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ABSTRACT

Reconstructing Dynamic 3D Gaussians Splatting (3DGS) from low-framerate
RGB videos is challenging. This is because large inter-frame motions will in-
crease the uncertainty of the solution space. For example, one pixel in the first
frame might have more choices to reach the corresponding pixel in the second
frame. Event cameras can provide super-fast visual change acquisition asyn-
chronously while not containing color information. Intuitively, the event stream
can provide deterministic constraints for the inter-frame large motion by the
event trajectories. Hence, combining low-temporal resolution images with high-
framerate event streams can address this challenge. However, the data format
of the two modalities is very different, and currently, no methods directly opti-
mize dynamic 3DGS from events and RGB images. This paper introduces a novel
framework that jointly optimizes dynamic 3DGS from the two modalities. The
key idea is to adopt event motion priors to guide the optimization of the deforma-
tion fields. First, we extract the motion priors encoded in event streams by using
the proposed LoCM unsupervised fine-tuning framework to adapt an event flow
estimator to a certain unseen scene. Then, we present the geometry-aware data as-
sociation method to build the event-Gaussian motion correspondence, which is the
primary foundation of the pipeline, accompanied by two useful strategies, namely
motion decomposition and inter-frame pseudo-label. Extensive experiments show
that our method outperforms existing image and event-based approaches across
synthetic and real scenes and prove that our method can effectively optimize dy-
namic 3DGS with the help of event data.

1 INTRODUCTION

High-quality dynamic scene reconstruction from a monocular video is significant for various appli-
cations, such as AR/VR, animation modeling, computer graphics, and 3D content creation. Previous
approaches Cao & Johnson (2023); Gao et al. (2021); Guo et al. (2022); Liu et al. (2023); Pumarola
et al. (2021); Wu et al. (2023); Yang et al. (2023a) extend the conventional static reconstruction
methods, such as Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS), into temporal
dimensions. These methods require spatial and temporal dense input to model the dynamical pro-
cess. Therefore, they cannot faithfully reconstruct dynamic scenes when the number of video frames
is insufficient and sparse, which might be caused by the fast-deforming objects or low frame rate
RGB cameras.

The event camera, also known as the dynamic vision sensor (DVS), works very differently from tra-
ditional cameras. Instead of capturing full frames at regular intervals, the event camera only detects
relative changes in brightness for each pixel independently and asynchronously. This allows it to
capture rich information about objects’ movements and deformations, leading to several advantages
including high temporal resolution, high dynamic range, and reduced data storage. Therefore, the
event camera can handle the challenges mentioned above. Pure event streams do not contain abso-
lute radiance information. Fortunately, conventional event cameras generally have an APS sensor,
which captures RGB images at a lower frame rate. In this case, the event stream and RGB images
complement each other; the event stream provides rich information on relative changes between
frames, while the sparse RGB images provide absolute color information. This work proposes to
combine the two modalities for dynamic scene reconstructions.
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Previous studies Hwang et al. (2023); Rudnev et al. (2023); Wang et al. (2024) attempt to reconstruct
3D static scenes from pure event streams by incorporating the linearized event generation model into
the NeRF pipeline. However, they cannot either model dynamic scenes or optimize NeRF from the
two modalities. Hence, they can only synthesize gray-scale static novel views. Very recently, DE-
NeRF Ma et al. (2023) first adopted event and RGB data to optimize the dynamic NeRF. This method
asynchronously estimates per-event color by using RGB and the event generation model and then
uses these estimated colors along with sparse RGB images to jointly optimize the dynamic NeRF.
Nevertheless, it fails to explore the rich inter-frame motion information in the event stream, resulting
in a suboptimal reconstruction. On the other hand, even though NeRF delivers good results in neural
3D reconstruction, the original NeRF suffers from large training and rendering costs. Recent 3DGS
Kerbl et al. (2023) significantly boosts the rendering speed to a real-time level by replacing the
cumbersome volume rendering in NeRF with efficient differentiable splatting. Moreover, 3DGS can
also produce higher-fidelity rendering results. Very recently, Ma et al. (2023) and Wu et al. (2023)
equipped 3DGS with a deformation field to model dynamic scenarios. However, these approaches
still rely on the high framerate of image sequences. When the frame rate of the video is low, the
motion between images is too large, which can lead to the inability to optimize the Gaussian motion
trajectory modeled by the deformation field. To the best of our knowledge, currently, there is thus
no method to use event cameras for optimizing dynamic 3D Gaussian.

In this work, we propose a novel framework that can efficiently optimize the Dynamic 3D Gaussian
Splatting from the two modalities, namely event stream and sparse RGB images. The primary
obstacle is the large motion between sparse images, which prevents the deformation field from being
easily optimized. The key idea of this work is that the event trajectories on the 2D plane can be used
to optimize the deformation field in the dynamic 3DGS because the edge motion of objects triggers
events. First, we present a LoRA-based unsupervised framework to finetune an event flow predictor,
which can restrict our correction not to overturning the original priors and adapt it to unobserved
scenarios. Second, we propose a geometry-aware method to build event-Gaussian data associations,
which is the primary core for our optimization task. Next, we adopt the motion decomposition and
inter-frame pseudo-label strategies to perform better.

Our main contributions can be summarized as follows:

• We propose the LoCM unsupervised finetuning framework by leveraging low-rank adap-
tation and contrast maximization to adapt a pretrained event flow estimator to an unseen
scenario while maintaining its original priors.

• To take full advantage of the motion cues in the event stream, we propose the geometry-
aware data association method that can build motion correspondence between 2D events
and 3D Gaussians to utilize event trajectories to optimize the deformation field.

• To mitigate the dynamic ambiguity, we propose to use a motion decomposition scheme and
inter-frame pseudo labels to assist optimization.

• We establish a novel synthetic event-based dataset and we build a pipeline to convert com-
monly used image-based real-world datasets into the event-based version by using a real
event camera DVXplorerIni (2024) to facilitate the community. Experiments prove the
effectiveness of optimizing dynamic scenes by the two modalities.

2 RELATED WORK

2.1 DYNAMIC NOVEL VIEW SYNTHESIS

Synthesizing novel views of a dynamic scenario from captured 2D sequences remains a challenge.
Since NeRFMildenhall et al. (2020) has achieved great success in novel view synthesis, many ef-
forts have been made to generalize NeRF to capture dynamic scenes. Pumarola et al. (2021); Du
et al. (2021); Li et al. (2021); Liu et al. (2023); Park et al. (2021a) combine NeRF with additional
time dimension or time-conditioned latent codes to reconstruct time-varying scenarios. Fang et al.
(2022); Guo et al. (2023); Yi et al. (2023); Fridovich-Keil et al. (2023); Gan et al. (2023); Li et al.
(2022); Shao et al. (2023); Wang et al. (2023) explicitly incorporate voxel grids to model temporal
information. Additionally, Cao & Johnson (2023); Song et al. (2023); Abou-Chakra et al. (2023)
attempts to construct explicit structures to learn a 6D hyperplane function without directly modeling.
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Recently, a novel point-based representation, i.e. 3DGS, has been presented which formulates points
as 3D Gaussians with learnable parameters. Although the vanilla 3DGS regards the scene as static,
a few works have attempted to extend 3DGS to dynamic scenes due to its real-time rendering and
high reconstruction quality. D-3DGS Luiten et al. (2023) is the first attempt to adopt 3DGS to
dynamic scenes. Inspired by dynamic NeRFs, Wu et al. (2023); Yang et al. (2023b;a); Yan et al.
(2024) introduces the deformed-based 3DGS that preserves a set of canonical Gaussians and learns
the deformation field at each timestep. These works introduce the topological invariance into the
training pipeline, thereby enhancing their suitability for the reconstruction of dynamic scenarios
from monocular inputs. Besides, some other works Xie et al. (2023); Guo et al. (2024); Feng et al.
(2024); Zhong et al. (2024) choose to explicitly formulate the continuous motion for deformation
using the assumption that the dynamics of the scene are the consequences of the movement. In this
work, our method proposes to establish a highly efficient pipeline for optimizing dynamic 3DGS
from event streams and sparse RGB images.

2.2 EVENT-BASED NEURAL RECONSTRUCTION

Traditional RGB cameras suffer from motion blurs when the moving speed of cameras is fast and
cannot be used in extreme lighting conditions because of their low dynamic ranges. However, most
existing 3D reconstruction methods fail to provide event-based solutions. To address this issue,
several works Klenk et al. (2023); Hwang et al. (2023) have been proposed to incorporate the lin-
earized event generation and NeRF pipeline. However, these works fail to reconstruct clear edges
and textures and suffer from soft fogs caused by continuous NeRF networks. PAEv3D Wang et al.
(2024) introduces motion priors into the NeRF pipeline, enhancing the quality of edge and texture
reconstruction. EvGGS Wang et al. introduces the first optimization framework to combine multiple
event-based vision tasks with 3DGS. These previous works all regard the scenario as static. Nev-
ertheless, Ma et al. (2023) is the first to introduce event streams to model dynamic radiance fields
and achieve satisfactory results. As we mentioned above, the sparsity and discontinuity of event
data could lead to blurs and soft fogs because NeRF encodes scenes as a continuous network. To re-
construct the dynamic scene more faithfully, we incorporate event-based data and 3DGS and utilize
the event flow extracted from the event stream for optimization. We experimentally prove that our
reconstruction quality outperforms existing image-based and image-based methods.

3 METHODOLOGY

3.1 DYNAMIC 3D GAUSSIAN SPLATTING

Standard 3DGS represents the scene using 3D Gaussian points, each of which is characterized by
several trainable parameters including position (µ ∈ R3), quaternion (q ∈ R4), scale factor (s ∈
R3), spherical harmonics coefficients (h ∈ R3(k+1)2 ) and opacity (o ∈ [0, 1]). The quaternion
defines a 3× 3 rotation matrix (R). The 3D covariance matrix can be obtained by Σ = RSSTRT .
Given a certain camera pose, one can render the novel view by projecting these 3D Gaussians into a
2D plane by blending depth-ordered Gaussians overlapping that pixel.

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (1)

where ci refers to the color of the Gaussian i. αi denotes the soft occupation of Gaussian i at the
certain 2D location, which can be obtained by :

αi(x) = oiexp(−
1

2
(x− µi)

TΣT
i (x− µi)) (2)

In Eq. 2, Σ and µ specifically refer to their 2D-projected version while they keep their original 3D
meanings in other equations. The reconstruction loss between renderings and groundtruth images is
used to optimize all Gaussian parameters.

The conventional 3DGS only focuses on static scene reconstruction. Due to its flexible and explicit
features, it is easy to be extended to reconstruct 4D dynamic scenarios. The most intuitive way is
to separately train multiple 3D-GSs in each timestep and then interpolate between these sets (dy-
namic 3DGS tracking). However, it falls short of continuous monocular captures within a temporal
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Figure 1: The overview of our proposed framework.

sequence and leads to excessive memory consumption. A more prevailing way in the community
is to jointly learn a deformation field along with the canonical 3D Gaussians. The deformation
field transforms each canonical Gaussian point’s position, rotation, and scale parameters into the
corresponding values at the target timestamp, shown in Eq. 3.

(δx, δs, δq) = Fθ(γ(x), γ(t)) (3)

where γ denotes the positional encoding. The representative works are Deform-GS Yang et al.
(2023b) and 4D-GS Wu et al. (2023), which can effectively learn 4D scene representation from
monocular videos. The Deform-GS adopts a neural network to implement F while 4D-GS uses a
triplane representation for that. In our work, we follow the Deform-GS to utilize a neural network
to model the deformation field.

Problem Statement. The frame-based dynamic 3DGS can be optimized from high frame-rate
videos. However, it cannot be optimized from event camera data, i.e. the high temporal resolution
event stream accompanied by sparse image sequences. Given a video captured by an event camera,
including the event stream [Ek]

k
1 and sparse RGB [In]

N
1 , our goal is to reconstruct the high-quality

dynamic scene from the two modalities.

Method Overview. The primary reason why optimizing dynamic 3DGS from videos with low
temporal resolution is difficult can be summarized as follows. Large deformation between two
frames causes the solution ambiguity. For example, the number of paths to reach the same point
in the second frame from the corresponding point in the first frame will be uncertain. In this case,
the deformation field cannot be easily optimized. However, the inter-frame information provided
by event cameras, i.e. the event trajectories, can be used to guide the training of the deformation
field. Therefore, the key issues become 1. how to determine the event trajectories and 2. how to
build motion correspondence between 2D event data and 3D Gaussian points. Since the motion of
Gaussians in the same area can be considered similar, training for their scale and rotation parameters
is not a major issue Wang et al..

3.2 EXTRACTING PRIORS FROM EVENTS

We introduce how to extract event trajectories in this section. We start with the work principle
of the event camera. An event camera carries independent pixel sensors that operate continuously
and generate ”events” ek = (xk, tk, pk) whenever the logarithmic brightness at the pixel increases
or decreases by a predefined threshold. Each event ek includes the pixel-time coordinates (xk =
(xk, yk), tk) and its polarity pk = {+1,−1}. The most intuitive thought is that the events are
triggered by the motion of the edge information in the scenes. The event trajectories are defined
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as the associations between events across different timestamps, which can be represented by the
spatial-temporal event flow. Zhu et al. (2018; 2019); Gehrig et al. (2021); Hagenaars et al. (2021)
can predict event flow by receiving raw event data as input. These models have been trained on
various large datasets with per-event groundtruth. However, their performance would degrade when
they are applied to unobserved scenarios, especially those with different motion patterns. A common
way to use these pretrained event flow estimators is to finetune them on unseen scenes, but finetuning
struggles with two issues, 1. the lack of groundtruth of event flow and 2. overfitting on small dataset
overturns the original motion priors in these models, which are learned from large datasets

To address the two challenges, we present to combine low-rank adaptation Hu et al. (2021a) with
Contrast Maximization framework Shiba et al. (2022b); Gallego et al. (2018) to finetune the estima-
tor in an unsupervised manner. The scene-specific finetune can be expressed as:

Wθ := W0 +∆Wθ (4)

where we implement the ∆Wθ with LoRA at ∆Wθ = BA. We adopt a random Gaussian initializa-
tion for A and zero for B, so ∆Wθ = BA is zero at the initialization of training. Zero initialization
can restrict the correctness not deviating so much from the original value. Moreover, using LoRA
can help the correction not to overturn the motion priors.

The Contrast Maximization (CM) framework Gallego et al. (2018); Shiba et al. (2022a;b); Stoffregen
et al. (2019) is an effective proxy for extracting motion information from raw event data. The idea
behind this optimization framework is that events triggered by the same portion of a moving edge can
be wrapped by motion models to produce a sharp event accumulated image. We simply introduce
the mathematical foundations of CM as follows. Assume a set of events E = ek

N
k=1 are given,

the goal of CM is to obtain the point trajectories on the image plane, which are described by the
per-event optical flow. The image of warped events (IWE) can be obtained by aggregating events
along candidate point trajectories to a reference timestamp.

x
′

k
.
= W(xk, tk; θ) = xk − (tk − tref )vθ(xk, tk) (5)

Here W is the warp function based on the event optical flow field vθ. If the input flow is correct, this
reverses the motion in the events, and results in sharper event images. Thus the objective function is
often defined to maximize the contrast of the IWE, given by the variance:

V ar(IWE(x; θ))
.
=

1

|Ω|

∫
Ω

(IWE(x; θ)− µI)
2dx

µI =
1

|Ω|

∫
Ω

(IWE(x; θ))

(6)

The objective function measures the goodness of fit between the events and the candidate motion
curves (warp). However, if we directly adopt the above IWE as the unsupervised loss, this might en-
courage all events to accumulate to several certain pixels. Inspired by Shiba et al. (2022a), we adjust
the objective by measuring event alignment using the magnitude of the IWE gradient to overcome
the issue. Finally, the squared gradient magnitude of the IWE should be set to:

V ar(θ; tref )
.
=

1

|Ω|

∫
Ω

||∇IWE(x; tref , θ)||2dx (7)

Instead of directly optimizing the IWE, which is sensitive to the arrangement (i.e., permutation) of
the IWE pixel values, the optimization target can be regarded as the variance of the IWE. More-
over, To mitigate overfitting, we divide the image plane into a tile of non-overlapping patches and
up/down-sampled to multi-scale branches Shiba et al. (2022a). One can iteratively optimize the ob-
jective function to obtain the proper parameters θ of the event flow field. However, in this work, we
adopt a flow estimator to predict the event flow instead of directly optimizing parameterized warp
functions. The reason is that the pre-trained estimator has already learned prior knowledge on vari-
ous motion patterns, such as simultaneous camera ego-motion and multi-object motions within the
scene, enabling it easier to model unseen complex motion patterns. On the contrary, motion fields
composed of simple parameters can hardly distinguish different motion patterns in the scene. From
Eq. 7, we can derive the unsupervised learning loss as

Lflow = 1/V ar(fθ(E(t1, tref ))) + λTV (θ) (8)

5
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where fθ is the flow prediction network, E(t1, tref) is the events between t1 and tref . λ denotes
the weight to balance the CM unsupervised loss and the TV regularization Rudin et al. (1992). The
fθ predicts the event flow from t1 to tref of all events in E(t1, tref). Maximizing the contrast is
equivalent to minimizing its reciprocal. Detailed architecture of the network is in Appendix.

By adopting such an unsupervised paradigm and LoRA, we can efficiently finetune the event flow
estimator on the specific scene that we aim to reconstruct. The predicted event flow is, in the fol-
lowing, used to guide the optimization of the deformation field.

3.3 EVENT-GAUSSIAN DATA ASSOCIATION

In this section, we introduce how to build the data association between 2D events and 3D Gaussians,
which is fundamental for optimizing 3DGS with the help of event streams. As discussed in Sec. 3.1,
the core challenge is the uncertainty caused by the large motions between frames. In other words,
the δx in Eq. 3 is hard to optimize, which can be considered as the scene flow of each 3D Gaussian.
To align the motion of events with the deformation of 3D Gaussians, we first establish the data
associations between events and their corresponding 3D Gaussians. The differentiable renderer of
3DGS can smoothly produce the depth map for a given camera viewpoint at a certain timestamp
because the α-blending in rendering naturally deals with transparency and occlusion relationship.
For a specific timestamp t, we produce its depth map at first. Since dynamic 3DGS experiences a
warm-up stage (3.1), the depth map can also be initialized well in a coarse manner. Then the 3D
location to trigger each event can be found by unprojecting the depth value of each event to 3D
space. The nearest 3D Gaussian to the unprojected 3D location is treated to be the most contributory
to this event. In addition, we implement the binding correspondence in a soft manner for better
robustness. In detail, each 3D Gaussian corresponds with its top k-nearest unprojected events (k=3
empirically) and generates a correspondence weight via the inverse distance weight function for
them. At present, the one-to-k Gaussian-to-Events data associations are established by using the
geometry information obtained from 3DGS rasterization.

3.4 DECOMPOSED MOTION SUPERVISION

However, the motion contributing to events contains not only the Gaussian deformation but also
the camera ego-motion. Therefore, we decompose the motion signal into the Gaussian scene flow
and the camera ego-motion. Unlike other NeRF-based approaches to interpolate camera trajectory
or use turnable poses, we follow Ma et al. (2023) to use a PoseNet to generate a continuous pose
function that maps time to the camera pose vector representation (R, t). The PoseNet is proved to be
very effective and a plug-play module in DE-NeRF Ma et al. (2023). It is fed with the interpolated
camera poses as inputs and outputs a corrected term to make it perfect. It is efficient to be trained
because even though we directly adopt the interpolated camera poses, we can still obtain relatively
not-bad results.

In this context, given two nearby specific poses, we can easily derive their instantaneous translation
and rotation velocities (vc = [vx, vy, vz] and wc = [wx, wy, wz]) by assuming the camera is moving
rigidly in a small time interval. The pixel-level image velocity caused by the camera ego-motion can
be derived from the camera’s rigid motion and its corresponding 3D location:

Fego=
1

Z

(
−1 0 x
0 −1 y

)
vc +

(
xy −1− x2 y

1 + y2 −xy −x

)
wc (9)

The detailed step-by-step derivation of the above equation can be found in Mitrokhin et al. (2019);
Zhu et al. (2019; 2018). The vc and wc are projected to the image plane given the inverse depth
( 1
Z in Eq. 9) rendered from the 3DGS rasterization. Likewise, the Gaussian scene flow between two

selected timestamps can be derived by:

Fi
gs = Proj(xi + Fθ(γ(xi), γ(t1))[0])

−Proj(xi + Fθ(γ(xi), γ(t0))[0])
(10)

Here the [0] refers to selecting the first output term of the deformation field Fθ. The Proj function
denotes the projection of a 3D location to the 2D image plane by camera transformation matrix. i
refers the i-th Gaussian. Until now, we have established the decomposed motion correspondence
from 3D to 2D. The combination of Fgs and Fego can be optimized through the finetuned event
flow estimator presented in Sec.3.2, which we will introduce in detail in the following section.
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3.5 TRAINING PARADIGM

This section introduces the detailed training pipeline to optimize dynamic 3DGS by events and RGB
modalities simultaneously. We first initialize the Gaussian point set in a warm-up phase with 3500
iterations by merely using the sparse RGBs. This is typically supervised by Lrgb = ||Ic − R(c)||11
where c is the camera pose. In the second joint training phase, the Lrgb remains unchanged. More
importantly, we integrate events into the training pipeline by our previously presented approach.
At each iteration step, two consecutive images and the event between them are read out by the
dataloader. Here we refer to the timestamp of the two images as t0 and t1. Next, we randomly select
a timestamp between t0 and t1, which is referred to as te, for the subsequent event-part optimization.

We leverage the events to optimize the timestamps between two adjacent RGBs. In detail, at each
optimization step, in addition to the RGB, we randomly select another timestamp between the image
and its next image, i.e. te. Then we use intermediate events between the image to estimate a pseudo
image at the te and use it to optimize the 3DGS. The detailed loss that uses the event intensity priors
for supervising is as follows:

Levent =

{
||R(te)− I(t0)e

Σe∈∆tpiC ||11, te ≤ t0+t2
2

||R(te)− I(t2)/e
Σe∈∆tpiC ||11, te >

t0+t2
2

(11)

t0 and t2 refer to the timestamps of the left and right RGB images. To mitigate the occlusion effect,
we use the nearest RGB to estimate the color at t1.

Moreover, we adopt the flow estimator (fθ(E; tref ) in Eq. 8) to estimate the event trajectories, i.e.
event optical flow, from t1 to t0. The tref in this phase should be constantly set to the timestamp
of the nearest RGB in Eq. 11. Here for the convenience of illustration, we assume te < t0+t1

2 so as
tref = t0. As we discussed in the previous section, the event flow is triggered by two decomposed
motions. After applying the flow estimator, the optical flow of all events between t0 and t1 can
be resolved. We then bind these events near t0 to their corresponding k 3D Gaussians based on
the approach introduced in Sec. 3.3. We use a small time interval to filter out candidate events
(t1 − δt ≤ te ≤ t1). Only considering the events whose timestamps are near t0 is necessary
because the same entity might trigger independent events at different timestamps. Each Gaussian
corresponds to at most k = 3 events and at least 0 events. Next, we jointly train the ego-motion
PoseNet and Gaussian deformation by :

Lmotion =

N∑
i=1

(
∑

k∈B(i)

fθ(E(t0, t1))− (Fego + Fi
gs)) (12)

where i denotes the i-th Gaussians with at least one associated event. B(i) illustrates the bond op-
eration to establish event-Gaussian correspondence. Other symbols remain the same in the previous
context. We set k = 3 experimentally. After the warm-up phase, the total loss is:

Ltotal = Lrgb + γ1Levent + γ2(iter)Lmotion (13)

γ1 and γ2 are hyperparameters to balance the magnitude of these items. We set γ1 = 1 and γ2 =

1 − e−
1

4000 iter that is a function of training iterations. At the early training stage, the deformation
field cannot predict accurate Gaussian scene flow. We use an annealing function to weigh this term.

4 EXPERIMENTS

In this section, we thoroughly validate the effectiveness of the proposed approach both on the syn-
thetic and real-world datasets and ablate the components constituents contained in this approach.

Synthetic Dataset. On account of the absence of relevant synthetic event-based monocular 4D
reconstruction dataset. We establish a novel one with three scenarios. They carry varying degrees
and types of large-scale motions. We adopted Blender to produce video camera poses and simulated
event streams using V2E Hu et al. (2021b).

Realistic Dataset. We evaluate our methods and other counterparts on three real-world datasets. The
first is the High-Speed Events and RGB dataset (HS-ERGB) Tulyakov et al. (2021) which includes
challenging and moving fastly dynamic scenes captured by a realistic event camera. We select three

7
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Centaur Lego Man
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
HyperNeRF 33.09 0.9814 0.0256 28.94 0.9545 0.0487 33.25 0.9758 0.0281
Deform-GS 33.74 0.9829 0.0187 30.88 0.9646 0.0350 34.98 0.9805 0.0221
4DGS 33.53 0.9819 0.0194 31.34 0.9662 0.0322 37.60 0.9817 0.0184
DE-NeRF 37.35 0.9895 0.0149 33.30 0.9780 0.0261 35.87 0.9815 0.0194
Ours 42.15 0.9971 0.0076 36.00 0.9916 0.0120 39.37 0.9856 0.0149

Table 1: Quantitative comparisons of baselines and ours on synthetic scenes.
Candle Umbrella Fountain

Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
HyperNeRF 35.72 0.9489 0.2512 27.83 0.8379 0.2687 22.85 0.8036 0.5013
Deform-GS 37.12 0.9579 0.2266 32.77 0.8611 0.1557 26.38 0.8516 0.4688
4DGS 36.95 0.9569 0.2299 32.44 0.8598 0.1617 27.12 0.8717 0.4547
DE-NeRF 37.05 0.9546 0.2405 32.38 0.8609 0.1591 26.84 0.8523 0.4345
Ours 37.77 0.9450 0.1132 34.07 0.8513 0.1210 30.54 0.9125 0.0277

Banana Chicken Chocolate
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
HyperNeRF 22.70 0.5167 0.3441 24.66 0.7589 0.2990 24.66 0.8452 0.1697
Deform-GS 22.65 0.5067 0.3294 25.07 0.7621 0.1959 28.66 0.9041 0.1218
4DGS 22.49 0.4958 0.3353 25.06 0.7613 0.1936 25.25 0.8470 0.1466
DE-NeRF 24.60 0.6206 0.4636 27.61 0.8323 0.2344 27.36 0.8916 0.1689
Ours 31.68 0.9586 0.0950 30.17 0.9371 0.1526 30.29 0.9460 0.1240

Table 2: Quantitative comparisons of baselines and ours on real-world datasets.

challenging scenes in the dataset, i.e. Umbrella, a rapid rotating scene, Candle, an environment with
rapid jitter, and Fountain a super-fast liquid scenario. The dataset provides complete and realistic
event streams, RGB sequences as well as camera parameters. The other two real-world datasets
that we use in this work, the HyperNeRF dataset Park et al. (2021b) and the NeRF-DS dataset
Yan et al. (2023), are commonly used in purely image-based NeRF or 3DGS research. They only
provide RGB videos but unfortunately without corresponding real event streams. Using simulators
for event generation makes it difficult to replicate the various noises found in events captured by
real event cameras. Therefore, we use a realistic event camera, DVXplorer Ini (2024) to convert
the two datasets into their event-based versions to obtain realistic images and event data pairs for
the convenience of comparison with conventional image-based methods. The details of the data
collection pipeline and collection system setup are illustrated in Appendix.

4.1 IMPLEMENTATION DETAILS

We adopt the EvFlowNet Zhu et al. (2018) as the fθ in Eq. 8. We first load its original network
parameters then we use Eq. 4 and Eq. 8 to finetune it to fit a single scene event stream. We use
Adam to optimize the EvFlowNet with an exponential decay learning rate from 0.0005 to 0.0001.

4.2 RESULTS AND COMPARISONS

In our experiments, we compare our method with four baselines, HyperNeRF Park et al. (2021b),
4DGS Wu et al. (2023), Deformable GS (Deform-GS) Yang et al. (2023b), and DE-NeRF Ma et al.
(2023). The first three methods are currently prevailing image-based dynamic reconstruction ap-
proaches while the last one is the SOTA event-based dynamic NeRF method. We perform both
quantitative and qualitative evaluations for a comprehensive and convincing comparison.

Quantitative Comparison. Firstly, we quantitatively evaluate these methods on scene reconstruc-
tion quality metrics including PSNR, SSIM, and LPIPS. We employ the VGG network for LPIPS
evaluation. As shown in Table 1 and Table 2, we compute the mean values for all metrics across
scenes from both synthetic and realistic datasets. We use two symbols to indicate the top two per-
forming methods in nine scenarios, with Coral , Orange and Yellow representing the best, second
best, and third best, respectively, and second best respectively. The results demonstrate that our
proposed approach exhibits superior performance across all scenarios, proving the effectiveness of
our framework.
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Figure 2: Qualitative Comparison on synthetic and real-world datasets. Regions with notably
different reconstruction qualities are highlighted with colored boxes and arrows.
Qualitative Comparison. We also provide qualitative results and comparisons for a better visual
assessment. We visualize the results in Fig. 2, and it can be observed that our method recovers more
detailed information when synthesizing images from novel viewpoints. Our method reconstructs
more delicate object contours and textures, especially in the regions annotated with boxes. Our
approach surpasses existing methods by a great margin, demonstrating the remarkable capability of
restoring the contents and details of the given scene over time. The effectiveness of our method
benefits from the rich information derived from both RGB image modality and event modality.

4.3 ABLATION STUDY

We report the contributions of each part of the training configurations and components of the pro-
posed approach in this section. As shown in Table 3, ”only Lrgb” denotes that our method degrades

9
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Figure 3: Qualitative examples of event flow prediction with or without LoCM fine-tuning.

Lego Chocolate
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

only Lrgb 30.80 0.964 0.035 28.66 0.904 0.122
w/o Levent 31.62 0.966 0.031 28.92 0.917 0.133

w/o Lmotion 31.24 0.968 0.031 25.65 0.861 0.183
w/o Flow Ft 32.47 0.973 0.025 27.31 0.892 0.174

Full Ft 34.61 0.981 0.026 29.11 0.915 0.168
w/o PoseNet 34.15 0.977 0.022 28.62 0.906 0.157

unaltered 34.89 0.982 0.021 30.29 0.946 0.124

Table 3: Ablations studies of different components in the proposed framework.

to the conventional deformable GS and only uses sparse RGBs to train the model. ”w/o Levent”
means γ1 = 0 in Eq. 13, while ”w/o Lmotion refers that γ2 is constantly set to 0 in Eq. 13. ”w/o
Flow Ft” represents that we directly adopt the original weights that are open-source with its code
of EvFlowNet to estimate event flow without using Eq. 8 to finetune it. ”Full Ft” refers to that we
normally fine-tune all parameters in the FlowNet without using the LoRA technique. ”w/o PoseNet”
means we use pose interpolation between frames instead of the PoseNet to get the event pose, even
though this has already been proved to be effective by Ma et al. (2023). We validate all the com-
ponents on the three scenes by comparing their respective PSNR, SSIM, and LPIPS. The results
illustrate that all the above modules contribute differently to learning dynamic Gaussian fields from
event data. Among these, the motion prior has a greater impact on the results, while the color prior
and pose have less influence.

Moreover, we indicate two visual examples to show the superiority of the LoCM fine-tuning strategy
in Fig. 3. It is observed that the predicted flows fine-tuned by LoCM (”w lora” in the figure) are
sharper, and can better distinguish the object boundaries. In addition, they exhibit strong contrast
between objects. Notably, quantitative results are not reported because our dataset, as we stated
previously, is recorded by a realistic DVXplore, thereby no groundtruth of event-level flows. More
comparison and analysis can be found in Appendix.

5 CONCLUSION

In this work, for the first time, we introduce a novel framework that can effectively reconstruct the
dynamic 3DGS from two modalities, i.e. event stream and sparse RGB images. The success of this
approach can be attributed to the following design. We adopt the inter-frame motion priors encoded
in event data to optimize the dynamic 3DGS. We extract the motion priors by a flow estimator that is
finetuned by the proposed LoCM unsupervised finetuning framework to produce event trajectories.
We decompose the entire motion into the 3DGS deformation and the camera ego-motion and use two
independent to predict them. The two networks can be optimized by the extracted event trajectories.
In addition, we adopt the knowledge of intensity changes between frames contained in event data
to supervise the renderings where there is no existing image. To validate the methods, we create
our synthetic dataset and convert two datasets conventionally used in image-based dynamic scene
reconstruction into the event-based version by a realistic DVXplorer event camera. Experiments
show that our method outperforms both existing image-based and event-based approaches on all
datasets by a large margin.
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A IMPACT STATEMENTS

This work introduces a novel framework that can optimize Dynamic 3D Gaussian Splatting from
two modalities, i.e. sparse RGB images and event streams. Event camera has the advantages of
high dynamic range and high temporal resolution. Thus, in fast-moving scenes or extreme lighting
conditions, event cameras have great potential. This work provides insights to solve the above
challenges by using event cameras in reconstructing dynamic scenes.

B EVENT REPRESENTATION

In this section, we give a detailed introduction to the representation of asynchronous raw event
streams and how we preprocess them as input for the optical flow estimator. Events (ek =
(uk, tk, pk)) at pixel uk = (u, v) and timestamp tk are triggered and output asynchronously, and
the illumination change of the pixel can be represented using the polarity (p ∈ {+1,−1}). Thus, an
event triggered at timestamp tk can be written as :

∆Lk(u) =
∑

ei∈∆tk

piC (14)

Where L is the logarithmic frame (L(t) = log(I(t))) and C denotes the event trigger threshold value.
Therefore, given threshold value C and time interval ∆t, we could accumulate events triggered in
∆t, and thus obtain the log illumination changes. Due to the sparsity of the event streams, we
need to convert the asynchronous event streams at the given time interval ∆t to a synchronous
representation. Thus. the event streams are encoded as a spatial-temporal voxel grid. The duration
∆t is divided into B temporal bins following

E(u, v, tn) =
∑
i

pi max(0, 1− |tn − t∗i |) (15)

where t∗i is the normalized timestamp determined by the number of bins by B−1
∆T . We set the tempo-

ral bins B = 5.

C DATA COLLECTION SYSTEM

This section introduces our device setup for data collection. The data collection pipeline aims to pro-
duce corresponding event data for an RGB video. In this work, except for the HS-ERGB Tulyakov
et al. (2021), which contains complete and realistic event streams of high-speed scenes, the other
two datasets we utilize, the Hypernerf dataset Park et al. (2021b) and the NeRF-DS dataset Yan et al.
(2023), are image-based datasets, which only contain RGB video sequences. An intuitive method is
to utilize an event camera simulator to convert the video into an event stream, as we have done in
synthetic data. However, the synthetic event stream is not realistic enough. The main reason is that
the event captured by a realistic event camera contains lots of irregular noises due to fluctuations
of electronic components such as hot noises which do not exist in synthetic data. Even though one
can add handcrafted noises to the simulated event stream, such as Gaussian Noises, they are still far
from reality. To address this, we build the data collection system (see Fig. 4). In the system, we use
a well-calibrated realistic event camera (DVXplorer) and a high fresh rate screen with a 300 fresh
rate to convert RGB videos with 120 FPS to real event streams.

First of all, we align the camera with the high refresh rate screen, ensuring that the camera aligns
with the top left corner of the RGB video by using the Checkerboard alignment. Then, we replay
the original videos with high temporal resolution on the high-frame screen. At the same time, we
adopt the DVXplore to capture the screen to produce event data. The entire system is located in
a no-light workspace, ensuring that the screen is the only light source, which can largely reduce
or even eliminate the impact of screen reflection. Events captured by this pipeline could contain
realistic features such as irregular noises, we illustrate this point in Fig. 5. In this figure, the left
side is the input video, and the right upper is the synthetic event data, which are clean and regular.
The right lower panel is the event stream generated by our system, which is dense, irregular, and
noisy. There are obvious differences between synthetic and real events. Furthermore, we record
the original videos again with a low temporal rate (1/5 of the original temporal resolution) because
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Figure 4: Data collection system. We leverage the realistic DVXplorer event camera and a high
frame rate screen to convert the HyperNeRF and NeRF-DS datasets into their event-based version.
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Generated Events
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Figure 5: Visualization results of synthetic and realistic events of Banana scene

the Active Perception Sensors (APS, which is armed on some premium-version event cameras and
used to capture colored images) of the event camera usually have a low frame rate, and we want to
simulate the phenomenon. The proposed data collection system is cheap and efficient and can be
used to convert any RGB video into the corresponding realistic events. The advantages of the setup
include but are not limited to 1. One does not have to go outside to find various scenes to create a
high-quality dataset. In contrast, they can fully utilize rich RGB video resources on the Internet 2.
Overcome the low fidelity of the event camera simulator 3. One does not require a premium-version
event camera (with an APS sensor), instead, our pipeline only needs a fundamental version event
camera, such as DVXplorer, which is cheaper.
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Figure 6: The architecture of the event-based optical flow estimator

D DETAILED NETWORK ARCHITECTURES

In this section, we introduce the detailed architectures and parameter selections. The networks
include the deformation network to transform canonical 3D Gaussians, the PoseNet to map time
to generate continuous poses, and the optical flow estimator to generate the event-based optical
flow. The deformation network is learned using an MLP network Fθ. This deformation network
transforms the canonical position, rotation, and scale to the corresponding value given the target
timestamp. The MLP receives the input and passes it to an 8-layer fully connected layers that
employ the ReLU function as activation and feature 256-dimensional hidden layers and outputs
a 256-dimensional feature vector. The vector is then passed through three additional prediction
heads to predict the position, rotation, and scale of the 3D Gaussians. Similar to NeRF, there is a
skip connection between the input feature vector and the fourth layer. Unlike DENeRF Ma et al.
(2023), which uses an 8-layer MLP, a more lightweight MLP is utilized in our proposed method.
Our PoseNet architecture only contains the sinusoidal encoder and a 2-layer MLP to map time t to
translation and rotation speed (v, w). The network receives normalized time t ∈ R as input and
output (v, w) following Rodrigues’s formula.

The architecture of the event-based optical flow estimator is very similar to the U-Net networks.
The framework receives the event spatial-temporal voxel grid as input and consists of the stridden
convolution encoder, two residual block layers, and the upsample convolution decoder with skip
connections to the corresponding encoder layer. We visualize the network structure in Fig.6. The
monocular event stream passes the downsample convolution encoders. The tanh function is applied
as the activation function, and the features are passed to the residual blocks and then upsampled four
times using the nearest neighbor resampling for the flow estimation.

E COMPARISONS ON NERF-DS DATASET

We also quantitatively evaluate our method and four baselines on the NeRF-DS dataset and conduct
the evaluation experiment with metrics such as PSNR, SSIM, and LPIPS.

The results are presented in Table.4 and indicate that our method achieves outstanding performance
in all metrics and most of the scenes within the dataset. Cells are marked as bold and underline,
representing the best, and second best respectively.

F DEPTH VISUALIZATION

As illustrated in Fig.7, we visualize the depth map of test scenes. Our proposed method yields
substantially more accurate depth maps than other baselines, highlighting its superior geometric
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Cup As Press
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
HyperNeRF 23.55 0.8529 0.1986 26.69 0.9175 0.1573 25.38 0.8549 0.1978
Deform-GS 23.87 0.8591 0.1807 26.75 0.9189 0.1590 25.72 0.8735 0.2022
4DGS 23.81 0.8601 0.1794 26.59 0.9165 0.1580 25.75 0.8655 0.1917
DE-NeRF 24.25 0.8708 0.1791 26.24 0.9065 0.1962 24.51 0.8448 0.2382
Ours 24.10 0.8740 0.1728 27.18 0.9224 0.1581 25.82 0.8691 0.1891

Table 4: Quantitative comparisons on NeRF-DS dataset. We also compare our method against
previous methods on three real-world scenes from the NeRF-DS dataset.

reconstruction capabilities. This underscores the method’s efficacy across both synthetic and real-
world datasets.

Figure 7: Depth visualization. We compare our method against 4DGS Wu et al. (2023) and Deform-
GS Yang et al. (2023b) on both synthetic and real-world scenes. These scenes are Centaur, Lego,
and Candle from the top down.

G ADDITIONAL QUALITATIVE COMPARISON RESULTS

As shown in Fig.8, We also provide additional qualitative results on novel scenes and previously
evaluated scenes from new viewpoints. Certain regions in the images are magnified to compare the
recovered details and demonstrate the differences in reconstruction quality between our method and
other baselines. In addition, we provide video demonstrations of our method and other 3DGS-
based single modality approaches in the Supplementary Material. These materials support that
the proposed method can effectively optimize dynamic 3DGS from both RGB images and event
streams, especially when the RGB images are sparse.
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Figure 8: Comparison visualization based on enlarged images. The Cup, Press and As scenarios
are from the NeRF-DS dataset, and Lake is another scene from the HSERGB dataset. Lego and
Centaur are our novel synthetic datasets. Banana is from the HyperNeRF dataset.

H LIMITATIONS

Although a large improvement has been achieved, this work has some limitations. This approach
relies on the precomputing to extract the event flow as the motion prior which is used to guide the
training of the deformation field. The pertaining of the event motion estimator block will take some
time and have some biases. In the future, we plan to incorporate the motion extraction block into the
whole 3DGS training pipeline. In this case, we can simultaneously train the two blocks and make
them benefit from each other mutually.
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