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ABSTRACT

Knowledge Graph Embedding models have been extensively used to learn rep-
resentations of entities and relations in Knowledge Graphs for predicting miss-
ing links. However, the quality of the learned representations varies a lot across
different areas of the same Knowledge Graph. If previous research efforts have
loosely linked the problem to relation types or degree bias, we show that it is
much more widespread, and it more precisely lies in the degree imbalance of the
entities in test triples. In particular, we show that the prediction of a target entity
that has a degree much smaller than the degree of the anchor entity is extremely
problematic. This is critical in use cases like drug target discovery, where these
triples are predominant, or recommender systems, where they represent important
corner cases. To address this issue, we propose an inference-time latent search
optimization method capable of significantly improving model predictions on the
most imbalanced triples. Built on top of a pre-trained model, it explores the em-
bedding space at evaluation time, blending known and out-of-band information
to mitigate the degree imbalance bias. We show the value of our approach on
imbalanced triples from common benchmark datasets, where we outperform con-
ventional methods, opening the door to the successful adoption of Knowledge
Graph Embedding models on these critical corner cases.

1 INTRODUCTION

Knowledge Graphs (KGs) are flexible and scalable data structures that model factual knowledge
by linking concepts through relationships (Hogan et al., 2021). The possibility of representing and
integrating virtually any type of knowledge has made them scale up to include millions or billions
of facts. However, such a size is incompatible with manual curation and leaves the door open for
incompleteness (Dong et al., [2014). In this scenario, the design of a machine-based approach to
infer missing links has attracted a lot of attention from the scientific community. This task is known
as link prediction, where the goal is to predict whether a relation p exists between two entities s and
o in the graph. In this context, a query takes the form of an incomplete triple, such as (s, p,?) or
(?,p,0) and the model must infer the missing entity. The entity that is already given in the query
(e.g., the subject in (s, p, 7)) is referred to as the anchor node, since predictions are conditioned on
it. The most successful attempts to solve this task have been carried out through Knowledge Graph
Embedding (KGE) models, a family of scalable methods that learn low-dimensional representations
for entities and relations.

Despite their success, KGEs suffer from limitations, as the quality of the learned representation sig-
nificantly varies across the graph, strongly limiting the model performance under certain conditions.
Previous work has attributed such behavior to relation types (Bordes et al.||2013; Wang et al., 2014;
Lin et al., 2015} Ji et al., |2015; He et al.l 2015) and degree bias (Mohamed et al., 2020; Shomer,
et al., 2023). In this work, we provide a more precise analysis, identifying the root cause of the
problem in the degree imbalance of the head and tail entities in test triples. We show how the bigger
the degree difference between the two, the poorer the prediction of the lower degree entity and the
better the prediction of the higher degree entity. We further tie the problem to a two-fold learning
issue that affects low-degree entities, highlighting how strong overfitting and failed convergence lie
behind unsuccessful predictions.



Under review as a conference paper at ICLR 2026

shangha
noon
cannon [ )
wies @ IMBALANCE
. . sakamoto
o P
z < ¢ ook
% 3 &7 pop rocl o
Jin, §
= - %, 3
2 /o
english & s orre
S Jackie . Jackie  .poy
o o G G 7
3 yui
3 horie pop
o Rank J-Pop oracte-gonerated [l Rank 7-Pop
b ROTATE = 67 Training Context [T ROTATE + IMBALANCE =3
ong

kong mandopop

lq: (?, /music/genre/artists, Jackie Chan), Answer: J-Pop ‘

Figure 1: We consider a query g with high degree imbalance. In this example taken from FB15k-237,
Jackie Chan has degree 49 and J—Pop has degree 8 (limited in the figure for clarity of visualization).
IMBALANCE takes the pre-trained embeddings of the KGE model for the anchor entity and performs
an inference-time latent search optimization on a subset of the original neighborhood enhanced with the
triples generated by the oracle. It then outputs a representation for the anchor node that better aligns with
the selected query, improving the ranking of the target answer from 67 down to 3.

For example, in drug discovery a key task is identifying proteins associated with a disease of interest.
When framed as a link prediction task, where KG nodes are biological entities (diseases, proteins,
genes. .. ), top-scored proteins returned as solutions to ¢ = (?protein, associatedWith, disease)
represent promising associations. These target triples are often imbalanced, as we typically have
much more information (i.e., a much higher degree) for conditions as opposed to proteins (biologists
have only identified a relatively small fraction of proteins with sufficient detail). Degree imbalance
compromises our ability to successfully predict meaningful solutions, undermining the reliability of
link prediction in this critical application.

Another example is recommender systems, where link prediction has been deployed frequently
(Zhang et all [2016). On a music streaming platform, we want to complement the information
about artists as much as possible. In this way, the recommendations to accommodate user tastes
are going to be more accurate. Consider (J-pop, /music/genre/artists, Jackie
Chan), a test triple from FB15k-237 (Toutanova & Chen, [2015). The degree of J-pop is low,
while Jackie Chan has a much higher number of connections. We want to answer the query
g = (?,/music/genre/artists,Jackie Chan), so to tag Jackie Chan with an addi-
tional, related genre — in this case, J-pop — to broaden up its audience. However, when using
embeddings from a pre-trained KGE model, the predicted ranking for J-pop is poor. This is be-
cause the large degree difference between Jackie Chan and J-pop causes the KGE model to
place J-pop far down in the ranking (see Figure|T).

The problem affects a broad range of triples and various Graph Machine Learning (GraphML) mod-
els: from shallow architectures like TransE, DistMult, ComplEx and RotatE, to GNN-like ones,
including the state-of-the-art NBFNet.

To address this issue, we propose IMBALANCE, an inference-time latent search method. Given
the pre-trained embeddings of a KGE model and an imbalanced test triple ¢ = (s, p, 0), in order
to improve the prediction of the low-degree entity, IMBALANCE fine-tunes the embeddings of the
anchor node and of few selected entities optimizing a dual-term objective function. These two terms
extend the generalization of the embedding of the high-degree node and improve the quality of the
embedding of the low-degree nodes. The former goal is achieved by an exploration of the embedding
space guided by a selection of training facts: this second pass ring-fences the representation of the
high-degree node in a region of the space suitable for the prediction. The latter goal, on the other
hand, is achieved through an oracle that extends the little knowledge available in the KG for long-tail
entities. Refer to Figure [T] for an example and an overview of the method.

We validate the value of our approach on the most imbalanced triples of common benchmark
datasets. We show how IMBALANCE leads to significant improvements across multiple learning-
to-rank metrics, enabling the prediction of low degree entities in critical applications, where these
corner cases are predominant.
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In summary, our work makes the following contributions:

1 We analyze the degree imbalance affecting a wide variety of KGE models, and we further
tie it to a two-fold learning issue that compromises the embedding quality of low-degree
entities.

2 We propose IMBALANCE, an inference-time latent search method that mitigates the above
problem. We assess its contribution on heavily imbalanced triples in popular link prediction
benchmarks across multiple KGE models and show that it works as an effective plug-in to
enhance KGE predictions.

Our paper is structured as follows: we present the related work in Section 2} then we move on
to introduce the degree imbalance problem and its implications for KGE models (Section [3). In
Section ] we describe IMBALANCE, from the underlying intuition to the details of the method,
while in Section [5] we present the experimental results. We finally draw conclusions and highlight
limitations and future directions in Sections[6land [71

2 RELATED WORK

Knowledge Graph Embedding Models KGE models learn continuous representations of entities
and relations in the KG from the graph topology and its soft regularities. Pioneering efforts (Nickel
et al., 2012} Bordes et al.l [2013)) have A long list of methods (Cao et al.| [2024)) has followed sem-
inal work in the space (Nickel et al., 2012). In this work, we limit our analysis to four traditional
KGE models: TransE (Bordes et al., 2013}, DistMult (Yang et al.| [2015)), ComplEx-N3 (Trouillon
et al., 2016; |Lacroix et al., 2018)) and RotatE (Balazevic et al.,|2019). Despite others have claimed
better performance Balazevic et al| (2019)), the performance gain is often marginal, and the small
differences in modeling the representation of triples are not relevant to the core contribution of our
work.

A noticeable exception is represented by NBFNet (Zhu et al., 2021}, a GNN-like architecture that
has achieved substantial improvements on the aggregate metrics. We will show it is nonetheless
affected by the degree imbalance, but we will not include it in our main experiments. Indeed, in
NBFNet the representations of different entities are heavily entangled within the message-passing
architecture, which makes the direct application of our approach to this architecture not scalable and
prone to overfitting.

Topology-related Issues on KGs The topology of KGs introduces significant challenges in train-
ing KGE modelsSardina et al.| (2024). Previous work (Mohamed et al., [2020; Rossi et al., [2021]))
has highlighted how link prediction models have a bias for high-degree nodes and have recognized
how aggregate metrics can offer a distorted view on the actual performance of models. However,
they loosely defined the issue and did not propose approaches to concretely tackle these challenges.
Shomer et al.| (2023)) looked past the degree of single nodes into frequency among entity-relation
pairs and proposed the synthetic generation of additional embeddings to compensate for long-tail
entities distribution. Other works (Bordes et al., [2013; J1 et al., [2015; [Lin et al., 2015 [He et al.,
2015)), on the other hand, have identified the heterogeneity of relation types (and in particular, 1-to-
many, many-to-1,) as one of the main obstacles. They have tried to address the issue altering the
representation of relations in a more expressive way, but were not able to solve the issue. Our work
surpasses all these previous efforts as it defines the problem in a more systematic way, tracing it
back to a two-fold learning issue of the training and extending the scope to a much broader set of
triples.

Latent Search Optimization The application of an inference-time latent search optimization has
been carried out before in a completely different domain by |Bonnet & Macfarlane| (2024). To the
best of our knowledge, our work is the first that leverage such a latent search optimization for KGE
models. We refer to the work above for an overview of other related domains of application that are
not pertinent to this work.
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3  WHAT AGGREGATE METRICS DO NOT SHOW

KGE models have proven to be successful in reconstructing missing links in KGs. However, what
the aggregated metrics often hide is that the quality of these predictions varies hugely in different
groups of triples. Previous work has loosely associated the problem with the epistemic uncertainty
of low-degree entities and has shown the challenge of predicting head (and tail) of 1-to-N (and N-to-
1) relations. We extend the scope of the issue, proving that the fundamental challenge in predicting
the head or tail of a triple lies in the degree difference (or degree imbalance) between the subject and
the object: this makes the reconstruction of the higher degree entity much simpler, while leaving the
lower degree entity poorly reconstructed.

In Figure[2] we plot the MRR of different ComplEx and RotatE, isolating the performance on subject
and object corruptions and splitting the test triples of FB15k-237 (Toutanova & Chen, [2015)) and
Yago3-10 (Mahdisoltani et al., 2015) based on the normalized degree difference, that we define as:

Al __6(s) —4(p)
A(t = (s,p,0)) = min {0(s),3(0)}

where § : £ — R is the degree function, that counts the incoming and outgoing edges for e € £.
We can immediately observe the stark difference in the quality of the predictions for highly imbal-
anced triples and how this difference systematically decreases as the normalized degree difference
A approaches zero. Despite the aggregate metrics reported in Table portray models with robust
predictive power, a different point of view changes things entirely: indeed, such performance is in-
flated by easier predictions and these models could hardly be trusted in critical use cases where the
prediction of low-degree entities is the predominant goal (see Appendix [A).

Table 1: Aggregate performance of KGE models on FB15k-237 and YAGO3-10

FB15k-237 YAGO3-10
MRR H@10 MRR H@10
ComplEx 0.31 0.49 0.36 0.56
RotatE 031 0.51 0.37 0.57

To explain the degree imbalance issue, we take a step back and look into the training process. We
carry out an analysis on FB15k-237 and report the results obtained for ComplEXx.

In conventional KGE models, entities and relations are assigned a low-dimensional, continuous
representation to capture relational patterns in the graph structure. During every training epoch,
these representations are optimized to maximize the score assigned to the ground truth triples in the
KG (positives), and minimize the score for false statements (negatives). In particular, the embedding
of an entity is moved around the latent space every time the model processes a positive or a negative
involving that entity.

By plotting the (euclidean) distance between the embeddings of the same entity across successive
epochs, we can get an idea of the magnitude of the updates and, as it decreases, of the rate of
convergence of the learning process. Surprisingly, we observed that if there is one group of entities
for which the magnitude of the updates stabilizes to very low values, indicating convergence, there is
also a second group, which keeps receiving significant updates, with the repeating trend of random
peaks indicating a failed convergence, rather than an insufficient amount of training (see Figure [3a).

Digging deeper into the characteristics of the two groups, we found a significant difference in the
degree distributions, with the convergent group having a much higher degree (Figure [3b). Nonethe-
less, it would still contain entities with degree close to those of the non-converging group and so, to
reduce the confounding factors of the analysis, we focused on this subset.

Comparing it to non-converging entities, we found that a higher degree imbalance in the training
triples favors convergence (Figure [3c). Paired with the observed difficulty of predicting degree
imbalanced triples at test-time, this tells us that the convergence of low-degree nodes is just a proxy
for a strong overfitting. This is the case for J-Pop in our example above: it converges as only one
relation type characterizes its neighborhood, but that also leads to overfitting the embedding. On
the contrary, low-degree nodes connected to lower degree entities keep moving around the space,
posing an equally hard challenge for the model at test-time in light of their instability.
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Figure 2: Performance of conventional KGE models on test triples binned by normalized degree differ-
ence. Bins are obtained using quartiles of |A(t)| for t € G. On the left hand side we have triples with
high-degree object and low-degree subject, on the right hand side, high-degree subjects and low-degree
objects. We isolate subject and object corruption.

Therefore, the challenge underlying the most imbalanced triples in the test set is two-folded: a
strong overfitting on the one hand and an extremely poor learning on the other. We set to address
this issue by proposing IMBALANCE, an inference-time latent search method that tries to improve
model prediction on the most imbalanced triples involving low-degree entities.

4 INFERENCE TIME LATENT SEARCH FOR DEGREE IMBALANCE

4.1 PRELIMINARY AND NOTATION

A Knowledge Graph G = {(s,p,0)} C & x R x € is a set of triples t = (s, p, 0), each including a
subject (head) s € &, a predicate p € R, and an object (tail) o € £, where £ and R are the sets of
all entities and relation types, respectively. We refer to the task of predicting unseen triples in a KG
as Link Prediction. It is formalized in literature as a learning-to-rank problem, where the objective
is learning a scoring function f : £ x R x £ — R that, given an input triple ¢ = (s, p, 0), assigns a
score f(t) = f((s,p,0)) € R proportional to the likelihood that the fact ¢ is true.

4.2 INTUITION

At the end of the training of a conventional KGE model, every entity and relation has a low-
dimensional, continuous representation which is the result of updates based on all triples in the
KG. As such, it is the representation of the entity that best fits all training triples. Given a query
q, however, a one-size-fits-all representation of the anchor might not be precise enough to find the
correct answer, especially if the anchor has high degree, which could thus introduce a lot of noise
into the representation. Consider again the example above and the node Jackie Chan. All the
relations in its neighborhood are different from /music/genre/artists except for one. As a
result, the embedding will have little pertinence with the query. This is the reason why we refine its
embedding with the training triples sharing the anchor and the predicate of ¢, i.e., (Mandopop,
/music/genre/artists, Jackie Chan). In this way, the new representation is the one
that best suits g and not all triples in the KG. We call this set the training context of q and denote it
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Figure 3: (Top) Euclidean Norm of the difference between embeddings of converging and non-converging
entities while training RotatE on FB15k-237. (Bottom) Comparison of degree statistics for converging
Vs. non-converging entities.

Cy = {(s,p,0:)|0; € E)} C Gif ¢ = (s,p,?) and, analogously, C;, = {(s;,p,0)|s; € )} C G)if
q=(7,p,0).

The second issue of the optimization process we described above is related to low-degree entities.
As we saw in the previous section, their embeddings are either heavily dependent on the few entities
they are connected to and thus very prone to overfitting, or they suffer from an incomplete learning.
This makes their reconstruction from the anchor node s very unlikely, as their representation share
too little with s. The node J-Pop, for example, is only connected to musicians, while Jackie Chan
is best known for his acting. Similarly, other possible genres that are plausible answers for the
query could be far off from Jackie Chan for the same reason. Therefore, it is essential to bias their
embeddings in favor of the query. To do so, we leverage an external oracle that has the advantage of
being degree agnostic, to limit the risk of neglecting low-degree entities. This oracle suggests triples
similar to those in the training context of the query. In this way, we will bring the embeddings of
Jackie Chan and musical genres similar to Mandopop closer together, making a correct answer to
the query more likely.

4.3 IMBALANCE

Inference-time latent search has been successfully applied to improve generalization and model pre-
dictions in a completely different domain by [Bonnet & Macfarlane|(2024)). As the degree imbalance
could benefit from these properties, we design an inference-time latent search that can be selectively
applied to target queries (see Algorithm [T). Built on top of a pre-trained KGE model with scoring
function f, it takes a query ¢ = (s,p, ?) (analogous for (7, p,0)) and refines the representation of
relevant entities optimizing for n epochs a two-term objective function:

Lig=(sp.7)) = Y fE)+ > fb).

ttec, teQ,

Crucially, our approach does not require any negatives, thus circumventing the problem of their
synthetic generation that has attracted a lot of attention for its multiple criticalities
Hayashil 2022} Madushanka & Ichise| [2024). This aspect also limits the computational overhead of
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Algorithm 1 Inference-Time Latent Search for Degree Imbalance

Require: Pretrained KGE model with scoring function f and entity embedding matrix E, a query ¢ = (s, p, 7),
training context C4 and oracle triples {24, number of latent search iterations T’

Ensure: Ranked list of entities

1: Eg + E

. Set the embeddings of s to 8% < Eq[s]

: Set the embeddings of o; € {o|(s, p,0) € Qq} to 0} < Eo[o;], Vi = 1,..., Q]

: for iteration = 0, ..., T'do ) )

Compute £(q) and gradients w.r.t. s* and 0}, j = 1, ..., €]

Update s**' <~ GRADIENTUPDATE(s")

Update 0/ <~ GRADIENTUPDATE(0}), Vj = 1, ..., Q|

Update E;11[s] + s and E;11[0;] + O;H, Vi=1,.., Q|

: end for

: Evaluate ¢ with the updated embeddings and extract ranked list of candidates

: return Ranked candidates based on final scores

— OO0 N U AW

—_—

this method, that is extremely scalable. Moreover, it is extremely flexible, as it can be selectively
applied to single queries, thus allowing to refine the prediction on single triples of interest.

Training Context Term The first term of the loss function sums the scores assigned to the train-
ing context of the query. These are ground truth triples that were already processed during training,
and that the model should have already learned. However, as we observed above, the final embed-
ding assigned to the anchor node is a one-size-fits-all representation that could under perform on a
specific query. Therefore, during our latent search, we present these relevant triples again, to better
tailor the anchor representation for the final prediction. Importantly, in this term we only optimize
the embedding of the anchor node of the query, while keeping the others frozen. If we were to op-
timize the embeddings of head, tail and predicate, we would overfit learned triples even more, thus
worsening the already poor generalization of the model at test-time. Limiting the optimization to the
anchor node, on the contrary, we refine its representation to best suit the training context, improving
its generalization and ring-fencing it in an area of the embedding space suitable for the query.

Oracle-Enhanced Term If the first term improves the representation of the anchor, we might still
get bad predictions if the embeddings of the nodes answering the query are inaccurate. This is
particularly likely for low degree entities that are dependent on very few facts that could well be
irrelevant for the target query g, or, as shown before, prone to overfitting or susceptible to a failed
learning. Therefore, refining the anchor node only using the training context is not enough. We
need to adjust the target embeddings, biasing them toward the query. Doing so is not trivial, as, at
test-time, we have no sense of what the correct answers to the query are. Moreover, being our focus
on low-degree entities, little information about them is available within the KG. For this reason, we
enhance our latent search with a set of additional triples 2, = {(s,p, 0;)|0; € £} generated by an
oracle that considers them likely answers to ¢. This time around, we optimize both the anchor and
the target entity embeddings, so that, following the oracle leads, also the landscape of the answer
representations changes in favor of the query.

As we said, the KG provides limited information about the target entity. Therefore, our oracle can
be any out-of-band source of information well aligned with the task at hand. For our experiments
on benchmark datasets we have used a Large Language Model (LLM) defining similarity on the
encoded textual descriptions of the entities (see Appendix [C|for the technical details). In a different
scenario, like the gene-disease association example, the oracle can be formalized as the preference
of biologists for a subset of genes involved in a biological pathway relevant for the disease of interest
or any other source of expertise. A final observation is needed here: the oracle triples may include
false positives, that could surface up in the evaluation ranking. However, this risk is mitigated by
the regularization effect it has on the representation of the anchor and by biasing the representation
of possible targets toward the query.
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Table 2: Statistics of the datasets.

Dataset #H Nodes (Min degree) #L Nodes (Max degree) #Valid H-L #Valid L-H #Test H-L #Test L-H
FB15k-237 3536 (41) 4015 (11) 338 775 396 942
WNI18RR 2296 (5) 32697 (10) 295 689 277 753
Yago3-10 28913 (5) 31487 (16) 25 298 35 270

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Test Splits. We evaluate IMBALANCE on three encyclopedic benchmark KGs,
widely used in literature: FB15k-237 (Toutanova & Chenl 2015), WN18RR (Dettmers et al., [2018])
and YAGO3-10 (Mahdisoltani et al.,[2015). Since we want to prove its efficacy on highly imbalanced
triples involving low-degree entities, we identify low-degree nodes as those with degree below the
first quartile of the degree distribution, and high-degree nodes as those with degree greater than the
third quartile. The statistics of the resulting splits are reported in Table[6] while additional statistics
about the dataset are reported in Appendix

Evaluation Protocol and Metrics. We evaluate IMBALANCE by corrupting the low-degree entity
of the test triples with all entities in the KG and we consider the filtered setting (Bordes et al.,|2013),
i.e., we filter from the corruptions all facts in the training, validation or test sets. We then rank test
triples against all corruptions. The metrics used are the usual for link prediction: Mean Reciprocal
Rank (MRR) and Hits at N (Hits@N).

Hyperparameter-Search Given a pre-trained KGE model, IMBALANCE has only three hyper-
parameters: the learning rate A\ of an Adam (Kingma & Bal [2015) optimizer, the number of latent
search iterations and the number m of oracle-generated triples included in €2,. We selected optimal
values based on the validation performance using MRR as the reference metric.

5.2 RESULTS

The results of our experiments are reported in Table |3} The impact of the latent search on FB15k-
237 triples is striking, with metrics that improved at least by a factor of 2 on the Low-High split
and over a factor of 6 on the High-Low one. This shows the ability of IMBALANCE to success-
fully compensate for the flaws of the pre-trained KGE embeddings. Also on WN18RR there is a
noticeable improvement across all metrics, but it is smaller than on FB15k-237. The reason for it is
that in WN18RR the degree distribution is concentrated around values much smaller than those of
FB15k-237 (see max and min degree in Table [6). This reduced polarization of the degree results
in a less pressing degree imbalance issue, making the improvement of IMBALANCE less striking.
Finally, on Yago3-10, we only see an improvement on the Hits@ 10. This behavior can be justified
by the fact that the oracle generated the triples for this dataset using only the labels of the entities
of the KG, while it leveraged labels and additional descriptions for FB15k-237 and WN18RR. This
impacted negatively the similarity of triples extracted by the oracle, introducing less relevant triples
in the latent search that prevented the correct answers to reach the top positions of the ranking.

Ablation - Loss Function Terms Contribution To gauge the contribution of the training context
term and of the oracle term, we run separate experiments where we switch off alternatively one or
the other. The results for FB15k-237 are reported in Table 4] while those for WN18RR and Yago3-
10 are in Appendix [D] The numbers clearly suggest that both the training context and the oracle
terms provide a positive contribution on their own. This supports both our claims on how grounding
the representation of the anchor node in a query-friendly way is essential and on the importance
of adjusting also embeddings of entities different from the anchors. We further explain the bigger
impact of the oracle term with the fact that it also directly contributes to the optimization of the
anchor embedding. Finally, the joint contribution of the two always outperforms the individual
contribution of the two terms, supporting the complementarity of the two.
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Table 3: Results on the three benchmark datasets on the High-Low and Low-High triples splits. The best
value for each metric on each dataset are reported in bold except in case of a tie, when they are underlined.

High-Low Low-High
MRR H@l H@3 He@10 MRR He@l HE@3 He10

ComplEx-N3 003 001 00l 0.06 003 001 002 008
+IMBALANCE ~ 0.13 005 014 028 008 004 008 017

Dataset Model

FB15k-237
RotatE 0.02 0.01 0.01 0.05 0.04 0.01 0.04 0.09
+IMBALANCE 0.13 0.06 0.11 0.36 0.08 0.04 0.09 0.17
ComplEx-N3 0.06 0.00 0.03 0.23 0.07 0.02 0.07 0.17
+IMBALANCE 0.06 0.00 0.03 0.23 0.09 0.02 0.11 0.21
Yago3-10 —
RotatE 0.18 0.14 0.20 0.26 0.03 0.01 0.03 0.05
+IMBALANCE 0.19 .14 0.20 0.29 0.03 0.01 0.03 0.08
ComplEx-N3 0.46 0.40 0.47 0.55 0.28 0.23 0.28 0.38
WNISRR +IMBALANCE 0.48 0.40 0.51 0.61 0.31 0.25 0.32 0.46

RotatE 0.49 0.45 0.50 0.57 0.32 0.27 0.33 0.42
+IMBALANCE 0.51 0.46 0.55 0.60 0.33 0.27 0.35 0.44

Table 4: Results on FB15k-237 isolating the contribution of the two terms of the loss function.

Dataset Model High-Low Low-High
MRR H@l H@3 H@10 MRR H@l HE@3 H@I10
ComplEx-N3 0.03 0.01 0.01 0.06 0.03 0.01 0.02 0.08

+Context Only  0.05 001 004  0.14 005 002 004 012
+Oracle Only 010 005 009 022 008 003 007  0.17
+IMBALANCE 0.3 005 014 028 008 004 008 017

RotatE 0.02 0.01 0.01 0.05 0.04 0.01 0.04 0.09
+Context Only 0.06 0.02 0.06 0.16 0.06 0.02 0.06 0.14
+Oracle Only 0.12 0.05 0.10 0.34 0.08 0.04 0.09 0.17
+IMBALANCE 0.13 0.06 0.11 0.36 0.08 0.04 0.09 0.17

FB15k-237

6 LIMITATIONS AND FUTURE DIRECTIONS

If this work sheds a light on a key issue affecting KGE models and proposes an innovative approach
to overcome it, it still comes with limitations that we set to address in future work. First, IMBAL-
ANCE can only be applied on queries for which the training context is non-empty. Overcoming this
limitation would mean refining the selection of training triples tightly related to the query. Such a
problem would be of greater interest for the entire community, as it would help explaining which
triples have the highest impact on a prediction. Second, we proved its applicability to High-Low
and Low-High triples, but it remains a challenge to understand how it could benefit triples where the
imbalance is more limited. Since IMBALANCE can be applied selectively on single triples mitigates
the issue, but an extension that benefits all triples could stretch the applicability to wider use cases.
We plan to address this issues in future work.

7 CONCLUSIONS

This work has introduced the degree imbalance problem, an issue that heavily affects a wide variety
of KGE models and hinders their predictive power. We further provided deep insights on the learn-
ing issue from which the problem stems, proving how low-degree entities are impacted by strong
overfitting or by a failed convergence. To mitigate the issue, we proposed IMBALANCE, the first
inference-time latent search method applied in the realm of KGE embeddings. We validated its
efficacy obtaining reliable predictions on highly imbalanced triples, thus opening the door to the
application of this method in use cases where imbalance is a consistent concern.
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A DEGREE IMBALANCE FOR ADDITIONAL MODELS

In Table[5| we report the aggregate metrics for TransE and DistMullt.
In Figure [d] we report the degree imbalance for TransE and DistMult. As we can see, the behaviour
resembles that of ComplEx and DistMult.

Table S: Aggregate performance of KGE models on FB15k-237 and YAGO3-10

FB15k-237 YAGO3-10
MRR H®@10 MRR H@10

TransE 0.31 0.49 0.35 0.55
DistMult  0.30 0.48 0.34 0.53
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Figure 4: Performance of conventional KGE models on test triples binned by normalized degree differ-
ence. Bins are obtained using quartiles of |A(t)| for t € G. On the left hand side we have triples with
high-degree object and low-degree subject, on the right hand side, high-degree subjects and low-degree
objects. We isolate subject and object corruption.

As we can see from the Figure [5] NBFNet (Zhu et al), 2021), despite its superior performance,
suffers from the same degree imbalance issue as conventional KGE models. Compared to the results

in Figure 2] the individual performance on most buckets is slightly better.

B DATASET STATISTICS

Statistics of the three datasets are reported in Table[6]

Table 6: Statistics of the datasets.

Dataset #Entities  #Relations #Train #Valid #Test
FB15k-237 15541 237 272115 17535 20 466
WNI18RR 40943 18 86 835 3034 3134
Yago3-10 123182 37 1079040 5000 5000
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Figure 5: Performance of NBFNet on test triples binned by normalized degree difference. Bins are

obtained using quartiles of |A(t)| for t € G. On the left hand side we have triples with high-degree object
and low-degree subject, on the right hand side, high-degree subjects and low-degree objects. We isolate
subject and object corruption.

C ORACLE TECHNICAL DETAILS

For all our experiments, we have used NovaSearch/stella_en_40 OM-vSEl with an embedding
dimension of 1,024 to encode the labels and descriptions of the entities in our datasets (with the
exception of Yago3-10, for which we used only the labels). Given ¢ = (s,p,?), to generate the
m triples in 4, we have extracted the top-m entities closest to the barycenter of the set {e; €
Gl{(s,p,e;) € Cy} in the embedding space of the LLM. The distance between entities was computed
using the cosine similarity.

As querying an LLM can introduce a significant overhead, we have extracted the LLM-triples as a
preprocessing step ahead of running the experiments. In this way, the method remains lightweight.

D ADDITIONAL EXPERIMENTS

Loss Function Terms Contribution See results in Table[7] As the improvement in Table[3|showed
a smaller increase on these datasets compared to FB15k-237, it is harder to appreciate significant
differences in the contribution of the separate terms of the loss. However, the aggregation of the two
yields the best results.

'https://huggingface.co/NovaSearch/stella_en_400M_v5
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Table 7: Results on WN18RR and YAGO3-10 isolating the contribution of the two terms of the loss
function.

Dataset Model High-Low Low-High
MRR H@l H@3 H@l0 MRR He@l H@3 He@10
ComplEx-N3 0.06 0.00 0.03 0.23 0.07 0.02 0.07 0.17

+Context Only 0.06 0.00 0.03 0.23 0.06 0.02 0.07 0.17
+Oracle Only 0.06 0.00 0.03 0.23 0.07 0.00 0.10 0.20
+IMBALANCE 0.06 0.00 0.03 0.23 0.08 0.02 0.11 0.20

Yago3-10
RotatE 0.18 0.14 0.20 0.26 0.03 0.01 0.03 0.05
+Context Only 0.18 0.14 0.20 0.26 0.04 0.02 0.03 0.08
+Oracle Only 0.19 0.14 0.20 0.29 0.03 0.01 0.03 0.06
+IMBALANCE 0.19 0.14 0.20 0.29 0.03 0.01 0.03 0.08
ComplEx-N3 0.46 0.40 0.47 0.55 0.28 0.23 0.28 0.38
+Context Only 0.45 0.40 0.47 0.55 0.28 0.22 0.28 0.38
+Oracle Only 0.48 0.40 0.51 0.61 0.31 0.25 0.33 0.45

WNISRR +IMBALANCE 0.48 0.40 0.51 0.61 0.31 0.25 0.32 0.46
RotatE 0.49 0.45 0.50 0.57 0.32 0.27 0.33 0.42
+Context Only 0.49 0.45 0.5 0.58 0.32 0.27 0.33 0.42

+Oracle Only 0.49 0.43 0.53 0.6 0.32 0.27 0.34 0.42
+IMBALANCE 0.51 0.46 0.55 0.60 0.33 0.27 0.35 0.44
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