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Figure 1. Our inversion-free editing (InfEdit) method demonstrates strong performance in various complex image editing tasks.

Abstract
Despite recent advances in inversion-based editing, text-

guided image manipulation remains challenging for diffu-
sion models. The primary bottlenecks include 1) the time-
consuming nature of the inversion process; 2) the struggle
to balance consistency with accuracy; 3) the lack of com-
patibility with efficient consistency sampling methods used
in consistency models. To address the above issues, we start
by asking ourselves if the inversion process can be elimi-
nated for editing. We show that when the initial sample is
known, a special variance schedule reduces the denoising
step to the same form as the multi-step consistency sam-

*Authors contributed equally to this work.
†Work done while the author was at the University of Michigan.

pling. We name this Denoising Diffusion Consistent Model
(DDCM), and note that it implies a virtual inversion strat-
egy without explicit inversion in sampling. We further unify
the attention control mechanisms in a tuning-free frame-
work for text-guided editing. Combining them, we present
inversion-free editing (InfEdit), which allows for consis-
tent and faithful editing for both rigid and non-rigid se-
mantic changes, catering to intricate modifications without
compromising on the image’s integrity and explicit inver-
sion. Through extensive experiments, InfEdit shows strong
performance in various editing tasks and also maintains a
seamless workflow (less than 3 seconds on one single A40),
demonstrating the potential for real-time applications.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Recent progress in image synthesis has been mostly driven
by the development of Diffusion Models (DMs) [13, 31],
which have outperformed traditional Generative Adversar-
ial Networks (GANs) [8] and Variational Autoencoders
(VAEs) [16] in various applications. A key factor in the
wide success of DMs is their ability to incorporate diverse
conditions, such as text [29], images [24, 37, 39], and even
tactile input [38]. Building upon DMs, Consistency Mod-
els (CMs) [32] address the efficiency bottleneck by directly
mapping noised samples along a trajectory to the same ini-
tial, promising self-consistency.

Enabling text-guided DMs for editing real images using
natural language has presented significant challenges. Early
methods typically require additional mask layers [2, 3, 6,
26] or training [5, 37, 41], which constrain their potential
zero-shot application. Motivated by DDIM inversion [31], a
prevailing paradigm of inversion-based editing has been es-
tablished. The predominating methods along this line adopt
optimization-based inversion [7, 17, 23] by aligning the for-
ward source latents with the DDIM inversion trajectory. To
address the issues of efficiency bottlenecks and far-from-
ideal consistency, dual-branch methods [15, 36] have been
introduced, which separate the source and target branches
individually, and iteratively calibrate the trajectory of the
target branch. However, inversion-based editing methods
still face limitations in real-time and real-world language-
guided image editing. Firstly, they typically rely on a
lengthy inversion process to acquire the inversion branch
as a series of anchors. Furthermore, striking a balance
between consistency and faithfulness remains challenging,
even with extensive optimization or ways of calibrating the
target branch. Lastly, these methods rely on variations of
diffusion sampling, which are not compatible with the effi-
cient consistency sampling using CMs.

To address the above challenges, we start by asking our-
selves if the inversion process is required for editing. We
show that when the initial sample is known, there exists a
special variance schedule such that the denoising step takes
the same form as the multi-step consistency sampling. We
name this Denoising Diffusion Consistent Model (DDCM),
and note that it implies a sampling strategy that eliminates
the inversion process. We further present Unified Atten-
tion Control (UAC), a tuning-free method that unifies at-
tention control mechanisms for text-guided editing. Com-
bining them, we present an inversion-free editing (InfEdit)
framework that allows for consistent and faithful editing for
both rigid and non-rigid semantic changes, catering to in-
tricate modifications without compromising on the image’s
integrity and explicit inversion. Through experiments, Inf-
Edit shows strong performance in various editing tasks and
also maintains a seamless workflow (less than 3s on one
A40), demonstrating the potential for real-time editing.

2. Preliminaries
2.1. Diffusion Models

Diffusion models (DMs) [13] operate through a forward
process that gradually adds Gaussian noises to data, de-
scribed as follows:

zt =
√
αtz0 +

√
1− αtε ε ∼ N (0, I) (1)

where z0 is a sample from the data distribution, α1:T specify
a variance schedule for t ∼ [1, T ].

The training objective involves a parameterized noise
prediction network, εθ, which aims to reverse the diffusion
process. The training objective is to minimize the following
loss based on a chosen metric function for measuring the
distance between two samples d(·, ·):

min
θ

Ez0,ε,t

[
d (ε, εθ(zt, t))

]
(2)

Sampling from a diffusion model is an iterative process
that progressively denoises the data. Following Eq (12)
in Song et al. [31], the denoising step at t is formulated as:

zt−1 =
√
αt−1

(
zt −

√
1− αtεθ(zt, t)√

αt

)
(predicted z0)

+
√

1− αt−1 − σ2
t · εθ(zt, t) (direction to zt)

+ σtεt where εt ∼ N (0, I) (random noise)
(3)

DDPM sampling [13] introduces a noise schedule σt

so that Eq (3) becomes Markovian. By setting σt to van-
ish, DDIM sampling [31] results in an implicit probabilistic
model with a deterministic forward process.

Following DDIM, we can use the function fθ to predict
and reconstruct z̄0 given zt:

z̄0 = fθ(zt, t) =
(
zt −

√
1− αt · εθ(zt, t)

)
/
√
αt (4)

Recently, Latent Diffusion Models (LDMs) [30] offer a
new paradigm by operating in the latent space. The source
latent z0 is acquired by encoding a sample x0 with an en-
coder E , such that z0 = E(x0). So as to be reversed, the out-
put can then be reconstructed by a decoder D. This frame-
work presents a computationally efficient way to generate
high-fidelity images, as the diffusion process is conducted
in a latent space with lower dimensions.

2.2. Consistency Models

Consistency models (CMs) [32] have recently been intro-
duced, which greatly accelerate the generation process com-
pared with previous DMs. One notable property of CMs is
self-consistency, such that samples along a trajectory map
to the sample initial. The key is a consistency function
f(zt, t), which ensures a consistent distillation process by
optimizing:

min
θ,θ−;ϕ

Ez0,t

[
d
(
fθ(ztn+1

, tn+1), fθ−(ẑϕtn , tn)
)]

(5)
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Figure 2. While DDIM is prone to reconstruction error and requires iterative inversion, DDCM accepts any random noise to start with. It
introduces a non-Markovian forward process in which zt directly points to the ground truth z0 without neural prediction, and zt−1 does
not depend on the previous step zt like a consistency model.

in which fθ denotes a trainable neural network that param-
eterizes these consistent transitions, while fθ− represents a
slowly updated target model used for consistency distilla-
tion, with the update rule θ− ← µθ− + (1 − µ)θ given a
decay rate µ. The variable ẑϕtn denotes a one-step estimation
of ztn from ztn+1 .

Sampling in CMs is carried out through a sequence of
timesteps τ1:n ∈ [t0, T ]. Starting from an initial noise ẑT
and z

(T )
0 = fθ(ẑT , T ), at each time-step τi, the process

samples ε ∼ N (0, I) and iteratively updates the Multistep
Consistency Sampling process:

ẑτi = z
(τi+1)
0 +

√
τ2i − t20ε

z
(τi)
0 = fθ(ẑτi , τi)

(6)

Latent Consistency Models (LCMs) [20] extend to ac-
commodate a (text) condition c, which is crucial for text-
guided image manipulation. Similarly, sampling in LCMs
at τi starts with ε ∼ N (0, I) and updates:

ẑτi =
√
ατiz

(τi+1)
0 + στiε,

z
(τi)
0 = fθ(ẑτi , τi, c)

(7)

2.3. Inversion-Based Image Editing with LDMs

DDIM inversion [31] is effective for unconditional diffu-
sion applications, but lacks consistency with additional text
or image conditions. As illustrated in Figure 2a, the pre-
dicted z̄′0 deviates from the original source z0, cumulatively
leading to undesirable semantic changes. This substantially
restricts its use in image editing driven by natural language-
guided diffusion.

To address this concern, various forms of inversion-
based editing methods have been proposed. The predom-
inating approaches utilize optimization-based inversion [7,
17, 23]. These methods aim to “correct” the forward la-
tents guided by the source prompt (referred to as the source
branch) by aligning them with the DDIM inversion trajec-
tory. To tackle the efficiency bottlenecks and suboptimal
consistency, very recent work has explored dual-branch in-
version [15, 36]. These methods separate the source and
target branches in the editing process: directly revert the
source branch back to z0 and iteratively calibrate the trajec-
tory of the target branch. As shown in Figure 7a, they cal-
culate the distance between the source branch and the inver-

sion branch (or directly sampled from q-sampling in [36]),
and calibrate the target branch with this computed distance
at each t.

3. Denoising Diffusion Consistent Models
We start with the following proposition.

Proposition 1 (Denoising Diffusion Consistent Models)
Consider a special case of Eq (3) when σt is chosen as√
1− αt−1 across all time t, the forward process naturally

aligns with the Multistep (Latent) Consistency Sampling.

When σt =
√
1− αt−1, the second term of Eq (3) vanishes:

zt−1 =
√
αt−1

(
zt −

√
1− αtεθ(zt, t)√

αt

)
(predicted z0)

+
√

1− αt−1εt εt ∼ N (0, I) (random noise)
(8)

Consider f(zt, t; z0) =
(
zt −

√
1− αtε

′(zt, t; z0)
)
/
√
αt.

The initial z0 is available in the case of image editing
applications, and we replace the parameterized noise pre-
dictor εθ with ε′ more generally. Eq (8) becomes

zt−1 =
√
αt−1f(zt, t; z0) +

√
1− αt−1εt (9)

which is in the same form as the Multistep Latent Consis-
tency Sampling step in Eq (7).

In order to make f(zt, t) self-consistent so that it can be
considered as a consistency function, i.e., f(zt, t; z0) = z0,
we can directly solve the equation and ε′ can be computed
without parameterization:

εcons = ε′(zt, t; z0) =
zt −

√
αtz0√

1− αt
(10)

As illustrated in Figure 2c, we arrive at a non-Markovian
forward process, in which zt directly points to the ground
truth z0 without neural prediction, and zt−1 does not depend
on the previous step zt like a consistency model. We name
this Denoising Diffusion Consistent Model (DDCM).

3.1. DDCM for Inversion-Free Image Editing

We include illustrations in Appendix 1, and outline the key
contributions in this section. We note that DDCM sug-
gests an image reconstruction model without any explicit
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inversion operation, diverging from conventional DDIM in-
version and its optimized or calibrated variations for im-
age editing. It achieves the best efficiency as it allows the
forward process to start from random noises and supports
multi-step consistency sampling. Meanwhile, it ensures ex-
act consistency between original and reconstructed images,
as each step on the forward branch zt−1 only depends on
the ground truth z0 (not the previous step zt). Due to its
inversion-free nature, we name it Virtual Inversion.

Algorithm 1 DDCM for inversion-free image editing

Input:
Conditional Diffusion/Consistency Model εθ(·, ·, ·)
Sequence of timesteps τ1 > τ2 > · · · > τN−1

Reference initial input zsrc
0

Source/target prompts as conditions csrc, ctgt

1: Sample a random terminal noise zsrc
τ1 = ztgt

τ1 ∼ N (0, I)
2: εcons

τ1 = (zsrc
τ1 −

√
ατ1z

src
0 )/
√
1− ατ1

3: εsrc
τ1 , ε

tgt
τ1 = εθ(z

src
τ1 , τ1, c

src), εθ(z
tgt
τ1 , τ1, c

tgt)

4: ztgt
0 = fθ(z

tgt
τ1 , τ1, ε

tgt
τ1 − εsrc

τ1 + εcons
τ1 )

5: for n = 2 to N − 1 do
6: Sample noise ε ∼ N (0, I)
7: 1⃝ zsrc

τn =
√
ατnz

src
0 +
√
1− ατnε

8: 1⃝ ztgt
τn =

√
ατnz

tgt
0 +
√
1− ατnε

9: 2⃝ εsrc
τn = εθ(z

src
τn , τn, c

src)
10: 3⃝ εcons

τn = (zsrc
τn −

√
ατnz

src
0 )/
√
1− ατn

11: 4⃝∗εtgt
τn = εθ(z

tgt
τn , τn, c

tgt)
12: 5⃝ ztgt

0 = fθ(z
tgt
τn , τn, ε

tgt
τn − εsrc

τn + εcons
τn )

13: end for
14: Output: ztgt

0

15: *Vanilla target noise prediction, no attention control.

Existing inversion-based editing methods are limited for
real-time and real-world language-driven image editing ap-
plications. First, most of them still depend on a time-
consuming inversion process to obtain the inversion branch
as a set of anchors. Second, consistency remains a bottle-
neck given the efforts from optimization and calibration.
Third, all current inversion-based methods rely on varia-
tions of diffusion sampling, which are incompatible with
efficient Consistency Sampling using LCMs. Virtual Inver-
sion offers an alternative to address these limitations, in-
troducing an Inversion-Free Image Editing (InfEdit) frame-
work. While also adopting a dual-branch paradigm, the
key of our InfEdit method is to directly calibrate the ini-
tial ztgt

0 rather than the ztgt
t along the branch. InfEdit starts

from a random terminal noise zsrc
τ1 = ztgt

τ1 ∼ N (0, I). The
source branch follows the DDCM sampling process with-
out explicit inversion, and we directly compute the distance
∆εcons between εcons the εsrc

θ (the predicted noise to recon-
struct a z̄src

0 ). For the target branch, we first compute the εtgt
θ

to predict z̄tgt
0 , and then calibrate the predicted target initial

with the same ∆εcons. Algorithm 1 outlines the mathemat-

ical details of this process, in which we slightly abuse the
notation to define fθ(zt, t, ε) =

(
zt −

√
1− αtε

)
/
√
αt.

InfEdit addresses the current limitations of inversion-
based editing methods. First, DDCM sampling allows us
to abandon the inversion branch anchors required by previ-
ous methods, saving a significant amount of computation.
Second, the current dual-branch methods calibrate ztgt

t over
time, while InfEdit directly refines the predicted initial ztgt

0 ,
without suffering from the cumulative errors over the course
of sampling. Third, our framework is compatible with effi-
cient Consistency Sampling using LCMs, enabling efficient
sampling of the target image within very few steps.

4. Unifying Attention Control for Language-
Guided Editing

InfEdit suggests a general inversion-free framework for im-
age editing motivated by DDCM. In the realm of language-
driven editing, achieving a nuanced understanding of the
language condition and facilitating finer-grained interaction
across modalities becomes a challenge. Hertz et al. [9] no-
ticed that the interaction between the text and image modal-
ities occurs in the parameterized noise prediction network
εθ, and opened up a series of attention control methods to

compute a noise ε̂tgt
θ that more accurately aligns with the

language prompts. In the context of InfEdit specifically, at-
tention control refines the original predicted target noise εtgt

θ

(noted in 4⃝ in Algorithm 1 and Figure 7b) with ε̂tgt
θ .

We follow [9] in terms of notation. Each basic block of
the U-Net noise predictor contains a cross-attention module
and a self-attention module. The spatial features are linearly
projected into queries (Q). In cross-attention, the text fea-
tures are linearly projected into keys (K) and values (V ).
In self-attention, the keys (K) and values (V ) are also ob-
tained from linearly projected spatial features. The attention
mechanism [34] can be given as:

Attention(K,Q, V ) = MV = softmax
(
QKT

√
d

)
V (11)

in which Mi,j represents the attention map that determines
the weight to aggregate the value of the j-th token on pixel
i, and d denotes the dimension for K and Q.

Natural language specifies a wide spectrum of semantic
changes. In the following, we describe how rigid semantic
changes, e.g., those on the visual features and background,
can be controlled via cross attention [9]; and how non-rigid
semantic changes, e.g., those leading to adding/removing an
object, novel action manners and physical state changes of
objects, can be controlled via mutual self-attention [4]. We
then introduce a Unified Attention Control (UAC) protocol
for both types of semantic changes.
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Algorithm 2 Unified Attention Control Image Editing

1: Input:
Conditional Diffusion/Consistency Model εθ(·, ·, ·)
Current timestep τ
Reference initial input zsrc

0

Source/target prompts as conditions csrc, ctgt

Source/target blend words wsrc, wtgt

Input latents zsrc
τ , ztgt

τ , zlay
τ

2: εsrc, {Qsrc,Ksrc, V src},M src = εθ(z
src
τ , τ, csrc)

3: εtgt, {Qtgt,K tgt, V tgt},M tgt = εθ(z
tgt
τ , τ, ctgt)

4: {Q̂lay, K̂ lay, V̂ lay} =
5: SelfEdit({Qsrc,Ksrc, V src}, {Qtgt,K tgt, V tgt}, τ)
6: εlay,M lay = εθ(z

lay
τ , τ, csrc; {Q̂lay, K̂ lay, V̂ lay})

7: M̂ tgt = CrossEdit(M lay,M tgt, τ)

8: ε̂tgt = εθ(z
tgt
τ , τ, ctgt; M̂ tgt)

9: zsrc
τ+1, z

tgt
τ+1, z

lay
τ+1 =

10: Sample([zsrc
τ , ztgt

τ , zlay
τ ], [εsrc, ε̂tgt, εlay], τ)

11: mtgt = Threshold
[
M tgt

τ (wtgt), atgt
]

12: msrc = Threshold
[
M src

τ (wsrc), asrc
]

13: ztgt
τ+1 = (1−mtgt+msrc)⊙zsrc

τ+1+(mtgt−msrc)⊙ztgt
τ+1

14: Output: zsrc
τ+1, z

tgt
τ+1, z

lay
τ+1

4.1. Cross-Attention Control

Prompt-to-Prompt (P2P) [9] observed that cross-attention
layers can capture the interaction between the spatial struc-
tures of pixels and words in the prompts, even in early steps.
This finding makes it possible to control the cross-attention
for editing rigid semantic changes, simply by replacing the
cross-attention map of generated images with that of the
original images.

Global Attention Refinement At time step t, we com-
pute the attention map Mt averaged over layers given the
noised latent zt and the prompt for both source and target
branch. We drop the time step for simplicity and repre-
sent the source and target attention maps as M src and M tgt.
To represent the common details, an alignment function
A(i) = j is introduced which signifies that the ith word in
the target prompt corresponds to the jth word in the source
prompt. Following Hertz et al. [9], we refine the target at-
tention map by injecting the source attention map over the
common tokens.

Refine(M src,M tgt)i,j =

{
(M tgt)i,j ifA(j) = None
(M src)i,A(j) otherwise

(12)
This ensures that the common information from the

source prompt is accurately transferred to the target, while
the requested changes are made.

Local Attention Blends Besides global attention refine-
ment, we adapt the blended diffusion mechanism from

[1, 9]. Specifically, the algorithm takes optional inputs
of target blend words wtgt, which are words in the target
prompt whose semantics need to be added; and source blend
words wsrc, which are words in the source prompt whose se-
mantics need to be preserved. At time step t, we blend the
noised target latent ztgt

t following:

mtgt = Threshold
[
M tgt

t (wtgt), atgt]
msrc = Threshold

[
M src

t (wsrc), asrc]
ztgt
t = (1−mtgt +msrc)⊙ zsrc

t + (mtgt −msrc)⊙ ztgt
t

(13)
in which mtgt and msrc are binary masks ob-
tained by calibrating the aggregated attention maps
M tgt

t (wtgt),M src
t (wsrc) with threshold parameters atgt and

asrc using threshold function:

Threshold(M,a)i,j =

{
1 Mi,j ≥ a

0 Mi,j < a
(14)

Scheduling Cross-Attention Control Applying cross-
attention control throughout the entire sampling schedule
will overly focus on spatial consistency, leading to an in-
ability to capture the intended changes. Follow [9], we per-
form cross-attention control only in early steps before τc,
interpreted as the cross-attention control strength:

CrossEdit(M src,M tgt, t) :=

{
Refine(M src,M tgt) t ≥ τc

M tgt t < τc

4.2. Mutual Self-Attention Control

One key limitation of cross-attention control lies in its in-
ability in non-rigid editing. Instead of applying controls
over the cross-attention modules, MasaCtrl [4] observed
that the layout of the objects can be roughly formed in
the self-attention queries, covering the non-rigid semantic
changes complying with the target prompt. The core idea is
to synthesize the structural layout with the target prompt in
the early steps with the original Qtgt,K tgt, V tgt in the self-
attention; and then to query semantically similar contents in
Ksrc, V src with the target query Qtgt.

Controlling Non-Rigid Semantic Changes MasaCtrl
suffers from the issue of undesirable non-rigid changes. As
shown in Figure 9, MasaCtrl can lead to significant incon-
sistency from the source images, especially in terms of the
composition of objects and when there are multiple objects
and complex backgrounds. This is not surprising, as the
target query Qtgt is used throughout the self-attention con-
trol schedule. Instead of relying on the target prompts to
guide the premature steps, we form the structural layout
with the source self-attention Qsrc,Ksrc, V src in the self-
attention. We show in Section 5 that this design enables
high-quality non-rigid changes while maintaining satisfy-
ing structural consistency.
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Figure 3. The proposed United Attention Control (UAC) frame-
work to unify cross-attention control and mutual self-attention
control. UAC introduces an additional layout branch as an inter-
mediate to host the desired composition and structural information
in the target image.

Scheduling Mutual Self-Attention Control This mutual
self-attention control is applied in the later steps after τs,
interpreted as the mutual self-attention control strength:

SelfEdit({Qsrc,Ksrc, V src}, {Qtgt,K tgt, V tgt}, t) :={
{Qsrc,Ksrc, V src} t ≥ τs

{Qtgt,Ksrc, V src} t < τs

(15)

4.3. Unified Attention Control

To enable both rigid and non-rigid semantic changes within
one unified framework is not trivial.

As is illustrated in Figure 4, the naı̈ve combination of
cross-attention control and mutual self-attention control se-
quentially would lead to a sub-optimal outcome in the origi-
nal dual-branch setup, especially failing the global attention
refinement. To address this issue, we introduce the Unified
Attention Control (UAC) framework. UAC unifies cross-
attention control and mutual self-attention control with an
additional latent layout branch, which serves as an interme-
diate to host the desired composition and structural infor-
mation in the target image.

(a) The input
source image.

(b) 2-branch tar-
get output.

(c) 3-branch
layout ouput.

(d) 3-branch tar-
get output.

Figure 4. A comparison of the target branch outputs to edit “a sit-
ting brown bear” to “a standing green bear”, involving both rigid
and non-rigid semantic transformations. Random seed is fixed.

The UAC framework is detailed in Algorithm 2 and il-
lustrated in Figure 3. During each forward step of the dif-

fusion process, UAC starts with mutual self-attention con-
trol on zsrc and ztgt and assigns the output to the layout
branch latent zlay. Following this, cross-attention control
is applied on M lay and M tgt to refine the semantic informa-
tion for M tgt. As is shown in Figure 4c, the layout branch
output zlay

0 reflects the requested non-rigid changes (e.g.,
“standing”), while preserving the non-rigid content seman-
tics (e.g., “brown”). The target branch output ztgt

0 (Fig-
ure 4d) builds upon the structural layout of the zlay

0 while
reflecting the requested non-rigid changes (e.g., “green”).

5. Experiments

5.1. Experiment Setups

Benchmarks We used established benchmarks to evalu-
ate our proposed image editing method:
• Language-Guided Image Editing. We evaluate on the

PIE-Bench introduced by Ju et al. [15], which assesses
language-guided image editing in 9 different scenarios.

• Image-to-Image (I2I) Translation. We also evaluate on
the I2I tasks at the scene-level (Summer↔Winter) and
object-level (Horse↔Zebra) [42].

Evaluation Metrics We employ 4 distinct evaluation
metrics to assess the generated image’s quality, the accu-
racy of the translation, the consistency against the source
images, and the efficiency of the editing process.
• Image Quality. We use the Fréchet Inception Distance

(FID) [11] score, which compares the model outputs to
real image distributions;

• Translation Quality. We use the CLIPScore [10] to
quantify the semantic similarity of the generated image
and target prompt with CLIP [28].

• Translation Consistency. We measure translation con-
sistency using four different metrics: Mean Squared Er-
ror (MSE), Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index Measure (SSIM) [35], and Learned
Perceptual Image Patch Similarity (LPIPS) [40].

• Efficiency. We directly compare the computation time on
one A40 GPU for the inversion and forward process, as
well as the number of sampling steps.

5.2. Inversion v.s. Inversion-Free Comparison

In this section, we present experiments to demonstrate
that inversion-free image editing (InfEdit) competes with
the effectiveness of inversion-based methods, while also
being significantly more efficient. Recall that our In-
fEdit framework adopts Virtual Inversion (VI) derived from
DDCM as the sampling framework, and takes any atten-
tion control for language-guided editing. We compare VI
against other inversion-based methods on PIE-Bench, with
2 variants of InfEdit (VI+P2P and VI+UAC) for ablation.
The inversion baselines we considered include DDIM [31],
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Method Structure Background Preservation CLIP Similarity Efficiency (sec / #)

Inverse Edit Distance↓
103

PSNR ↑ LPIPS↓
103

MSE↓
104

SSIM↑
102

Whole ↑ Edited ↑ Inverse Time↓ Forward Time↓ Steps↓

DDIM P2P 69.43 17.87 208.80 219.88 71.14 25.01 22.44 10.93 ± 0.01 12.79 ± 0.01 50

CycleD P2P 6.06 28.25 43.96 25.85 85.61 23.68 20.87 N/A 4.55 ± 0.02 32
NT P2P 13.44 27.03 60.67 35.86 84.11 24.75 21.86 132.39 ± 7.69 12.90 ± 0.01 50
NP P2P 16.17 26.21 69.01 39.73 83.40 24.61 21.87 4.14 ± 0.00 12.78 ± 0.01 50

StyleD P2P 11.65 26.05 66.10 38.63 83.42 24.78 21.72 810.17 ± 7.77 28.18 ± 1.30 50
DI P2P 11.65 27.22 54.55 32.86 84.76 25.02 22.10 16.83 ± 0.02 12.87 ± 0.01 50
VI P2P 14.22 27.52 47.98 34.17 85.05 24.89 22.03 N/A 4.50 ± 0.01 32

VI* P2P 15.61 26.64 55.85 41.15 84.66 24.57 21.69 N/A 2.60 ± 0.00 15
VI* UAC 13.78 28.51 47.58 32.09 85.66 25.03 22.22 N/A 2.22 ± 0.02 12

* Using the Latent Consistency Model (LCM) as the base model. Otherwise, Stable Diffusion (SD) v1.4 is adopted.
Table 1. Aggregated performances of different image inversion and editing methods on PIE-bench. We break InfEdit into the Virtual
inversion (VI) and arbitrary choices of attention control mechanism and diffusion backbone. VI competes and even surpasses other
inversion methods with the same P2P attention control. The integration of unified attention control (UAC) and the LCM backbone further
enhances its performance. Notably, InfEdit runs about an order of magnitude faster than most of the baselines on one single A40 GPU.
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Figure 5. A comprehensive performance evaluation on the PIE-bench. We present spider charts of editing quality (CLIP Scores) and
consistency (PSNR) across 9 editing tasks for Prompt-to-Prompt (P2P), MasaCtrl, and Unified Attention Control (UAC) methods. Accom-
panied by an analysis of editing efficiency for Stable Diffusion (SD) 1.4 and Latent Consistency Model (LCM) across different steps.

Null-Text (NT) [23], Negative Prompt (NP) [22], StyleD-
iffusion (StyleD) [17], CycleDiffusion (CycleD) [36], and
Direct Inversion (DI) [15]. As depicted in Table 1, In-
fEdit competes with and often surpasses the effectiveness of
inversion-based methods, especially in terms of background
consistency. It is important to note a fundamental trade-off
between reducing image editing distance and improving the
faithfulness of image editing. StyleD demonstrates lower
editing distances but exhibits limitations in effective edit-
ing, as evidenced by its scores in background preservation
and CLIP similarity metrics. DI and CycleD surpass InfEdit
in structure distance but often fail to comply with editing in-
structions, leaving the source image untouched.

5.3. Attention Control Comparison

In this section, we present experiments to demonstrate
that with unified attention control (UAC), InfEdit estab-
lishes state-of-the-art performance in terms of editing

quality, consistency, and efficiency. We compare UAC
with other attention control baselines, especially Prompt-
to-Prompt (P2P) [9], Plug-and-Play (PnP) [33], and Mutual
Self-Attention Control (MasaCtrl) [4]. The comprehensive
analysis across 9 distinct categories of editing tasks in PIE-
Bench demonstrates the superior performance of InfEdit
with UAC as the attention control mechanism, evidenced
by enhanced editing quality in Figure 5a and improved im-
age consistency in Figure 5b. Qualitative comparisons are
provided in the Appendix.

5.4. Computational Efficiency Ablation

We finally study the editing efficiency of InfEdit. As shown
in Table 1, InfEdit significantly outperforms the other base-
lines in terms of computational efficiency even without ap-
plying the LCM. We perform an ablation study to demon-
strate that InfEdit gains an advantage through its dis-
tinctive compatibility with latent consistency models, fa-
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cilitating both efficient and high-quality image editing.
We compare the base diffusion backbones, Stable Diffusion
(SD) 1.4 [30] and Latent Consistency Model (LCM) [20],
by the CLIP Scores at different forward steps. Table 2
and Figure 5c show that the LCM significantly outperforms
SD 1.4 in editing quality, even with fewer sampling steps.
While the CLIP Scores of SD incrementally improve from
21.47 to 25.18 as the number of forward steps increases
from 2 to 32, LCM can achieve consistently higher CLIP
Scores across varying step counts, showing superior speed
in image editing.

Method CLIP Score

InfEdit (VI+P2P) 2 steps 4 steps 8 steps 16 steps 32 steps

SD 1.4 21.47 22.17 23.16 24.45 25.18
LCM 25.76 25.33 24.76 25.08 26.68

Table 2. A comparison of the CLIP Score using SD 1.4 and LCM
backbones. The natural compatibility with the LCM backbone in
InfEdit allows a high CLIP Score even with fewer steps.

6. Related Work
Image Manipulation with Diffusion Models Diffusion
models (DMs) have achieved notable success in image gen-
eration [13, 31], with large-scale models pre-trained on text-
to-image tasks [25, 30]. These models are increasingly
adopted for image manipulation tasks, where DMs are aug-
mented with additional conditions like text prompts [29] or
images [37, 39] to generate the target image. The source
image information is usually integrated into DMs through
an inversion process [31] or via a side network [24, 39].
Additionally, mask-based methods have been proposed,
utilizing either user-prompted or automatically generated
masks [2, 6, 26], or augmentation layers [3], to facilitate
more controlled and precise image manipulations. To en-
hance the consistency and quality of image edits, several
techniques have been developed. Among these, attention
control mechanisms [4, 9, 33] have emerged as a promis-
ing direction, especially when they are paired with inversion
methods [15, 22, 23].

Inversion in Diffusion Models In DMs, real image edit-
ing methods usually rely on the inversion process, which
produces a latent representation that can reconstruct the im-
age through the generative process. Initially, SDEdits [21]
was proposed, which adds random Gaussian noise to the
source image as input but suffers from reconstruction qual-
ity. DDIM inversion [9] was then introduced for its deter-
ministic mapping from latent space to image but is prone
to errors accumulated in its multiple-step inversion pro-
cess. Null-text inversion [23] used a null-text prompt for
pivot tuning, improving real image editing but was time-
consuming and not fully accurate. Negative prompt in-
version [22] accelerated the inversion process by approx-

imating the DDIM inversion, while sacrificing the recon-
struction quality. CycleDiffusion [36], Editing-friendly In-
version [14] and Direct Inversion [15] use source latents
from each inversion step as reference for editing the target
branch. However, these methods still struggle with the cu-
mulative errors typical of the inversion process and tend to
be slower overall due to the inherent need for inversion.

Attention-Control for Image Editing In the realm of
zero-shot image editing, attention control becomes a piv-
otal technique to preserve consistency while manipulat-
ing visual content. Recent works like Prompt-to-Prompt
(P2P) [9] and Plug-and-Play (PnP) [33] have contributed
significantly to this field by replacing cross-attention and
self-attention maps to maintain the original image layout
and spatial information, thereby preserving the consistency
during editing. In contrast, MasaCtrl [4] offers an alterna-
tive approach that enables the modification of layout and
spatial attributes while safeguarding the semantic content
inherent in the image, which addresses the limitation of con-
flating spatial edits with semantic preservation. P2Plus [17]
extends the prompt-to-prompt paradigm by applying edits
to both the text-conditional and unconditional branches dur-
ing classifier-free guidance [12], thus offering a more com-
prehensive editing framework.

7. Conclusion
In this work, we questioned whether it’s possible to by-
pass the inversion process in editing. Our findings reveal
that with a known initial sample z0, a specific variance
schedule σ can simplify the denoising step to a form akin
to multi-step consistency sampling. This led to the de-
velopment of the Denoising Diffusion Consistent Model
(DDCM), which effectively introduces a virtual inversion
strategy that eliminates the need for explicit inversion dur-
ing sampling. Moreover, we present the Unified Attention
Control (UAC) mechanisms as a tuning-free framework for
text-guided editing. This integration forms the basis of our
inversion-free editing approach, InfEdit, which facilitates
consistent and accurate editing across both rigid and non-
rigid semantic transformations. InfEdit is adept at handling
complex modifications without compromising the image’s
integrity or requiring explicit inversion. Extensive experi-
ments demonstrate its robust performance across a range of
editing tasks, completing tasks in under 3 seconds on a sin-
gle A40. InfEdit unleashes the potential for real-time image
editing applications.
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