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Abstract

Finding cause-effect relationships is of key importance in science. Causal discovery aims to
recover a graph from data that succinctly describes these cause-effect relationships. However,
current methods face several challenges, especially when dealing with high-dimensional data
and complex dependencies. Incorporating prior knowledge about the system can aid causal
discovery. In this work, we leverage Cluster-DAGs as a prior knowledge framework to warm-
start causal discovery. We show that Cluster-DAGs offer greater flexibility than existing
approaches based on tiered background knowledge and introduce two modified constraint-
based algorithms, Cluster-PC and Cluster-FCI, for causal discovery in the fully and partially
observed setting, respectively. Empirical evaluation on simulated data demonstrates that
Cluster-PC and Cluster-FCI outperform their respective baselines without prior knowledge.

1 Introduction

Understanding causal relationships is essential for scientific inquiry and reasoning about the world. Re-
searchers have always leveraged active experimentation and interventions to uncover causal mechanisms.
But in many cases, such experiments are impractical or ethically off-limits—for instance, it would be un-
ethical to expose communities to varying levels of environmental pollution to study their effect on health.
The challenges of experimentation, along with the data explosion in recent decades, have led to continued
methodological advances in causal discovery from observational data (Guo et al., 2020; Malinsky & Danks,
2018; [Peters et al., [2017)).

One common approach to represent causal assumptions is the Structural Causal Model (SCM) frame-
work (Pearl,2009a; Peters et al.,[2017)), which encodes these relationships in Directed Acyclic Graphs (DAGs),
with edges representing the “directed flow of causal influence” between variables. One landmark result in
causal discovery is that, without further assumptions, purely from observational data one can only identify
the Markov equivalence class—a collection of graphs that are all consistent with the observed data. In
large graphs, this ambiguity can make it difficult to pinpoint precise causal insights (Spirtes et al., [2000;
1995). Moreover, as the number of variables increases, the space of DAGs grows exponentially, posing serious
scalability issues for many causal discovery algorithms (Ganian et al., 2024)).

One way to help address these challenges is by incorporating background knowledge—partial information
about the graph structure that can narrow the search space and guide causal inference. A recent method for
encoding such partial knowledge is via Cluster-DAGs (C-DAG) (Anand et al., 2023, which organize variables
into clusters and assume that possible causal relationships between these clusters are known, but the causal
structure within the clusters as well as the precise connections of individual variables across clusters is still
unknown. By using structural information at this higher level, C-DAGs offer a way to manage complexity
in high-dimensional settings. C-DAGs were originally developed for direct use in causal inference, reasoning
about the strength of cause-effect relationships using the C-DAG directly (Anand et al., [2023)).

We leverage C-DAGs as background knowledge to improve constraint-based causal discovery methods using
the prior knowledge during discovery process itself. We also extensively compare it to the related tiered
background knowledge proposed by (Andrews et al., [2020). Our contributions include:
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o We show that tiered background knowledge (TBK) (Andrews et all 2020) can be represented as a C-
DAG, but not vice-versa—C-DAGs capture strictly more flexible types of background knowledge. In
addition, C-DAGs can accommodate latent confounding between clusters, whereas TBK has to assume it
non-existent, see Section [2.1]

e We formalize the constraints a C-DAG puts on a corresponding DAG by formulating the C-DAG restric-
tions as a boolean combination of pairwise constraints, see Section [C]for details. This could be interesting
for future theoretic research in causal discovery with background knowledge.

o C-DAGSs allow warm-starting of constraint-based causal discovery algorithms, namely PC
and FCI by pruning and orienting edges before running the discovery algorithm.
This results in fewer CI tests needing to be performed. We introduce the Cluster-PC and Cluster-FCI
formally and show their soundness (C-PC and C-FCI) and completeness (for C-PC only, C-FCI is not be
complete by design).

e Our simulations show that Cluster-PC and Cluster-FCI outperform the non-background knowledge base-
lines, see Sections [3| and Cluster-FCI also outperforms FCITiers on C-ADMGs (allowing bidirected
edges between clusters), while being close to FCITiers on C-DAGs.

1.1 Related work

There are two main ways in which background knowledge can be described in graphical structures: groupwise
background knowledge and pairwise background knowledge. Pairwise background knowledge
[2025} [Meek, [1995) restricts the relationship between pairs of variables, i.e., requiring or ruling out directed
edges or ancestral relationships. In contrast, groupwise background knowledge (Andrews et al., |2020; Brouil-|
llard et al.,, 2022; |/Anand et al. 2023) organizes variables into different groups and then restricts the edges
between these groups, without committing to any pairwise constraint directly.

Previous work on background knowledge includes guiding score-based methods like KGS
2024), which can use prior knowledge on the absence/presence of an (un)directed edge, A*-based meth-
ods (Kleinegesse et al., 2022), using absence/ presence of directed edges and tiers (non-ancestral constraints)
and NOTEARS (Chowdhury et al.| [2023)), using absence/ presence of directed edges). Most of these methods
focus on pairwise background knowledge. For constraint-based methods, except for (Andrews et al., 2020)),
background knowledge is usually used to orient additional edges after receiving the CPDAG (Brouillard
let al.| [2022} Bang & Didelez, [2023)) from the PC algorithm (Spirtes et al.l 2000). [Fang et al.| (2025) study the
representation of causal background knowledge using pairwise background knowledge. Pairwise and group-
wise background knowledge can be combined, although to the best of our knowledge, not much research has
gone in this direction yet.

Recently, different aspects of causal diagrams over groups of variables have been discussed.
study learning groups of variables in Bayesian networks. [Wahl et al.| (2023)) discuss two methods
for inferring causal relationships between two groups of variables. Melnychuk et al.| (2024) use C-DAGs to
group confounders as a cluster. [Wahl et al.| (2024) extend the theoretical framework of |[Anand et al.| (2023),
discussing the relationships between micro and group level graphs. C-DAGs and other variable aggregation
methods have increasingly been used to model causal systems (Ma et al., 2025} [Plecko & Bareinboim) 2024;
[Raghavan & Bareinboim| [2025} |Assaad et al. 2024} Xia & Bareinboim, [2025} [Tabell et al., 2025). Such an
aggregate model can then, with our approach, be used to inform causal discovery of the more granular DAG.

present a method for learning disentangled causal representations from very high-dimensional
data like images. Group graph variants have also increasingly become targets for causal discovery
[2022; Ninad et al., |2025; |Gobler et al. 2025} |Anand et al) 2025)). [Xia & Bareinboim| (2024)) use neural
causal models to learn neural causal abstractions by clustering variables and their domains, while
et al| (2024) create a variant of LINGAM 2014), Abs-LiNGAM, to learn causal abstractions.
Li et al.| (2025)); Yvernes et al| (2025d) investigate the identifiability of causal abstractions,
Zennaro bridge graphical and functional causal abstractions and Massidda et al.|(2025) study causal
sufficiency for causal abstractions. While much work focuses on learning the aggregated group graph itself,
our approach uniquely leverages the C-DAG as assumed prior knowledge to perform causal discovery that
resolves the relationships within the underlying micro-variables.
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The CaGreS algorithm by |Zeng et al.| (2025) summarizes DAGs via node contractions and creates summary
causal graphs (SCGs) with preserved utility for causal inference. |Ferreira & Assaad| (2025b) extend on|Anand
et al| (2023) by analyzing theoretical properties of SCGs, which are similar to C-DAGs, but also allow for
cycles. |[Yvernes et al.| (2025a); |Assaad et al.| (2024)); |Assaad (2025); Yvernes et al.| (2025bic|); [Ferreira &
Assaad| (2025a)) investigate identifiability in SCGs, while Ferreira & Assaad| (2025¢) do so for cluster directed
mixed graphs, a related concept. Transit clusters (Tikka et al.;2023)), while similar, are specifically designed
to cluster variables while preserving identifiability properties. |[Zhu et al| (2024) show that interventions
in aggregation of variables (e.g., a surjective but non-injective function of cluster variables) are no longer
well-defined. We build on these properties developed for C-DAGs to guide a constraint-based search for the
detailed underlying DAG.

On the application side, C-DAGs have also shown some promise for improving causal inference tasks. [Ribeiro
et al. (2025) apply causal inference to assess malaria risk, and they mention that causal discovery at the
cluster level improves interpretability. |Anand & Hripcsak]| (2025)) apply C-DAGs to determine causal effects
in medicine.

Research gap: Despite increasing interest in causally modeling groups of variables, exploiting often easily
available groupwise background knowledge for causal discovery of the detailed graph remains underexplored.
Groupwise background knowledge flexibly accommodates prior knowledge on varying levels of detail for
different subsets of the variables, often rendering it much more realistic in practice. Some groups of non-
ancestrality constraints (e.g., today can not causally influence yesterday) is much more readily available
and justified than individual required/forbidden edges or highly granular assertions. C-DAGs encode such
groupwise knowledge flexibly and in a visually interpretable, intuitive way, making them a valuable tool for
applied researchers and users across domains.

1.2 Preliminaries on causality and constraint-based causal discovery

We briefly introduce the most relevant preliminaries for structural causal models (SCM) and causal discovery.
For more details, we refer the reader to (Spirtes et al.l |2000; [Pearl] |2009b; [Peters et al.l [2017)). Throughout,
we assume a fixed set of random variables Xi,...,X,, which also serve as the node set of graphs V =
{Xla"'vXn}’

A DAG (directed acyclic graph) G = (V, E) is a directed graph over nodes V with edges E without directed
cycles. If (X — Y) € E in a DAG (for X,Y € V), we write X € pay, Y € chx (parents, children,
respectively). The neighbors of X are: nbx := chx Upax. A superscript G like ang*; indicates we are
referring to the ancestors of X in graph G. If there exists a directed path from X to Y, ie, X — ... =Y,
then X € any, Y € dex (ancestors, descendants respectively). When we find X — Y <« Z along a path
in G, we call Y a collider on the path; if X, Z are additionally not adjacent in the DAG, we call the triple
{X,Y,Z} C V an unshielded collider or v-structure. For causal discovery, we will also consider acyclic graphs
that can contain both directed and undirected edges (denoted by X — Y"). This will often be interpreted as
the direction of the edge not yet being specified or unknown.

A structural causal model over variables in V' entails both a probability distribution P(Xj,...,X,), the
observational distribution, and a DAG G = (V, E). In fully observed SCMs, the observational distribution
and the implied DAG are related by the Markov property: conditional independence statements about
P(Xy,...,X,) are implied by so-called d-separations in G. A path X;,...,X; in G is called blocked by
some set S C V' \ {X;, X} if every non-collider on the path is in S and every collider and their descendants
are not in S. If all paths between X; and X; are blocked by S in G, we say that S d-separates X; and
X; in G, denoted by X; Il X; | S. Shortly, P(Xy,...,X,) satisfies the Markov property w.r.t. G if
X; LGXj | S:>XZJ_LX7 | SlnP(Xl,,Xn)

For a one-to-one correspondence between d-separations in a graph G = (V, E) and conditional indepen-
dencies in a distribution P(X7y,...,X,,) to hold also requires the converse implication—called faithfulness.
Faithfulness is not generally satisfied for the observational distribution and graph entailed by an SCM, but
often assumed to hold in practice. The subtleties of the faithfulness assumption and its violations have been
studied extensively in the causal discovery literature (Zhang & Spirtes, [2002; [Ramsey et al., |2006; |[Uhler,
et al.l [2013; Marx et al., 2021)).
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Figure 1: An example of a C-DAG G¢ and a compatible DAG G. Left: A C-DAG G¢ over three clusters.
Right: A graph G compatible with the C-DAG G¢.

Under the assumptions of causal sufficiency—there are no unobserved common causes of any variables in
X—and faithfulness, d-separations and conditional independencies are in one-to-one correspondence enabling
constraint based causal discovery: by testing all possible conditional independencies in P(Xq,...,X,) one
can derive all d-separations that hold in G. It turns out that the set of DAGs that satisfies a given set
of d-separations, called the Markov equivalence class, can be characterized as follows: Each DAG in the
Markov equivalence class as the same skeleton (the same set of adjacencies) and the same set of v-structures
(Pearl, |2009a; [Zhang), |2008a). The Markov equivalence class can be represented by a partially directed graph
(some directed, some undirected edges). If causal sufficiency is not assumed, the situation becomes more
complicated and one can only infer more general types of graphs by testing conditional independencies. The
two landmark algorithms for constraint based causal discovery with and without causal sufficiency are the PC
and FCI algorithm, respectively. We will first focus on leveraging prior knowledge for a PC type algorithm
in the fully observed case, before covering partial observations and an extension of FCI in Section [3.2}

2 Cluster-DAGs

Cluster-DAGs (C-DAGs) were introduced by [Anand et al.|(2023) as a way to perform causal inference when
one can not specify the entire DAG, but has enough information to organize groups of variables into a DAG.
C-DAGs aggregate variables into clusters and then define macro-relationships between these clusters. An
example can be seen in Fig.

No assumptions or restrictions are imposed on connections between variables within the same cluster. A
directed edge between clusters C; — C5 means that for any vertices X € C1,Y € Cs there is either no edge
between them or it is oriented as X — Y. If there is no arrow between C7,C5, no nodes X € C1,Y € Cy
are adjacent. Formally, a compatible C-DAG is defined as follows.

Definition 1 (C-DAG, (Anand et all 2023)). Given an ADMG G = (V, E) (a graph with directed and
bidirected edges as in Deﬁm’tz’on and a partition C = Cy,...,Cy of V (i.e., C;NC; =0 for alli # j and
V =, C;), construct a graph Go = (C, E¢) over C with a set of edges Ec defined as follows:

(i) An edge C; — Cj is in Ec if there exist X € C;,Y € C; such that (X = Y) € E.
(i1) A bidirected edge C; <+ C; is in Ec if there exist X € C;,Y € C; such that (X +Y) € E.

If the graph G¢ contains no directed cycles, C is called an admissible partition of V' and G¢ is called a
C-DAG compatible with G. Any ADMG G that has G¢ as a compatible C-DAG is in turn called compatible
with Gc.

Many different DAGs may be compatible with the same C-DAG and vice versa, so C-DAGs form an equiv-
alence class of DAGs. [Anand et al.| (2023) show that causal effects are still identifiable from the C-DAG
G if they are identifiable in every DAG G compatible with G¢. Another important result is the soundness
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and completeness of d-separation in C-DAGs: any d-separation in the C-DAG also holds in any compatible
DAG.

Theorem 1 (Soundness and completeness of d-separation in C-DAGs, (Anand et al. 2023)). In
a C-DAG Gg, let C;,C;,C, C C be sets of clusters. If C; and C; are d-separated by Cy in G¢ (see
Definition , then in any ADMG G (see Deﬁm’tion compatible with G¢, C; and C; are d-separated by
Cy in G, that is

Ci g C; |Cy = C; lg C; | Ck . (1)

If C; and C; are not d-separated by Cy, in G, then there exists an ADMG G compatible with G where C;
and C; are not d-separated by Cy, in G.

Based on these results, |[Anand et al.| (2023) then develop an ID algorithm that is sound an complete for
identifying causal effects in C-DAGs. In this work, we leverage implications of Theorem ] for causal discovery
instead.

In constraint-based causal discovery (Spirtes et al., 2000; [Zhang} [2008b)), one typically assumes faithfulness
and removes edges from an initially fully connected graph whenever a conditional independence is found
between any pair of vertices. The key idea is that Theorem [I| suggests that whenever X € C;,Y € C; and
C; g, C; | S, then in any G compatible with G¢ we have X 1L ¢ Y | S (slightly abusing notation in that
S is a set of clusters or a union over them, respectively) and thus X, Y cannot be adjacent. Hence, C-DAGs
allow us to aggressively prune a fully connected graph to warm-start constraint-based causal discovery on
the micro-variables. Besides this warm start that potentially saves many conditional independence tests, the
C-DAG structure can also be used to further speed up the remaining discovery process, which we discuss in
Section [Bl

2.1 Comparison to tiered background knowledge

Before developing our full causal discovery algorithms with C-DAGs, we provide a thorough comparison with
existing forms of groupwise background knowledge—tiered background knowledge (TBK). Like C-DAGs,
TBK groups variables, where groups are called tiers. Unlike C-DAGs, tiers impose a directed, chronological
ordering between groups of variables.

Definition 2 (Tiered background knowledge, (Andrews et al., [2020)). A MAG (mazimal ancestral
graph, Definitions and@ satisfies tiered background knowledge if the variables can be partitioned into
n > 1 disjoint subsets (tiers) T = {T4,...,T\} and for all A€ T, and B € T; with 1 <i < j < m either (i)
A is an ancestor of B or (ii) A and B are not adjacent.

Similar to C-DAGs, TBK enforces the orientations of certain edges due to the macro-constraints. While
causal discovery algorithms for TBK like FCI-Tiers (Andrews et al.l |2020) have been developed, C-DAGs
are strictly more flexible than TBK:

(i) TBK cannot represent settings like the C-DAG C; — C5 < Cy. TBK would have to put either Cy or
Cs first in the tier ordering, which would only restrict the orientation of edges between Cy,Cs, but it
cannot encode the strict absence of edges between C1, Csy as the C-DAG does.

(ii) C-DAGs allow for bidirected edges between clusters, whereas TBK does not, because a bidirected edge
could violate both conditions of Definition 2

3 Causal discovery with C-DAGs

In this section, we study how C-DAGs with and without unobserved confounding can be incorporated as prior
knowledge to improve efficiency and accuracy of constraint-based causal discovery on the micro-variables.

3.1 Cluster-PC

First, we consider C-DAGs without latent confounding, neither within nor between clusters. The assumed C-
DAG structure over the micro variables then allows for immediate pruning of the initial complete graph and
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also for partial orientation of edges via Algorithm [1| The resulting graph is an MPDAG (see Definition [11)),
which can contain both directed and undirected edges. A detailed explanation can be found in Section

Algorithm 1 C-DAG to MPDAG
Require: C-DAG G¢ = (Ve, Ec), C ={C1,...,Cr}
1: Form fully connected graph G over U;c(,C;
2: for C;,C; € C do
for X € C,Y € Cj do
4 if C; — C; then orient X — Y in G.
5: if C; +— C; then orient X <Y in G.
6: if Ci~C; then delete edge X — Y in G.
7: return MPDAG G.

Instead of the fully connected graph, this MPDAG will serve as a starting point for our constraint based
causal discovery algorithm (akin to PC). The reduced number of adjacencies and partially directed edges
reduce the number of required conditional independence (CI) tests during the Cluster-PC algorithm in three
ways: (i) directly, as non-adjacent variables are not tested for (conditional) independence anymore, (ii)
reducing the number of potential separating sets to be considered, and (iii) by working along a topological
ordering of the clusters, more CI tests can be avoided. As an example for the latter, consider the C-DAG
Cy — Cs. For X,Y € Cy we only need to consider separation sets S C (i, as any path going through
C5 contains a collider in Cs, which is blocked when C3 NS = (). More generally, the only candidates for a
separating set between X € C7 and Y € Cs for the C-DAG (7 < Cs are subsets of the potential parents
of X in C due to Proposition [I| We now define the general notion of relevant potential separation sets to
consider.

Definition 3 (Non-child). In a PDAG G, the non-children of a node X is the set of adjacent nodes adj§
of X that are not children of X, i.e., nch§ = adj$ \ ch$.

We can now state the full Cluster-PC (C-PC) algorithm in Algorithm |2 and show that it is sound and
complete.

Theorem 2 (C-PC is sound and complete). Let Go be a C-DAG compatible with a DAG G. Then
Algorithm @ is sound and complete (for a CI oracle) in that it returns the same MPDAG obtained from
running PC on G and orienting all possible additional edges induced by the prior knowledge in G¢.

The proof can be found in Section [A73] When a CI oracle is available, C-PC and PC with post-processing
according to the C-DAG return the same result, so C-PC seemingly adds no value. However, in practice CI
testing is an inherently difficult problem (Shah & Peters, 2020} |[Lundborg et al., |2022) and a whole line of
works investigates how the number of CI tests can be reduced to render constraint based causal discovery
more effective (Xie & Geng, 2008} [Zhang et al., 2024} [Shiragur et al.l |2024). In Section 4| we demonstrate
that avoiding unnecessary CI tests by incorporating the prior knowledge in C-PC indeed leads to substantial
performance improvements.

Definition 4 (Compatibility of CDPAGs and MPDAGs with C-DAGs). Let G = (V, E) be the
MPDAG obtained from applying Algorithm[1] to C-DAG G¢. A CPDAG G’ = (V' E') is called compatible
with C-DAG G if and only if V! =V and for any X, Y € V' the following holds:

(i) If(X-Y)eE' = (X-Y)€E.
(i) If ( X - Y)e E'= (X =Y) € FE (analogous for (X < Y) € E').

A graph G’ being compatible with Go means it can be generated from an algorithm doing edge deletions and
orientations on G.

3.2 Cluster-FCI

Next, we turn to the partially observed setting, where there may exist latent confounders between observed
variables, represented by bidirected edges. Here, we allow bidirected edges both between the actual variables
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Algorithm 2 Cluster-PC algorithm

Require: joint distribution Px over d variables Markov and faithful w.r.t. the ground truth graph, CI oracle, C-
DAG G¢ = (Ve, Ec), C = {Ch,...,C;} with clusters in topological ordering and G¢ compatible with the
ground truth CPDAG, see Definition [4]

1: Get MPDAG G = (V, E) from Algorithm > pa, ch, an, de, nb, sib and nch refer to this current GG
2: for m € [r] do

33| Lpm+ CnU chmgg Cs

4: for k=0,...,|Ln| —2do

5: delp <0

6: for all pairs X; € C,, and X; € pax; do

7 for all S C nchx; \ {X;} with |S| =k do

8: if X; 1L Xj | S then

9: delg + (X; — Xj)
10: LoL b S{Z',j} — S

11: for all adjacent X;, X; € Cp, do

12: for all S C nchx; \ {X:} or S C nch; \ {X;} with |S| =k do

13: if X; 1l X, | S then

14: delE%{(Xi—)Xj),(Xj <—X1)}

15: boL b S{i,j} «— S

16: | | E< E\delg

17: for each triple Xi,Xj,Xk €V with X; — X]' — Xk, Xi — Xj +— X or X; — Xj — X

and X; <X do > find v-structures

18: if X; ¢ S{i,k} then

19: | L orient the edges as X; — X; + X

20: Successively apply Meek’s edge orientation rules, see Fig. [f]
21: return MPDAG G = (V, E)

as well as between clusters of variables in the C-DAG. In Section [3.1] going from the C-DAG to an initial
pruned and partially oriented graph was straightforward. This is no longer the case with latent variables, as
the cluster graph may now be an ADMG as well (see Definition . We thus refer to such cluster graphs
as C-ADMGs. Operating causal discovery directly on ADMGs is a dead end in that one can not distinguish
whether there is one or two edges between a pair of nodes. Intuitively, if there may be latent confounders, it
is generally impossible to determine whether observed dependence is due to a direct effect or due to latent
confounding. In addition, in an ADMG nodes can be non-adjacent while still not being m-separable (m-
separation is the natural extension of d-separation to graphs with bidirected edges, see Definition due to
the existence of inducing paths (Definition .

Instead of ADMGs, the literature has converged on ancestral graphs (see Deﬁnition as the core objects in
constraint based causal discovery with latent confounders. In our case, we first derive a partial mixed graph
from the given C-ADMG and operate our Cluster-FCI (C-FCI) algorithm on it, which ultimately outputs a
partial ancestral graph (see, Definition . This output can be viewed as the analogue of the CPDAG in
the fully observed setting.

Definition 5 (Partial mixed graph for C-ADMG). The partial mized graph Gpm = (V,E) of a C-
ADMG G¢ is a graph (with four types of possible edges —, <+, o—0, o= ), such that for all clusters C;, C;

(i) for all X,Y € C; we have (X ooY) € E,
(i1) for all X € C;,Y € C; with C; — C; and C; ¢4 C; we have (X —Y) € E,
(iii) for all X € C;,Y € C; with C; — C; and C; <» C; we have (Xo—»Y) € E,
(tv) for X € C;,Y € C; with C;,C; not adjacent and connected by an inducing path, if

« C; € angjc we have (X - Y) € E,
. CjE(zngiC itis( X+ Y)eE,
o C ¢ angjc and C; ¢ an&¢ we have (X <+ Y) € E.

i
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Algorithm 3 C-ADMG to partial mixed graph transformation for C-FCI

Require: C-ADMG G¢ with C = {Ch,...,C}
1: initialize G as a complete undirected graph over V = U:=1 C
2: for all clusters C; in G¢ do

3: for all X,Y € C; do

4: |, [, add XooY to G

5: for all adjacent clusters C;, C; in G¢ do

6:

7

8

9

for all X € C;,Y € C; do
if C; — Cj and CZ%C] then F < F U {X — Y}
if C; «+— Cj and CZ%C] then F «+— F U {X — Y}
: ifCl—>C’]andC’l<—>CjthenE<—EU{X0—>Y}
10: if C; « C; and C; ++ Cj then E <+~ EU{X «oY'}
11: if Ci#C}, Ci44C; and C; <> Cj then E +— EU{X <Y}
12: for all non- adjacent clusters C;, C; connected by an inducing path in G¢ do
13: if C; € ancc then
4| forallXEC’l,YEC do E+ EU{X - Y}
15: if C; € ancc then
16: L forallXeC’l,YeC do B+ EU{X + Y}
17: if C; ¢ angc and Cj ¢ cmgC then
18: | forall X €C,,Y €Cjdo B+ EU{X ¢ Y}
19: return partial mixed graph Gy, := G

) =
@

K

Figure 2: Example of non-ancestral C-ADMG.

The circle indicates uncertainty on the nature of the edge mark; it could be a tail or an arrow. In MPDAGS,
an undirected edge X —Y was used to express uncertainty about the edge direction. In partial mized graphs
this function is now served by the edge X oo Y .

LL b2

For brevity of notation, as in|Zhang (2008b)), we also introduce the “x” symbol to denote either an arrowhead,
circle or tail. This will be used later for edge orientations, where some edge marks don’t matter for the
orientation rule. For example if the edge X %o Y is oriented as X*— Y, the edge mark on the left stays
whatever it was before the orientation. In the original definition of partial ancestral graphs (Zhang], [2008b)),
undirected edges “—” or “o—" are present in order to consider potential selection variables. In our work we
assume non-existence of selection variables, so we omit these undirected edges here.

The partial mixed graph G, for a C-ADMG G will be the starting graph for the Cluster-FCI Algorithm
and is produced from G¢ by using Algorithm [3] To obtain an ancestral graph later on during C-FCI, non-
adjacent but non-m-separable nodes need to have an edge introduced between them in the preprocessing,
see Algorithm [3{1. 12-18).

Definition 6 (Compatibility of MAGs and partial mixed graphs with C-ADMGs). Let Gy, =
(V, E) be the partial mized graph obtained from applying Algorz'thm@ to C-ADMG G¢. A partial mized graph
Gym = (V', E') is called compatible with C-ADMG G if V! =V and for any X,Y € V' the following holds:

(i) (XooY)eFE = (XooY)€E,
(ii)) (Xo»Y)eFE = {(XooY),(Xo=Y)}NE #0 (analogous for (X <oY) € E'),
(iii) (X ¢+ Y) € B' = {(X 00 Y),(Xos V), (X oY), (X < Y)} N E £ 0,
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Algorithm 4 Cluster-FCI algorithm

Require: Joint distribution Po of d observed variables, independence oracle, C-DAG G¢ = (Vo,Ec),C =
{C4,...,C;} with clusters in topological ordering (w.r.t. directed edges) compatible with ground truth
MAG, see Definition [f]
1: Construct graph G = (V, E) from G¢ with Algorithm [3]
2: for m € [r] do
3: Ly < Cp, U UCSEPGg,,Cn CsU UCsEsibg'cn Cs

4 for k=0,...,|Ln| —2 do

5 dele < 0

6: for for all X; € Cy, and X; € nchx; do

7 for all S C nchx; \ {Xi} or S C nchx, \ {X;} with [S| =k do
8: if X; 1 Xj | S then

9: delg < delgp U {X; »+x X;}

10: L S{i,j} «~— S

11: V « V\delg

12: for all unshielded triples (X, X;, Xx) do

13: if X; ¢ S{i,k} then

14: if X; %0 X; o« X}, then orient X; %o X; o X} as X;#> X; <X in G
15: b b if X XjO-} Xk then orient Xi#—> XjO-) Xk as X+ X]' <~ Xk in G
16: for all X; € V do

17: for all X; € adjggi do

18: compute pds(X;, X;) as in Definition
19: for k=0,...,d—2do

20: for |S| C pds(X;, X;) with |S| =k do
21: if Xl s X]' | S then

22: V= VA {X; 5 X}

23: L S{i’j} — S

24: Reorient all edges according to C-DAG G¢ (as in Algorithm [3| but only orienting edges, not adding edges)
25: For any almost directed cycle X; <> X; — ... = X; orient X; +> X, to X; — X,

26: Use rules R0-R4, R8-R10 of (Zhang} [2008b)) to orient as many edge marks as possible.

27: return PAG G = (V, E)

(v) (X =Y)eE =X¢ nchgpm (analogous for (X < Y) € E’).

Compatibility of MAGs (which are partial mized graphs that satisfy ancestrality and mazimality (Zhang,
2008b)) with C-ADMGs follows directly from this definition, too. To summarize, a graph G, being com-
patible with Go means it can be generated from an algorithm doing edge deletions and orientations on Gy, .

The graph resulting from Algorithm [3] need not necessarily be ancestral yet, as the input C-ADMG, and
thus also the output, may contain almost directed cycles. An almost directed cycle is defined as X «+» Y and
X € an§ (Zhang, [2008b). A direct conversion of the C-ADMG to a MAG, e.g., following |Hu & Evans| (2020)),
is undesirable, as the following example demonstrates. Consider the graph in Fig. The MAG Gy over
{X1,..., X5} is ancestral, but the corresponding C-ADMG G¢ with C = {C1,Cs,C5},Cy = {X1, Xa},Co =
{X3},C3 = {X4, X5} is not, due to the almost directed cycle C5 «» C1 — Cy — C5. Even though there is
an almost directed cycle in G¢, Gy is compatible with G¢. If we were to transform this C-ADMG into a
MAG, the edge C; <> C3 would change to C; — C3. The edge between Xo, X5 would consequently inherit
this orientation as Xo — X5 contradicting the correct edge type X <+ X5. Therefore, we only reorient
almost directed cycles at the very end of C-FCI, ensuring it outputs a valid PAG without introducing false
edge information.

Definition 7 (Updated pa, ch and nch, and sib). In addition to the previous definitions, in the following,
whenever Xo— Y, we count X as a parent of Y, X € pay, and vice versa Y € chx. Whenever X ooY,
Xo—Y, or X &Y, we count X as a non-child of Y, X € nchy and these definitions extend to ancestors
and descendants. Whenever X <Y, we call X is a sibling of Y, X € siby (and vice versa).
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Figure 3: Left: Precision vs. recall for different significance levels « of the CI test. Cluster-PC dominates
base PC w.r.t. recall and for common values of o € {0.05,0.01} achieves substantially better recall with
only small reductions in precision. For details, see Tables [d and [5] Right: Precision, recall and Fl-score for
different numbers of clusters. The performance gap grows with the number of clusters, which amounts to
more granular background knowledge.

Cluster-FCI follows a similar strategy as Cluster-PC by running CI tests on a per-cluster basis (while following
the general logic of FCI) and is developed in all detail in Algorithm

We now highlight some differences between Cluster-FCI and FCITiers. Cluster-FCI starts with the first
cluster of the topological ordering and works its way down along the topological ordering, while FCITiers
(Andrews et al., [2020, Alg. 1) starts with the last and works its way up. However, due to the nature
of FCITiers, this direction does not matter as it is running a version of FCI on disjoint sets of edges
(FCIExogenous). These disjoint edge sets are derived from the TBK. The resulting edges from FCIExogenous
are then added to the overall graph. On the contrary, Cluster-FCI pre-processes the entire fully connected
graph according to the C-ADMG to obtain a partial mixed graph. It then removes further edges along the
topological ordering. Our proposed C-FCI Algorithm [4]is sound, but not complete (proof in Section .

Theorem 3 (Soundness of Cluster-FCI). If the C-DAG G¢ is compatible with ground truth MAG Gy,
C-FCI is sound in the sense that nodes X;, X; are adjacent in the output PAG Gp if and only if they are
adjacent in the ground truth MAG Gys. In addition, all arrow and tail edge marks in Gp are also present

Too much causal information—incompleteness of C-FCI. The example in Fig. [2| shows that a C-
ADMG can encode arrowheads that contradict ancestrality (imagine an additional edge X; + X4). C-FCI
can be adjusted to not output a PAG (Non-PAG C-FCI), by not re-orienting almost directed cycles. This
variation can be an improvement, as it increases the information contained in the obtained graph. To see
this, consider the graph in Fig. 2| with an additional edge X; <> X4. C-FCI would return the edge X; — Xy,
due to the almost directed cycle Xy <> X1 — X3 — X4. Non-PAG C-FCI in contrast will return X; <> Xy,
the correct and more informative result. Further exploring this deviation from the well-explored setting of
relying primarily on ancestral graphs for causal discovery is an interesting direction for future work.

This example simultaneously highlights that C-FCI is incomplete: its output does not always reveal all
determined causal information. In a way, C-FCI is “overwhelmed by prior causal information,” as some
(useful) background knowledge can violate ancestrality and thus not be captured properly in the algorithm.
However, C-FCI always remains at least as informative as FCL. In Remark [I] we additionally sketch that
C-FCl is also at least as informative as FCITiers for a suitable set of tiers—recalling that C-DAGs are strictly
more flexible then TBK. Finally, we conjecture that for ancestral C-ADMGs, C-FCI is also complete, i.e.,
all counterexamples have to rely on non-ancestral C-ADMGs as background knowledge. This also remains
an open question for future work.
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Figure 4: Left: Structural Hamming distance (SHD) for different numbers of clusters. The empty graph
is used as a dummy reference. Again, C-PC clearly benefits from a growing number of clusters. Middle:
The number of conditional independence (CI) tests is substantially reduced in C-PC for C-DAGs with many
clusters. Notably, even for coarse background knowledge of only two clusters, the number of required CI
tests already drops noticeably. Right: The ratio of CI tests between PC and C-PC (for the same graph,
across different numbers of edges and clusters), highlights that the savings remain roughly constant for a
fixed number of clusters even as the number of edges increases.

Table 1: Comparison of metrics for Simulations 1 (left) and 2 (right). C-PC considerably outperforms PC
in the arrow metrics. The cluster version is slightly worse in adjacency precision, but shows improvements
in adjacency recall, F1-score, SHD and reduces the number of CI tests required.

Metric PC Cluster-PC Metric PC Cluster-PC
Adj. precision 87.9% 85.1% Adj. precision 86.3% 83.6%
Arrow precision  54.4% 71.8% Arrow precision  61.1% 73.1%
Adj. recall 46.5% 55.5% Adj. recall 46.4 % 54.5%
Arrow recall 24.2% 45.6% Arrow recall 26.4 % 45.2%
Adj. Fl-score 55.3% 62.7% Adj. Fl-score 55.8% 62.1%
Arrow Fl-score  30.9% 52.1% Arrow Fl-score  34.4% 52.6%
SHD 44.8 38.2 SHD 40.4 35.4
Avg. CI tests 4981 3062 Avg. CI tests 4580 2995

4 Simulation studies

We now empirically demonstrate the differences between PC vs. Cluster-PC and FCI vs. FCITiers vs.
Cluster-FCI in different simulation studies. All code for these experiments is available at <anonymized
link>. In the first setting, we sample 1750 Erdés—Rényi graphs and vary the number of nodes, edges, and
the significance level « for the chosen CI tests. The second simulation study performs sensitivity analysis
w.r.t. different graph generation methods and probability distributions. The third compares the three FCI
variants using generated C-ADMGs (that not necessarily satisfy TBK). The last simulation study compares
the FCI variants on C-DAGs, which do satisfy TBK. Section [B.2) contains a detailed breakdown of all chosen
simulation parameters and settings.

We evaluate the discovery algorithms with respect to precision, recall, Fl-score, Structural Hamming Dis-
tance (SHD), and the number of required Cl-tests. For these metrics, we distinguish between ‘adjacency’,
i.e., is there any edge present between two variables, and ‘arrow’, which compares the types of edge marks.
Detailed definitions of the used metrics can be found in Section [B] We also run the algorithms with different
significance levels «. Since rejecting the null hypothesis, i.e., rejecting conditional independence, leads to
an edge not being removed, while failure to reject leads to a removed edge, higher « leads to fewer edge
deletions and overall denser graphs.

11
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Table 2: Comparing FCI, Cluster-FCI, and FCITiers for Simulations 3 (left) and 4 (right). Simulation 3
generated C-ADMGs, which do not necessarily satisfy TBK, while Simulation 4 generated C-DAGs with
latent variables only within clusters. This means a topologically ordered, fully connected alteration of such a
C-DAG satisfies TBK. There is a difference in the difficulty of causal discovery between the two simulations,
as we needed to use a different graph generation method for Simulation 4 (see Section . So the metrics
should only be compared within a simulation study, not across. On C-ADMGs, C-FCI outperforms FCI and
FCITiers, while being close in performance to FCITiers on C-DAGs with latent variables within clusters.

Metric FCI C-FCI FClITiers Metric FCI C-FCI FClITiers
Adj. precision 36.0% 35.2% 32.5% Adj. precision 94.9%  93.3% 93.5%
Arrow precision 24.5%  29.9% 29.8% Arrow precision  67.0%  81.1% 81.2%
Adj. recall 21.5%  24.8% 22.8% Adj. recall 62.8% 63.8% 63.8%
Arrow recall 11.9% 20.1% 16.7% Arrow recall 41.0%  43.0% 44.4%
Adj. Fl-score 26.3%  28.6% 26.3% Adj. Fl-score 74.8%  75.0% 75.1%
Arrow Fl-score 15.3% 23.6% 20.9% Arrow Fl-score  49.5%  55.1% 56.4%
SHD 29.3 30.4 29.89 SHD 20.2 16.1 16.6
CI tests 1008 559 1139 Avg. CI tests 1475 823 1568

Fig. [3] and Table [I] demonstrate that C-PC dominates PC in recall as well as arrow precision and F1-
score. A mild disadvantage in adjacency precision is minor compared to the gains in recall and can mostly
be removed by choosing smaller «. Fig. [4] further shows that the efficiency, i.e., the number of CI tests,
drastically improved with more fine grained background knowledge (more clusters), while also improving the
overall performance of the causal discovery measured by SHD. Even coarse background knowledge from a
C-DAG consisting of just two clusters substantially reduces the number of required CI tests. Finally, the
efficiency gains are not sensitive to the overall number of edges in a graph, but only depend on the number
of clusters, i.e., the ‘amount of the background information.

For C-FCI, Table left) also shows improved accuracy and arrow precision with minor hits in adjacency
precision compared to FCI and also to FCITiers in the setting where C-DAGs do not necessarily satisfy TBK.
While overall SHD remains comparable, C-FCI requires around half the number of CI tests. When generated
C-DAGs only have latent variables within clusters, i.e., TBK can be satisfied according to some topologically
ordered completion of the C-DAG (Table fright)), C-FCI and FCITiers perform similarly (both generally
outperforming vanilla FCI) whereas C-FCI again requires only about half the number of CI tests.

5 Conclusion

We leverage C-DAGs as a flexible and realistic type of background knowledge for constraint-based causal
discovery in fully and partially observed settings. C-DAGs are a provably superior alternative for encoding
group-wise background knowledge compared to the existing tiered background knowledge. We develop the
Cluster-PC (C-PC) and Cluster-FCI (C-FCI) algorithms and prove that they are complete and sound or
sound (but not complete) respectively. The non-completeness of C-FCI is shown to stem from C-ADMGs
possibly containing ‘more causal information’ than the well-established PAG representation in causal dis-
covery with latents can handle. Through extensive empirical simulation studies we demonstrate that our
proposed algorithms indeed outperform the corresponding algorithms with no, or existing types of back-
ground knowledge across a wide range of settings on most metrics.

Interesting future directions for future work include to apply C-DAG background knowledge to score-based
methods (see Section [D] for some first thoughts), to combine C-DAGs with other types of prior knowledge
such as pairwise background knowledge, or to include selection variables in the causal discover process as
well. Since C-ADMGs can contain background knowledge that violates ancestrality required for FCI, it
will also be interesting to investigate under which types of background knowledge an extended FCI version
remains complete. Lastly, using summary causal graphs (Ferreira & Assaad, 2025b)—also allowing for
cycles—instead of C-DAGs for improved causal discovery is also an interesting direction for follow up work.
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A Definitions, theorems, additional explanations

A.1 A C-DAG leads to an MPDAG

The Markov equivalence class of a graph G, the graphs entailing the same d-separations, can be characterized
by a CPDAG.

Definition 8 (CPDAG (completed partially directed graph), Andersson et al.l [1997)). The completed
partially directed graph of a DAG G, denoted by G*, is a graph with the same skeleton as G and undirected
edges. A directed edge occurs if and only if that directed edge is present in all DAGSs of the Markov equivalence
class of G. Directed edges come from either v-structures or applying the orientation rules in Fig.[3

ol Dl NEN NFIN

Rule 1 Rule 2 Rule 3 Rule 4

Figure 5: Meek’s orientation rules (Meek|, [1995) (Figure from (Fang et al. [2025)).

Definition 9 (Pairwise Causal Constraints, Fang et al 2025). A direct causal constraint, denoted by
X — Y, is a proposition stating that X is a parent of Y, i.e., X is a direct cause of Y. An ancestral causal
constraint, denoted by X --+ Y, is a proposition stating that X is an ancestor of Y, i.e., X is a cause of Y.
A non-ancestral causal constraint, denoted by X=Y, is a proposition stating that X is not an ancestor of
Y, i.e., X is not a cause of Y. In all these cases, X is called the tail and Y is called the head.

Definition 10 (Restricted Markov equivalence class ,Fang et all [2025). The restricted Markov equiv-
alence class induced by a CPDAG G* and a pairwise causal constraint set B over V, denoted by [G*, B] is
composed of all equivalent DAGs in M (G*) that satisfy B (M(G*) is the Markov equivalence class of G*).

Definition 11 (Maximally partially directed acyclic graph (MPDAG), [Fang et al. [2025). The
MPDAG H of a non-empty restricted Markov equivalence class [G*, B], induced by a CPDAG G* and a
pairwise causal constraint set B is a PDAG such that

(i) H has the same skeleton and v-structures as G* and
(ii) an edge is directed in H if and only if it appears in all DAGs in |[G*, B].

So for a given CPDAG, the C-DAG pairwise constraint set would be (also see Section [C]):

Definition 12 (Pairwise causal constraint set from C-DAGs). The pairwise causal constraint B set
induced by C-DAG G¢ is as follows: For X; € C;, X;,€ C;, C; # Cj,

. ZfOfL — Oj, then Xi,(-/Xj eB

17



Under review as submission to TMLR

. chz -=> Cj7C77¥Cj, then XZ%XJ,XMXJ €B
. ifC’i%Cj, C’i/«er, then Xi%Xj,Xiy/-)’Xj €eB

C-DAG leads to MPDAG. It follows from the definitions that a CPDAG restricted by a compatible
C-DAG leads to an MPDAG. In the same way, restricting a fully connected graph with a C-DAG via
Algorithm [I] also leads to an MPDAG, whose edges are a super-set of any compatible DAG or CPDAG
(interpreting undirected edges as — and ).

A.2 Further definitions, theorems and additional explanations

Definition 13 (ADMG). A directed mized graph G = (V, E) consists of a finite set of nodes V' and a finite
set of edges E, which are either directed (—) or bidirected (<»). An acyclic directed mized graph (ADMG)
is a directed mized graph without directed cycles.

Definition 14 (d-separation in C-DAGs/Anand et all [2023)). A path p in a C-DAG G¢ is said to be
d-separated by a set of clusters Z C C' if and only if p contains a triplet

(i) C; %% Cy, — C; such that the non-collider cluster C, is in Z, or

(i1) Cis— Cp <*C; such that the collider cluster Cy, and its descendants are not in Z.

A set of clusters Z is said to d-separate two sets of clusters X, Y C C, denoted by X L. Y | Z, if and
only if Z blocks every path from a cluster in X to a cluster in'Y .
Definition 15 (mns (minimal neighbor separator), |Gupta et al. [2023). For a DAG G = (V, E) and

node X and A ¢ nbl (nb% :=nbx U{X}), the minimal neighbor separator mnsx(A) C nbx is the unique
set of nodes such that

(i) (d-separation) A g X | mnsx(A)
(i1) (minimality) for any S C mnsx(A): A)fe X | S

hold.

Proposition 1 (Restricting separating set via mnsGupta et al., 2023). For any node Y ¢ dex Unb%,
the minimum neighbor separator mnsx (YY) exists and mnsx(Y) C pax.

Definition 16 (M-connecting, m-separation). Let G = (V| E) be a directed mized graph (a graph con-
taining directed and bidirected edges). A path between X;, X; € V is called m-connecting in G given S C V
if every non-collider on the path is not in S, and every collider on the path is in S or is an ancestor of S
in G. If there is no path m-connecting X; and X; in G given S, X; and X; are called m-separated given S.
Sets A and B are said to be m-separated given S, if for all X; € A and all j € B, X; and X; are m-separated
given S.

Definition 17 (Ancestral graph). A mized graph G (containing directed and bidirected edges) is ancestral
if the following three conditions hold:

(i) there is no directed cycle,
(ii) there is no almost directed cycle,
(iii) for any undirected edge X1 — X5, X1 and X have no parents or siblings.
Definition 18 (MAG (maximal ancestral graph). An ancestral graph is called maximal if for any two
non-adjacent vertices, there is a set of vertices that m-separates them.

Definition 19 (Inducing path,Zhang} 2008b). In an ancestral graph, let X, Y be any two vertices and L, S
be disjoint sets of vertices not containing X,Y . L describes the latent variables and S describes the selection
variables. A path 7 between X and Y is called an inducing path relative to (L, S) if every non-endpoint
vertex on w is either in L or a collider, and every collider on w is an ancestor of either X, Y, or a member
of S. When L =S8 =0, 7 is called a primitive inducing path between X and Y .
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Two DAGs are Markov equivalent if and only if they have the same adjacencies and unshielded colliders.
For two MAGs, this is a necessary condition, but not sufficient anymore. For two MAGs to be Markov
equivalent, they also need to possess the same colliders on discriminating paths.

Definition 20 (Discriminating path,Zhang, [2008b). In a« MAG, a path between X and Y, m =
(X,...,W,8,Y) is a discriminating path for S if

(i) w includes at least three edges,
(i) S is a non-endpoint vertex on 7w and is adjacent to'Y on m,
(ii) X is not adjacent to'Y and every vertex between X and S is a collider on w and is a parent of Y.

Proposition 2 (Markov equivalence criterion for MAGs,Zhang} 2008b). Two MAGSs over the same
set of vertices are Markov equivalent if and only if

(i) they have the same adjacencies,
(ii) they have the same unshielded colliders,

(iii) if a path 7w is a discriminating path for a vertex S in both graphs, then S is a collider on the path in
one graph if and only if it is a collider on the path in the other.

The partial ancestral graph is the CPDAG analogue for characterizing the Markov equivalence class:

Definition 21 (Partial ancestral graph, |Zhang| [2008b)). Let M(G) be the Markov equivalence class of a
MAG G. A partial ancestral graph (PAG) for M(QG) is a graph G p with possibly three kind of edge marks
(and hence siz kinds of edges: —, —, <>, o—, 0o, o), such that

(i) Gp has the same adjacencies as G (and any member of M(G) and

(i) every non-circle mark in Gp is an invariant mark in M (G).

If furthermore every circle in Gp corresponds to a variant mark in M(G), Gp is called the maximally
informative PAG for M(G).

In ancestral graphs, it may be possible that two m-separable nodes can not be m-separated by (a subset
of) their neighbors. So FCI needs to search 'possible d-separating sets’ too, i.e., sets that contain nodes not
adjacent to X,Y, but whose nodes may be necessary to m-separate X and Y.

Definition 22 (Possible d-separating set, |Andrews et al., [2020). X € pds(X;, X;) if and only if X ¢
{Xi,X,} and there is a path m between X; and X in G such that for every subpath (Xi, X;, X,n) of m either
X; is a collider on m or Xy and X,, are adjacent.

Definition 23 (Orientation rules for FCI, |Zhang] [2008b)).

e RO: For each unshielded triple (a,v,B) in P, orient as a collider ax— ~ <=xf if and only if v ¢
Sepset(a, B).

e R1: If as— B oy, and « and v are not adjacent, then orient the triple as as— 5 — 7.
e R2: If a — B%— v or ax— 3 — 7y, and a oo vy, then orient o %oy as a+—> 7.
e R3: If as— B kv, a0 0 oxy, a and v are not adjacent, and 6 %o 3, then orient 6 %o 3 as G+ (.

e« R4: If u = (0,...,,8,7) is a discriminating path between 6 and ~ for 8, and [ o— ; then if 8 €
Sepset(0,7), orient 3 o=y as B — 7y; otherwise orient the triple («, 5,7) as a <> B <> 7.

e R8: Ifaa— [ —~ ora—of — v, and ao— vy, orient ao— vy as o — .

e RY: If vo—~ v, and p = (e, 3,0,...,7) is an uncovered p.d. (partially directed) path from « to v such that
v and B are not adjacent, then orient ao— vy as o — 7.

e R10: Suppose ao— 7y, B — v+ 0, p1 is an uncovered p.d. path from « to B, and ps is an uncovered p.d.
path from o to 0. Let p be the vertex adjacent to o on py (p could be 8), and w be the vertex adjacent to
a on py (w could be B). If p and w are distinct, and are not adjacent, then orient ao— v as a — 7.
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A.3 Soundness and completeness of Cluster-PC

Theorem 4 (Soundness and completeness of C-PC). When the C-DAG G¢ is compatible with the
ground truth DAG G, the C-PC algorithm as stated in Algorithm@ is sound and complete (when using a CI
oracle). Sound and complete in the sense that it returns the same MPDAG as using PC on G and orienting
additional edges according to B (the pairwise causal constraint set induced by G¢ ).

Proof: Let G be the output of the C-PC algorithm and G the MPDAG of the restricted Markov equivalence
class [G*, B], obtained by restricting the CPDAG output from PC with B. G is the ground truth DAG. V is
the node set and Eg, Eg, Eg- their edge sets, respectively. First, we show that G has the same skeleton as G.
Let X—Y € Eg be any edge in G. This means X, Y are not d-separable in (G, and thus any compatible C-DAG
G¢ will not put X, Y into non-adjacent clusters. Also, no CI test performed in C-PC will remove this edge
by the global Markov property (VS : X g Y|[S= X U Y|S, thusVS: X L Y|S = X U¢g Y]S). On the
other hand, let X, Y be non-adjacent in G, so 35 : X 1L Y'|S. Without loss of generality, let Y ¢ dex Unbd,
then by Proposition [I| mnsx (Y) C pax and X U Y|mnsx(Y). Furthermore, mnsx(Y) C pax C nchx
?

and for every S’ C nch,, the CI test X 1 Y'|S’ is performed in C-PC. Thus the conditional independence
X UL Y|mnsx(Y) will be found and X,Y are non-adjacent in G, too. Second, we have to show that G
and G have the same arrowheads. Due to the same skeleton, it is clear that they will also have the same
unshielded colliders and same orientations due to Meek’s edge orientation rules. The only thing left to show
that a) additional edge orientations coming from the C-DAG edges E¢ are the same in G and G, as well
as that b) edge orientations from using Meek’s orientation rules on the edges that partly come from a) are
the same. Any directed edge X — Y € E5 coming from B will also be directed in G due to Algorithm
This then also leads to any directed edge X — Y € Es coming from using orientation rules when combining
CPDAG G* with B, also being oriented in the last steps of C-PC when Meek’s orientation rules are applied,
so X =Y € EC;~ |

A.4 Soundness of C-FClI, informativeness vs FCITiers

Theorem 5 (Soundness of Cluster-FCI). If the C-DAG G¢ is compatible with ground truth MAG Gy,
C-FCI is sound in the sense that an edge between any nodes X;, X; is present in the PAG Gp output from
C-FCI if and only if it is present in the ground truth MAG Gp;. Any arrow or tail edge mark in Gp is also
present in G ;.

Proof: Cluster-FCI is the same as FCI, the only difference is it uses Algorithm [3]as an ’oracle’ pre-processing
step. As C-DAG G¢ is compatible with G, and any nodes X;, X; that are potentially connected by an
inducing path are connected during Algorithm [3] using this Algorithm does not remove any edges that FCI
would not also remove. With the same reasoning, any arrowhead present in the partial ancestral graph Gp
is also present in Gy.

Remark 1 (Sketch for proof: C-FCI at least as informative as FCITiers). Showing that C-FCI is
at least as informative as FCITiers could be done as follows:

(i) Construct tiers from C-ADMG G¢ by combining clusters, so that the tiers are TBK. (Otherwise, one
can not compare; FCITiers can only work on TBK, not on arbitrary C-ADMGs)

(ii) Show that any arrowhead oriented by FCITiers running on the previous TBK would also be oriented
by running C-FCI on the C-DAG.

As the C-ADMG can contain bidirected edges, we can transform the C-ADMG to TBK as follows:

(i) Order clusters Cy,...,C, topologically.
(ii) Group all clusters that are connected by a bidirected path together into one tier T;.

(iii) The new cluster graph (now a C-DAG, without bidirected edges) could contain cycles. For any cycles
in the C-DAG, merge the clusters on a cycle together into the same tier.

(iv) Sort the tiers topologically.
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(v) Now one has a C-DAG that satisfies TBK.

C-FCI and FCITiers orient edge marks using the same collider rules and orientation rules. In addition,
any extra edge marks in FCITiers come from two nodes X,Y being in different tiers, e.g., X — Y. But by
construction, X,Y were also in different clusters and if X — Y in TBK, then also X — Y in the partial
mized graph Gpm from which C-FCI will start from. As again they use the same orientation rules, any arrow
or tail edge mark from FCITiers will also be returned by C-FCIL.

B Supplement to the simulation studies

B.1 Metrics for simulation studies

Definition 24 (Precision, recall, Fl-score). The precision is defined as

TP

P — 2
TP+ FP’ (2)

precision =
where TP = true positives and FP = false positives. Positive means the corresponding edge is present and
negative means it is absent.

The recall is defined as

TP
recall = m s (3)

where FN = false negative, i.e., an edge was erroneously deleted. The F1-score is the harmonic mean of
recall and precision and encourages balance between the two, as it is zero whenever one of them is zero,

precision * recall

F1-score = — . (4)
precision + recall
Definition 25 (Structural Hamming distance). The structural Hamming distance (SHD) between graphs

G, G’ is the number of edge deletions, additions or flips needed to transform G into G'.

Remark 2 (How arrow precision and recall are calculated). Adjacency true/false positive/negative
is easy to understand. For arrow marks, positive/ negative refers to arrow edge marks, so positive means
arrow is there, negative means arrow is not there (tail/ circle edge mark). For example, a false positive is
there if the true MAG says there is a circle edge mark, but the algorithm output says there is an arrow edge
mark (at some edge between some nodes).

B.2 Parameters and additional tables from the simulation studies

See Tables [3] to

Table 4: Simulation 2: Base PC metrics for different distributions and DAG generation methods. The Base
PC algorithm shows higher adjacency precision but generally lower recall and F1-score compared to Cluster-
PC, a trend similar to Simulation 1. The structural Hamming distance (SHD) reflects similar trends, with
performance depending on the underlying DAG structure.

Distribution ‘Adj. precision Adj. recall Adj. Fl-score SHD

Exponential 85.8% 46.5% 55.7% 40.3
Gaussian 87.0% 46.5% 56.2% 40.1
Gumbel 86.6% 46.2% 55.8% 40.4
DAG method ‘ Adj. precision Adj. recall Adj. Fl-score SHD
Erdés—Rényi 84.9% 54.5% 61.8% 32.1
Hierarchical 90.3% 24.8% 38.7% 65.6
Scale free 84.2% 60.0% 67.3% 23.1
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Hyperparameter Simulation 1 Simulation 2 Simulation 3 Simulation 4
Algorithms PC, C-PC PC, C-PC FCI, FCITiers, FCI, FCITiers,
C-FCI C-FCI
Total number of graphs 1750 1080 180 180
Runs per configuration 10 1 10 5
DAG generation method Erdds—Rényi Erdés—Rényi Erdés—Rényi Erdés—Rényi
hierarchical
scale-free
Distribution Gaussian Exponential, Gaussian Gaussian
Gaussian,
Gumbel
Alpha for CI test [0.01, 0.05, 0.1, [0.01, 0.05, 0.1, 0.05 0.05
0.25, 0.5] 0.25, 0.5]
CI test Fisher-z Fisher-z Fisher-z Fisher-z
Number of nodes 15 15 18 15
Number of edges [15, 30, 50, 80, 150] [15, 30, 50, 80]  [18, 24, 30] [15, 20, 25]
Number of clusters [1,2,3,4,5,6,7] [1,2,3,4,5,6] [2,3,4,5 6,7 [3,4,5]
Sample size 1000 1000 [1000] [1000]
Weight range (-1, 2) (-1, 2) (-1, 2) (-1, 2)
Cluster method dag (Section dag dag cdag

Table 3: Hyperparameters for simulation studies 1-4

Table 5: Simulation 2: Cluster-PC metrics for different distributions and DAG generation methods. Cluster-
PC typically shows slightly reduced adjacency precision compared to Base PC, but higher recall, better
Fl-scores, and improved structural Hamming distance (SHD), following the same patterns observed in Sim-
ulation 1.

Distribution ‘ Adj. precision Adj. recall Adj. Fl-score SHD
Exponential 82.8% 56.4% 63.5% 34.3
Gaussian 83.7% 56.4% 63.8% 33.9
Gumbel 83.1% 55.7% 63.1% 34.6
DAG method ‘ Adj. precision Adj. recall Adj. Fl-score SHD
Erdés—Rényi 80.9% 63.5% 67.6% 27.4
Hierarchical 89.3% 36.7% 51.6% 56.0
Scale free 79.6% 68.4% 71.3% 19.5

B.3 How compatible C-DAGs are generated

We called the method we used for the simulation studies 1-3 ’dag-first’. In this case we first generate a DAG
and afterwards create a clustering by slicing up the topological ordering into n cluster slices of random size.

For example, if the DAG has ten nodes and the number of clusters is three, this method will select two
numbers between [1,n_ clusters], say four and ten. This means the first cluster will include the first three
nodes in the topologiacl ordering, the second cluster contains nodes four to nine and the third cluster contains
node ten.

For Simulation 4 we use another method we call 'cdag-first’ This is because we wanted to enforce TBK on
the cluster graphs. This method first generates an Erdés—Rényi graph for the clusters, for example of size
three again. Then it generates nodes for each cluster so that they sum up to the desired node number, say
ten again. Then the graph is built according to the generated cluster graph and nodes, and some edges from
that graph are dropped out, that probability is influenced by the n_edges parameter. Since the C-DAG is
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generated first, we can exclude bidirected edges. And a fully connected version of this C-DAG does satisfy
TBK.

C Pairwise characterization of C-DAGs

A C-DAG can be represented as a boolean combination of pairwise background knowledge due to the following
theorem:

Theorem 6 (Pairwise characterization of C-DAGs). Clusters C;,C; imply, depending on their rela-
tionship in C-DAG G¢, pairwise constraints in the following ways:

()
Ci = Cj =T
(the tautology, which is always true and places no restriction)
(i)
C; — Cj = /\ Xz‘,(—/Xj N \/ X; — Xj =: dir(C’i,C’j) (5)
XiECi,XjEC]‘ XiECi,XjEC]‘
(note that X;e—=X; also implies X; ¢~ X;)
(i)
Ci -—-» C; ANC; £ C = N\ X=X, A Xi A X, = anc(Ci,Cj) (6)
X,ieCi,XjeCj
(iv)
Ci=—Cj N Cie—=C; AN Ci # C; = N\ Xie—X; A X=X, = nrel(C;,C;) (7)

X;€C;,X;€0;

These four points exhaust all possibilities in which two clusters could relate to each other in a C-DAG. The
background knowledge implied by C-DAG G¢ with clustering C = {C4,...,Cy} can therefore be represented
as a boolean combination in pairwise form:

bk(Ge) = /\ ( /\ dir(C;,Cj) A /\ anc(C;,Cj) A /\ nrel(C;, C;)). (8)

Ci,CjeC C7—>CJ C,‘,——')Cj CL#CJ,CL%CJ
CiAC; C;e~<C};

Thus the following equivalence holds:

G compatible with Go <= bk(G¢) is true for G. (9)

Proof: (i): For two nodes in the same cluster C;, no restriction is made, so for all X;, X; € C;, T is true.

(ii): For two clusters C;, C; with C; — C; and nodes X; € C;, X; € Cj, it is impossible to have X; «-- X;
as that would mean C; «-- C; in G¢, which is a cycle together with C; — Cj in contradiction to G¢
being a C-DAG and C being admissible. In addition, at least one X; — X; needs to be present by C-DAG
construction. Therefore C; — C; implies /\Xieci,XjeCj Xie—=X; A \/X,-eCi,XjeCj Xi = X;.

(iii): Let two clusters C;, C; have C; --» C; A C; 4 Cj, i.e., there is a directed path from one to another,
but they are not adjacent. With nodes X; € C;, X; € C; for analogous reasoning to (ii), it is impossible to
have X; «-- Xj;. In addition, as C; /4 Cj, it is also impossible to have X; — X;. So C; --» C; ANC; A C;
implies Xi%Xj A Xz §L Xj.
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(iv): For two clusters that are not the same, not adjacent and not connected by a directed path, i.e.,
Ci=C; N Ci=—=C; N C; # C; and nodes X; € C;, X; € C; it is impossible for X;, X; to be connected by a
directed path. Therefore this implies Ay ¢, x,ec; Xitm—=Xj N Xi=+Xj;.

Equivalence statement: “=": Let G = (V, E) be a graph over the same variables V with edges E being
compatible with C-DAG G¢. Furthermore let bk(G¢) be as defined in Eq. . The task is to show that
bk(G¢) is true for G, specifically, that any edge between any X;, X; satisfies bk(G¢). Take any X;, X; € V
and their respective clusters X; € C;, X; € C;. C;,Cj relate to each other in exactly one of the four ways
described in (i)-(iv). Whatever the cluster relationship is on the left hand side of (i)-(iv), the proofs of (i)-(iv)
above show that the edge between X;, X; satisfies the constraint on the right hand side of (i)-(iv). So the
boolean pairwise combination bk(G¢) is true for G.

“«<=": Let G¢ be a C-DAG and bk(G¢) be true for DAG G. The task is to show that G is compatible with
Ge. G = (V,E) is compatible with G¢, if none of its edges E contradict the C-DAG edges E¢. Take any
X, X; and their corresponding clusters X; € C;, X; € C;. The edge between X;, X; can take any of the
three forms X; — X, X; < X; or X;4X;. Without loss of generality (no need to consider the case C; < C}
due to symmetry), the C-DAG restriction on the edge between X;, X, can take any of the forms in (i)-(iv).

If restriction T is put on the edge between X;, X;, they are put in the same cluster and any of X; — X,
X; + X, and Xi/Xj would be compatible with G¢. If restriction X;«—=Xj is put, X; and X; are in adjacent
clusters C; — Cj. The edges allowed by X;«—X; are X; — X; and X,#X;. Both of them are compatible
with Ge. If restriction X;e—X,; A X; 4 X; or X;e—X,; A X;=X; is put, only X; X is allowed and C;, C;
are not adjacent, so X;X is compatible with G¢. O

Theorem 7 (Pairwise characterization of C-ADMGs). Let the setup be the same as in Theorem .
To include bidirected constraints, the rules (i)-(iv) from Theorem[f get extended by

(v)
Ci §L> Cj <~ /\ X; §L> Xj = nlat(Ci,Cj)
X;€C;,X;€C;

The background knowledge is then denoted as

Vk(Ge)= /\ ( N\ dir(Ci,CHyn N\ anc(Ci, C;)

Ci,Cj CiHCj Ci——»Cj
CiAC;
AN N nrel(Ci G A\ nlat(Ci,Cy))  (10)
Ci=-5C; CiC;
C’L%C]
and
G compatible with Go <= bk(G¢) is true in G (11)

Proof: (v) If C; # C;, by C-ADMG definition that means for all X; € C;, X; € C; it is X; ¢ X; which
exactly implies nlat(C;, C;). For the reverse direction, if nlat(C;, C;) it means for no X; € C;, X; € Cj it is
X; <> X;. This means the C-ADMG does not have C; <+ C;. The rest follows analogously to the proof of
Theorem [l O

D Using C-DAGs for score-based and continuous optimization discovery algorithms

In this paper we studied constraint based causal discovery, but DAGs can also be estimated via a constrained
optimization problem (Chickering, |2002; Zheng et al., [2018). Such a problem typically admits a form like

min F(G) subject to G € DAGs
GeRdxd
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with F(G) evaluating the goodness of fit of a graph G to the available data. One can easily extend this
problem to include C-DAG constraints:

Gn}}{igl ., F(G) subject to G € DAGs, G compatible with G¢
S X

so that the optimization procedure is only able to take steps in the space of DAGs that are compatible
with C-DAG G¢ or only able to return optimal solutions that are compatible with G¢. This could be an
interesting topic for future research.
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