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Abstract

Distributional reinforcement learning (DRL) estimates the distribution over fu-
ture returns instead of the mean to more efficiently capture the intrinsic uncer-
tainty of MDPs. However, batch-based DRL algorithms cannot guarantee the
non-decreasing property of learned quantile curves especially at the early training
stage, leading to abnormal distribution estimates and reduced model interpretabil-
ity. To address these issues, we introduce a general DRL framework by using
non-crossing quantile regression to ensure the monotonicity constraint within each
sampled batch, which can be incorporated with some well-known DRL algorithm.
We demonstrate the validity of our method from both the theory and model im-
plementation perspectives. Experiments on Atari 2600 Games show that some
state-of-art DRL algorithms with the non-crossing modification can significantly
outperform their baselines in terms of faster convergence speeds and better testing
performance. In particular, our method can effectively recover the distribution
information and thus dramatically increase the exploration efficiency when the
reward space is extremely sparse.

1 Introduction

Different from value-based reinforcement learning algorithms [16, 21, 22] which entirely focus on the
expected future return, distributional reinforcement learning (DRL) [12, 20, 24, 17, 1] also accounts
for the intrinsic randomness within a Markov Decision Process [5, 4, 19] by modelling the total return
as a random variable. Existing DRL algorithms fall into two broad categories, one of which learns
quantile values at a set of pre-defined locations such as C51 [1], Rainbow[10], and QR-DQN [5].
Relaxing the constraint on the value range makes QR-DQN achieve a significant improvement over
C51 and Rainbow. One recent study, IQN, proposed by [4], shifts the attention from estimating a
discrete set of quantiles to the quantile function. IQN has a more flexible architecture than QR-DQN
by allowing quantile fractions to be sampled from a uniform distribution. With sufficient network
capacity and infinite number of quantiles, IQN can theoretically approximate the full distribution.

A big challenge to distributional RL methods is how to evaluate the validity of the learned quantile
distribution. One common problem of fitting quantile regressions at multiple percentiles is the non-
monotonicity of the obtained quantile estimates. Much of this issue can be attributed to the fact that
the quantile functions are estimated at different quantile levels separately without applying any global
constraints to ensure monotonicity. The crossing phenomenon is significantly enhanced by the limited
training samples especially at the early stage of the training process, which also increases the difficulty
of model interpretation. Without the non-crossing guarantee, the direction of policy searching may be
distorted and the selection of optimal actions greatly varies across training epochs. On the other hand,
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the resulted estimation bias of the distribution variance highly reduces the exploration efficiency
when using the left truncated variance as the exploration bonus [15]. Sometimes, the upper quantiles
instead of the mean (Q-value) are of specific interests when examining some risk-appetite policy.
Crossing issue will lead to awkward interpretation due to the abnormal ranking of the quantile points.

Although the crossing issue has been widely examined by the statistics society [13, 9, 14, 8, 6, 3, 2, 7],
no optimal solution exists for estimating a general non-linear quantile distribution. In this paper, we
introduce a novel approach to obtain non-crossing quantile estimates within the DRL framework.
We first give a formal definition of the Wasserstein minimization with the monotonicity restriction
and explore its combination with the distributional Bellman operator in practice. Then we describe
the detailed implementation procedure of our method by using non-crossing quantile regressions on
some state-of-the-art DRL baselines. We examine the performance of the proposed non-crossing
method on Atari 2600 games by comparing with the QR-DQN baseline. We repeat the exploration
experiment in [15] to more clearly demonstrate the advantage of our method in approximating the
real distributions and achieving a more accurate variance estimation.

2 Distributional Reinforcement Learning

We consider a Markov Decision Process (MDP) (S,A,R, p, γ), with S and A being the state
and action space. Let R : S × A → R be the reward function, and γ ∈ [0, 1) be a discounted
factor. p : S × A × S → [0, 1] is the transition probability from s to s′ after taking action a.
π : S × A → [0, 1] is the stochastic policy, which maps state s to a distribution over A. Zπ(s, a)
denotes the random variable of cumulative rewards the agent gains from (s, a) by following the policy
π, e.g. Zπ(s, a) :=

∑∞
t=0 γ

tR (st, at) with s0 = s, a0 = a and st+1 ∼ p (·|st, at) , at ∼ π (·|st).
The expectation of Zπ(s, a) is the state-action value

Qπ(s, a) := Eπ,p [Zπ(s, a)] , (1)

which is usually approximated by a neural network in most deep reinforcement learning studies.
Temporal difference (TD) methods are widely used by value-based RL methods, such as Deep
Q-learning[23, 16], to significantly speed up the learning process through the Bellman operator,

T πQ(s, a) := E[R(s, a)] + γEs′∼p,π [Q (s′, a′)] . (2)

The target of DQN is to find a globally optimal policy π∗ to makes Qπ
∗
(s, a) ≥ Qπ(s, a) hold for

all (s, a). It is assumed that the potentially optimal policies share the same optimal state-action value
function Q∗, which is the unique fixed point of the Bellman optimality operator, where

Q∗(s, a) = T Q∗(s, a) := E[R(s, a)] + γEs′∼p
[
max
a′

Q∗ (s′, a′)
]
. (3)

To learn the optimal Q∗, DQN performs a stochastic gradient descent to minimize the loss function

1

2

[
r + γmax

a′
Qω−(s′, a′)−Qω(s, a)

]2
, (4)

over samples (s, a, r, s′). ω− is the target network, which is a copy of ω and is synchronized with ω
periodically. Similar to (2), we can also define the distributional Bellman operator for Z(s, a),

T πZ(s, a) :
D
= R(s, a) + γZ (s′, a′) ,

s′ ∼ p(·|s, a), a′ ∼ π (·|s′) ,
(5)

where Y D
= U denotes the equality of probability laws, that is the random variable Y is distributed

according to the same law as U . DRL looks into the intrinsic randomness of Z(s, a) and repeatedly
applies the following distributional Bellman optimality operator [1] in model training

T Z(s, a) :
D
= R(s, a) + γZ

(
s′, arg max

a′∈A
EZ (s′, a′)

)
, s′ ∼ p(·|s, a). (6)

2



(a) (b) (c)

𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝟏

𝐬𝐭𝐚𝐭𝐞

𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 40𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 5 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 20𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝟏𝟎

𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐜𝐮𝐫𝐯𝐞

Figure 1: An Atari example to illustrate the crossing issue in DRL training: (a) A representative state
s from Breakout (b) QR-DQN training with (lower line) or without (upper line) the non-crossing
restriction at five different iterations (c) Training curves of two models

3 Non-Crossing Quantile Regression for DRL

In this section, we present our method for Distributional RL by using non-crossing quantile regression.
We begin by discussing the crossing issue in DRL and the resulting training problems. Then we give
the formal definition of the proposed DRL algorithm with the monotonicity restriction, and describe
its detailed implementation in practice based on the QR-DQN architecture. Furthermore, we show
how the constrained model can more precisely capture the distribution information and increase the
efficiency of the exploration strategy proposed by [15] via a real-world Atari example.

3.1 Crossing Issue

One important prerequisite to ensure the validity of DRL is that the learned quantile function is non-
decreasing, which requires a higher quantile point to have a larger corresponding value. Unfortunately,
quantile curves obtained in empirical studies always encounter the crossing issues, leading to the non-
monotone quantile estimates. From the theoretical perspective, any τ -th quantile estimate of the return
variable Z can converge to its true value as the training size n goes to∞. However, it is impractical
for a batch-based DRL algorithm to train the agent using a sufficiently large sample especially in the
first few iterations of the training process. On the other hand, since the quantile regression at multiple
levels are individually fitted without applying a globally non-crossing constraint, the estimates are
unable to quickly approach the true values in case of a large variance. The cumulative deviation
makes the sample-based distribution estimate far away from its population-level groundtruth.

Based on the empirical results obtained by training QR-DQN in the Atari environment, Breakout, we
explain how the crossing issue can lead to the instability of action selections and the accompanying
reduced training efficiency. As Figure 1(a) shows, we randomly pick a representative state s, in which
the small ball is extremely close to the top left of the bat (agent), and the optimal action for the agent
to take at this moment is moving to left. The lower and upper lines in Figure 1(b) plot the estimated
quantile curves for two candidate actions at various training iterations. The only difference is that the
lower one takes the non-crossing restriction into consideration when training the QR-DQN model.
As Figure 1(b) shows, the standard QR-DQN cannot distinguish from the two ambiguous actions
at early iterations due to the severe crossings. A precise estimate of the distribution mean cannot
be easily achieved using the abnormal quantile curves. As a comparison, our method effectively
addresses this issue, making the quantile function monotonically increasing. With more separate
quantile curves of the two actions, the agent can make consistent decisions when perceiving this state
in the training process after a few iterations, which to some extent increases the training efficiency.
As demonstrated in Figure 1 of the supplements, the crossing issue is more severe with smaller
sample size N (N = 100) at the early stage, where the advantage of the proposal is more significant.
To further show how the ranking of Q-function changes on a variety of states, we randomly pick
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4000 states, and compute the probabilities that QRDQN or our method choose the same action with
the optimal policy within each of four different training periods. As indicated in Figure 2 of the
supplements, our method performs much more stably especially in the early training stage with an
overall higher consistency with the optimal policy.

3.2 Wasserstein Minimization with Non-Crossing Restriction

We now give the formal definition of the non-crossing quantile regression within the DRL framework.
Let τ̃ = (τ0, . . . , τN ) be a fixed sequence ofN+1 non-decreasing quantile fractions, andZΘ be some
pre-defined function space. The goal of DRL is to find an ideal parametric model θ : S ×A → RN
to approximate the quantile distribution of Z by using Zθ ∈ ZΘ, where

Zθ(s, a) :=

N−1∑
i=0

(τi+1 − τi) δθi(s,a), (7)

is represented by a mix of N supporting quantiles. δx here is a Dirac at x ∈ R. By definition
[18], each θi(s, a) is an estimation of the inverse function of cumulative distribution function (CDF)
F−1
Z (τ̂i) at the quantile level τ̂i = τi+τi+1

2 with 0 ≤ i ≤ N − 1, where

F−1
Z(s,a)(τ) := inf{z ∈ R : τ ≤ FZ(s,a)(z)}. (8)

In this case, the theoretically optimal approximation of the return variable Z can be achieved by
minimizing a constrained p-Wasserstein metric,

Wp(Z(s, a),Zθ(s, a)) =

(
N−1∑
i=0

∫ τi+1

τi

∣∣∣F−1
Z(s,a)(ω)− θi(s, a)

∣∣∣p dω)1/p

,

s.t. θi(s, a) ≤ θi+1(s, a),∀ 0 ≤ i ≤ N − 2,

(9)

which effectively measures the difference between the approximated quantile function and
the true quantile function F−1

Z(s,a) under the non-crossing restriction. When p goes to ∞,

W∞(Z(s, a), Zθ(s, a)) = sup
i,ω∈[τi,τi+1]

∣∣∣F−1
Z(s,a)(ω)− θi(s, a)

∣∣∣. Unfortunately, the constraint in (9)

is ignored by all the existing DRL algorithms. With the high dimensional representation obtained
at each state-action pair (s, a), the crossing becomes even more problematic as the curves have a
much larger space ZΘ in which they may cross. Minimizing the unconstrained p-Wasserstein metric
within an enlarged searching space may result in an infeasible optimal solution given a finite sample.
When the sample size goes to infinity, the solution to the constrained optimization in (9) is exactly
the solution to the unconstrained one. (9) can be easily solved if θi is either a linear or a simple
non-parametric model [9, 2]. For some complex tasks such as Atari learning, it is difficult to find
the optimal solution under the original space ZΘ due to the complicated structure of θi. To solve
this problem, we search for a sub-space ZQ ⊂ ZΘ, in which each parametric model satisfies the
non-crossing restriction. Let q : S ×A → RN such that Zq ∈ ZQ, and qi(s, a) be the corresponding
quantile estimate at τ̂i. We can re-define (7) as

Zq(s, a) :=

N−1∑
i=0

(τi+1 − τi) δqi(s,a). (10)

In this case, solving (9) has been transferred to finding a projection operator ΠW1
, such that

ΠW1
Z := arg min

Zq∈ZQ

W1 (Z,Zq) . (11)

Given the reduced function space ZQ, we can obtain some similar results to [5], in which the
combination of the projection defined in (11) with Bellman operator is a contraction, i.e.
Lemma 1. Let ΠW1 be the quantile projection defined in (11), and when applied to value distributions
gives the projection for each state-value distribution. For any two value distributions Z1, Z2 ∈ Z for
an MDP with countable state and action spaces,

d̄∞ (ΠW1
T πZ1,ΠW1

T πZ2) ≤ γd̄∞ (Z1, Z2) , (12)
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where
d̄p(Z1, Z2) := sup

s,a
Wp(Z1(s, a), Z2(s, a)), (13)

and Z be the space of action-value distributions with finite moments:

Z = {Z : S ×A →P(R)| E [|Z(s, a)|p] <∞,∀(s, a), p ≥ 1}. (14)

Lemma 1 illustrates that the combination operator ΠW1T π is a γ-contraction under the measure d̄∞,
and the repeated application of this operator converges to a fixed point in space ZQ, denoted as Z∗q .
We now introduce the following theorem to give the properties of this fixed point.

Theorem 1. The fixed point Z∗q is of the form as given in (10) with each quantile qi satisfying the
following equality

qi(s, a) = R(s, a) + γqi(s
′, a′), 0 ≤ i ≤ N − 1,

s′ ∼ p(·|s, a), a′ ∼ π (·|s′) ,
(15)

where π is a given policy. Let ΠW1
Zπ =

∑N−1
i=0 (τi+1 − τi) δq̄i(s,a), with q̄i being the τ̂i-th quantile

of Zπ , we can obtain that

Z∗q
D
= ΠW1

Zπ. (16)

When N →∞, we further have

d̄∞(Zπ, Z∗q )→ 0 and Z∗q → Zπin distribution. (17)

By Theorem 1, Z∗q converges to Zπ given the policy π, so the proposed algorithm can be used to
choose the optimal policy that maximizes the cumulative reward.

3.3 Model Implementation using Non-Crossing Quantile Regression

We can now propose the complete algorithmic approach to ensure monotonicity of the learned
quantile curves. We choose QR-DQN as the baseline to describe the implementation details, while
the theoretical framework introduced in the previous section can be applied to any quantile based
DRL algorithms. The modified model Zq is named by NC-QR-DQN, and belongs to the sub-space
ZQ. Two major components of NC-QR-DQN include a Non-crossing Quantile Logit Network
which generates a sequence of non-decreasing logits based on the state-action representation and
a Scale Factor Network to recover the logits in [0, 1] to the original quantile range. Following

Conv Conv

FC/Softmax Cumulated Sum

FC/ReLU

FC

Non-crossing Quantile Logit Network

Scale Factor Network

Feature Extraction Network

…
ReLU

Input

Output

State 
Embedding

ℱ𝒞

𝛼

𝛽

𝑞

𝜙 𝜓

ℱ(𝒞(s))

𝒲

Figure 2: A general picture of the NC-QR-DQN architecture

the main structure of QR-DQN, the Feature Extraction Network, which consists of a multi-layer
convolution operator C and a subsequent fully-connected layers F , serves as a feature extractor
to capture the embedding F(C(s)) ∈ Rd of state s. Then a novel Non-crossing Quantile Logit
Network φ maps F(C(s)) to an N ∗ |A|-dimensional logits by using a fully-connected layer with
softmax transformation, i.e. φ : Rd → [0, 1]N∗|A|. Then we employ a cumulated sum layer to make
Non-crossing Quantile Logit Network have the final output sorted in a non-decreasing order for each
a. To be specific, we let φi,a be the i-th element of the obtained N -dimensional logits for action a,
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Figure 3: An Atari example to show how the crossing issue may affect the exploration efficiency

such that φi,a = φ(F(C(s)))i,a ∈ (0, 1), and
∑N−1
i=0 φi,a = 1. Motivated by [25], we calculate the

cumulative sum of φi,a’s from 1 to i each time, and derive a sequence of non-decreasing fractions,

ψi,a :=

i∑
j=0

φj,a, i = 0, . . . , N − 1; a = 1, . . . , |A| . (18)

Since all the N ∗ |A| logits obtained by Non-crossing Quantile Logit Network fall into [0, 1], we
need another transformation to rescale them to a comparable range with the true quantile values. To
achieve this target, we introduce the Scale Factor Network which calculates two adapted scale factors
α(s, a) and β(s, a) by applying a fully connected layerW : Rd → R|A|∗2 onto the state embedding
F(C(s)). The flexible architecture ofW allows the range of α and β to be varied with the input state
and action. In particular, we impose a ReLU function on each αa(s) to ensure its non-negativity. The
final quantile estimates qi(s, a)’s under the non-crossing restriction can be defined as follows,

qi(s, a) := α(s, a)× ψi,a + β(s, a), i = 0, . . . , N − 1; a = 1, . . . , |A| . (19)

Since α(s, a) is non-negative and {ψi,a}’s are non-decreasing, the non-crossing property of the N
qi(s, a)’s is automatically satisfied. Accordingly, we can obtain a modified distributional TD error as

δij = r + γqj (s′, a∗)− qi(s, a), ∀i, j, (20)

where a∗ = arg maxa′
∑N−1
j=0 qj (s′, a′). To minimize the Wasserstein metric between the quantile

estimates and the target distribution, we train the NC-QR-DQN network by minimizing the Huber
quantile regression loss [11],

1

N

N−1∑
i=0

N−1∑
j=0

ρκτ̂i(δij), (21)

where

ρκτ (δ) = |τ − I {δ < 0}| Lκ (δ)

κ
, with

Lκ (δ) =

{
1
2δ

2, if |δ| ≤ κ
κ
(
|δ| − 1

2κ
)
, otherwise

. (22)

3.4 Exploration using truncated variance

We know the target of DRL is to sufficiently model the full distribution of future returns and precisely
capture its intrinsic uncertainty. However, some state-of-the-art DRL algorithms, such as QR-DQN
and IQN, only use the distribution mean at the future state s′ to decide the optimal action a∗ when
calculating the TD error in (20). To more sufficiently utilize the distribution information, Marvin
et al. [15] proposes a novel exploration strategy, Decaying Left Truncated Variance (DLTV), for
QR-DQN by using Left Truncated Variance of the estimated quantile distribution as a bonus term to
encourage the searching in an unknown space. The key idea behind this design is that the quantile
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distribution is usually asymmetric while the upper tail variability is more relevant than the lower
tail for instantiating optimism considering the uncertainty. To increase the stability, they use the left
truncated measure of the variable, σ2

+, based on the median θ̃ rather than the mean,

σ2
+ =

1

2N

N−1∑
i=N/2

(
θ̃ − θi

)2

, (23)

where θi is the quantile estimation at quantile level τ̂i. The exploration bonus is allowed to decay at
the following rate to suppress the intrinsic uncertainty:

ct = c
√

log t/t, (24)

where t is the count of time steps. The optimal action a∗ at state s is selected according to

a∗ = arg max
a′

(
Q(s, a′) + ct

√
σ2

+

)
. (25)

As mentioned in Section 3.1, the crossing issue may highly influence the stability in calculating
distribution mean Q(s, a′), while the estimation of σ2

+ can be even more severely biased. On one
hand, the median θ̃ could be either smaller or larger than its groundtruth due to the crossing. On the
other hand, the deviation of the N/2 upper-tail quantile estimates from their true values can jointly
increase the estimation bias of σ2

+. For example, the quantile fractions within a small range of the
median but larger than 0.5 may have a smaller quantile estimate than θ̃, such that its contribution in
σ2

+ can be either overestimated or underestimated.

Figure 3(a) plots a randomly sampled state s fromMontezumaRevenge, with two candidate actions,
right and right jump, selected from 18 feasible actions in total. From the human perspective, the
optimal action to take is right jump at this moment, which allows the agent to catch the rope and get
a higher chance to find the key in the future. Figure 3(b) illustrates the quantile estimates for the
two actions obtained from NC-QR-DQN and QR-DQN. Due to the severe crossings in QR-DQN,
the intrinsic uncertainty of right is overestimated. In this case, σ2

+ is too large to be ignored in (25)
although the mean value Q(s, a′) of right is smaller than that of right jump. By replacing θi in (23)
with qi in (21), the crossing problem is no longer present and the quantile curves are smoothed as the
upper plot of Figure 3(b) shows. The action right jump is preferred with both larger mean return Q
and bonus σ2

+, which accords with the intuition of human beings. In summary, a precise estimation of
the truncated variance by including the non-crossing constraint can effectively measure the intrinsic
uncertainty and inspire the agent to try actions with high returns in the upper tail.

4 Experiments

We test our method on the full Atari-57 benchmark. We select QR-DQN as the baseline, and
compare it with NC-QR-DQN which accounts for the non-crossing issue by using the implementation
approach described in Section 3.3. We adopt the DLTV exploration strategy proposed in [15] for
both algorithms to more effectively assess their performances in modelling the return distributions.
We build the QR-DQN baseline using PyTorch, and implement NC-QR-DQN based on the same
Feature Extraction Network architecture of QR-DQN. We set the number of quantiles N to be 200
and evaluate both algorithms on 200 million training frames. We follow all the parameter settings of
[5] and initialize the learning rate to be 5 × 10−5 at the training stage. For the exploration set-up,
we set the bonus rate ct in (25) to be 50

√
log t/t which decays with the training step t. For both

algorithms, we set κ = 1 for the Huber quantile loss in (22) due to its smoothness.

The main results are summarized in Table 1, which provides the comparisons between our method
with some baseline methods according to their best, human-normalized, scores starting with 30
random no-op actions for each of the 57 Atari games. We can see that NC-QR-DQN significantly
outperforms QR-DQN in terms of both the higher mean and median metrics. A detailed raw score
table for a single seed across all games, starting with 30 no-op actions is provided in the supplements.
To show how the non-crossing fix helps improve the exploration efficiency especially at the early
training stage, we compare the testing scores of NC-QR-DQN + exploration and QR-DQN +
exploration on all the 57 Atari games within 40M training frames. An improvement score reported
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Figure 4: Performance comparison with QR-DQN. Each training curve is averaged by seeds.

in Figure 5(a) is given by the following formula,

score =
agent1− random
agent2− random

− 1 (26)

where agent1, agent2 and random are the per-game raw scores derived from NC-QR-DQN +
exploration, QR-DQN + exploration and random agent baseline. As Figure 5(a) shows, NC-QR-
DQN + exploration either significantly outperforms its counterpart or achieves a very close result
for most of the 57 cases, which verifies our assumption that, NC-QR-DQN can more precisely learn
the quantile functions, and highly increase the exploration efficiency by considering the non-crossing
restriction. Figure 4 shows the training curves of 9 Atari games averaged by seeds, and we can
see that NC-QR-DQN with exploration can learn much faster than QR-DQN with exploration by
addressing the crossing issue especially for three hard-explored games presented in the first line.

Model Mean Median >human
DQN 228% 79% 24
PR.DUEL 592% 124% 39
QR-DQN 864% 193% 41
NC-QR-DQN 1598% 222% 42

Table 1: Mean and median of scores across 57 Atari 2600 games, measured as percentages of human
baseline. Scores are averages over number of seeds.

In practice, NC-QR-DQN is roughly 1% - 5% slower than QR-DQN per training iteration across
57 Atari games, which can be ignored considering its extraordinary outperformance. To be more
specific, we compare the computation costs of the two methods in Figure 5. To be fair, we exclude
the first five games in Figure 5(b), and we observe that NC-QR-DQN in average is about 30% faster
than QR-DQN to achieve the training return at the same level.

5 Conclusion

In this work, we introduce a novel space contraction method by making use of global information
to ensure the batch-based monotonicity of the learned quantile function by modifying the network
architecture of some state-of-the-art DRL algorithms. Although the empirical success it achieves
in Atari games especially in the exploration experiments, there are still some open questions to
be answered. First, our method is theoretically correct for any DRL algorithms based on quantile
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Figure 5: (a) Return improvement of NC-QR-DQN compared to baseline QR-DQN with exploration;
(b) Computation cost comparison between NC-QR-DQN and QR-DQN

approximation, while the implementation approach in this paper can not be directly applied to some
distribution based methods, such as IQN, since the quantile fractions τ ’s are not fixed and re-sampled
each time. Second, we indirectly solve the constrained optimization in (9) by changing the model
space, while there may exist some other solutions in practice.

Broader Impact

This work has broad social impact because reinforcement learning is useful in many applied areas
including automatic car driving, industrial robotics, and so on. The proposed method on distributional
reinforcement learning can more precisely capture the intrinsic uncertainty of MDPs by ensuring
the non-crossing of quantile estimates, which helps AI to better understand some complicated real-
world decision making problems. Our method highly increases the exploration efficiency of DRL
algorithms, and can be widely used in some difficult tasks that have extremely large state-reward
spaces. On the other hand, allowing the agent to explore more uncertainty of the environment may
change the way robots think and lead to some negative outcomes in real-life.
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