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Abstract

We propose active generation of Pareto sets (A-
GPS), a framework for online discrete black-box
multi-objective optimization that learns a gener-
ative model of the Pareto set while supporting a-
posteriori preference conditioning. A-GPS avoids
costly hyper-volume computations and enables
flexible sampling across the Pareto front without
retraining. Experiments on synthetic functions
and protein design tasks show strong sample effi-
ciency and effective preference incorporation.

1. Introduction
Scientific and engineering applications often require op-
timizing complex, high-dimensional discrete objects via
expensive black-box evaluations. Examples include design-
ing protein sequences, small molecules, or DNA constructs,
where each evaluation involves costly simulations or assays,
making efficient search essential. These problems com-
monly involve multiple, conflicting objectives, e.g., balanc-
ing thermal stability, catalytic activity, and yield in protein
engineering. The set of non-dominated solutions, known as
the Pareto set, captures optimal trade-offs and is critical for
downstream decision-making.

Traditional multi-objective Bayesian optimization (MOBO)
approaches rely on acquisition functions like expected hyper-
volume improvement (EHVI) (Yang et al., 2019; Daulton
et al., 2020; Ament et al., 2023) or random scalarizations
(Knowles, 2006; Paria et al., 2020; De Ath et al., 2022).
These either scale poorly with the number of objectives or
require dense sampling to capture complex Pareto fronts.

We propose a different approach inspired by multi-objective
generation (MOG) methods (Yuan et al., 2025; Yao et al.,
2024): we directly learn a generative model of the Pareto
set in an online black-box setting. Building on variational
search distributions (VSD) (Steinberg et al., 2025), which al-
ternates between fitting a class probability estimator (CPE)
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Figure 1: (a) Our approach to learning a generative model
of Pareto sets supporting preference conditioning for which
we use preference direction vectors u that are defined from
observed or desired user’s outcomes. New binary labels
z and a are created, determining Pareto set membership
and alignment between the design x and u, respectively.
(b) A-GPS learns all the the distributions involved by opti-
mizing different components of a reverse Kullback-Leibler
(KL) loss. At time t, the optimized variational distribution
qϕ(x|u) with parameters ϕ∗t is used to generate new designs
that can incorporate new user’s preferences u∗. We iterate
until a convergence/user criterion is satisfied.

and updating a generative model of high-performing de-
signs, we introduce a Pareto-set class probability estimator
(CPE) to focus learning on non-dominated regions. This
avoids hyper-volume computation and scalarization, yield-
ing a scalable alternative to existing methods. To enable
preference-aware sampling, we further introduce preference
direction vectors for conditioning the model post hoc on
user-specified trade-offs. Using amortized variational infer-
ence (VI), our method supports flexible, preference-guided
exploration without retraining. We demonstrate that active
generation of Pareto sets (A-GPS) outperforms baselines
across synthetic and protein design benchmarks. Related
work is discussed in Appendix D.

2. Preliminaries
In this section we briefly recall the concepts of black-box
multi-objective optimization (MOO) and active generation.

2.1. Optimizing over multiple objectives

In this work we are concerned with generating discrete or
mixed discrete-continuous designs, for example sequences

1
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x ∈ X = VM , where V is the sequence vocabulary and M
is the sequence length, that have particular measurable prop-
erties y ∈ RL. We assume the ‘black-box’ relationship y =
f �(x) + ϵ where f �(x) = [f�1(x), . . . , f�l(x), . . . , f�L(x)]
and Ep(ϵ)

[
ϵ
]
= 0. The black-box function f �(·) could be an

empirical observation, or an expensive physics/chemistry
simulation, etc. In MOO we would like to find the set S
such that, S = argmaxx∈X f �(x). Often the objectives, f �,
are in conflict with one another, and so there does not exist
one unique feasible maximizer. Instead, we are interested in
finding the set of designs for which we cannot increase one
objective without compromising others. This is known as
the Pareto set SPareto ⊂ X ,

SPareto = {x : x′ ̸≻ x, ∀x′ ∈ X}, (1)

where x′ ≻ x refers to x′ dominating x, i.e., all of the
objective function values for x′ are greater than or equal to
those of x, and at least one is greater,

x′ ≻ x iff f�l(x′) ≥ f�l(x) ∀l ∈ {1, . . . , L} and

∃l ∈ {1, . . . , L} such that f�l(x′) > f�l(x). (2)

The Pareto set also induces the Pareto front, FPareto :=
{f �(x) : ∀x ∈ SPareto}, which is the image of the Pareto set
outcomes in RL.

For data collected DN = {(yn,xn)}Nn=1 we define the
empirical Pareto set similarly to above and and a empirical
Pareto set membership label, zn = 1[xn ∈ S̃Pareto] where
1[·] : {True,False} → {1, 0}.

2.2. Active generation

Active generation as implemented by Steinberg et al. (2025)
reframes online black-box optimization as sequential learn-
ing of a conditional generative model, guided by a CPE.
At each round, t ∈ {1, . . . , T} we: (1) fit a CPE (using
some proper loss, LCPE), πθ(x) ≈ p(z = 1|x), parameter-
ized by θ and where z = 1[x ∈ S] indicates membership
in some desired set, S. For example, designs fitter than
the current incumbent, x∗

t . Then (2) update the generative
model qϕ(x), e.g. by minimizing the reverse KL divergence
to the ideal conditional, p(x|z), or equivalently maximizing
the evidence lower bound (ELBO),

LELBO(ϕ, θ) = Eqϕ(x)
[
log πθ(x)

]
−DKL[qϕ(x)∥p(x|D0)] ,

where p(x|D0) is a prior over the design space. Using data
DzN = {(xn, zn)}Nn=1, active generation optimizes, θ∗t ←
argminθ LCPE(θ,DzN ) and ϕ∗t ← argmaxϕ LELBO(ϕ, θ

∗
t ),

then samples from qϕ∗
t
(x) are used to propose new can-

didates for evaluation. New labels are acquired for these
candidates, the dataset is augmented, and the process is re-
peated until convergence. This solution to active generation
is referred to as VSD (Steinberg et al., 2025). Under certain
assumptions on the form of the models, this procedure has
proven convergence rates to the ideal p(x|z).

3. Incorporating User Preferences
In multi-objective optimization (MOO), practitioners invoke
subjective preferences to single out a subset of designs to
meet application-specific requirements. Ideally, we would
like not only to incorporate these subjective preferences but
also to avoid retraining our active generation framework
every time a new preference is given.

3.1. Preference vectors and alignment indicators

As we will see in section 4, our solution to incorporating user
preferences for active generation is based on amortization.
In other words, rather than estimating a model qϕ(x) as in
VSD, we will learn a conditional model of the form qϕ(x|u).
Consequently, we introduce preference direction vectors
u ∈ U where U = {u ∈ RL : ∥u∥2 = 1}, defined from
observed or desired (subjective) user specified outcomes. In
our experiments, we train our method using

un = g(yn) :=
yn − r

∥yn − r∥2
. (3)

These unit vectors capture the relative emphasis among ob-
jectives in a single geometric object. Given a trained model,
a user can specify their own preferences via u⋆ = g(y⋆) and
our approach will generate solutions from qϕ(x|u⋆). We
note here that, instead of achieving uniform performance
over all possible us, our goal is to prioritize exploration of
designs in certain regions of the Pareto set, and not others.
Importantly, our generative model needs to enforce that gen-
erated samples respect a user’s desired trade-off. Therefore,
we define an alignment indicator, a ∈ {0, 1}, that labels
each (x,u) pair as ‘aligned’ if it achieves correct projection
onto the preference direction.

Preference directions generalize (convex) scalarization
weights to a generative setting: any λ can be mapped to
a unit-norm vector u = λ/∥λ∥2, and conversely each u
induces a unique normalized weight. By conditioning on
(u, a) rather than λ alone, our generative Pareto-set model
becomes both more flexible (no retraining for new trade-
offs) and more faithful to non-dominance structure. We
visualize these preference direction vectors in Figure 1a.

4. Amortized Active Generation of Pareto Sets
We now have all the components to describe our amor-
tized active generation framework that learns to generate
(approximate) solutions in the Pareto set, conditioned on
user preferences. We call our method active generation of
Pareto sets (A-GPS), and it begins by generalizing the ac-
tive generation objective in Steinberg et al. (2025). That is,
for each round, t, we minimize the reverse KL divergence
between the generative model qϕ(x|u) and an underlying

2
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(unobserved) true model p(x|u, z, a),

ϕ∗t = argmin
ϕ

DKL[qϕ(x|u)p(u|z)∥p(x|u, z, a)p(u|z)] ,

= argmin
ϕ

Ep(u|z)
[
DKL[qϕ(x|u)∥p(x|u, z, a)]

]
. (4)

The inclusion of p(u|z) rewards learning an amortized gen-
erative model, qϕ(x|u), over the distribution of the rele-
vant preference directions. Naturally we cannot evaluate
p(x|u, z, a) directly, and so we appeal to Bayes’ rule,

p(x|u, z, a) = 1

Z
p(z|x,u)p(a|x,u)p(x|u). (5)

Here we have assumed conditional independence between
z and a given x and u, and since Z = p(z, a|u) is a con-
stant w.r.t. x, we will omit it from our objective. We make
a further simplifying assumption that a-priori p(x|u) =
p(x|D0), and then we rely on the likelihood guidance terms,
p(z|x,u)p(a|x,u), to capture the joint relationship between
(x,u) in the variational posterior. We justify this decision
by noting that the relationship, x|u, may be difficult to rea-
son about a-priori, and requiring such a prior would then
preclude the use of pre-trained models for p(x|D0). Putting
this all together results in the following equivalent amortized
ELBO objective, ϕ∗t = argmaxϕ LA-ELBO(ϕ)where,

LA-ELBO(ϕ) = Ep(u|z)︸ ︷︷ ︸
Direction dist.

[
Eqϕ(x|u)

[
log p(z|x,u)︸ ︷︷ ︸

Pareto CPE

+ log p(a|x,u)︸ ︷︷ ︸
Align. CPE

−DKL[qϕ(x|u)∥p(x|D0)]
]]
. (6)

We will now discuss how we estimate each of these compo-
nents in turn, leading to the A-GPS algorithm presented in
Appendix C.

4.1. Estimating A-GPS’s component distributions

Preference direction distribution, p(u|z). Since we
observe un, we can approximate empirically p(u|z) ≈
|S̃Pareto|−1

∑N
n=1 zn 1[u = un]. However, we find that this

can occasionally lead to an overly exploitative strategy
for black-box optimization. Instead, we use maximum
likelihood to learn a parameterized estimator qγ(u) ≈
p(u|z), with data DzN = {(xn,un, zn)}Nn=1, γ∗t =
argminγ LPref(γ,DzN ) ,where

LPref(γ,DzN ) = − 1

|S̃Pareto|

∑N

n=1
zn log qγ(un). (7)

Examples of appropriate parametric forms are von Mises-
Fisher distributions, power spherical distributions (De Cao
& Aziz, 2020) or normalizing flows (Rezende et al., 2020).
We find Normal distributions, or mixtures, normalized to
the unit sphere are more numerically stable than some of the
specialized spherical distributions, see Sec. H.1 for more
detail.

Pareto CPE, p(z|x,u). As per the original VSD, we de-
fine a CPE to directly discriminate over the solution set,
which in this case is S̃Pareto. With data, Dz

N , we use the
log-loss,

LzCPE(θ,DzN ) = − 1

N

∑N

n=1
zn log πθ(xn,un)

+ (1− zn) log(1− πθ(xn,un)), (8)

where πθ(x,u) is a discriminative model parameterized by
θ, e.g. a neural network. To acquire labels zn defining Pareto
set membership we could make use of fast dominance check-
ing (Kung et al., 1975). In practice we find the dominance
checker in Balandat et al. (2020) sufficient for our purposes.

Preference alignment CPE, p(a|x,u). Since we do not
wish to require a strong prior, p(x|u), to be our only source
of preference alignment information, we instead explicitly
reward alignment in our conditional generative model by
using a CPE guide. We create contrastive data for train-
ing this guide, DaN = {(an = 1,xn,un)}Nn=1 ∪ {(ãn =
0,xn,uρ(n)}Nn=1 where the second set are purposefully mis-
aligned by a random permutation, ρ : N→ N. This results
in the log-loss,

LaCPE(ψ,DaN ) = − 1

N

∑N

n=1
log πψ(xn,un)

− 1

N

∑N

n=1
log(1− πψ(xn,uρ(n))), (9)

where πψ(x,u) is our CPE parameterized by ψ.

4.2. Learning A-GPS’s variational distribution

To learn qϕ(x|u), we can now re-write our amortized ELBO,
Equation 6, in terms of these estimated quantities,

LA-ELBO(ϕ, θ, ψ, γ) = Eqγ(u)
[
Eqϕ(x|u)

[
log πθ(x,u)

+ log πψ(x,u)
]
− DKL[qϕ(x|u)∥p(x|D0)]

]
. (10)

We find that using ‘on-policy’ gradient estimation methods,
such as REINFORCE (Williams, 1992; Mohamed et al.,
2020), are very slow when we have complex variational dis-
tribution forms, qϕ(x|u), such as long short-term memory
(LSTM) recurrent neural networks (RNNs) or decoder-only
Transformers. This is because we have to set a low learning
rate as the variance of this estimator can induce exploding
gradients for long sequences, and new samples have to be
drawn from the variational distribution every iteration of
stochastic gradient descent (SGD). So instead we use an
‘off-policy’ gradient estimator with importance weights to
emulate the on-policy estimator, see Appendix B for details.

4.3. Generating Pareto-set candidates for evaluation

In round t, we are free to choose ubt based on prefer-
ences, or if we do not have specific preferences to in-
corporate into the query we could sample {ubt}Bb=1 ∼

3
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(a) Negative Branin-Currin (b) DTLZ2 (c) ZDT3

Figure 2: Experimental results on three test functions commonly used in the MOBO literature. The top row reports
hyper-volume indicator (HVI) per round, the bottom row demonstrates amortized preference conditioning.

∏B
b=1 qγ∗

t
(u). To recommend candidates for black-box

evaluation we sample a set of B designs from our search
distribution, {xbt}Bb=1 ∼

∏B
b=1 qϕ∗

t
(x|ubt), where ϕ∗t =

argmaxϕ LA-ELBO(ϕ, θ
∗
t , ψ

∗
t , γ

∗
t ) . We present the full on-

line optimization algorithm in Appendix C.

5. Experiments
We evaluate A-GPS on a number of benchmarks and com-
pare it to some popular baselines. We report results on
synthetic data here and on real applications in Appendix F,
with all experimental details in Appendix I.

Synthetic test functions: A detailed description of these
functions and/or their Pareto-front geometries can be found
in Appendix E and Zhang & Li (2007); Belakaria et al.
(2019). Although A-GPS was originally developed for dis-
crete/mixed spaces, we directly apply it to these continuous
domains using a conditional Gaussian generative model,
qϕ(x|u) = N

(
x
∣∣µ(u),σ2(u)

)
with mean and variance, µ

and σ2, given by a neural network (NN). We find that it
nonetheless achieves strong performance.

The top row of Figure 2 reports mean hyper-volume versus
optimization round (with shaded bands indicating ±1 std
from 5 runs). All methods use 64 training points, and then
recommend 5 candidates per round. On Branin–Currin,
A-GPS (yellow) rapidly outpaces the Gaussian process
(GP)–based baselines (qNEHVI (Daulton et al., 2021), qE-
HVI and qNParEGO (Daulton et al., 2020)), achieving
higher front coverage with fewer evaluations. On the non-

convex DTLZ2 and more fragmented ZDT3 landscapes, all
methods converge to similar final hyper-volumes (excepting
qNParEGO), but A-GPS nevertheless matches their sam-
ple efficiency despite its non-GP, generative formulation.
The bottom row of Figure 2 illustrates preference condi-
tioning: each panel plots the sampled Pareto front (dots)
from qϕ(x|u∗) colored by three representative preference
directions u∗ (see Sec. E.1). In most cases our generated
samples (dots) correspond to their preference direction vec-
tors (arrows), except for the yellow arrow in the Branin-
Currin experiment. This preference direction points just
outside S̃Pareto, and so illustrates how our amortized model
behaves under unrealistic preference requests. Though typi-
cally we can rectify this behavior by marginalizing over all
p(u) instead of p(u|z), if we are prepared to reduce sam-
ple efficiency. Overall, these results show that A-GPS not
only excels at front approximation but also supports flexi-
ble, a-posteriori preference conditioning across a variety of
continuous landscapes.

Discussion and Conclusion We have developed active
generation of Pareto sets (A-GPS), a method learns a
preference-conditioned generative model qϕ(x|u) of the
Pareto set using flexible architectures, including LSTMs
and transformers. Unlike diffusion-based approaches, A-
GPS is modular and adaptable. Empirical results on syn-
thetic benchmarks and protein design tasks show strong
performance. We expect this framework to enable future ex-
tensions with diverse generative architectures for large-scale
multi-objective optimization.
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Algorithm 1 A-GPS optimization loop.

Require: Initial dataset DN , black-box f �, prior p(x|D0), CPEs πθ(x,u) and πψ(x,u), variational families qγ(u) and qϕ(x|u),
alignment threshold τ , budget T and B.

1: function FITMODELS(DN )
2: DzN ← {(zn,xn,un)}Nn=1, where zn = 1[xn ∈ S̃Pareto] and un = (yn − r)/∥yn − r∥
3: DaN ← {(an=1,xn,un)}Nn=1 ∪ {(an=0,xn,uρ(n))}Nn=1

4: γ∗← argminγ LPref(γ,DzN )
5: θ∗← argminθ LzCPE(θ,DzN )
6: ψ∗← argminψ LaCPE(ψ,DaN )
7: ϕ∗← argmaxϕ LA-ELBO(ϕ, θ

∗, ψ∗, γ∗)
8: return ϕ∗, θ∗, ψ∗, γ∗

9: for round t ∈ {1, . . . , T} do
10: ϕ∗

t , θ
∗
t , ψ

∗
t , γ

∗
t ← FITMODELS(DN )

11: {ubt}Bb=1← sample qγ∗t (u)
12: {xbt}Bb=1← sample qϕ∗

t
(x|ubt) ∀b ∈ {1, . . . , B}

13: {ybt}Bb=1← {f �(xbt) + ϵbt}Bb=1

14: DN ←DN ∪ {(xbt,ybt)}Bb=1

15: ϕ∗, θ∗, ψ∗, γ∗← FITMODELS(DN )
16: return ϕ∗, θ∗, ψ∗, γ∗

A. Limitations and Broader Impacts
A limitation with A-GPS, and one that it shares with many MOBO and MOG methods, is that it can be hard to specify
algorithm hyper-parameters a-priori—before new data has been acquired—and the settings of these hyper-parameters can
effect real-world performance. We are mindful of this in our implementation and design of A-GPS in that it comprises
components that can be independently trained and validated meaningfully on the training data at hand (e.g. the CPEs,
preference distribution and prior if appropriate).

We attempt to give an honest accounting of our method, and do make an attempt to show some of its failure modes and
limitations that we have encountered, as well as its strengths. This work is motivated by applications that aim to improve
societal sustainability, for example, through the engineering of enzymes to help control harmful waste. However, as with
many technologies, it carries the risk of misuse by malicious actors. We, the authors, explicitly disavow and do not condone
such uses.

B. Gradients

∇ϕLA-ELBO(ϕ, θ, ψ, γ) = Eqϕ′ (x|u)qγ(u)
[
w(x,u) ·

(
log πθ(x,u) + log πψ(x,u)− log

qϕ(x|u)
p(x|D0)

)
∇ϕ log qϕ(x|u)

]
. (11)

Here w(x,u) = qϕ(x|u)/qϕ′(x|u), or some normalized version (Rubinstein & Kroese, 2016), are the importance weights
(Precup et al., 2000; Burda et al., 2016). Now we use S samples from x(s) ∼ qϕ′(x|u(s)), to approximate the expectation
in Equation 11, where we sample S once each round (t) and when the effective sample size drops below a predetermined
threshold (0.5S). We typically choose ϕ′ = ϕ∗t−1, or if we choose ϕ′ = ϕ we recover on-policy gradients. We then use
these gradients with an appropriate SGD algorithm, such as Adam (Kingma & Ba, 2014), to optimize for ϕ∗t .

C. The A-GPS Algorithm
The A-GPS algorithm is described in Algorithm 1.

D. Related Work
Our work sits at the intersection of online black-box optimization, generative modeling, and user-guided multi-objective
search. We organize existing methods along three primary dimensions: whether they operate online or offline, whether
they directly optimize acquisition functions or learn conditional generative models for optimization, if they use guidance or
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Table 1: Comparison of recent MOG and related techniques. ‘✓’ means the method has the feature, ‘✗’ the method lacks the
feature and ‘–’ the method can be extended to incorporate the feature. ‘Modular’ refers to the non-specific nature of the
variational distribution used by conditioning by adaptive sampling (CbAS), VSD and A-GPS, i.e., it can be chosen based on
the task.

Method Designed for MOO

Online black-box optim
ization (BBO)

Amortiz
ed preference conditio

ning

Non-convex Pareto front

Discrete/mixed X

Generative pref. model, qγ
(u

)

Generative obs. model, qϕ
(x

)

Guide
LaMBO (Stanton et al., 2022) ✓ ✓ ✗ ✓ ✓ ✗ Masked LM nEHVI

LaMBO-2 (Gruver et al., 2023) ✓ ✓ ✗ ✓ ✓ ✗ Diffusion nEHVI
Pareto Set Learning (PSL) (Lin et al., 2022) ✓ ✓ ✓ ✓ ✗ ✗ Deterministic MLP Scalarization

GFlowNets (Jain et al., 2023) ✓ ✓ ✓ ✓ ✓ ✗ GFlowNets Scalarization
ParetoFlow (Yuan et al., 2025) ✓ ✗ ✗ ✗ ✓ – Diffusion Scalarization

PROUD (Yao et al., 2024) ✓ ✗ ✗ ✓ – ✗ Diffusion Multiple grad. desc.
Preference Guided Diffusion (Annadani et al., 2025) ✓ ✗ ✗ ✓ ✗ ✗ Diffusion Preference CPE

CbAS (Brookes et al., 2019) – – ✗ ✓ ✓ ✗ Modular Dominance CPE
VSD (Steinberg et al., 2025) – ✓ ✗ ✓ ✓ ✗ Modular Dominance CPE

A-GPS (ours) ✓ ✓ ✓ ✓ ✓ ✓ Modular Dominance CPE

amortization for generation.

Online vs. Offline. Traditional MOBO methods, such as hypervolume-based acquisitions (EHVI, noisy expected hyper-
volume improvement (nEHVI), and their variants), and entropy search (Yang et al., 2019; Daulton et al., 2020; 2021;
Hernández-Lobato et al., 2016) and scalarization methods (Knowles, 2006; Zhang & Li, 2007; Paria et al., 2020; De Ath
et al., 2022), operate online by sequentially querying the black-box using acquisition rules that balance exploration and
exploitation. In contrast, offline MOG approaches like ParetoFlow and guided diffusion frameworks (Yuan et al., 2025;
Yao et al., 2024; Annadani et al., 2025) train generative models from a fixed dataset of evaluated designs, without further
oracle queries. While these offline methods can leverage rich generative priors, they have not been designed to adapt to new
information.

Generative Models vs. Acquisition Optimization. Recent advances in “active generation” recast black-box optimization
as fitting conditional generative models to high-value regions, guided by predictors and/or acquisition functions. Methods
like VSD, GFlowNets, and diffusion-based solvers (Steinberg et al., 2025; Jain et al., 2023; Dhariwal & Nichol, 2021;
Gruver et al., 2023) show that generative search can match or exceed traditional direct acquisition function optimization,
particularly in large search spaces. However, existing generative frameworks often need re-training to integrate subjective
preferences. Similarly, all direct acquisition optimization methods require additional optimization runs to incorporate new
preferences. An exception is Pareto set learning (Lin et al., 2022), which learns a neural-net, that maps from scalarization
weights to designs.

Guidance vs. Amortization. Or inference-time vs. re-training/fine-tuning based search. Guided generation methods, such
as those based on guided diffusion and flow matching (Gruver et al., 2023; Yao et al., 2024; Yuan et al., 2025; Annadani
et al., 2025) use a pre-trained generative model, from which samples are then guided at inference time such that they are
generated from a conditional generative model, leaving the original generative model unchanged. It has been noted in
(Klarner et al., 2024) that guided methods, though computationally efficient, may suffer from co-variate shift issues when
guiding too far from the support of the pretrained model. Conversely, amortized methods such as (Steinberg et al., 2025;
Wang et al., 2025) explicitly re-train or fine-tune the generative model to condition it, thereby circumventing these co-variate
shift issues at the cost of more computation, but allowing for less constrained exploration in online scenarios.

Our A-GPS approach unifies these dimensions: it learns a conditional generative model online, bypasses explicit acquisition
optimization, and uses amortization to avoid co-variate shift. Table 1 compares key features across representative MOG
methods.

E. Synthetic Test Functions
To demonstrate the efficacy of A-GPS on classical multi-objective landscapes, we evaluate on three two-objective (L = 2)
continuous (x ∈ RD) problems commonly used for MOBO (Zhang & Li, 2007; Belakaria et al., 2019; Balandat et al.,
2020):
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Branin-Currin (D = 2): We optimize the negative Branin-Currin convex pair. We found the negative of this function has a
more interesting Pareto front while remaining a challenging MOBO task.
DTLZ2 (D = 3): A smooth, spherical front in the negative orthant, which tests an algorithm’s ability to approximate
non-convex curved manifolds in higher dimensions.
ZDT3 (D = 6): A discontinuous non-convex front comprised of several disconnected segments, which stresses an
optimizer’s capacity for both exploration and front-segment coverage.

E.1. Preference directions

These u∗ were chosen by,

y∗ ∈ {[QF̃1
Pareto

(0.9), QF̃2
Pareto

(0.1)], [Av(F̃1
Pareto),Av(F̃2

Pareto)], [QF̃1
Pareto

(0.1), QF̃2
Pareto

(0.9)]}, (12)

where Q is an empirical quantile function and Av denotes the set mean of each dimension, l, of the empirical Pareto front,
F̃ lPareto. We then use Equation 3 to convert these into u∗ with a problem specific reference point r.

F. Experiments on Real Data
F.1. Ehrlich vs. Naturalness

We now evaluate A-GPS on a challenging two-objective ‘peptide’ design task that couples the Ehrlich synthetic landscape
(Stanton et al., 2024) with a ProtGPT2 (Ferruz et al., 2022) ‘naturalness’ score. The Ehrlich function has been designed
to emulate key aspects of protein fitness; it maps each discrete sequence to a scalar by embedding combinatorial ‘motif’
interactions in a highly rugged and multi-modal terrain. Its epistatic peaks and valleys capture the statistical complexity of
peptide design, yet it is entirely artificial, bearing no biochemical or evolutionary validity. In stark contrast, ProtGPT2’s
log-probability reflects genuine amino-acid patterns learned from 250 million real proteins. We use protein sequences
X = VM where |V| = 20 and M ∈ {15, 32, 64}. The two objective are,

f�1(x) = Ehrlich(x), f�2(x) = 15−1(log pProtGPT2(x) + 15), (13)

where we scale ProtGPT2’s score to be in a comparable range as the Ehrlich function for sensible scaling of HVI. We
compare against CbAS (Brookes et al., 2019) and VSD (Steinberg et al., 2025), which we have modified to use the same
Pareto CPE as A-GPS, and against the guided diffusion LaMBO-2 method of (Gruver et al., 2023), which is formulated
for discrete MOBO tasks. CbAS and VSD use a causal transformer architecture and a LSTM for their qϕ(x). A-GPS uses
the same base architectures, but embeds u for it’s prefix token to condition the transformer, and uses FiLM (Perez et al.,
2018) for conditioning the LSTM. The same (unconditional) architectures are used as priors, which are trained on the initial
sequences using maximum likelihood. We also compare to a naı̈ve random mutation method that can randomly mutate 3
amino acids per sequence per round.

Results are reported in Figure 3 for 10 runs from random starting conditions (bands indicating ±1 std). All methods are
given 128 training samples, and the recommend batches of size 32 per round. We use the poli and poli-baselines
libraries for running the benchmarks and LaMBO-2 baseline (González-Duque et al., 2024). A-GPS performs favorably
compared to most other methods, though the challenging epistatic and discrete nature of the Ehrlich function results in a
large deviation between runs.

F.2. RaSP vs. Naturalness

For the final experiment we wish to optimize rapid stability predictions (RaSP) (Blaabjerg et al., 2023) against the same
ProtGPT2-based naturalness score we used in the previous experiment. RaSP is a deep-learning model trained to predict
the thermodynamic stability of protein structures, which is of particular importance in protein engineering if, e.g. we are
designing proteins for an industrial application. The task is to engineer the DsRED.M1 protein from (Stanton et al., 2022),
which is a longer sequence with with M = 217, to maximize its stability and naturalness scores defined by

f�1(x) = 100−1(RaSP(x) + 100), f�2(x) = 15−1(log pProtGPT2(x) + 15), (14)

again using scaling to make the scores more comparable with HVI. The experimental setting is the same as for the M = 64
Ehrlich vs. Naturalness setting, and we report results in Figure 4. Interestingly in this experiment A-GPS-LSTM would
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(a) M = 15 (b) M = 32 (c) M = 64

Figure 3: Ehrlich function vs. ProtGPT2 naturalness score. A-GPS, VSD and CbAS with different variational distributions;
LSTM and transformer (TFM), compared against a random mutation and LaMBO-2 baselines.

(a) Hyper-volume (b) A-GPS-LSTM (c) VSD-Transformer (d) Random Mutations

Figure 4: Rapid stability predictions (RaSP) vs. ProtGPT2 naturalness score. (b) to (d) visualize the sampled yn as well as
the estimated F̃Pareto. Samples are colored by batch round number, t.

find a disconnected section of the Pareto front about half the time that no other method would find; we have visualized this
in Figure 6b. Unfortunately no other method seemed to improve HVI over the random method, even though they were
consistently more efficient at sampling the estimated Pareto set, see Figure 6c and Figure 6d.

G. Extra Experiments
G.1. Missing LaMBO-2 comparisons

The version of LaMBO-2 (Gruver et al., 2023) implemented in poli-baselines (González-Duque et al., 2024) is not
natively a MOO solver, even though the original method is when using an EHVI acquisition function.

As a consequence, we were not able to achieve a performance adequate to represent the original work’s capabilities in
time for the main paper deadline. Subsequently, we been able to improve the poli-baseline implementation, and so
re-present the results from Figure 3 and Figure 4 here in Figure 5 and Figure 6.

H. Architectural Details
H.1. Preference direction distributions

In all the experiments we use a mixture of isotropic Normal distributions where the samples have been constrained to the
unit norm,

qγ(u) =

K∑
k=1

wkN∥u∥(u|µk,σ2
k), (15)

and γ = {(µk,σk)}Kk=1. Typically, we find K = 5 is sufficient. We learn this via maximum likelihood as per Equation 7,
but we add an extra regularisation term: − 1

K

∑K
k=1(∥µk∥ − 1)2 so the magnitude of the mixture means is controlled (and

does not decrease to 0 or increase to ±∞). We have compared this to von Mises distributions, and find it more numerically
stable, we also find no tangible benefit using more complex spherical normalizing flow representations (Rezende et al.,
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2020). Furthermore, we find that the performance is similar to, if not slightly superior to, the empirical approximation,

qγ(u) = |S̃Pareto|−1
N∑
n=1

zn 1[u = un], (16)

where γ = {un : zn = 1}Nn=1. Though on occasions when only a few observations define the Pareto front, we find that
using this representation can lead to an overly exploitative strategy.

H.2. Sequence variational distributions

In this section we summarize the main variational distribution architectures considered for A-GPS VSD and CbAS. For the
sequence experiments we implemented auto-regressive variational distributions of the form,

qϕ(x) = Categ(x1|softmax(ϕ1))

M∏
m=2

qϕ1:m
(xm|x1:m−1) where, (17)

qϕ1:m(xm|x1:m−1) =

{
Categ(xm|softmax(LSTM(xm−1, ϕm−1:m))),

Categ(xm|softmax(DTransformer(x1:m−1, ϕ1:m))).

For a LSTM RNN and a decoder-only transformer with a causal mask, for the latter see (?)Algorithm 10 & Algorithm
14]phuong2022formal for maximum likelihood training and sampling implementation details respectively. We list the
configurations of the LSTM and transformer variational distributions in Table 2. We use additive positional encoding for all
of these models. When using these models for priors or initialization of variational distributions, we find that over-fitting
can be an issue. To circumvent this, we use early stopping for larger training datasets, or data augmentation techniques for
smaller training datasets (as in the case of the Ehrlich functions).

As mentioned in the text, for the conditional generative models, qϕ(x|u), for A-GPS, we use the same architectures already
discussed, but also learn a sequence prefix embedding from u, aswell as a simple 1-hidden layer MLPs for implementing
FilM (Perez et al., 2018) adaptation of the sequence token embeddings,

em = em−1 ◦ (1 + fα(u)) + fβ(u), where e0 = fprefix(u). (18)

Here ◦ indicates element-wise product, and fα and fβ are the FiLM MLPs , and fprefix is the prefix embedding MLP
(often we find just a linear projection is adequate), and em are the LSTM or transformer embeddings. We initialize the
LSTM/transformer weights in these models from their non-conditional counterparts when they are used as priors.

H.3. Class probability estimator architectures

For all of our experiments we share the same architecture for both πθ(x,u) and πψ(x,u). On the continuous synthetic test
functions we use the MLP in Figure 7 (a), where we simply concatenate the inputs x and u. Here Skip is a skip connection,
implementing a residual layer.

(a) M = 15 (b) M = 32 (c) M = 64

Figure 5: Ehrlich function vs. ProtGPT2 naturalness score. A-GPS, VSD and CbAS with different variational distributions;
LSTM and transformer (TFM), compared against a random mutation and LaMBO-2 baselines.
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(a) Hyper-volume (b) A-GPS-LSTM (c) VSD-Transformer (d) Random Mutations

Figure 6: RaSP vs. ProtGPT2 naturalness score. (b) to (d) visualize the sampled yn as well as the estimated F̃Pareto. Samples
are colored by batch round number, t.

Table 2: LSTM and transformer network configuration.

Ehrlich vs. Nat RaSP vs. Nat.
↓ Property / M → 15 32 64 217

LSTM Layers 3 3 3 3
Network size 32 32 64 64

Embedding size 10 10 10 10
FiLM hidden size 80 80 80 80

Transformer Layers 2 2 2 2
Network Size 32 64 128 128

Attention heads 1 2 3 3
Embedding size 10 20 30 30

FiLM hidden size 80 160 240 240

For the sequence experiments we use the convolutional architecture given in Figure 7 (b). For VSD and CbAS we simply
add on another LeakyReLU and then an output linear layer. For A-GPS we concatenate u to output of this CNN, and then
pass this concatenation into the MLP in Figure 7 (c).

I. Experimental Details
I.1. Synthetic test functions

We use BoTorch (Balandat et al., 2020) for the implementations of all the synthetic test functions and the baseline MOBO
methods. All experiments were initialized using Latin hyper-cube sampling. The original design space is X = [0, 1]D for
all problems, and so we used a sigmoid transform on the designs so that X ∈ RD.

For A-GPS we use the mixture model in Equation 15 for the preference direction distribution, and for the conditional
generative model we use a simple MLP,

qϕ(x|u) = N
(
x
∣∣µ(u),σ2(u)

)
. (19)

Here µ(u),σ2(u) are MLPs with 2 hidden layers of size of 32, and with skip-connections and batch normalization, making
them residual networks. The rest of the settings for the experiments are given in Table 3.

Table 3: Synthetic test functions experimental settings.

Setting Branin-Currin DTLZ2 ZDT3
Nt=0 64 64 64

T 10 10 10
Replicates 5 5 5

B 5 5 5
S 128 128 128

y scaling [0.005, 0.25] None None
r [0.3, 0.3] [-1.1, -1.1] [-0.1, -0.1]

Base BoTorch Model SingleTaskGP SingleTaskGP SingleTaskGP
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Sequential(
Linear(

in_features=D + L,
out_features=16

),
BatchNorm1D(),
Dropout(p=0.1),
LeakyReLU(),
*[Skip(

Linear(
in_features=16,
out_features=16

),
BatchNorm1D(),
LeakyReLU(),

) for _ in range(hidden_layers)],
Linear(

in_features=16,
out_features=1

),
)

(a) Continuous MLP architecture

Sequential(
Linear(

in_features=128 + L,
out_features=128

),
LeakyReLU(),
Linear(

in_features=128,
out_features=1

),

(c) Sequence-preference concatenation MLP architecture

Sequential(
Embedding(

num_embeddings=A,
embedding_dim=10

),
Dropout(p=0.2),
Conv1d(

in_channels=10,
out_channels=16,
kernel_size=3 or 7,

),
LeakyReLU(),
MaxPool1d(

kernel_size=2,
stride=2,

),
Conv1d(

in_channels=16,
out_channels=16,
kernel_size=3 or 7,

),
LeakyReLU(),
MaxPool1d(

kernel_size=2,
stride=2,

),
Flatten(),
LazyLinear(

out_features=128
),

)

(b) Sequence CNN architecture

Figure 7: CPE architectures used for the experiments in PyTorch syntax. A = |V|, L = L corresponding to y ∈ RL and
D = D corresponding to x ∈ RD for the continuous experiments. The Ehrlich-15 functions use a kernel size of 3, all other
BBO experiments use a kernel size of 7. LaMBO-2 uses the same kernel size as our CNNs for the Ehrlich functions and
RaSP vs. naturalness score experiments.

I.2. Ehrlich vs. Naturalness

The Ehrlich vs. naturalness score benchmark was implemented using the poli benchmarking library (González-Duque
et al., 2024), where we implemented our own ProtGPT2-based naturalness black box, and used the inbuilt Ehrlich function
(Stanton et al., 2024) (not the holo version). For A-GPS we use the aforementioned generative and discriminative models,
otherwise the settings are given in Table 4. We use a modified version of the LaMBO-2 algorithm (Gruver et al., 2023) from
poli-baselines (González-Duque et al., 2024).

I.3. RaSP vs. Naturalness

Similarly to the Ehrlich experiment, we use poli (González-Duque et al., 2024) to implement this experiment, were we use
the inbuilt RaSP black-box (Blaabjerg et al., 2023) with additive mutation effects. All designs were based off the DsRED.M1
protein in (Stanton et al., 2022), and the initial training data consisted of 128 randomly mutated versions of this sequence
(max 3 mutations), scored by the RaSP predictor. The generative and discriminative models are discussed in the preceding
sections, and extra experimental configuration is in Table 4.
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Table 4: Erhlich and RaSP vs. naturalness score experimental settings.

Ehrlich vs. Nat. RaSP vs. Nat.
↓ Setting / M → 15 32 64 217

Nt=0 128 128 128 128
T 10 10 10 10

Replicates 5 5 5 5
B 32 32 32 32
S 256 256 256 256
r [-1, -1] [-1, -1] [-1, -1] [-5, -1]

(a) M = 15 (b) M = 32 (c) M = 64

Figure 8: Ehrlich function vs. ProtGPT2 naturalness score ablation. On-policy gradient estimators (‘-reinf.’) vs. the
importance weighted off-policy estimators for the A-GPS and VSD methods.

I.4. Computational resources

The synthetic function experiments were run on an Apple Macbook Pro (M2) with 32GB of RAM. All sequence experiments
were run on a cluster with NVIDIA H100 GPUs. All of our models could easily fit on one GPU, and typically took less than
1 hour to complete the experiment. See the ablation study in Sec. J.1 for more detailed timing information.

J. Ablation Studies
In this section we test some of the architectural decisions we have made when designing A-GPS.

J.1. On-policy vs. off-policy gradients

We introduce a new gradient estimator in Equation 11 based on off-policy importance weighting approximations to the
on-policy gradient estimator used by (Steinberg et al., 2025). To test its efficacy, we re-run the Ehrlich vs. naturalness score
experiments with this new estimator and the original on-policy variant. We report performance in Figure 8 and runtimes in
Table 5. There does not seem to be a consistent difference between the two gradient estimators in terms of hyper-volume
performance, but runtime is significantly lower for the off-policy estimator, being almost an order of magnitude less for the
longer, M = 64, length sequences.

Note that in Figure 8c we limited the maximum naturalness score to 0.5, to prevent the algorithms from simply maximising
only naturalness over Ehrlich score for this sequence length (unlike the original experiment).

J.2. Empirical vs. parameterized preference direction distribution

For all of our experiments we use the constrained mixture of Normal distributions (K = 5), Equation 15, as our parameterized
preference directions distribution, qγ(u). We now wish to validate this choice by comparing it to two simpler alternatives: a
single constrained Normal distribution (K = 1), and the empirical distribution in Equation 16.

We make these comparisons on the synthetic test functions, as their Pareto fronts are the cleanest to visualize. As can be
seen in the results in Figure 9, there is not a large performance difference for the empirical or mixture parameterizations –
both seem to be valid choices for these experiments. Though the empirical parameterization may perform slightly more
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Table 5: Ehrlich function vs. ProtGPT2 naturalness score ablation. Run time comparison for the on-policy gradient estimators
(‘-reinf.’) vs. the importance weighted off-policy estimators for the A-GPS and VSD methods. All times are in minutes.

M 15 32 64
Method mean min max mean min max mean min max
A-GPS-LSTM 4.78 4.63 5.14 5.52 4.90 6.29 6.66 5.70 8.54
A-GPS-LSTM-reinf. 11.73 11.35 11.92 18.61 18.44 18.79 32.10 29.98 32.77
A-GPS-TFM 7.79 7.61 8.04 10.38 8.51 11.06 9.52 7.51 11.49
A-GPS-TFM-reinf. 23.44 23.16 23.72 40.02 39.78 40.59 76.93 73.23 82.25
VSD-LSTM 3.96 3.91 4.07 4.62 4.39 4.77 6.11 4.63 7.62
VSD-LSTM-reinf. 10.21 10.15 10.25 16.59 16.37 16.77 27.06 26.38 27.56
VSD-TFM 6.96 6.81 7.25 8.02 7.17 8.57 7.97 7.11 8.27
VSD-TFM-reinf. 22.81 22.66 23.00 39.34 38.86 40.05 70.86 69.85 71.68

weakly on the DTLZ2 and ZDT3 functions. However, we do see a potential decrease in performance with K = 1 – and the
sampled sequences seem to have worse alignment using this representation compared to the mixture and empirical options.
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(a) Negative Branin-Currin (b) DTLZ2 (c) ZDT3

Figure 9: Ablation experimental results on three test functions commonly used in the MOBO literature. The top row reports
HVI per round, three bottom row demonstrates amortized preference conditioning using the different preference direction
distribution parameterizations.
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