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Abstract

Explainable Al (XAI) methods aiming to probe model inter-
nals for scientific discovery ("RED XAI”) must move be-
yond correlational saliency maps. We address this by pre-
senting a systematic comparison of segmentation methods
within a causal attribution framework. We contrast an object-
aware approach using the Segment Anything Model (SAM)
against a texture-aware baseline using SLIC superpixels.
Both are integrated into a pipeline utilizing Grad-CAM for
saliency, CLIP for concept labeling, and a causal validation
step quantifying concept importance via counterfactual inter-
ventions (blur masking) measured by raw confidence drop.
Evaluating on 200 ImageNet images, we uncover a criti-
cal sensitivity-reliability trade-off: SAM-based object-centric
concepts show significantly higher average causal impact
(81.0% mean confidence drop vs. 37.7% for SLIC), demon-
strating greater sensitivity, but suffer from segmentation fail-
ures in 9.5% of cases (181/200 successes). SLIC achieves
perfect 100% reliability (200/200 successes) and lower im-
pact variance, albeit with reduced sensitivity. This trade-off
provides actionable guidance for domain scientists: SLIC’s
robustness is preferable for high-stakes, texture-reliant tasks
(e.g., medical diagnostics), while SAM’s sensitivity may ben-
efit exploratory analysis of object-centric phenomena. Our
work offers quantitative evidence of this trade-off, enabling
more informed XAI method selection for reliable scientific
insight.

Introduction

Deep neural networks (DNNs) offer unprecedented capabil-
ities for analyzing complex scientific data, yet their inherent
opacity often impedes trust, hinders debugging, and limits
their utility for generating new scientific knowledge (Rudin
2019). Within Explainable Al (XAI), the pursuit extends
beyond user-facing justifications ("BLUE XAI”) towards
"RED XAI”"—methods designed to rigorously probe, de-
compose, and understand the internal mechanisms of models
to facilitate scientific insight.

Standard post-hoc explanation techniques, such as
saliency mapping via Grad-CAM (Selvaraju et al. 2017),
highlight input regions correlated with a model’s output.
While useful, these methods face limitations for RED XATI:
they do not elucidate the semantic concepts perceived by
the model within salient areas, nor do they establish the
causal necessity of these features for the prediction, as cor-

relations can be spurious (Adebayo et al. 2018). Ante-hoc
interpretable architectures like Concept Bottleneck Models
(CBMs) (Koh et al. 2020) address concept identification but
require access to labeled concept data and model retraining,
precluding their application to the vast array of existing pre-
trained models.

To overcome these challenges in the post-hoc setting, we
propose and systematically evaluate an automated, post-hoc
pipeline for generating causally validated, concept-based ex-
planations from any pretrained vision classifier. Central to
such pipelines is the segmentation of salient image regions
into meaningful units. We posit that the choice of segmenta-
tion algorithm reflecting implicit assumptions about feature
granularity (e.g., objects vs. textures) critically influences
the resulting explanation’s quality and reliability.

This paper presents the first systematic comparison,
grounded in causal validation, of two distinct segmentation
paradigms for semantic XAl:

1. Object-Aware Segmentation via the Segment Anything
Model (SAM) (Kirillov et al. 2023).
2. Texture-Aware Segmentation via SLIC superpixels
(Achanta et al. 2012).
These are integrated with Grad-CAM saliency, CLIP-based
concept labeling (Radford et al. 2021), and a crucial
causal validation stage employing counterfactual interven-
tions (blur masking) to quantify explanation quality via
raw causal impact. Our experiments on ImageNet reveal a
fundamental sensitivity-reliability trade-off: SAM identifies
object-centric concepts with higher average causal impact
but exhibits lower robustness compared to the perfectly re-
liable, albeit less sensitive, SLIC baseline. We articulate the
significant implications of this trade-off for applying XAI
in diverse scientific domains, offering quantitative guidance
for practitioners.

Related Work

Recent advances in explainable artificial intelligence (XAI)
integrate several foundational themes: saliency mapping,
concept-based explanations, causal inference, segmentation,
and their application to sciences.

Saliency Methods: Saliency approaches offer insight into
model decision processes via visual attribution. Grad-CAM
(Selvaraju et al. 2017), Integrated Gradients (Sundararajan,
Taly, and Yan 2017), attention analysis with Transformers
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Figure 1: Overview of the 4-stage semantic attribution pipeline: (1) Saliency generation, (2) Segmentation into candidate regions
(SAM vs. SLIC), (3) CLIP-based concept labeling, and (4) Causal validation via counterfactual intervention.

(Chefer, Gur, and Wolf 2021), and foundational attention vi-
sualization for RNNs are commonly used. However, their
faithfulness is debated—as shown by rigorous sanity checks
(Adebayo et al. 2018) and critiques of attention explanations
(Jain and Wallace 2019). Expanded localization methods in-
clude counterfactual generation (Chang et al. 2019), feature
attribution (Fong and Vedaldi 2017), and real-time saliency
techniques.

Concept-based Explanations: Interpreting deep models
by mapping representations to human-centric concepts is ad-
dressed with TCAV (Kim et al. 2018), Concept Bottleneck
Models (CBMs) (Koh et al. 2020), concept-based explana-
tions for CNNs (Yeh et al. 2019), and ACE (Ghorbani et al.
2019). Network Dissection quantifies interpretability in con-
volutional features (Bau et al. 2017). Advances in automated
concept mapping harness vision-language models (VLMs)
like CLIP (Radford et al. 2021); its use as a general-purpose
concept extractor is highlighted by Kwon et al. (Kwon et al.
2022). Supervision-free approaches for biomedical and ma-
terial domains build on datasets such as ImageNet (Deng
et al. 2009) and HAM 10000 (Tschandl, Rosendahl, and Kit-
tler 2018).

Causal Inference in XAI: Correlation-based measures
are limited in actionable trustworthiness. Causal inference
via counterfactual and intervention-based reasoning, for-
malized by Pearl (Pearl 2009), underpins emerging ma-
chine learning explanations. Notable examples include in-
tervention approaches (Goyal et al. 2019), critical reviews
of counterfactual methods (Slack et al. 2021), the develop-
ment of explainable reinforcement learning (Madumal et al.
2020), and GDPR-compliant transparency via counterfactu-
als (Wachter, Mittelstadt, and Russell 2017).

Segmentation for Explanations: Region-based explana-
tions require robust segmentation, using superpixels such
as SLIC (Achanta et al. 2012), and object-level methods as
units of perturbation for LIME (Ribeiro, Singh, and Guestrin
2016). Deep models for similarity assessment (Chen et al.
2020), along with the Segment Anything Model (SAM)
(Kirillov et al. 2023), have propelled the quality of neural
segmentation. Reviews (Singla et al. 2023) compare SAM
versus classical techniques for medical applications.

XAI for Science, Medicine, and Materials: Deploy-

ing XAl in high-stakes scientific contexts requires mecha-
nistic and reliable explanations, as discussed for medicine
(Holzinger et al. 2019; Tjoa and Guan 2020), climate science
(Mamalakis et al. 2022), and materials design (Stanev et al.
2021; Zhang et al. 2021). The AAAI XAlI4Science Work-
shop (?) highlights broad adoption across domains. Trust in
machine learning is furthered by advocating interpretable
models in critical settings (Rudin 2019). The sensitivity-
reliability trade-off in model explanations continues to in-
form choice and deployment of XAl strategies.

Datasets and Tools: Large-scale datasets remain fun-
damental to benchmarking conceptual, causal, and region-
based explanation methods, distinctly featuring ImageNet
(Deng et al. 2009) and HAM10000 (Tschandl, Rosendahl,
and Kittler 2018).

Stage 1: Saliency Map Generation

The first stage identifies regions of interest correlated with
the model’s prediction. For an input image I € R#>Wx3
a classifier f(-), its top predicted class ¢, and the corre-
sponding confidence P(c|I), we generate a saliency map
S € [0, 1]H*W,

We employ Grad-CAM (Selvaraju et al. 2017), a class-
discriminative localization technique. Grad-CAM was cho-
sen for its applicability to a wide range of CNN architectures
without requiring architectural changes, making it ideal for
a post-hoc pipeline. It uses the gradients of the predicted
class ¢ flowing into the final convolutional layer to produce
a coarse localization map S. This map highlights regions
that positively influence the prediction for class c. For our
ResNet-50 backbone, we target the final block of layer4.
The resulting map is upsampled to the input image size and
normalized to [0, 1].

Stage 2: Semantic Region Proposal

The raw, pixel-level saliency map S lacks semantic struc-
ture. This stage partitions the image into meaningful candi-
date regions { Ry } which are then filtered based on saliency.
We contrast two segmentation paradigms:
* SOTA (SAM): This object-aware approach uses
the Segment Anything Model (SAM) (Kirillov



et al. 2023), a foundation model for segmenta-
tion. We first run SAM’s automatic mask generator
(SamAutomaticMaskGenerator) over I to pro-
duce a comprehensive set of candidate object and part
masks M = {m,}.

¢ Baseline (SLIC): This texture-aware baseline uses SLIC
superpixels (Achanta et al. 2012), a classic algorithm that
clusters pixels based on color and spatial proximity. It
partitions I into a set of perceptually uniform superpixels
P = {p,}, which are ignorant of object boundaries and
instead group similar textures.

For both methods, we filter the resulting candidate regions
(masks m; or superpixels p;) using an identical process. We
score each region by its mean saliency E,c g, [S(p)]. We re-
tain only regions that meet two criteria:

1. Saliency Threshold (7,): The mean saliency must ex-
ceed 75 (e.g., 0.3) to ensure the region is relevant to the
prediction.

2. Size Threshold (7;..): The pixel count |R;| must ex-
ceed 7g;.e (e.g., 500 pixels) to discard small, noisy re-
gions.

From this filtered set, we select the top-K (e.g., K = 5) re-

gions ranked by their mean saliency, yielding the final candi-

date regions { R} and their corresponding bounding boxes

{Bx}.

Stage 3: Concept Identification

This stage assigns a human-understandable text label C}, to
each proposed region Rj. We leverage the zero-shot, open-
vocabulary capabilities of CLIP (Radford et al. 2021).

First, for each region Ry, we extract the image patch de-
fined by its bounding box By,. To provide visual context, we
expand Bj, with a small margin (e.g., 20% of its size) before
cropping from the original image /. This contextual patch is
then passed through the CLIP image encoder £, to pro-
duce a region embedding.

Separately, we pre-compute text embeddings for a fixed
vocabulary V' of ~80 common concepts (e.g., "wheel”, “fur
texture”, ”sky”). Each concept v € V is formatted using a
prompt, E}.+(prompt(v)), where prompt(v) = "a photo of a
{v}”.

We then compute the cosine similarity between the re-
gion’s image embedding and all pre-computed concept em-
beddings. The concept C}, with the highest similarity is as-
signed to the region Ry, as defined by the equation:

Eipg(1(By)) - Eyzi(prompt(v))
C), = arg max g
g BV [ Bimg 1(By)) [ Erat (prompt(v))|

Stage 4: Causal Validation

The saliency and CLIP similarity scores are correlational.
This final, critical stage moves to causal inference by quan-
tifying the *necessity* of the identified concept-region pair
(Ck, Ry) for the model’s prediction. We ask: “Does the
model’s confidence drop if we remove this concept?”

To answer this, we perform a counterfactual interven-
tion. For each top-ranked region By, we “remove” its fea-
tures by applying a strong Gaussian blur (e.g., 51x51 ker-
nel) within the bounding box Bj. This intervention de-
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Figure 2: The Sensitivity-Reliability Trade-off. SAM
achieves higher average causal impact (Sensitivity) but
lower success rate (Reliability) compared to SLIC on 200
ImageNet images.

stroys high-frequency features (like texture and edges) asso-
ciated with the concept while preserving the low-frequency
color and structure, creating a neutral counterfactual image
I} = Blur(I, By,).

We then feed this counterfactual image I;, back into the
classifier f(-) and measure the new confidence P(c|I},) for
the *original™* predicted class c.

We define the **raw causal impact** [ as the fraction
of original confidence lost due to the intervention. This met-
ric normalizes the confidence drop by the initial confidence,
making it comparable across images:

oo )

A high I (e.g., 0.9 or 90%) indicates a catastrophic con-
fidence drop, implying the concept was causally necessary
for the prediction. A low I} (e.g., 0.0) implies the region
was merely correlational, and the model used other features
to maintain its confidence. Finally, all identified concepts are
re-ranked by this raw causal impact [, to produce the final
explanation.

Experiments and Results
Experimental Setup

We used a pre-trained ResNet-50 from torchvision. Grad-
CAM targeted the final block of layer4d. SAM utilized the
vit_h checkpoint (Kirillov et al. 2023). SLIC parameters
were n_segments=100, compactness=20. CLIP used ViT-
L/14 (OpenAl weights) (Radford et al. 2021) with a vocab-
ulary of /=80 terms. Blur intervention used a 51x51 kernel
(0=25). Qualitative analysis used one image; quantitative
results are averaged over 200 ImageNet validation images
streamed via Hugging Face datasets (Deng et al. 2009). All
runs used an NVIDIA V100 GPU.



Qualitative Ablation: SAM vs. SLIC

Figure 3 provides a visual comparison on a ’beagle’ image.
Table 1 shows the top concepts and impacts. SAM identi-
fies the ’collar’ as a distinct region, whereas SLIC focuses
on ’fur texture’ patches. Notably, for this image, the tex-
ture patches identified by SLIC yielded a significantly higher
total causal impact (60.5%) than the object-centric regions
found by SAM (3.3%), suggesting the model may rely more
on texture than object parts here. This highlights how causal
validation reveals model strategy, independent of region se-
mantics.

Table 1: Top concepts and raw causal impacts for the beagle
image (Figure 3).

Pipeline  Top Concept  Causal Impact (Raw %)

SAM

1. fur texture 3.3%

2. fur 0.0%

3. collar 0.0%

Sum of Raw Impacts 3.3%
SLIC

1. fur texture 24.9%

2. fur 24.0%

3. fur texture 8.9%

Sum of Raw Impacts 60.5%

Quantitative Evaluation on ImageNet (N=200)

Table 2 summarizes the performance across 200 ImageNet
images, focusing on the average sum of raw causal im-
pacts and pipeline success rate. The SOTA (SAM) pipeline
demonstrates significantly higher sensitivity, achieving an
average impact sum of 81.0% compared to SLIC’s 37.7%.
This confirms that SAM’s object-centric regions generally
correspond to features more critical for the classifier’s deci-
sions. However, this sensitivity comes at the cost of reliabil-
ity: SAM failed on 19 images (90.5% success rate), primar-
ily due to finding no regions above the saliency threshold,
whereas SLIC succeeded on all 200 images (100% reliabil-
ity). Figure 2 visually represents this trade-off.

Discussion: Implications for XAlI4Science

The quantified sensitivity-reliability trade-off (Figure 2, Ta-
ble 2) provides critical guidance for scientists applying XAIL
The choice between SAM and SLIC depends on the scien-
tific goal and domain characteristics:

* High-Stakes / Reliability-Critical Domains: In fields
like medical diagnosis, where consistent explanations are
crucial and failures unacceptable, SLIC’s 100% reliabil-
ity and lower variance are advantageous. This is partic-
ularly relevant if diagnostic features are texture-based
(e.g., skin lesion analysis (Tschandl, Rosendahl, and Kit-
tler 2018), identifying interstitial lung patterns).

* Exploratory / Sensitivity-Prioritized Domains: For re-
search exploring dominant model features or identify-
ing object-centric phenomena (e.g., specific storm cells

in climate data (Mamalakis et al. 2022), localizing de-
fects in materials (Stanev et al. 2021; Zhang et al. 2021)),
SAM’s ability to isolate high-impact concepts may be
preferred, provided occasional explanation failures can
be tolerated or addressed through parameter tuning.

* Hybrid Approaches: Domains involving both object
and texture features might benefit from running both
pipelines or developing adaptive methods.

Our causal validation framework enables this quantitative
comparison, moving RED XAI towards more principled
methodological choices tailored to scientific needs.

Limitations and Future Work

While N=200 provides initial evidence, evaluation on larger
datasets and specific scientific image modalities is essen-
tial. The predefined concept vocabulary restricts applicabil-
ity; integrating automated, perhaps domain-specific, concept
discovery (Ghorbani et al. 2019; Bau et al. 2017) is key fu-
ture work. Exploring inpainting (Chang et al. 2019) versus
blurring could refine causal impact estimation. Analyzing
SAM’s failure modes (likely related to saliency threshold-
ing) and optimizing its parameters for XAl are also impor-
tant next steps.

Conclusion

We presented a systematic, causal evaluation comparing
object-aware (SAM) and texture-aware (SLIC) segmenta-
tion for post-hoc semantic XAIl. Our key contribution is
the quantification of a sensitivity-reliability trade-off: SAM
yields explanations with higher average causal impact but
lower robustness than SLIC. This finding, enabled by our
causal validation pipeline, provides crucial, actionable guid-
ance for scientists selecting XAI methods. By highlighting
the non-neutrality of segmentation choice and its domain-
specific implications, this work advances the practice of
RED XAI for more reliable scientific discovery from deep
learning models.
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Table 2: Quantitative comparison: Sensitivity vs. Reliability on 200 ImageNet images. Results show Mean + Standard Deviation
for the sum of raw causal impacts per image. N indicates the number of images where concepts with non-zero impact were

found.

Method

Avg. Sum Raw Causal Impact (%) Success Rate (%) Std Dev (%)

SAM (Object-Aware)
SLIC (Texture-Aware)

81.0 &+ 57.6 (N=163)
37.7 £ 34.9 (N=191)

181/200 (90%) 57.6
200/200 (100%) 34.9

Note: SAM shows 115% higher sensitivity but 10% failure rate and higher variance.
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Appendix
SAM Failure Cases (N=19)

The SOTA (SAM) pipeline failed to produce explanations
for 19 out of 200 ImageNet images (9.5% failure rate). In
all recorded cases, the error indicated ”No high-saliency re-
gions found.” This occurs when no SAM-generated mask
meets both the average saliency threshold (7, = 0.3) and
the minimum size threshold (75;,. = 500 pixels). Visual in-
spection of some failure cases suggests images with diffuse
saliency maps or where salient objects were smaller than the
size threshold. Further analysis or adaptive thresholding may
mitigate these failures. Image IDs 8, 10, 11, 12, 25, 40, 48,
60, 73, 82, 105, 112, 119, 139, 143, 145, 161, 168, 182 are
the ones that failed to get semantic attributions through the
SAM pipeline.

Selected Visual Results on ImageNet (N=200)

Figures 5 through 6 present selected 4-panel visualizations
(Original, Saliency, Attribution) produced by the SOTA
(SAM) pipeline on diverse images from the ImageNet vali-
dation set run. These illustrate the method’s behavior across
various object classes and complexities.
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Figure 5: This figure shows the results of SAM pipeline results on ImageNet images
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Figure 6: This figure shows the results of SLIC pipeline results on ImageNet images



