and local representa-

2Note that the approach proposed by Hu et al. [2019] as-
sumes no parameters for the global model. Were global parameters
present, gradient communication is inevitable.
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]
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where each φi(xik;θi) is a (learnable) local embedding of
xik parameterized by a separate parameter vector θi owned
by the i-th owner, g(φ1, φ2, . . . , φn;w) is an aggregation
function parameterized by w and ` is a prediction loss,
e.g. the cross-entropy loss for classification or `2 loss for
regression. The loss in Eq. (1) is averaged over all training
data points x1,x2, . . . ,xm.

Federated Feature Fusion. The setting of F3 is similar to
VFL, except that the data owners share neither data nor
models with each other to ensure a higher degree of pri-
vacy compliance, which is often the more practical setting
in industry – see the example on power grid at the end of
this section. For this reason, the VFL minimization task in
Eq. (1) above is changed to finding a single set of aggrega-
tion parameter w that minimizes
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where hik = φ∗i (x
i
k) with φ∗i = argminφi

`i
(
φi(x

i
k), yk

)
which characterizes the locally optimal feature representa-
tion obtained in isolation by the i-th owner. As such, Eq. (2)
only requires one round of communication where {hik}k,i
are communicated to a trusted server. Prior to that, each
data owner can freely learn their own feature representation
model φi(xik) with different parameterization and architec-
ture, catering towards their own compute capacities and
data representation. This avoids forcing the data owners to
participate in a joint training scheme which often requires
expensive coordination and is not practical.

However, in exchange for this practicality, two key chal-
lenges arise. First, as local models are separately trained, the
correspondence between components of induced feature rep-
resentations across local models become ambiguous since
there is no mechanism to enforce their alignment. Second,
for the same reason, there are potential innate local inter-
actions among subsets of clients and a naive concatenation
or averaging of their corresponding feature presentations
will likely ignore such interactions, resulting in decreasing
performance. These correspond to high-level challenge C1
and C2 in Section 1 which will be addressed in Sections 4
and 5 as our key technical contributions.

Separation of Local and Global Model Training. We re-
mark that the separation of the local and global model train-
ing is driven by practical constraints in the real world. For
example, there are cases in which data owners prefer to
only release pre-trained models for the collaboration, which
are not updatable. This is often preferable in production
systems that compartmentalize into separately pre-trained



workflows maintained by different product groups [Su et al.,
2018], which needs a decoupled architecture such that up-
dates to such workflow models can be implemented fast to
scale the business. A similar design appears in many previ-
ous works, including Wang et al. [2022], Lam et al. [2021],
Yurochkin et al. [2019b], Hoang et al. [2019a], Yurochkin
et al. [2019a], Hoang et al. [2019b, 2020].

Figure 1: Federated Feature Fusion: A global prediction
is produced collectively based on a set of global features
which are the result of fusing local feature representations
supplied by the data owners. These feature representations
are induced from locally trained models on raw local data
which might be heterogeneous.

Data Example. Let us consider the power grid monitoring
task as an example. Figure 1 visualizes PMU measurements
distributed across data owners. A panel of time series corre-
sponds to a specific time window and the series collectively
represent one data point, which the event detection system
classifies. In this simplified illustration, each data owner
possesses one series recorded by one PMU; but in practice
they may own different amounts of PMUs (and thus series).
Moreover, the series may differ in length because of varying
sampling frequencies; and the series are multivariate with
possibly different number of variates. All these variations
contribute to feature heterogeneity, which necessitates the
construction of separate local models. Note that if an event
does not cascade over the entire grid, some local models
may report event whereas others report normal, resulting in
conflicting opinions. A consensus global model is responsi-
ble to resolve the conflict. Additionally, missing data may
occur.

3 FEDERATED FEATURE FUSION

As detailed above, the proposed framework for F3 consists
of local models φi and a global feature fusion model g, such
that their composition minimizes the loss in Eq. (2). Each

data owner i possesses a local model trained with its data,
independently of other owners. This way, no data sharing
is invoked and privacy is of minimal concern. However,
because the local models lack a global vision and may be
conflicting, a central (global) model is key to coordinating
the local opinions for final prediction. To maintain auton-
omy, local models are frozen once pre-trained and will not
join the training of the global model. Data owners send local
data representations to a centralized server for global model
training (and inference). In other words, the global model
queries neither the raw data nor the local models from data
owners. As long as owners agree to send the less decipher-
able representations to the central server, global inference
can be made.

Local Models. We treat a neural network except the final
output layer as a feature extractor, which produces the repre-
sentation hik of an input fragment xik; and treat for simplic-
ity the output layer as a logistic regression. That is, a local
model gi(xik) reads:

gi
(
xik
)

, softmax
(
Wi · hik + bi

)
(3)

where hik = φi
(
xik
)
. Hereafter, we will interchangeably

use representation, embedding, and latent vector to mean
hik. These hik’s are assumed to have the same shape across
i, although xik can have different shapes and the embedding
function can have different architectures to cope with feature
heterogeneity. A simple example of the embedding function
is a fully connected layer hik = ReLU(Ui · xik + ci); but
an arbitrarily complex function is also applicable.

Global Model. The global model g melds together all local
representations to generate a prediction:

yk ' ŷk , g
(
h1
k,h

2
k, . . . ,h

n
k ;w

)
(4)

which is parameterized by w. For example, the parame-
terization w = {W0,W1,b0,b1} characterize two fully
connected (FC) layers interleaved with mean pooling:

g
({

hik

}n
i=1

;w
)

= softmax (W1 ·α + b1) where

α =
1

n

n∑
i=1

ReLU
(
W0 · hik + b0

)
(5)

Given a particular parameterization w, we can substantiate
Eq. (4) above and plug it into Eq. (2). The optimal value
for w can then be achieved by solving the corresponding
minimization task therein. However, designing the form of
w is highly non-trivial and is in fact tied to the previously
mentioned challenges C1 and C2, as elaborated below.

Challenges. Two considerations are pertinent to the design
of w. First, when the latent dimensions have semantic mean-
ing – e.g. when the local models are trained to yield disen-
tangled representations [Higgins et al., 2018] – each latent
feature of the local representations may not match, because
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Figure 2: Federated Feature Fusion Framework. Local models are trained independently and separately from the global
model. The algorithm is summarized in Algorithm 1.

an arbitrary permutation of the latent dimensions does not
change a local model. Second, a naive mean pooling as
in (5) misses the inter-dependencies between local data,
leading to a less well performing global model. Such inter-
dependencies occur in the power grid example because of
the physics of an electricity network. Hence, we use latent
alignment to address the first problem and graph neural net-
work to address the second one. Incorporating these two
components, we show the full proposed framework in Fig-
ure 2 and Algorithm 1. The solutions to these challenges
will be discussed in Sections 4 and 5.

Algorithm 1 Federated Feature Fusion (F3)

1: function TRAINING({(xik, yk)mk=1}ni=1)
2: Local clients learn {gi}ni=1 with {(xik, yk)mk=1}ni=1

3: Local clients share {hik , φi(x
i
k)}ni=1 via Eq. (3)

4: Minimize Eq. (2) composed with Eq. (8)
5: Minimizing loss is averaged over samples of Â
6: Entries of Â are sampled using (9)
7: end function

8: function INFERENCE({xk}mk=1 where xk = (xik)
n
i=1)

9: Local clients evaluate and send {hik}i,k to server
10: Prediction is produced via Eq. (5)
11: end function

4 ALIGNING REPRESENTATIONS

For the global model to be meaningful, the feature dimen-
sions of the local representations hik should be aligned under
the same feature space. For example, in (5), all hik’s multiply
the same weight matrix W0: each element of hik thus cor-
responds to one input neuron of the initial fully connected
layer. Permutations of elements will destroy the correspon-
dence: Arbitrary arrangements of feature dimensions of the

latent vectors cause ambiguity on what an optimal global
model can be built.

To elaborate, let us use a vector p to denote the index (col-
umn) permutation of a vector (matrix). Then, the ith local
model (3) can be equivalently written as

gi
(
xik
)
, softmax

(
Wi [:,pi] · hik [pi] + bi [pi]

)
(6)

where hik , φi
(
xik
)
. This is true for any permutation pi

as long as the embedding function is able to produce a per-
muted hik[pi] under the same input xik. Such a requirement
can be easily satisfied if the embedding function is a fully
connected layer such as h[p] = ReLU(W[p, :] · x+ b[p]).
In fact, it is satisfied by most neural networks as well. The
supplement gives another example: GRU [Cho et al., 2014].

Hence, we propose to align the feature dimensions across
all local vectors hik to disambiguate the ambiguity. This
proposal amounts to adapting the global model (4) to:

yk ' ŷk , g
(
P1 · h1

k,P2 · h2
k, . . . ,Pn · hnk

)
, (7)

where Pi is an alignment matrix for each data owner i, im-
plementing the (manual) index or column permutation above
in linear algebra. We can then treat each Pi as a free param-
eter matrix to optimize. It may be square or rectangle, the
latter case indicating a change of the number of features. We
also show an alternative hard alignment by parameterizing
Pi as a permutation matrix in the supplement.

5 LEARNING A CONSENSUS GRAPH

The example global model (5) performs a naive averag-
ing for the local representations. Since data owners are
often interconnected, a more expressive model is needed
to exploit their relational interactions to improve infer-
ence [Battaglia et al., 2018]. Here, we use a graph neural



network (GNN) [Zhang et al., 2020, Wu et al., 2021] to
model and learn these high-order relational interactions.

A. Modeling Consensus via GCN with Latent Graph.
All variants of GNN are applicable to our setting but we
focus on the most basic GCN [Kipf and Welling, 2017] for
presentation clarity. Let A be the graph’s adjacency matrix
and let Hk be the matrix of aligned local representations:

Hk ,

−(P1h
1
k)
>−

...
−(Pnhnk )>−

 .
The global prediction yk ' ŷk = g(h1

k, . . . ,h
n
k ;w) in

Eq. (4) is then substantiated with

g
({

hik

}n
i=1

;w
)

, softmax

(
1

n
1>A† ·W1

)
with

A† = Â · ReLU
(
ÂHkW0

)
(8)

where Â is a normalization of A [Kipf and Welling, 2017]
and w = (W0,W1, {Pi}ni=1) are learnable parameters.

Here, we adapt the traditional GCN prediction with the
inclusion of 1

n1
T as pooling before output. Modulo this

modification, Eq. (8) is the traditional one used in the liter-
ature with bias terms omitted. It is interesting to note the
equivalence between the GCN (8) and graph-agnostic (5)
models when Â is replaced by I, omitting the bias terms.

In GCN, A corresponds to the consensus graph among local
owners as graph nodes. If such a graph is not present, it
is possible to learn one such that (8) still outperforms (5).
In this case, we treat A as a random variable of the matrix
Bernoulli distribution, where the success probabilities are
free parameters to learn. Formally, the elements Aij are
independent and each follows Ber(θij), where θij denotes
the corresponding probability [Kipf et al., 2018, Shang et al.,
2021]. Then, the global model g has W0, W1, the Pi’s, as
well as θ, as parameters. Following Franceschi et al. [2019],
Shang et al. [2021], we formulate the training loss as an
expectation over A’s distribution and draws a sample A to
obtain an unbiased estimate of the loss and its gradient.

Security in Transmitting Data Representation. Transmit-
ting data representation might risk exposing raw data and
mitigating such risks in multiple rounds of communication is
often non-trivial. However, in our case, there is a single com-
munication round so sanitizing the data representation does
not pose a new challenge. It can be addressed using a variety
of existing, well-established techniques such as Shamir’s
Secret Sharing (SSS) [Shamir, 1979]. Each local representa-
tion (a secret) can be splitted into multiple shares distributed
to multiple central entities who process and combine the
results to reproduce the desired result. As the central entities
process the shares independently and only communicate
the results to a coordinator, the SSS protocol can guarantee

no single central entity would have enough information to
access any local representations.

B. Differentiable Graph Sampling. However, the central
challenge of this approach is that the sample Aij is not dif-
ferentiable with respect to the corresponding Bernoulli bias
θij , which in turn makes the training loss non-differentiable
with respect to θ. To sidestep this difficulty, we propose the
following reparameterization, which presents a learnable
(differentiable) transformation of a sample drawn from a
continuous distribution to a discrete Bernoulli sample. This
transformation is detailed in Definition 1 below, which is fol-
lowed by Theorem 1 showing the distributional convergence
of this transformation to the desired distribution.

Definition 1. Let F be the CDF of an arbitrary continu-
ous probability distribution. Sample s from this reference
distribution and let

z , sigmoid

(
1

τ

(
F−1(θ)− s

))
, τ > 0. (9)

We call this the ICDF reparameterization which is named
after the use of inverse cumulative F−1.

Theorem 1. For all τ > 0, θ ∈ (0, 1) and t ∈ [0, 1], if the
distribution with CDF F is finitely supported on [a, b], then

Pr(z ≤ t) =

{
0 if t < σ((F−1(θ)− b)/τ),
1 if t > σ((F−1(θ)− a)/τ)

(10)

or otherwise,

Pr(z ≤ t) = 1− F
(
F−1(θ) + τ log

(
1

t
− 1

))
. (11)

In case the distribution is not finitely supported (i.e., a =
−∞ and/or b = +∞), Eqs. (10) and (11) still hold because
either (or both) of the first two cases will not be invoked.
Thus, the distribution of z converges to Ber(θ) as τ → 0.

Discussion. We note that an alternative to the above can
be achieved via using the Gumbel softmax reparameteriza-
tion [Jang et al., 2017, Maddison et al., 2017] which also
features a differentiable relaxation of the Bernoulli distribu-
tion that approximates it asymptotically. However, in order
to obtain one Bernoulli sample, the Gumbel trick requires
to sample the Gumbel distribution twice.

Instead, our proposed reparameterization only requires sam-
pling from the reference distribution only once. We also
show that the ICDF reparameterization converges as fast
as the Gumbel softmax. Both approaches have asymptotic
convergence rate on the order of O(τ2) as shown in the
supplement. Empirically, we also show that ICDF induces
marginally better performance than Gumbel softmax. This
is why we prefer ICDF to Gumbel in our work.



6 RELATED WORK

The concept of federated learning was first coined by McMa-
han et al. [2017] and it has attracted surging interests since
then. Recent literature reviews [Yang et al., 2019a, Li et al.,
2019, Kairouz et al., 2019] have comprehensively studied
the topic, summarized systems and infrastructures, and also
suggested open problems. Among these, one interesting di-
rection is a new family [Hardy et al., 2017, Nock et al., 2018,
Heinze et al., 2014, 2016] of federated learning that studies
a federated scenario where features (instead of samples) are
split across owners. This setting bears resemblance to our
federated feature fusion scenario, but a key distinction is all
literature in this direction focuses on local models that can
be trained together whereas in our scenarios, local models
are trained in isolation to avoid the cost and overhead of
coordination among different parties.

To build consensus among local models, our framework
learns parameter matrices to align their local representa-
tions. Such alignments similarly appear in model fusion,
where a number of models are fused together into a com-
mon model through aligning model parameters [Yurochkin
et al., 2019a]. In the context of deep learning, if the neural
networks come from the same model family, their weights
can be matched layer-wise, even if the numbers of weights
are different [Yurochkin et al., 2019b, Wang et al., 2020].
The referenced work treats the problem as a bipartite graph
matching, where the cost matrix is inferred from maximum a
posteriori estimation. Then, the Hungarian algorithm [Kuhn,
1955] is applied to find the matching. In our work, instead
we treat the permutation alignment as a differentiable param-
eterization with the help of Sinkhorn–Knopp [Sinkhorn and
Knopp, 1967, Mena et al., 2018, Emami and Ranka, 2018],
so that it can be learned end-to-end with other parameters.

Our framework also advocates learning a graph of data
owners in the global model. Graph structure learning ap-
pears under various contexts. One field of study is grounded
in the context of probabilistic graphical models, whereby
a directed acyclic structure is learned. Gradient-based ap-
proaches in this context include Zheng et al. [2018], Yu
et al. [2019], Lachapelle et al. [2020]. On the other hand, a
general graph may still be useful without resorting to causal-
ity. Recent approaches supporting GNN-based modeling
include Kipf et al. [2018], Franceschi et al. [2019], Wu et al.
[2020], Shang et al. [2021], wherein a graph structure is
simultaneously learned together with the GNN parameters.

7 EXPERIMENTS

This section reports comprehensive experiment results to
demonstrate the effectiveness of our proposed federated fea-
ture fusion (F3) substantiated with the developed techniques
in Sections 4 and 5.

Table 1: Dataset Statistics.

METR-LA PEMS-BAY PMU-B PMU-C

# samples 2856 4343 4853 1884
# owners 207 325 43 188
# features 1 1 2 2
# classes 2 2 4 4
series length 12 12 30 30
missing data N N Y Y
given graph Y Y N N

Figure 3: Distributions of prediction entropy.

Datasets. We use four real-life, time series datasets. Two
are PMU data collected from multiple data owners of the
U.S. power grid. For proof of concept, we smooth out het-
erogeneity and prepare homogeneous data sets. Such a pre-
processing is sufficient to test the proposed techniques under
minimal impact of the complication by the otherwise diverse
local models. Since the PMU data sets are proprietary, we
also use two public, traffic data sets [Li et al., 2018] for
experimentation. A summary of these data sets is given in
Table 1 while other processing details are deferred to the
supplement due to limited space.

Experiment Setting. All local models are LSTM [Hochre-
iter and Schmidhuber, 1997] with the same hyperparame-
ters, but pre-trained separately by using local data. The local
models are not fine-tuned in the training of the global model.
Each dataset is split randomly for training/validation/testing.
See the supplement for further details.

Conflicting Local Predictions. We first show that local
models do not produce consistent predictions, which ratio-
nalizes the effort of training a global model and performing
federated feature fusion. For each datum, we compute the
entropy of the predicted labels and summarize the entropies
for all data into a distribution, plotted in Figure 3. Recall
that the lower the entropy, the more consistent the local



Table 2: Effectiveness of latent alignment in a graph-based global model. Superscript numbers are standard deviations.

METR-LA PEMS-BAY PMU-B PMU-C
F1 AUC F1 AUC F1 AUC F1 AUC

A: Horizontal FL .25.000 - .33.000 - .36.000 - .29.000 -
B: Majority Voting .11.000 - .09.000 - .29.000 - .18.000 -
C: Binary Thresholding .69.000 - .64.000 - - - - -
D: Best Model Selection .53.000 .70.000 .55.000 .79.000 .37.000 .69.000 .32.000 .62.000

E: Mean Pooling – Eq. (5) .77.009 .96.004 .74.012 .93.001 .38.008 .71.006 .34.008 .64.010

F: Transformer .78.023 .94.018 .72.045 .93.027 .39.003 .70.009 .40.053 .67.058

G: Concatenation .83.008 .97.002 .80.066 .96.028 .39.006 .71.036 .40.025 .68.040

H: F3 w. no alignment .80.009 .96.004 .75.009 .94.001 .39.003 .73.015 .40.020 .66.018

J: F3 w. parameter tying .82.009 .97.001 .75.009 .94.004 .39.006 .72.010 .37.012 .66.008

K: F3 w. alignment .83.010 .97.001 .86.005 .98.002 .39.008 .73.008 .45.015 .72.003

L: VFL w. graph/alignment .83.012 .97.001 .86.014 .98.002 .39.006 .74.009 .45.015 .73.003
M: VFL w.o. pre-trained local .77.020 .94.021 .77.014 .95.006 .34.014 .69.012 .35.008 .65.014

Table 3: Impact of learning a graph across different alignment settings.

METR-LA PEMS-BAY PMU-B PMU-C
F1 AUC F1 AUC F1 AUC F1 AUC

N
o

A
lig

n No Graph .768.009 .957.004 .738.012 .935.001 .381.008 .711.006 .342.008 .636.010

Given Graph .763.020 .957.007 .742.024 .942.005 - - - -
κ-NN Graph .715.015 .952.004 .695.013 .934.004 .372.001 .711.013 .404.016 .680.014
ICDF .798.009 .963.004 .755.009 .943.001 .387.003 .734.015 .403.020 .663.018

A
lig

n

No Graph .813.009 .970.002 .846.008 .977.001 .386.009 .725.012 .386.008 .694.005

Given Graph .828.007 .974.001 .854.003 .977.001 - - - -
κ-NN Graph .803.020 .968.002 .855.003 .973.002 .378.002 .718.015 .418.007 .702.009

ICDF .835.010 .975.001 .860.005 .980.002 .390.008 .734.008 .451.015 .725.003

predictions. The figure, however, shows that a substantial
amount of entropies is away from zero, suggesting that local
predictions are inconsistent.

Effectiveness of Federated Feature Fusion. We make two
sets of comprehensive comparisons to evaluate the effec-
tiveness of the proposed framework. The first set, as out-
lined in Table 2, compares F3 with a number of non-graph
baselines (A–G), including: (a) horizontal FL (A) which
requires both model homogeneity and training synchronic-
ity among clients that are not admitted in our setting; (b) a
set of standard ensemble strategies (B–F) that combine the
local models, such as voting, binary thresholding, best local
model, mean-pooling via Eq. (5), as well as a simplified Set
Transformer with 2 layers and 4 heads [Lee et al., 2019];
and (c) a vertical FL baseline (G) via feature concatenation.

This set also contains several variants of our proposed fed-
erated feature fusion model, featuring an ablation study of
the effectiveness of our model components: (H) F3 without
alignment; (J) F3 with partially tied parameters among local
models; and (K) F3 with learnable alignment. Note that J
is an alternative to alignment which comes with the cost

of imposing strong homogenization – though not as strong
as A – among local models despite the different nature of
their data. All variants H–K use ICDF reparameterization
to learn the graph structure.

From Table 2, we observe that baselines A–D, lacking ei-
ther local models or a holistic global model, perform sig-
nificantly worse than the other baselines (including our F3

variants, the ensemble via mean pooling, and concatenation).
On the other hand, baselines E–G perform better than A–D
but they lack a proper alignment of local models or they
impose a strong form of homogenization among local mod-
els to sidestep alignment. Therefore, they are expectedly
outperformed by K that performs alignment.

We also compare with two variants of our model K in the
vertical FL setting. L uses the same local and global models
as K but allows gradients to be sent back to local clients,
thus local models can be updated. It achieves similar per-
formance as K but leads to much more communication cost
with multiple rounds of gradient messages. M assumes no
local pre-trained models and all local and global models are
trained jointly from scratch. Its performance is much worse



than K and L, which explains the merit of pre-trained local
models. Another typical VFL baseline G with pre-trained
local models and a simple concatenation based global model
is also inferior.

Impact of Learning a Graph. Our next set of experiments,
as outlined in Table 3, demonstrate the impact of learning a
graph that characterizes the innate local interactions among
subsets of clients, following our challenge statement C2
in the introduction, on both alignment and non-alignment
baselines. This provides ablation studies on the isolated
impact of having a specific graph learning component. In
particular, for each alignment setting, we demonstrate the
impact on performance with (a) not using a graph; (b) using
a predefined graph; (c) learning the graph structure using
a κ-NN baseline [Fatemi et al., 2021]; and (d) learning the
graph structure using ICDF. The reported numbers suggest
that regardless of whether the model performs alignment,
graph learning always improves performance.

Remark. The κ-NN baseline (κ = 10) is implemented
following the description in [Fatemi et al., 2021]. Specif-
ically, during training, we generate a local graph for each
batch for node features X via a symmetrization of Ã =
κ-NN(MLP(X)) which (1) feeds the node features through
a MLP neural block; and (2) draws an edge between each
node and its κ nearest neighbors where the neighborhood
is defined using the cosine similarity on the space of MLP-
projected feature vectors.

8 CONCLUSION

In this paper, we study federated feature fusion, which
presents a less addressed scenario of federated learning
where data owners or clients need to customize their own
local models to accommodate different sets of features. Un-
like federated learning, the clients need to learn their own
model separately in isolation and only communicate their
local feature representations afterwards. We motivate the
practicality of federated feature fusion with a power grid
example and propose a local–global model framework for it.
Two important components of the framework are the align-
ment of the data representations produced by local models
and the learning of the global model by using a graph neural
network. Comprehensive experiments suggest the feasibility
and the effectiveness of federated feature fusion. We re-
lease our code at https://github.com/matenure/
federated_feature_fusion.
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