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ABSTRACT

LLM-based multi-agent systems (MAS) have demonstrated significant potential in
enhancing single LLMs to address complex and diverse tasks in practical applica-
tions. Despite considerable advancements, the field lacks a unified codebase that
consolidates existing methods, resulting in redundant re-implementation efforts,
unfair comparisons, and high entry barriers for researchers. To address these chal-
lenges, we introduce MASLab, a unified, comprehensive, and research-friendly
codebase for LLM-based MAS. (1) MASLab integrates over 20 established meth-
ods across multiple domains, each rigorously validated by comparing step-by-step
outputs with its official implementation. (2) MASLab provides a unified envi-
ronment with various benchmarks for fair comparisons among methods, ensuring
consistent inputs and standardized evaluation protocols. (3) MASLab implements
methods within a shared streamlined structure, lowering the barriers for under-
standing and extension. Building on MASLab, we conduct extensive experiments
covering 10+ benchmarks and 8 models, offering researchers a clear and compre-
hensive view of the current landscape of MAS methods. MASLab will continue to
evolve, tracking the latest developments in the field, and invite contributions from
the broader open-source community.
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Figure 1: MASLab: A unified, comprehensive, and research-friendly codebase for LLM-based MAS.
We support fairly comparing over 20 methods, whose correctness are manually verified.

1 INTRODUCTION

Large language models (LLMs) (OpenAI, 2023; Anthropic, 2024; Guo et al., 2025; Dubey et al.,
2024; Yang et al., 2024b) have seen remarkable success across various domains (Chen et al., 2021a;
Park et al., 2023; Tu et al., 2024; Wu et al., 2023). However, individual LLMs face inherent limitations
including unreliable generation (Zhou et al., 2024; Wolf et al., 2024), hallucinations (Zhang et al.,
2023; Min et al., 2023), and difficulties with complex multi-step tasks (Dziri et al., 2023; Hadi et al.,
2023), which hinder their effectiveness in tackling diverse real-world applications.

These limitations have spurred development of LLM-based multi-agent systems (MAS) (Qian et al.,
2024; Li et al., 2023; Hu et al., 2025b; Ye et al., 2025), where multiple agents, each with distinct
roles, contexts, and tools, collaborate to address complex tasks more effectively. MAS has shown
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Table 1: Descriptions of 24 methods that MAS-Lab currently support. We show several critical
perspectives of MAS methods. (1) Role: whether agents’ roles in the method is fixed or dynamic.
(2) Topo.: whether the topology in the method is fixed or dynamic. (3) Tool: whether the method
includes tool usage. (4) Optim.: whether the method is optimizable. (5) Generalization: whether the
method can generalize to handle diverse tasks.

No. Methodology Venue Role Topo. Tool Optim. Generalization

Single-Agent Baselines
1 Vanilla LLM - Fixed Fixed No No Yes
2 CoT (Wei et al., 2022) NeurIPS 2022 Fixed Fixed No No Yes

Multi-Agent Systems for General Tasks
3 CAMEL (Li et al., 2023) NeurIPS 2023 Fixed Fixed No No Yes
4 AutoGen (Wu et al., 2024) ICLR-W 2024 Fixed Fixed Yes No Yes
5 Self-Consistency (Wang et al., 2024b) ICLR 2024 Fixed Fixed No No Yes
6 AgentVerse (Chen et al., 2024) ICLR 2024 Dynamic Fixed No No Yes
7 LLM Debate (Du et al., 2024) ICML 2024 Fixed Fixed No No Pre-defined Roles
8 GPTSwarm (Zhuge et al., 2024) ICML 2024 Fixed Dynamic Yes Yes Validation-Required
9 DyLAN (Liu et al., 2024) COLM 2024 Fixed Dynamic No No Pre-defined Roles

10 MAD (Liang et al., 2024) EMNLP 2024 Fixed Fixed No No Pre-defined Roles
11 Self-Refine (Madaan et al., 2024) NeurIPS 2024 Fixed Fixed No No Yes
12 MacNet (Qian et al., 2025) ICLR 2025 Fixed Fixed No No Pre-defined Roles
13 ADAS (Hu et al., 2025b) ICLR 2025 Fixed Fixed Yes Yes Validation-Required
14 AFlow (Zhang et al., 2025b) ICLR 2025 Fixed Fixed Yes Yes Validation-Required
15 MAV (Lifshitz et al., 2025) ICLR-W 2025 Fixed Fixed No No Yes
16 MAS-GPT (Ye et al., 2025) ICML 2025 Dynamic Dynamic Yes Yes Yes

Multi-Agent Systems for Coding Tasks
17 MetaGPT (Hong et al., 2024) ICLR 2024 Fixed Fixed Yes No Coding-Specific
18 ChatDev (Qian et al., 2024) ACL 2024 Fixed Fixed Yes No Coding-Specific
19 MapCoder (Islam et al., 2024) ACL 2024 Fixed Fixed Yes No Coding-Specific
20 EvoMAC (Hu et al., 2025c) ICLR 2025 Dynamic Dynamic Yes No Coding-Specific

Multi-Agent Systems for Mathematical Tasks
21 MACM (Lei et al., 2024) NeurIPS 2024 Fixed Fixed No No Math-Specific

Multi-Agent Systems for Scientific Tasks
22 MedAgents (Tang et al., 2024b) ACL-F 2024 Fixed Fixed No No Medicine-Specific

Multi-Agent Systems for Tool-Required Tasks
23 OWL-Roleplaying (Hu et al., 2025a) GitHub 2025 Fixed Fixed Yes No Yes (with Proper Tools)
24 ReAct-MASLab (Yao et al., 2023) ICLR 2023 Fixed Fixed Yes No Yes (with Proper Tools)

promise in diverse applications including code generation (Qian et al., 2024; Hong et al., 2024),
mathematical reasoning (Lei et al., 2024; Imani et al., 2023), academic research (Lu et al., 2024;
Schmidgall et al., 2025), and data synthesis (Pang et al., 2024; Tang et al., 2024a). The field has
rapidly evolved from fixed, manually-designed systems (Qian et al., 2024; Du et al., 2024; Hong
et al., 2024; Liang et al., 2024; Chen et al., 2024; Lei et al., 2024) to dynamic systems with adaptable
agent roles (Hu et al., 2025b; Ye et al., 2025; Zhang et al., 2025b; Liu et al., 2024; Zhuge et al., 2024).
This ongoing evolution is steering the field towards greater automation and generalization, with the
potential to create more intelligent systems.

Despite the rapid progress in LLM-based MAS, the field lacks a unified codebase that consolidates
the various methods and algorithms. This gap results in several critical issues that hinder the field’s
long-term advancement: (1) Redundant effort. Without shared, accessible resources, researchers
expend significant time reimplementing existing works, diverting effort from innovative contributions.
(2) Unfair comparison. Varied implementation designs of individual codebases, such as differing
dataset preprocessing and evaluation protocols, complicate fair and reliable comparisons across
methods. (3) High entry barriers. Newcomers face difficulties navigating through disparate
repositories, with no clear starting points. Addressing these challenges is crucial to accelerate
research and promote cohesive progress in the field. However, unifying massive methods—that
originally employ distinct codebase styles, architectures, and dependencies—into one codebase
poses significant challenges. This requires not only substantial efforts for re-implementation and
verification, but also a comprehensive understanding of all methods to enable unification.

To bridge this gap, we present MASLab, the first unified codebase for LLM-based MAS, integrating
over 20 established methods with a coherent structure and standardized evaluations; see overview in
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Table 1. (1) MASLab consolidates diverse research across domains including general tasks (Chen
et al., 2024), coding (Qian et al., 2024), and mathematics (Lei et al., 2024)—covering representative
advancements from March 2023 through March 2025. Each method integrated into MASLab has
been rigorously verified by comparing step-by-step outputs with its official implementation, greatly
reducing redundant reimplementation efforts for future researchers. (2) MASLab supports unified
evaluations across a wide array of benchmarks, ensuring consistent inputs and standardized evaluation
protocols. This facilitates reliable and fair comparisons, emphasizing core methodological differences
rather than implementation disparities. (3) All methods are implemented within a streamlined,
high-level structure, where each is encapsulated as a core inference function that processes a query
and delivers the MAS response. This transparent structure explicitly highlights key methodological
components, significantly lowering entry barriers and enabling researchers to easily understand,
extend, and innovate upon existing approaches.

Based on MASLab, we conduct comprehensive experiments to benchmark the implemented methods,
offering the research community a clear understanding of the current landscape of LLM-based
MAS. Our evaluation spans 10+ benchmarks spanning diverse domains—including general ques-
tion answering, mathematics, coding, science, and medicine—using 8 LLM backbones including
Llama-3.3-70B-Instruct, Qwen-2.5-7/14/32/72B-Instruct, and GPT-4o-mini/4.1-mini/4.1 models.
Our analysis examines the impact of varying evaluation protocols adopted by prior studies, the
scaling behavior with respect to method configuration and model size, and failure cases. Notably, we
demonstrate that discrepancies in evaluation protocols can lead to substantial variation in performance
rankings, underscoring the importance of a unified codebase for fair and reproducible comparisons.

2 RELATED WORK

LLM-based MAS. LLM-based multi-agent systems (MAS) extend the capabilities of LLMs by en-
abling collaborative interactions among multiple agents. CAMEL (Li et al., 2023) and AutoGen (Wu
et al., 2024) primarily focus on two-agent (user–assistant) role-playing, while MetaGPT (Hong et al.,
2024) and ChatDev (Qian et al., 2024) assign multiple specialized roles (e.g., coder, reviewer) for
fixed software development pipeline. Debate-style systems (Du et al., 2024; Liang et al., 2024)
employ multiple agents to propose and criticize solutions. AgentVerse (Chen et al., 2024) and
DyLAN (Liu et al., 2024) allow iterative adjustment of team configurations during task execution.

While these fixed-role architectures demonstrate the potential of MAS, they rely heavily on manually
defined roles and workflows, limiting generalizability across tasks. To address this, recent works
explore automatic workflow generation (Ye et al., 2025; Hu et al., 2025b; Zhang et al., 2024; 2025a;c).
GPTSwarm (Zhuge et al., 2024) models agents as an optimizable graph of LLM operations refined via
validation feedback. Similarly, ADAS (Hu et al., 2025b) and AFlow (Zhang et al., 2025b) leverage a
strong meta-agent to iteratively design agentic workflows. MAS-GPT (Ye et al., 2025) trains an LLM
that generates an executable MAS based on each user query.

However, these methods are implemented in isolated codebases, leading to redundant efforts, incon-
sistent evaluations, and steep entry barriers. MASLab resolves these issues by providing a unified
and comprehensive codebase that supports all of the above methods within an extensible framework.

LLM-agent codebase. In parallel with algorithmic advances, several open-source frameworks
have emerged to facilitate the development of LLM-based agents. CAMEL (Li et al., 2023)
and AutoGen (Wu et al., 2024) introduce conversational agent frameworks based on role-playing.
LangChain (LangChain, 2025), LangGraph (LangGraph, 2025), and OpenAgents (Xie et al., 2024)
provide low-code environments for constructing LLM-driven applications and workflows. However,
none of these frameworks are designed specifically for research purposes: they lack implementations
of representative multi-agent methods from the existing literature and offer limited support for sys-
tematic evaluation. In contrast, our MASLab offers the first all-in-one research-friendly codebase
that integrates the community’s collective progress in LLM-based MAS.

3 MASLAB

MASLab is a unified, comprehensive, research-oriented codebase for LLM-based multi-agent systems
(MAS). It consolidates over 20 published MAS methods with consistent inference basic configurations
and unified evaluation protocols, facilitating researchers for fast and fair algorithmic comparisons.
All methods are verified by comparing their intermediate outputs with the official implementations.
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Pre-process Optimization

InferenceEvaluation

Shared Resources
Diverse LLMs

Common Toolkits

Streamlined Representation of 20+ MAS Methods
from toolkits import code_executor
class MASExample(MAS):

...
def inference(self, sample):

roles = self.agent_recruit(sample)
solutions = self.agent_discuss(roles)
solution = self.aggregate(solutions)
feedback = code_executor(solution)
response = self.improve(solution, feedback)
return response

data

metric

Figure 2: Overview of MASLab codebase. MASLab incorporates and unifies the whole pipeline from
data pre-processing to evaluation, ensuring that inputs to all methods are aligned, non-algorithmic
configurations are standardized, and the evaluation protocols are consistent and accurate. All 20+
methods are represented by a similar streamlined structure of python class.

3.1 INFERENCE OF MAS

In order to unify and streamline the diverse MAS codebases in the field, MASLab focuses on four key
aspects during inference that ensure consistency and fairness across different methods: representation
of MAS, inputs, configurations, and accessible resources. These aspects are designed to eliminate the
disparities that have traditionally hindered cross-method comparisons and replication of results.

Streamlined representation of MAS. Each MAS method within MASLab is abstracted into a
Python class, all of which inherit from a common base class. This base class provides shared
functionality across methods, such as making LLM requests and tracking LLM token consumptions.
The core of each method is the inference function, which takes a data sample (e.g., a mathematical
problem) as input and outputs the solution generated by the MAS. By standardizing the representation
in this manner, the structure of each MAS approach is simplified, allowing researchers to gain
a clear understanding of the key steps involved by merely inspecting the inference function. In
many cases, the inference process is further modularized, with specific components encapsulated
as additional functions to highlight the different stages of task-solving, such as team recruitment
and code execution. This design ensures that the complexity inherent in different MAS methods is
handled in a consistent, easily interpretable manner, while preserving the unique features of each
individual approach. For optimization-based methods (Hu et al., 2025b; Zhuge et al., 2024; Zhang
et al., 2025b), another core optimization function will process a validation set to produce an optimized
MAS. See re-implementation notes in Section E.

Consistent inputs. MASLab standardizes input preprocessing for all MAS methods, ensuring fair
comparisons by eliminating discrepancies. For instance, prior implementations of MapCoder (Islam
et al., 2024), Reflexion (Shinn et al., 2023), and EvoMAC (Hu et al., 2025c) use different prepro-
cessing on the MBPP dataset, making performance differences hard to interpret. MASLab’s unified
preprocessing pipeline ensures that all methods operate on identical data, relieving researchers of the
need to manually prepare datasets.

Shared resources. MASLab unifies the underlying resources required by MAS methods, including
LLMs and external tools. It supports both externally hosted APIs and locally deployed models,
covering a wide range of widely used LLMs. The integrated toolkit provides common utilities
such as code execution (secured via sandboxing (Bytedance, 2025)), web search, and image anal-
ysis—capabilities frequently required across MAS designs. These shared components eliminate
redundant engineering effort and facilitate reproducibility. Moreover, MASLab is designed to be
extensible and compatible with ongoing open-source developments (e.g., MCP (Anthropic, 2025)),
ensuring long-term adaptability.

Unified configurations. MASLab standardizes non-algorithmic configurations across all methods
to ensure fair and consistent comparisons. This includes aligning LLM settings (e.g., maximum
token limits) and tool parameters (e.g., timeout durations for code execution). Such uniformity
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eliminates confounding factors introduced by implementation-level differences, allowing performance
comparisons to reflect true methodological distinctions.

3.2 EVALUATION OF MAS

Accurate, automated, and scalable evaluation protocols are always essential for all AI fields. How-
ever, existing MAS works often adopt inconsistent evaluation procedures, introducing confounding
variables that hinder fair comparison. For example, certain methods may be tailored to specific
evaluation heuristics (e.g., rule-based string matching) which can be gamed by emphasizing format-
specific prompts for agents, thereby inflating performance without reflecting true intelligence gains.
These issues underscore the need for standardized, robust evaluation protocols that reflect genuine
task-solving capabilities rather than formatting tricks.

Evaluating responses with ground-truth answers. To address this, MASLab adopts a unified
evaluation framework centered on LLM-based evaluation methods grounded in ground-truth answers,
designed to assess semantic correctness rather than superficial formatting. We support two primary
variants: (1) A two-step pipeline using general-purpose LLMs, which first extracts a final answer
from the MAS-generated output based on the query, and then compares it against the ground-
truth to determine correctness; (2) A direct scoring approach using task-specific evaluators (e.g.,
xVerify (Chen et al., 2025)), which are fine-tuned to assess correctness across various domains. In
addition, MASLab includes three commonly used rule-based evaluation strategies from the MAS
literature.

Figure 3: Evaluation (5 different protocols) of methods us-
ing Llama-3.3-70B-Instruct as the backend on MATH. The
rankings of methods could be significantly different under
different evaluation protocols, emphasizing the need for ac-
curate and unified evaluation protocols.

Surprisingly, our empirical results
on MATH (Hendrycks et al., 2021)
benchmark (Figure 3) show that
evaluation protocol choice signifi-
cantly affects both absolute scores and
method rankings. For instance, under
the LLM-based two-step evaluation,
MAV (Lifshitz et al., 2025) ranks 1st,
but drops to 10th under DyLAN’s rule-
based scheme (Liu et al., 2024). Con-
versely, DyLAN itself rises from 5th
to 3rd. Similarly, AgentVerse’s accu-
racy drops from 79.0 to 25.6 when
switching from the LLM-based two-
step evaluation to the Hendrycks-style
rule-based metric (Hendrycks et al.,
2021). Manual inspection (Table 4) confirms the higher reliability of LLM-based evaluations, with
both the two-step and xVerify approaches achieving over 98% agreement with human judgments,
whereas the best-performing rule-based method reaches only 65%. Considering performance-cost
trade-off, MASLab defaults to using xVerify, while remaining open to improvements as evaluation
methodologies evolve.

Evaluating coding tasks with test cases. For coding tasks, where ground-truth labels are often
unavailable, MASLab similarly promotes LLM-assisted evaluation. Since tools like xVerify are
inapplicable in this setting, we employ a two-step approach: (1) an LLM extracts executable code
from the MAS output given the original query, and (2) the extracted code is executed against the
provided set of test cases to determine correctness. This process ensures that evaluation focuses on
functional validity and abstracts away from inconsistencies in format or verbosity. All executions are
sandboxed (Bytedance, 2025) to guarantee safety and consistency.

4 EMPIRICAL STUDY

Experimental setups. Our experiments cover Llama (Llama-3.3-70B-Instruct (Dubey et al., 2024)),
Qwen (Qwen-2.5-7/14/32/72B-Instruct (Yang et al., 2024a)), and GPT (GPT-4omini/4.1mini/4.1 (Ope-
nAI, 2024b;a; 2025)) LLMs. We set the max token as 2048 with a temperature of 0.5. Our datasets
cover domains including mathematics (MATH (Hendrycks et al., 2021), GSM-Hard (Gao et al., 2023),
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Table 2: Results of general methods on diverse domains ( mathematics , science , knowledge ,

medicine , coding ). Avg-V and Avg-R denotes averaged accuracy value (↑) and rank (↓) across
benchmarks. Best and second-best numbers are highlighted.

Method MATH GSM-H AQUA AIME SciBe GPQA MMLUP MedMC HEval MBPP Avg-V Avg-R

Llama-3.3-70B-Instruct
Single (Dubey et al., 2024) 72.8 52.8 76.0 23.3 25.5 48.0 66.8 70.4 85.4 67.9 58.9 8.1 ± 2.5
CoT (Wei et al., 2022) 74.4 57.0 76.8 26.7 24.7 53.0 69.8 73.8 85.4 69.7 61.1 5.5 ± 2.8
SC (Wang et al., 2024b) 76.2 53.4 80.3 30.0 27.9 52.5 70.6 72.6 82.3 69.7 61.6 4.8 ± 2.8
AutoGen (Wu et al., 2024) 72.8 53.0 79.5 20.0 21.9 41.9 66.0 69.2 51.2 62.9 53.8 9.9 ± 2.5
Debate (Du et al., 2024) 78.4 53.6 80.3 30.0 27.9 51.0 73.6 75.0 84.8 69.7 62.4 3.5 ± 1.9
MAD (Liang et al., 2024) 76.2 52.6 78.3 33.3 23.7 50.0 69.8 71.0 75.0 56.9 58.7 8.1 ± 3.1
AgentVerse (Chen et al., 2024) 78.6 51.2 79.5 23.3 25.7 51.0 70.4 72.6 87.8 71.3 61.2 4.4 ± 3.2
DyLAN (Liu et al., 2024) 77.6 53.6 78.3 33.3 26.7 54.0 70.4 72.6 82.9 70.1 62.0 4.7 ± 2.8
MacNet (Qian et al., 2025) 75.2 56.6 77.2 26.7 23.5 51.0 64.0 69.8 86.6 67.1 59.8 7.2 ± 3.0
MAV (Lifshitz et al., 2025) 79.4 35.6 65.8 30.0 24.3 45.0 61.0 68.6 78.0 69.1 55.7 9.3 ± 3.0
AFlow-Math (Zhang et al., 2025b) 82.2 59.8 77.2 26.7 25.3 48.0 68.6 69.2 84.2 69.7 61.1 5.9 ± 3.0
MAS-GPT (Ye et al., 2025) 79.8 67.0 80.7 33.3 26.9 48.5 71.2 72.0 86.6 70.3 63.6 3.3 ± 2.6

Qwen-2.5-72B-Instruct
Single (Yang et al., 2024a) 82.4 63.2 79.5 20.0 28.1 45.0 69.8 67.6 88.4 76.5 62.1 6.2 ± 2.4
CoT (Wei et al., 2022) 83.0 64.2 80.3 16.7 26.3 47.0 71.2 67.8 93.9 75.8 62.6 5.1 ± 2.1
SC (Wang et al., 2024b) 86.0 63.2 83.5 20.0 28.3 49.0 73.0 69.0 90.2 75.8 63.8 2.8 ± 1.8
AutoGen (Wu et al., 2024) 81.4 63.2 78.3 13.3 26.5 44.4 70.2 68.4 75.6 54.9 57.6 8.8 ± 2.6
Debate (Du et al., 2024) 85.4 62.0 80.3 20.0 26.9 49.0 74.0 71.0 90.2 77.6 63.6 3.2 ± 2.2
MAD (Liang et al., 2024) 83.8 61.6 80.3 20.0 26.9 47.0 65.6 67.4 72.0 66.3 59.1 7.6 ± 3.4
AgentVerse (Chen et al., 2024) 82.8 57.6 79.5 13.3 25.9 46.0 72.0 71.2 86.6 77.6 61.2 6.4 ± 3.1
DyLAN (Liu et al., 2024) 84.2 62.4 82.3 20.0 24.7 43.4 71.2 70.0 79.9 76.8 61.5 6.1 ± 3.2
MacNet (Qian et al., 2025) 82.2 63.0 80.3 10.0 25.1 42.4 65.4 63.8 87.2 75.5 59.5 8.5 ± 3.3
MAV (Lifshitz et al., 2025) 82.2 20.4 48.0 0.0 14.5 46.5 61.2 65.4 76.2 74.0 48.8 9.9 ± 3.2
AFlow-Math (Zhang et al., 2025b) 84.8 68.4 78.7 23.3 28.3 47.5 69.2 66.2 87.8 75.5 63.0 5.7 ± 3.5
MAS-GPT (Ye et al., 2025) 87.0 65.4 78.3 20.0 28.1 49.0 72.6 66.2 89.0 78.0 63.4 4.0 ± 3.2

Figure 4: Trade-off between performance and cost. For fair comparisons, we only plot methods that
do not involve tool usage. Methods above the fitted line are more cost-effective.

AQUA-RAT (Ling et al., 2017), AIME-2024), science (SciBench (Wang et al., 2024a), GPQA (Rein
et al., 2023)), knowledge (MMLU-Pro (Wang et al., 2024c)), medicine (MedMCQA (Pal et al.,
2022)), coding (HumanEval (Chen et al., 2021b), MBPP (Austin et al., 2021)), and AI-assistant
(GAIA (Mialon et al., 2024)).

4.1 CURRENT LANDSCAPE OF MAS METHODS

Comparisons of general MAS on diverse domains. able 2 compares general MAS methods across
diverse domains (mathematics, science, knowledge, medicine, coding), revealing that: (1) no method
rules on all domains, suggesting that there is large room for future methods that could generalize well
on more domains. (2) Backend models significantly affect performance; e.g., AgentVerse (Chen et al.,
2024) and DyLAN (Liu et al., 2024) achieve better performance than Single using Llama-3.3-70B-
Instruct while worse using Qwen-2.5-72B-Instruct. One hypothesis is that Llama-3.3-70B-Instruct
has better collaboration capability than Qwen-2.5-72B-Instruct as we see that the gap between best-
performing MAS and Single reduce from 4.7% to 1.7%. This suggests an interesting future direction
of exploring the most suitable LLM for MAS or training more appropriate ones. (3) MAS-GPT (Ye
et al., 2025) and LLM-Debate (Du et al., 2024) perform best overall, owing to their dataset-agnostic
designs. Beyond accuracy, we analyze performance-cost trade-offs in Figure 4 and Figure 11. Higher

accuracy typically requires more tokens, with methods above the fitted line being more cost-effective.
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Figure 5: Examining coding-specific methods (MapCoder and
EvoMAC). Using GPT-4o-mini, EvoMAC performs best; with
Llama-3.3-70B-Instruct, MapCoder leads.

Figure 6: Optimization-based
methods (GPTSwarm and
AFlow) on MATH.

Figure 7: Examining MAS as AI assistants on GAIA (Mialon et al., 2024). (1) Equipping agents with
tools (OWL-Roleplaying and MASLab-ReAct) improves MAS performance. (2) The performance
gains are more significant using stronger LLMs. (3) Our MASLab-ReAct performs the best.

Examining coding-specific methods. We compare two coding-specific methods, MapCoder (Islam
et al., 2024) and EvoMAC (Hu et al., 2025c), on HumanEval and MBPP, using GPT-4o-mini and
LLama-3.3-70B-Instruct as backends. Results in Figure 5 show that the performance is closely
tied to the underlying LLM. Specifically, EvoMAC (Hu et al., 2025c) consistently outperforms
others when paired with GPT-4o-mini, whereas MapCoder (Islam et al., 2024) achieves the best
results with LLaMA-3.3-70B-Instruct, especially on MBPP. This discrepancy may be attributed to
backend-specific prompt optimization: e.g., EvoMAC (Hu et al., 2025c) was primarily developed and
tuned on GPT-4o-mini in its original work.

Examining optimization-based methods. We compare two optimization-based methods,
AFlow (Zhang et al., 2025b) and GPTSwarm (Zhuge et al., 2024), on the MATH (Hendrycks
et al., 2021) dataset. Following AFlow’s (Zhang et al., 2025b) original setup, we apply Claude-3.5-
Sonnet (Anthropic, 2024) as the optimizer and GPT-4o-mini (OpenAI, 2024b) as the executor. The
evaluation protocol during testing matches that used in the optimization process (AFlow’s rule-based
evaluation). Figure 6 reports the required cost for optimization and the achieved performance. We
see that AFlow (Zhang et al., 2025b) incurs the most optimization cost while also achieving the best
performance; while GPTSwarm (Zhuge et al., 2024) experiences performance drop after optimization
in this setup. This discrepancy likely stems from AFlow’s LLM-based optimization being more
effective than GPTSwarm’s numerical approach, suggesting that the strategy of optimization should
be carefully considered to ensure effectiveness.

Examining MAS as AI assistants. While our earlier experiments primarily focus on standard LLM
benchmarks—where improvements from MAS may sometimes appear marginal—this is due to the
current lack of benchmarks specifically tailored to MAS. Nevertheless, such evaluations help establish
a broad understanding of MAS performance across diverse scenarios.

Here, we evaluate MAS on a more suitable benchmark: GAIA (Mialon et al., 2024), which is designed
to assess tool-augmented AI assistants. In this experiment, we provide agents with a suite of tools
including a code executor, web search engine, document reader, and image/audio/video analysis
utilities (see details in Section D.2). We consider two representative MAS methods with iterative

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 8: Examining compute-scaling properties
on GPQA-Diamond. MASLab offers a platform
for readily examining and choosing methods.
Here, we see Self-Consistency and AgentVerse
achieve better cost-performance trade-off.

Figure 9: Examining size-scaling proprieties on
GPQA-Diamond and MMLU-Pro. LLM-Debate
performs the best overall. Some methods (e.g.,
AgentVerse) require the model to attain sufficient
capability before MAS can be effective.

planning and action: OWL-Roleplaying (Hu et al., 2025a), and our implemented MASLab-ReAct,
inspired by the ReAct paradigm (Yao et al., 2023). We run experiments using two recent OpenAI
models—GPT-4.1-mini and GPT-4.1 (OpenAI, 2025). As shown in Figure 7, our findings are as
follows: (1) Equipping agents with tools significantly improves MAS performance, surpassing both
single-agent baselines and tool-less MAS methods. (2) The performance gains from tools are more
pronounced when stronger LLM backends are used. For example, MASLab-ReAct achieves a 91%
relative improvement over the single-LLM baseline when using GPT-4.1-mini, and an impressive
171% improvement with GPT-4.1. (3) Table 5 presents the performance–cost trade-off. MASLab-
ReAct not only achieves the best performance but also consumes less than half the tokens compared
to the second-best method, OWL-Roleplaying. We provide a failure analysis in Figure 10.

4.2 SCALING PROPERTIES

As a unified codebase, our MASLab offers a platform for researchers and practitioners to readily
examine, explore, and choose different methods. For example, we could use MASLab to explore the
scaling properties of different methods by simply modifying some of the configurations.

Scaling compute / inference times. We compare three configurable methods—Self-
Consistency (Wang et al., 2024b), LLM-Debate (Du et al., 2024), and AgentVerse (Chen et al.,
2024)—on GPQA-Diamond (Rein et al., 2023) using Llama-3.3-70B-Instruct (Dubey et al., 2024),
to examine which method has the best compute-scaling property. The configurable parameters are:
the number of parallel solutions (Self-Consistency); the number of debate agents and debate rounds
(LLM-Debate); the number of recruiting agents, loop turns, and criticizing rounds (AgentVerse).
Figure 8 shows: (1) Self-Consistency and AgentVerse achieve the best performance-cost trade-off as
their dots are mostly on the upper left. (2) Scaling the compute can generally enhance the performance
of these examined methods. For AgentVerse, increasing the number of loop turns from 3 to 5 brings
the most performance improvement. For LLM-Debate, increasing the number of agents is more
effective than increasing the number of rounds in this case.

Scaling backend model size. We scale model size using the Qwen-2.5 instruct series (7B, 14B, 32B,
72B), comparing three MAS methods and a single-agent baseline on GPQA-Diamond (Rein et al.,
2023) and MMLU-Pro (Wang et al., 2024c). As shown in Figure 9, we observe the following: (1)
Overall, the performance of all methods improves with increasing model size, suggesting that stronger
LLM backends generally benefit both MAS and single-agent approaches. Notably, LLM-Debate
achieves particularly strong gains on GPQA-Diamond.

(2) On MMLU-Pro, two outliers emerge: AgentVerse with 7B and 14B backends shows significantly
degraded performance compared to other methods. Manual inspection reveals that these smaller
models often fail to follow instruction formats correctly, causing outputs to deviate from the expected
response schema (see Section 4.3 for details). (3) These observations indicate that MAS methods
relying on precise formatting, intermediate reasoning steps, or structured inter-agent communication,
such as role assignment, voting, or sequential planning, may require a minimum threshold of language
competency from the backend model. Below this threshold, the benefits of MAS design may be
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overshadowed by failures in basic task adherence. This highlights an interesting future direction:
designing MAS methods that are more robust to backend model limitations, or adapting interaction
protocols to better accommodate smaller, less capable LLMs.

4.3 FAILURE ANALYSIS

Here, we explore the reasons why MAS methods fail by analyzing the error logs.

Table 3: Error analysis of Agent-
Verse (Chen et al., 2024) using Qwen-
2.5-14B-Instruct as the backend. Expect
for that answers are wrong, all errors are
caused by format errors.
Dataset Wrong Format Others

GPQA-D 79.66% 22.34% 0.00%
MMLU-Pro 47.11% 52.89% 0.00%
MATH 42.56% 57.44% 0.00%

Format errors. Format error is a common type of fail-
ure in many MAS methods, where LLMs fail to produce
responses in the required format. A notable example
occurs during the recruiting step in AgentVerse (Chen
et al., 2024), where LLMs are tasked with outputting
a predefined number of agents in a specific format. To
investigate this, we analyze an outlier case from Figure 9
using Qwen-2.5-14B-Instruct as the model backend. We
classify incorrect outputs into three categories: wrong
answers (i.e., the MAS produces an incorrect final an-
swer), format errors (i.e., the MAS fails to produce a
final answer due to formatting issues), and others. As
shown in Table 3, format errors account for a significant portion of failures. Similar issues are
observed in other methods like MAD (Liang et al., 2024) and DyLAN (Liu et al., 2024). These
findings underscore a critical challenge in LLM-based MAS: success hinges not only on reasoning or
task comprehension but also on the model’s ability to meet strict formatting requirements. Improving
format adherence or relaxing these constraints could significantly enhance system reliability.

Figure 10: Error analysis of OWL-Roleplaying on
GAIA (Mialon et al., 2024) using GPT-4.1 as the
model backend.

Error analysis in tool-augmented scenario.
We investigate the performance of OWL-
Roleplaying on the GAIA benchmark, which
encompasses the most diverse components dur-
ing task-solving, making it an ideal case study
for comprehensive failure analysis. Our analysis
reveals that, in this context, failure cases account
for 66% of all samples. However, only 36.7% of
these failures stem from incorrect final answers,
while 45.0% are attributed to errors in tool us-
age. These findings suggest that future research
should focus not only on enhancing agents’ tool-
handling capabilities but also on improving the
quality of tools themselves—particularly their
stability and efficiency—to create more robust
and effective MAS. We believe that advancements in MCP tools within the open-source community
could significantly contribute to the development of MAS.

5 CONCLUSIONS

This paper introduces MASLab, a unified, comprehensive, research-friendly codebase for LLM-
based multi-agent systems (MAS). (1) MASLab integrates 20+ established methods across multiple
domains, each rigorously validated by comparing step-wise outputs with its official implementation.
(2) MASLab unifies the whole pipeline from data pre-processing to evaluation, ensuring that all
non-algorithmic factors are well aligned for fair comparisons. (3) MASLab implements methods
in a shared streamlined structure, lowing entry barriers and simplifying secondary development.
Extensive experiments covering 10+ benchmarks and 8 LLMs comprehensively showcase the current
landscape of MAS methods. We also provide several analysis, such as exploring the effects of
different evaluation protocols in existing works, the compute- and size-scaling properties. Notably,
we demonstrate that the discrepancies in evaluation protocols can lead to substantial variation in
performance rankings, directly underscoring the importance of such as unified codebase. MASLab
will continue to evolve, tracking the latest developments in the field and incorporating advanced
benchmarks, and welcome diverse contributions from the broader open-source community.
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Protocol LLM-2step LLM-xVerify Rule-HF Rule-DyLAN Rule-Hendry.

Accuracy 98.59 98.35 41.65 65.65 27.29

Table 4: Accuracy comparisons of 5 different evaluation protocols by human’s manual check.
This measurement is based on MATH dataset. The two LLM-based evaluation protocols achieve
significantly higher agreement with human evaluation. LLM-2step is based on two-time inference
of Llama-3.3-70B-Instruct while LLM-xVerify is based on one-time inference of a 9B-sized LLM.
Generally, LLM-xVerify achieves the best effectiveness-efficiency trade-off.

Method Level 1 Level 2 Level 3 All
Acc Cost Acc Cost Acc Cost Acc Cost

GPT-4.1-mini
Single 16.98 663 16.28 353 0.0 1529 13.94 638
SC 22.64 4504 15.12 2412 0.0 8484 15.15 4041
Debate 24.53 4388 16.28 4870 7.69 12972 17.58 5992
AgentVerse 32.08 7174 15.12 7368 7.69 15753 19.39 8627
OWL-Roleplaying 35.85 51543 25.58 58881 11.54 107635 26.67 64206
ReAct-MASLab 33.96 19866 26.74 41768 11.54 55743 26.67 36935

GPT-4.1
Single 24.53 394 16.28 470 3.85 1378 16.97 589
SC 20.75 3037 16.28 3362 11.54 11786 16.97 4585
Debate 32.08 4103 24.42 4339 11.54 11564 24.85 5402
AgentVerse 28.30 6876 18.60 5995 3.85 11034 19.39 7072
OWL-Roleplaying 43.40 48073 30.23 101827 26.92 101986 33.94 84586
ReAct-MASLab 56.60 18278 47.67 35636 19.23 43525 46.06 31303

Table 5: Comparisons of performance and cost on GAIA. The performance is evaluated by accuracy
while the cost is evaluated by the number of costed text tokens per query.

A LLM USAGE DISCLOSURE

In our work, we used GPT-4 to improve readability and language fluency through polishing, and it
was used solely during the writing process. We are solely responsible for the entire content of this
publication, including any contributions generated by the LLM.

B LIMITATIONS

Despite being the most comprehensive codebase in LLM-based MAS, there are still methods that
have not been incorporated yet. Secondly, despite that most of the benchmarks in this paper are
commonly used in MAS literature, they are not specifically designed for the field of MAS. However,
this is not a unique limitation of this paper. We will continually working on this codebase to support
more methods and benchmarks. We also plan to design new benchmarks specifically for MAS in the
future.

C BROADER IMPACTS

This paper introduces a unified, comprehensive, and research-friendly codebase for the community
of LLM-based MAS. This resource alleviates the burden of reproduction for researchers, enabling
them to allocate more effort to innovative algorithm design. It fosters fair comparisons across studies,
lowers the entry barrier for newcomers, and facilitates secondary development, thereby accelerating
progress in the field.

While potential negative impacts of our approach mirror those associated with large language
models—such as ethical concerns and risks of misuse—these issues are intrinsic to LLM usage in
general and do not necessitate further elaboration here.
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Run Optimization Inference
Optimizer Cost Executor Cost Val Acc Test Acc Cost

MASLab 0.58251$ 19.05964$ 54.52 65.20 1.489$
Official - 19.52409$ 53.27 65.06 2.231$

Table 6: Comparisons of our implementation of AFlow (Zhang et al., 2025b) and the official one.
The optimizer is Claude-3.5-Sonnet while the executor is GPT-4o-mini. The official code does not
record the optimizer cost. This table verifies the effectiveness of our re-implementation.

Figure 11: Examinations of trade-offs of performance and cost of nine MAS methods across 10
benchmarks.

D IMPLEMENTATION DETAILS

D.1 COMPUTATIONAL RESOURCES

For open-source LLMs, we leverage the vLLM (Kwon et al., 2023) library launch LLM service. For
32B-, 70B-, and 72B-sized LLMs, we use 4 NVIDIA A100 GPUs; for 14B-sized LLMs, we use 2
NVIDIA A100 GPUs; for 7B-sized LLMs, we use 1 NVIDIA A100 GPU.

D.2 GAIA

GAIA is a challenging benchmark for general AI assistants. In our experiments, we utilize the
validation set of GAIA, which contains a total of 165 samples categorized into three levels of
difficulty. It requires the MAS to engage in multi-turn collaboration to solve the tasks. Both the
OWL-Roleplaying and React-MASLab methods are constrained to a maximum of 12 turns per task.

Toolkits. All methods share a common set of toolkits, including a web interaction tool, a document
processing tool, a video analysis tool, an audio analysis tool, a code execution tool, an image analysis
tool, a search tool, and an Excel tool. Several of these tools incorporate multimodal large language
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models. Except for the audio analysis tool, all such tools utilize the same model version as the one
configured in the main experimental pipeline. The web interaction tool employs the Playwright library
to simulate browser behavior. However, we observe occasional instability during experimentation.
To reduce both runtime and token consumption, we impose strict operational constraints: a 30,000
ms timeout for website navigation, a 20,000 ms timeout for page loading, and a hard cap of 10
web interaction turns per task. Tasks exceeding this limit are forcibly terminated. The document
processing tool supports parsing a wide range of document formats. For web content extraction and
parsing specifically, we employ an external tool called Firecrawl. The video analysis tool extracts
28 evenly spaced frames from each video and uses OpenAI’s Whisper-1 model to transcribe the
audio into text. These frames, along with the transcribed text, are jointly input into a vision-language
model for multimodal analysis. The audio analysis tool processes audio files by encoding them
in Base64 format and feeding them into the GPT-4o-mini-audio-preview model for analysis. The
code execution tool operates by spawning a subprocess that simulates the writing and execution of
Python code in a sandboxed environment. The search tool integrates multiple retrieval backends such
as Google, DuckDuckGo, Wikipedia, and Archive.org, allowing agents to gather information from
diverse sources.

Memory. We simplify the process of memory storage and retrieval for the model. To strike a balance
between performance and token efficiency during memory retrieval, we impose a maximum limit
of 51,200 tokens on the retrieved content. Similarly, we cap the maximum token length for model
output at 12,800 tokens.

Failure analysis. Throughout the experiments, we log MAS outputs and failure cases. After the
experiments, we select results from the OWL-Roleplaying method running on the GPT-4.1 model
and perform a detailed categorization and statistical analysis of the errors encountered.

E RE-IMPLEMENTATION NOTES

E.1 MAS FOR GENERAL TASKS

AutoGen (Wu et al., 2024). Based on the examples proposed in the paper of AutoGen (Wu et al.,
2024) and the guidelines provided in its official documentation (https://microsoft.github.
io/autogen/0.2/), we have developed a foundational workflow that embodies its conversational
characteristics, tailored to solve basic text-level problems with code execution and memory retention.

AgentVerse (Chen et al., 2024). AgentVerse provides several dataset-specific versions including
those for MGSM and HumanEval. we have replicated workflows corresponding to datasets such
as HumanEval and MGSM, aligning with those presented in the original AgentVerse repository
(https://github.com/OpenBMB/AgentVerse) and its paper. Additionally, we develop a
general workflow capable of solving common problems.

LLM-Debate (Du et al., 2024). We notice that the official code in https://github.com/
composable-models/llm_multiagent_debate is not readily executable and that the code
relies on an string operation for extracting answers from responses, which frequently causes errors.
Therefore, we slightly modify the code by making it bug-free and rely on LLM for aggregating final
answers. This significantly enhance the performance of LLM-Debate as it no longer encounter errors
during execution.

GPTSwarm (Zhuge et al., 2024). The official code of GPTSwarm https://github.com/
metauto-ai/GPTSwarm/tree/main/experiments contains versions for MMLU, Hu-
manEval, GAIA, Crosswords. We implement the version of HumanEval and MMLU, and based on
the logic of MMLU, we develop a version for general problem-solving.

DyLAN (Liu et al., 2024). The official code in https://github.com/SALT-NLP/DyLAN
uses a custom answer extraction function to return final mathematical results. To ensure fair compari-
son across evaluation protocols, we modify the return logic of the original code while preserving the
task-specific initialization parameters as defined in the original implementation.

Self-Refine (Madaan et al., 2024). The official implementation in https://github.com/
madaan/self-refine provides dataset-specific prompt examples. Following its logic for solving
mathematical problems, we develop code for general problem-solving. Additionally, since the original

16

https://microsoft.github.io/autogen/0.2/
https://microsoft.github.io/autogen/0.2/
https://github.com/OpenBMB/AgentVerse
https://github.com/composable-models/llm_multiagent_debate
https://github.com/composable-models/llm_multiagent_debate
https://github.com/metauto-ai/GPTSwarm/tree/main/experiments
https://github.com/metauto-ai/GPTSwarm/tree/main/experiments
https://github.com/SALT-NLP/DyLAN
https://github.com/madaan/self-refine
https://github.com/madaan/self-refine


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

code’s extraction logic for mathematical problems is not robust and often results in syntactically
incorrect code, we redesign the extraction function to more effectively extract executable code from
raw LLM responses.

MacNet (Qian et al., 2025). We simplify the structure of waiting.py in https://github.
com/OpenBMB/ChatDev/tree/macnet when reproducing MacNet, but keep its functionality
consistent, mainly in terms of high maintainability and memory safety. In addition to this, we develop
a version for general cases according to their implementation for SRDD.

Reflexion (Shinn et al., 2023). For the method in https://github.com/noahshinn/
reflexion, we implement the HumanEval and MBPP modes for programming tasks. Additionally,
based on the logic of the programming tasks, we develop a version for general problem-solving.

ADAS (Hu et al., 2025b). We notice that the official code in https://github.com/
ShengranHu/ADAS does not support flexible selection of execution models, which makes it
difficult to evaluate the effect of the MAS module and to develop a heterogeneous MAS version.
Therefore, we slightly modify the code to fix existing bugs and to allow users to specify both the meta
LLM and the execution LLM during optimization, as well as choose the execution model during
inference. We also set the temperature to zero and ensure that when using GPT-3.5 as the execution
model (same as in the original repo), the output remains exactly the same. These improvements
significantly enhance the compatibility and extensibility of ADAS.

AFlow (Zhang et al., 2025b). The official code in https://github.com/
FoundationAgents/MetaGPT/tree/main/examples/aflow and https:
//github.com/FoundationAgents/AFlow is very complex and even buggy, we
simplify the format and make sure that the core parts are fully aligned and bug free. In addition we
use AsyncOpenAI when reproducing AFlow to speed up the optimization.

MAV (Lifshitz et al., 2025). We reproduce the MATH and MMLU versions of MAV and develope a
general version based on the MATH version.

E.2 MAS FOR CODING TASKS

MetaGPT (Hong et al., 2024). MetaGPT is an intricate system that presents a considerable challenge
to analysis. Our research reveals that the efficacy of its communication infrastructure on the entire
system is negligible, and its practical impact is confined to modest-scale projects. To facilitate
comprehension, we streamline it into a linear framework, aligning it with the structure of the original
paper. In fact, we find that the existing structure cannot be applied to datasets such as HumanEval
and MBPP.

ChatDev (Qian et al., 2024). ChatDev primarily focuses on the domain of software development.
By leveraging natural language processing techniques, ChatDev enables seamless automation of
the entire software development lifecycle, including the generation of GUIs (graphical user inter-
faces). The complexity of the resulting software is closely tied to the specificity of user-defined
requirements. Based on the official ChatDev paper ((Qian et al., 2024)) and its official repository
(https://github.com/OpenBMB/ChatDev), we adapted a ChatDev workflow within the
MAS-Lab framework tailored to SRDD (Software Requirement Description Dataset), aligning with
the design principles and capabilities demonstrated in the original ChatDev system.

MapCoder (Islam et al., 2024). Our implementation follows the official codebase from https:
//github.com/Md-Ashraful-Pramanik/MapCoder, preserving its core methodology.
However, we note that the original implementation uses a pre-processed version of the HumanEval
dataset, which includes example test cases. To ensure a fair comparison across different methods,
we do not use this pre-processed version. Instead, we augment the framework with a function that
dynamically extracts test cases from the original HumanEval prompts. This modification does not
affect MapCoder’s core logic but ensures all baselines are evaluated under identical conditions.

EvoMAC (Hu et al., 2025c). We collaborate with the authors of EvoMAC, who provide their official
implementation to be integrated into our framework. The method remains unchanged. Together with
the authors, we release this joint implementation as part of our open-source framework, maintaining
full transparency and reproducibility.
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E.3 MAS FOR MATHEMATICAL TASKS

MACM (Lei et al., 2024). MACM is an MAS method specialized in solving mathematical problems
using the code interpreter tool to assist problem solving. Since their official code is specifically
designed for the usage of OpenAI’s Assistants interface, we follow the same LLM usage for this
particular case. In the future, we plan to extend it to support OpenAI’s chat mode.

E.4 MAS FOR SCIENTIFIC TASKS

MedAgents (Tang et al., 2024b). The official code in https://github.com/gersteinlab/
MedAgents supports multiple working modes. We fully reproduce all modes and set the default
mode to match the original repository’s default configuration, keeping all other external parameters
consistent with the original defaults.

E.5 MAS FOR TOOL-REQUIRED TASKS

OWL-Roleplaying (Hu et al., 2025a). OWL (https://github.com/camel-ai/owl) is a
framework for multi-agent collaboration. This framework includes OWL-Roleplaying as a MAS
method specifically designed for the GAIA benchmark (Mialon et al., 2024). This framework may
introduce massive token consumption for each specific task/query. Considering the research-friendly
nature of the our MASLab framework, several trade-offs and simplifications are made during the
adaptation of this method to MASLab, with a focus on enhancing code readability and reducing
computational costs. Overall, the main process of OWL is maintained during the adaptation while
we limit the maximum retrying times considering economy. For example, we set stricter limitations
on the use of the web tool to mitigate the substantial token costs associated with frequent web
interactions.

ReAct-MASLab (Yao et al., 2023). Building upon the toolkits from OWL, we propose a method
ReAct-MASLab inspired by the ReAct (Yao et al., 2023) method. This method achieves better
performance with lower cost compared to OWL-Roleplaying.
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