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Abstract

Temporal Knowledge Graph Completion001
(TKGC) is a complex task involving the predic-002
tion of missing event links at future timestamps003
by leveraging established temporal structural004
knowledge. This paper aims to provide a com-005
prehensive perspective on harnessing the ad-006
vantages of Large Language Models (LLMs)007
for reasoning in temporal knowledge graphs,008
presenting an easily transferable pipeline. In009
terms of graph modality, we underscore the010
LLMs’ prowess in discerning the structural in-011
formation of pivotal nodes within the histori-012
cal chain. As for the generation mode of the013
LLMs utilized for inference, we conduct an ex-014
haustive exploration into the variances induced015
by a range of inherent factors in LLMs, with016
particular attention to the challenges in compre-017
hending reverse logic. We adopt a parameter-018
efficient fine-tuning strategy to harmonize the019
LLMs with the task requirements, facilitating020
the learning of the key knowledge highlighted021
earlier. Comprehensive experiments are under-022
taken on several widely recognized datasets,023
revealing that our framework exceeds or paral-024
lels existing methods across numerous popular025
metrics. Additionally, we execute a substan-026
tial range of ablation experiments and draw027
comparisons with several advanced commer-028
cial LLMs, to investigate the crucial factors029
influencing LLMs’ performance in structured030
temporal knowledge inference tasks.031

1 Introduction032

Knowledge Graphs (KGs), defined as meticulously033

structured repositories of deterministic knowledge,034

have been utilized across a wide range of do-035

mains such as recommender systems (Qin et al.,036

2024), question-answering (Liu et al., 2023b), and037

more recently, in the emerging field of Retrieval-038

augmented Generation (RAG) (Sun et al., 2023;039

Feng et al., 2023). In recent years, the concept of040

Temporal Knowledge Graphs (TKGs) has gained041

increased attention due to their ability to provide042

more accurate information (Leblay and Chekol, 043

2018; Han et al., 2021a; Li et al., 2022; Lee et al., 044

2023a). A Temporal Knowledge Graph (TKG) 045

stores numerous facts in the form of quadruples 046

(eh, r, et, tT ), denoting that eh has a directional 047

edge r into et at timestamp tT . Given a series of 048

observed facts denoted as F = {(s, p, o, ts)|s, o ∈ 049

S, p ∈ P, ts < T}, TKGC under extrapolative set- 050

ting requires the capability to predict links to future 051

timestamps, i.e., quadruples containing ts ≥ T . 052

This extrapolative setting has attracted more re- 053

search than the interpolation setting, which primar- 054

ily focuses on events in observed timestamps (Zhu 055

et al., 2021; Sun et al., 2021). 056

Previous research has approached the TKGC 057

task from various angles. Some models, integrating 058

Graph Neural Networks (GNNs) with gated mech- 059

anisms, focus on the evolution of embeddings over 060

time (Chung et al., 2014; Li et al., 2021a, 2022; 061

Zhang et al., 2023). Rule learning aims to provide 062

ample prior knowledge (Liu et al., 2022), while 063

reinforcement learning models (Sun et al., 2021) 064

propose time-shaped rewards to guide the learn- 065

ing process. Despite these efforts, these methods 066

often fall short in utilizing the rich text informa- 067

tion and underperform when the links are sparse. 068

Recently, with the demonstrated capabilities of 069

LLMs in various fields, some attempts have been 070

made to explore the utilization of LLMs for TKGC 071

tasks. (Lee et al., 2023a) explores the potential of 072

in-context learning (ICL) capabilities of LLMs to 073

perform on the TKGC task. GenTKG (Liao et al., 074

2023) leverages the partial idea of tLogic (Liu et al., 075

2022) to provide LLMs with the most temporal 076

logic-relevant inputs to counsel decisions. 077

In this paper, we seek to thoroughly examine 078

whether LLMs are effective TKG reasoning agents 079

and how to reveal genuinely beneficial factors. On 080

one hand, TKGs are essentially graph structures 081

with textual information, and recent research has 082

demonstrated that LLMs possess certain capabili- 083
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ties in understanding structural information, yield-084

ing promising results in tasks such as node classifi-085

cation (Tang et al., 2023; Qin et al., 2023; Guo et al.,086

2023a; Liu et al., 2023a). On the other hand, as087

an inference task, TKGC specifically requires the088

natural advantage of textual reasoning possessed by089

LLMs. Considering the aforementioned character-090

istics, we develop a general and easily transferable091

framework: 1) For structural awareness of TKGs,092

in addition to considering the history that directly093

provides candidate answers, we also incorporate094

additional neighboring interaction information of095

entities and relations. 2) Regarding LLM inference096

within the TKG context, our focus lies in mitigating097

the reversal curse in structured expression reason-098

ing. 3) We employ the Parameter-Efficient Fine-099

Tuning (PEFT) technique for fine-tuning LLMs100

to enhance the model’s understanding of histori-101

cal context and integrate the two aforementioned102

solutions.103

Specifically, during the fine-tuning process, we104

partition the known data into an input section and105

a supervised labeling segment, guiding LLMs in106

adapting the mapping relationship between the tex-107

tual information of the specific TKG and the intri-108

cate logic inherent in temporal events. We propose109

to use local information across multiple single-step110

graphs for historical data augmentation to explore111

the ability of LLMs to perceive graph-modality in-112

formation. In addition, we explore different ways113

of reverse data incorporation to alleviate the rever-114

sal curse (Lv et al., 2023) problem in structured115

knowledge reasoning.116

We carry out comprehensive experiments on117

widely used TKGC datasets, including the118

ICEWS (Li et al., 2021a) series from news and the119

commonsense dataset YAGO (Mahdisoltani et al.,120

2015). Significantly, we report the Hits@n met-121

ric under raw setting and time-aware filtered set-122

ting, achieving highly competitive results. We also123

provide the 8-shot ICL1 performance of several124

open-source models as a comparative reference.125

Furthermore, we conduct exhaustive ablation ex-126

periments to validate the effectiveness of structure-127

based historical data augmentation methods and128

the introduction of reverse logic. Additionally, we129

investigate the impact of historical chain length,130

model size, and the performance of LLMs like131

GPT-4 and GPT-3.5-turbo, with the aim to uncover132

key factors influencing temporal structural infor-133

1Prompts can be found in Appendix C and D.

mation reasoning using LLMs. 134

2 Related Work 135

Temporal Knowledge Graph Completion in- 136

volves two essential reasoning settings: inter- 137

polation and extrapolation. Interpolation-based 138

TKG reasoning addresses the challenge of fill- 139

ing in missing links within observed timestamps. 140

TTransE (Leblay and Chekol, 2018) introduces 141

time-based encoding through translation operations. 142

TNTComplEx (Lacroix et al., 2020) and Tuck- 143

ERTNT (Shao et al., 2022) propose complex de- 144

composition and TuckER decomposition of four- 145

order tensors, respectively, to augment model ex- 146

pressiveness under temporal conditions. However, 147

the interpolation setting has limitations, as it can- 148

not infer missing information in future timestamps, 149

thereby restricting its applicability. 150

Extrapolative reasoning in TKGC, involving the 151

prediction of facts for future timestamps, represents 152

a more challenging yet valuable task. Recent works 153

have concentrated on leveraging multi-relational 154

graph convolutional networks (Li et al., 2021a; Jin 155

et al., 2020). xERTE (Han et al., 2021a) captures 156

query-related subgraph information through dy- 157

namic pruning operations. TANGO (Han et al., 158

2021b) adopts neural ordinary differential equa- 159

tions to model the temporal representation of enti- 160

ties. TITer (Sun et al., 2021) stands out as the first 161

model to utilize temporal-path-based reinforcement 162

learning for TKG reasoning. TLogic (Liu et al., 163

2022) enhances interpretability by extracting tem- 164

poral logic rules through random exploration of 165

time. TiRGN (Li et al., 2022) and HGLS (Zhang 166

et al., 2023) utilize graph learning methods for 167

comprehensive structural information capture dur- 168

ing temporal wandering. (Lee et al., 2023a) 169

first explores the potential of ICL in TKGC. Gen- 170

TKG (Liao et al., 2023) provides the most relevant 171

interactions in temporal logic for LLMs to learn 172

and infer. 173

LLMs-as-Predictors Many recent studies trans- 174

form graph structure information into sequential 175

representations and utilize LLMs as standalone 176

predictors. Graph4GPT (Guo et al., 2023b) uses 177

InstructGPT-3 (Ouyang et al., 2022) to conduct 178

an empirical study to assess LLMs’ capabilities in 179

graph understanding, and GraphLLM (Chai et al., 180

2023) uses LLaMA2 for the graph reasoning task, 181

but these work ignore LLM’s ability to TKGC. 182

Most relevant to our work, (Lee et al., 2023b) uses 183
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ICL with LLMs for TKGC, which may not fully184

exploit the extensive learning capabilities of LLMs.185

Parameter-Efficient Fine-tuning Recent stud-186

ies have introduced several PEFT techniques, in-187

cluding the addition of adapters (He et al., 2022;188

Rebuffi et al., 2017; Houlsby et al., 2019; Bapna189

et al., 2019), which entail the insertion of small190

trainable feed-forward networks between fixed191

pre-trained models. Additionally, low-rank up-192

dates (Hu et al., 2021) have been proposed as an193

alternative, wherein the fine-tuning process lever-194

ages low-dimensional representations. Moreover,195

prompt tuning (Lester et al., 2021) and prefix tun-196

ing (Li and Liang, 2021) have been developed,197

which involve augmenting the model’s input or198

activations with learnable parameters.199

3 Preliminary200

Definition 3.1. TKGC A TKG is defined as a201

sequence G = {G1, · · · ,Gt, · · · ,Gn} comprising202

static KGs. Here, each static KG denoted as Gt203

contains factual triplets at timestamp t. A single204

static KG is formulated as {E ,R, T }, in which205

E , R and T = {si, pj , ok} respectively represent206

entities, relations and triplets within it. TKGC in-207

volves bidirectional prediction of query quadruples,208

specifically, (si, pj , ?, ts) and (ok, p
−1
j , ?, ts).209

Definition 3.2. Fine-tuning Given a pre-210

trained LLM denoted as M with parame-211

ters θ, and a dataset comprising n instances212

{Queryi,Responsei}, the fine-tune processing213

aims to minimize the following loss function:214

θ⋆ = argmin
θ′

n−1∑
i=0

L
(
M

(
Q|θ′) ;R)

(1)215

where M(|θ′) denotes the output of the fine-tuned216

LLM M with parameters θ′, Q represents Query217

and R represents response.218

4 Methodology219

4.1 Structure-augmented History Modeling220

The LLM’s predictions of undiscovered links in221

the TKG rely on knowledge derived from histori-222

cal facts. In particular, when dealing with a query223

quadruple represented as q = (si, pj , ?, tq) in a224

forward reasoning mode, we aim to model the his-225

torical chain Hq associated with this query.226

Schema-matching History. The initial set 227

of historical facts we leverage originates 228

from schema-matching records, denoted as 229

Hs = {(si, pj , o, t)|o ∈ E , t < tq}. Specifically, 230

given a query (Japan, Make_a_visit, ?, 305), Hs = 231

{(Japan, Make_a_visit, North_Korea, 296), · · · , 232

(Japan, Make_a_visit, North_Korea, 304)} en- 233

compasses relevant schema-matching facts that 234

align with the subject and predicate of the query q, 235

providing inference basis for LLMs. 236

Entity-augmented History. Similar to many 237

prior works that leverage structural information 238

from KGs to enhance the reasoning capabilities 239

of LLMs (Luo et al., 2023; Tian et al., 2023), we 240

focus on semantically enriching the representation 241

of central entities by utilizing links with neighbors 242

in TKGs. The entity-augmented history He is de- 243

fined as {(si, p, o, t)|(si, p, o, t) ∈ Gt, p ∈ R, o ∈ 244

E , t < tq} formally. 245

Relation-augmented History. In addition to 246

completing the historical chain based on entity- 247

based neighbor information, we introduce a sup- 248

plementary strategy based on relations. We believe 249

that it’s beneficial for enhancing the model’s intrin- 250

sic understanding of relation inference (Xiong et al., 251

2018). Formally, relation-augmented history set 252

Hr = {(s, pj , o, t)|(s, pj , o, t) ∈ Gt, p, o ∈ E , t < 253

tq}. 254

When modeling Hq, we adhere to two criteria 255

for selecting data from Hs,He, and Hr. i) We 256

prioritize the ground-truth history directly related 257

to q, which is Hs. If the history length does not 258

meet the specified value, we then sequentially in- 259

corporate facts from He and Hr. ii) Data close to 260

the current timestamp is introduced with priority. 261

By following these two criteria, we aim to select 262

the most relevant knowledge to inspire forecasting 263

capabilities in LLMs. 264

4.2 Introduction of Reverse Logic 265

Similar to reasoning on static KGs, we require the 266

model to also possess the capability of reverse in- 267

ference on TKG (Li et al., 2021a). However, re- 268

cent research indicates that LLM’s reasoning has 269

encountered the issue of reversal curse (Qi et al., 270

2023; Berglund et al., 2023; Lv et al., 2023). In this 271

problem, models often succeed in correctly deduc- 272

ing questions like ’Who is Tom Cruise’s mother?’ 273

but struggle to answer ’Who is the son of Mary Lee 274

Pfeiffer?’. We believe that this phenomenon also 275
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LLM

BA

(China, aid, ?)

(Palestine, aid , ?)

(China, aid, Mozambique) (China, aid, Cuba) (China, aid, Ukraine) 

(Israel, have_a_war, Palestine) (China, meet, U.N.)

(U.N., aid, Palestine)

𝑡!"# 𝑡!"$ 𝑡!"%

(Palestine, aid,  Qatar) (Palestine, aid,  Turkey) (Palestine, aid,  U.N.) 

(Palestine, have_a_war,  Israel) (Palestine, invite,  U.N.)

(Ukraine, aid, China)
Reverse Knolwledge

Palestine
(Hurricane, attack, Mozambique)

-1 China

𝑡!

-1

-1

-1

-1

-1

-1

Schema-matching history Entity-augmented history Relation-augmented history

Figure 1: Overflow of CoH. Event prediction does not solely rely on existing candidate answers. LLMs should learn
to infer possible events from facts in the graph that have similar patterns.

Strategy Prompt

Ordinary

280: [Japan, Make_a_visit, China]
281: [Japan, Make_a_visit, Vietnam]
· · ·
304: [Japan, Make_a_visit, Kiichi_Miyazawa]
Query: 305: [Japan, Make_a_visit, ]

Text-aware

280: [Japan, reverse Make_a_visit, China]
281: [Japan, reverse Make_a_visit, Vietnam]
· · ·
304: [Japan, reverse Make_a_visit, Kiichi_Miyazawa]
Query: 305: [Japan, reverse Make_a_visit, ]

Position-aware

280: [China, Make_a_visit, Japan]
281: [Vietnam, Make_a_visit, Japan]
· · ·
304: [Kiichi_Miyazawa, Make_a_visit, Japan]
Query: 305: [ , Make_a_visit, Japan]

Table 1: A prompt example for query (Japan,
Make_a_visit−1, ?, 305) in ICEWS14.

exists in structured knowledge reasoning. We pro-276

pose using three prompt strategies to incorporate277

reverse quadruples during the fine-tuning phase to278

alleviate this issue, and explore the performance279

patterns in the context of structured knowledge rea-280

soning scenarios.281

As demonstrated in Tbl. 1, the most ordinary282

construction is to treat the structure of backward283

inferences as forward inferences. The text-aware284

prompt leverages reverse to indicate reverse rea-285

soning, and the position-aware prompt follows the286

order of backward inference, providing different287

head entities in the historical records.288

4.3 Instruction-tuning in TKGC289

Instruction-tuning (Wei et al., 2021) achieves re-290

markable zero-shot generalization results by train-291

ing LLMs on different tasks with instructions.292

While prior work has demonstrated the effective-293

ness of fine-tuning LLMs via full-parameter up-294

dates, this approach presents considerable chal-295

lenges at large scale. Hence, we apply the Low-296

Rank Adaptation (LoRA) (Hu et al., 2021) method297

due to its effectiveness for Llama-style models.298

This method, founded on the plugin encapsulation299

strategy of PEFT, furnishes us with lightweight 300

task-specific plugins. 301

The LLM M generates a sequence of tokens 302

R̂ = {r̂1, r̂2, ...r̂n}, where response R we need 303

must be extracted and consists of a set of consec- 304

utive tokens. Similarly to most fine-tuning LLMs 305

process using LoRA, the parameter update for a 306

pre-trained weight matrix W0 ∈ Rd×k is specified 307

by product of two low-rank matrices WA and WB: 308

δW = WAWB (2) 309

where WA ∈ Rd×r and WB ∈ Rr×k are matrices 310

of trainable parameters and rank r ≪ min(d, k). 311

Therefore, the forward pass for h = W0x is altered 312

as : 313

h = W0x+ δWx = W0x+WAWBx (3) 314

We employ cross-entropy loss which constrains 315

the similarity between estimated and ground-truth 316

tokens, to fine-tune LLMs by LoRA, which can be 317

presented as 318

L = CE(R̂, R̃) (4) 319

where R̂ is the temporal knowledge graph com- 320

pletion predicted by LLM M and R̃ is the given 321

label. 322

4.4 Predict with LLMs 323

The instructions constructed are fed into the trained 324

LLMs for prediction. The response is obtained by 325

beam search, which is a decoding strategy that 326

maintains k beams of possible generated responses 327

at each time step t. The generation of response is 328

updated as follows: for each generated response, 329

the k tokens with the highest probabilities are se- 330

lected based on Eq. 5. This results in k × k new 331

response candidates. The next k beams of response 332
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are obtained by selecting the top k responses with333

the highest probabilities from the generated re-334

sponse candidates. The highest probability is deter-335

mined by the product of probabilities of |R̂| tokens336

that constitute the response, where |R̂| represents337

the length of the current response.338

rt = argmaxrP (r|r1:t−1) (5)339

In this context, the single step setting is em-340

ployed, wherein for each test query in the test341

dataset, the model can access the ground truth from342

past timestamps. Consequently, after the prediction343

for this step is completed, the ground truth from344

the current timestamp is added to the history of the345

next timestamp before its execution.346

5 Experiments347

5.1 Datasets348

In our experimental setup, we utilize the ICEWS14349

dataset (García-Durán et al., 2018), ICEWS18350

dataset (Li et al., 2021a), ICEWS05-15 dataset (Li351

et al., 2021b), and YAGO dataset (Mahdis-352

oltani et al., 2015) as benchmarks for evalua-353

tion. The specific statistics are listed in Tbl. 2.354

We employ partition criteria widely accepted355

in prior studies (Han et al., 2021a) and estab-356

lish instruction-tuning data on the validation set.357

Specifically, for the ordered timestamp set T =358

{t1train, t2train, · · · , tntrain, t1val, · · · , tmval}, compris-359

ing training and validation sets, when gathering360

historical data for timestamp tival, we observe only361

facts within the range t < tival. In the context362

of testing under a single-step setup (Trivedi et al.,363

2017), for a query at timestamp tq, we construct a364

ground-truth chain of history based on facts preced-365

ing timestamp tq, serving as the input to the model.366

Datasets Entity Relation Train Valid Test Interval
ICEWS14 6869 230 74845 8514 7371 1 day
ICEWS05-15 10094 251 368868 46302 46159 1 day
ICEWS18 23033 256 373018 45995 49545 1 day
YAGO 10623 10 161540 19523 20026 1 year

Table 2: Statistics of leveraged datasets.
367

5.2 Baseline Models368

The models selected for comparative analysis pri-369

marily fall into two categories: embedding-based370

methods and LLM-based approaches. Within the371

realm of embedding-based methods, we present372

the performance evaluations of RE-NET (Jin et al.,373

2020), RE-GCN (Li et al., 2021a), TiRGN (Li et al.,374

2022), xERTE (Han et al., 2021a), TANGO (Han 375

et al., 2021b), Timetraveler (Sun et al., 2021). 376

As for GNN-based methodologies, we choose 377

TiRGN (Li et al., 2022) and HGLS (Zhang et al., 378

2023) for comparison. Regarding LLM-based ap- 379

proaches, we test GenTKG (Liao et al., 2023) and 380

align with our model settings, we focus on the 381

effects of 8-shot in-context learning for Llama- 382

2-7b (Touvron et al., 2023), Vicuna-7b (Vicuna, 383

2023), and GPT-NeoX-20B (Black et al., 2022). In 384

addition to these, we also include the rule-based 385

method TLogic (Liu et al., 2022) in our compari- 386

son. 387

5.3 Evaluation Protocol 388

We acknowledge that, at the metric level, notable 389

distinctions exist between LLM-based methods and 390

embedding-based approaches. The latter proves ad- 391

vantageous as it can furnish a precise ranking of 392

all entities in the graph for a query presented in the 393

form of (s, q, ?), facilitating the calculation of met- 394

rics like Mean Reciprocal Rank (Chao et al., 2021; 395

Yu et al., 2022). However, for LLM-based methods, 396

we can only furnish the ranking of a predetermined 397

number of candidates, relying on the probabilities 398

of output paths from the open-source model (Lee 399

et al., 2023a). This is in contrast to obtaining the 400

ranking of all entities in the graph. This constraint 401

stems from the inability to compel the model to 402

remember all entities directly, and it introduces im- 403

practical search costs. Consequently, we choose 404

to report relatively accurate Hits@1, Hits@3, and 405

Hits@10 (Sun et al., 2019). Furthermore, we align 406

with the perspective outlined in (Ding et al., 2021; 407

Jain et al., 2020) that directly excluding all other 408

valid candidates to a specific query in a filtering set- 409

ting is not entirely reasonable. Additionally, given 410

that the proprietary LLMs we employ for compar- 411

ison lack the opportunities to output ranking lists, 412

we report raw metrics without loss of generality.2 413

5.4 Main Results 414

As shown in Tbl. 3, Llama-2-7b-CoH and Vicuna- 415

7b-CoH achieves results that surpass or are compa- 416

rable to the state-of-the-art across multiple metrics 417

under raw setting. Significantly, on the ICEWS05- 418

15 and YAGO datasets, Vicuna-7b-CoH shows an 419

improvement of 3.3% and 1.9% in the Hits@1 met- 420

ric compared to the current best models. We ob- 421

serve that on the YAGO dataset, the 8-shot ICL 422

2Supplementary details are in Appendix E.
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Datasets YAGO ICEWS14 ICEWS05-15 ICEWS18
Model Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10
RE-NET (Jin et al., 2020) 0.404 0.530 0.629 0.293 0.431 0.575 0.334 0.478 0.611 0.192 0.323 0.483
RE-GCN (Li et al., 2021a) 0.499 0.663 0.779 0.297 0.441 0.586 0.336 0.487 0.658 0.193 0.331 0.494
xERTE (Han et al., 2021a) 0.506 0.719 0.828 0.312 0.453 0.570 0.347 0.497 0.633 0.206 0.330 0.458
TANGO† (Han et al., 2021b) 0.409 0.554 0.637 0.151 0.272 0.431 0.311 0.476 0.622 0.178 0.314 0.460
Timetraveler (Sun et al., 2021) 0.494 0.675 0.790 0.313 0.451 0.571 0.341 0.494 0.667 0.210 0.325 0.437
TLogic (Han et al., 2021b) 0.454 0.703 0.782 0.322 0.470 0.603 0.345 0.525 0.673 0.205 0.339 0.484
TiRGN (Li et al., 2022) 0.509 0.710 0.864 0.313 0.468 0.612 0.358 0.535 0.690 0.202 0.350 0.514
HGLS (Zhang et al., 2023) 0.508 0.721 0.866 0.349 0.480 0.688 0.351 0.521 0.673 0.192 0.323 0.494
GenTKG (Liao et al., 2023) 0.520 0.731 0.870 0.349 0.473 0.619 0.360 0.525 0.687 0.215 0.366 0.496
GPT-NeoX-20B-ICL (Black et al., 2022) 0.520 0.722 0.870 0.295 0.406 0.475 0.348 0.497 0.586 0.177 0.290 0.385
Llama-2-7b-ICL (Touvron et al., 2023) 0.517 0.725 0.868 0.275 0.391 0.453 0.353 0.490 0.563 0.177 0.295 0.364
Vicuna-7b-ICL (Vicuna, 2023) 0.514 0.714 0.868 0.270 0.386 0.453 0.347 0.483 0.563 0.172 0.288 0.364
Llama-2-7b-CoH 0.527 0.747 0.874 0.338 0.462 0.587 0.370 0.531 0.699 0.219 0.361 0.520
Vicuna-7b-CoH 0.530 0.754 0.859 0.315 0.445 0.648 0.372 0.531 0.701 0.206 0.344 0.531

Table 3: Temporal forecasting with raw metrics Hits@1, Hits@3 and Hits@10. The best results are highlighted
in bold and the second-rank results are underlined. The results of the model with † are derived from (Han et al.,
2021b), while other models have been reproduced by us.

Datasets YAGO ICEWS14 ICEWS05-15 ICEWS18
Model Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10
RE-NET† (Jin et al., 2020) 0.586 0.715 0.868 0.301 0.440 0.582 0.336 0.488 0.627 0.197 0.326 0.485
RE-GCN† (Li et al., 2021a) 0.788 0.843 0.886 0.313 0.470 0.613 0.366 0.527 0.671 0.215 0.354 0.515
xERTE† (Han et al., 2021a) 0.801 0.880 0.898 0.327 0.457 0.573 0.378 0.523 0.639 0.210 0.335 0.465
TANGO‡ (Han et al., 2021b) 0.590 0.646 0.677 0.272 0.408 0.550 0.344 0.499 0.640 0.191 0.318 0.462
Timetraveler† (Sun et al., 2021) 0.801 0.900 0.903 0.327 0.465 0.584 0.383 0.527 0.649 0.221 0.335 0.448
TLogic‡ (Han et al., 2021b) 0.740 0.789 0.791 0.336 0.483 0.612 0.362 0.531 0.674 0.205 0.340 0.485
TiRGN (Li et al., 2022) 0.839 0.907 0.923 0.328 0.481 0.622 0.379 0.544 0.698 0.220 0.366 0.522
HGLS (Zhang et al., 2023) 0.827 0.911 0.926 0.368 0.490 0.691 0.360 0.525 0.678 0.200 0.316 0.494
GenTKG (Liao et al., 2023) 0.813 0.901 0.922 0.365 0.488 0.633 0.378 0.541 0.692 0.220 0.370 0.497
GPT-NeoX-20B-ICL (Black et al., 2022) 0.792 0.890 0.909 0.295 0.406 0.475 0.367 0.503 0.587 0.192 0.300 0.389
Llama-2-7b-ICL (Touvron et al., 2023) 0.767 0.852 0.868 0.286 0.397 0.453 0.353 0.490 0.563 0.177 0.294 0.364
Vicuna-7b-ICL (Vicuna, 2023) 0.747 0.840 0.868 0.281 0.391 0.453 0.347 0.483 0.563 0.172 0.288 0.364
Llama-2-7b-CoH 0.880 0.929 0.931 0.349 0.470 0.591 0.386 0.541 0.699 0.223 0.363 0.522
Vicuna-7b-CoH 0.851 0.903 0.918 0.328 0.457 0.656 0.392 0.546 0.707 0.209 0.347 0.536

Table 4: Temporal forecasting with time-aware filtered metrics Hits@1, Hits@3 and Hits@10. The best results are
highlighted in bold and the second-rank results are underlined. The results of the model with † are derived from (Li
et al., 2022), and results with ‡ are taken from (Lee et al., 2023a).

performance of GPT-NeoX-20B, Llama-2-7b, and423

vicuna-7b is not significantly worse than Llama-424

2-7b-CoH. However, there is a noticeable gap425

on the ICEWS14 series datasets, even falling be-426

hind embedding-based models. We also report427

the metrics under the time-aware filtered setting428

in Tbl. 4, where Llama-2-7b-CoH outperforms the429

previous best-performing TiRGN model by 4.1 per-430

centage points in the Hits@1 on YAGO and also431

exhibits a substantial advantage on ICEWS05-15432

and ICEWS18. The relative performance of the433

model remains generally consistent under both set-434

tings.435

6 Analysis436

6.1 Effective Stucture-based Augmentation437

To assess the efficacy of the structure-augmented438

history modeling strategy, we conduct comprehen-439

sive ablation experiments on all used datasets, em-440

ploying Hits@1 as the evaluation criterion. For441

comparison, we exclude entity-augmented and442

relation-augmented histories during both the fine-443

tuning and inference phases, relying solely on 444

schema-matching history for predictive determina- 445

tion. The results of the ablation studies are depicted 446

in Tbl. 5, enabling a clear analysis that structure- 447

augmented history is beneficial for both forward 448

and backward inference. 449

Illustrating with a practical case, when reason- 450

ing about the quadruple (Economist (United King- 451

dom), Criticize or denounce, ?, 6960), due to 452

schema-matching history capturing only a histor- 453

ical fact (Economist (United Kingdom), Criticize 454

or denounce, Silvio Berlusconi, 120), this leads to 455

an incorrect inference of Afghanistan. However, 456

the entity-augmented history contains multiple in- 457

stances of Economist (United Kingdom) linked 458

through the Make statement relation to United King- 459

dom. This similar behavior guides the model to 460

output the correct answer United Kingdom. Thus, 461

supplementation enhances to some extent the ex- 462

pression of structured information related to the 463

central node, thereby aiding LLM in making more 464

accurate predictions beyond simply relying on the 465
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Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO
Forward Backward Overall Forward Backward Overall Forward Backward Overall Forward Backward Overall

Llama-2-7b-CoH 0.370 0.308 0.339 0.408 0.359 0.383 0.236 0.204 0.220 0.560 0.491 0.526
Llama-2-7b-CoH w/o aug 0.353 0.297 0.325 0.400 0.357 0.379 0.226 0.196 0.211 0.555 0.491 0.523
∆1 (↓) 4.8% 3.7% 4.3% 2.0% 0.6% 1.1% 4.4% 4.1% 4.3% 0.9% 0.0% 0.6%
Llama-2-7b-CoH w/o rq 0.367 0.298 0.333 0.396 0.343 0.369 0.238 0.188 0.213 0.560 0.489 0.524
∆2 (↓) 0.8% 3.4% 1.8% 3.0% 4.7% 3.8% 0.8% 8.5% 3.3% 0.0% 0.4% 0.4%

Table 5: Ablations on the incorporation of structure-based history and reciprocal quadruples when fine-tuning. We
report Hits@1 on four datasets. Falling and rising trends are indicated by green and red respectively. In order to
more clearly observe differences, we use historical chain with a length of 30 on the ICEWS18 dataset, while for
other datasets, this value is set to 10.

Strategy YAGO ICEWS14 ICEWS05-15 ICEWS18
Ordinary 0.526 0.339 0.383 0.209
Text-aware 0.525 0.333 0.382 0.214
Position-aware 0.525 0.330 0.381 0.213

Table 6: Overall Hits@1 metrics for three utilized
prompt strategies under the raw setting.

ground truth history.466

6.2 Effect of Introducing Reverse Logic467

We conduct a comprehensive ablation experiment468

for the introduction of reverse quadruples in the469

fine-tuning phase. Considering the difficulty of470

ICEWS18 dataset, we set the length of the history471

chain to 30, and we set this value to 10 on the other472

datasets. We use the ordinary prompt as a compari-473

son to verify the effect of the reverse data introduc-474

tion. The results are demonstrated in Tbl. 5, where475

Llama-2-7b-CoH (w/o rq) indicates that no reverse476

quadruples are added during the fine-tuning phase.477

We can see that all the results show an upward trend478

except for a slight dip in the forward inference on479

the ICEWS18 dataset. Therefore, we can argue480

that the inclusion of reverse logic in the fine-tuning481

stage is not only beneficial to alleviate the curse482

of reversal in structured knowledge reasoning, but483

also largely harmless to forward reasoning.484

We still give a comparison of three proposed485

prompt styles in Tbl. 6. We observe that ordinary486

and text-aware strategies always lead to better re-487

sults, so we believe that consistency in preserv-488

ing the inflectional position of different structured489

quadruples during fine-tuning is more critical.490

6.3 Exploration on History Length491

The length of the historical chain L significantly in-492

fluences prediction outcomes, reflecting the amount493

of information provided to the LLMs. We conduct494

experiments with varying history lengths (L =495

10, 20, 30, 50), while maintaining other settings496

constant. We choose the ordinary prompt for in-497

corporating reverse quadruples and harness entity-498

10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55 Dataset
ICEWS14
ICEWS05-15
ICEWS18
YAGO

History Length

H
its

@
1

0.339 0.343 0.339 0.338

0.383 0.39 0.391 0.393

0.209 0.218 0.22 0.225

0.526 0.527 0.527 0.527

Figure 2: The evolution pattern of the Hits@1 met-
ric across four utilized datasets concerning the history
length L.

Model YAGO ICEWS14 ICEWS05-15 ICEWS18
Llama-2-7b-CoH 0.527 0.343 0.390 0.218
Llama-2-13b-CoH 0.526 0.343 0.392 0.210
Vicuna-33b 0.530 0.338 0.390 0.216

Table 7: Overall Hits@1 metrics on different model
sizes.

augmented and relation-augmented quadruples to 499

enrich historical facts. 500

As illustrated in Fig. 2, except the ICEWS14 501

dataset, on other datasets, the Hits@1 metric ex- 502

hibits an upward trend followed by stabilization as 503

L increases. We calculate the average length of 504

schema-matching history for each query in the test 505

sets of four datasets. For the ICEWS14 dataset, this 506

value is 30.05, significantly lower than the other 507

datasets. On the ICEWS05-15 dataset, this value is 508

56.95. Consequently, an excessively long required 509

history length may negatively impact the reason- 510

ing of LLM due to interference from numerous 511

historical quadruples used for padding. However, 512

even with a smaller input cost (i.e., smaller L) on 513

the ICEWS14 dataset, significant effectiveness is 514

already achievable. 515

6.4 How Model Size Affects Results 516

In this section, we explore how model size of LLMs 517

affects performance in TKGC. We choose Llama- 518

2-13b and Vicuna-33b as comparison and consider 519
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Datasets ICEWS14 ICEWS05-15 ICEWS18 YAGO
Forward Backward Overall Forward Backward Overall Forward Backward Overall Forward Backward Overall

GPT-3.5-turbo 0.260 0.158 0.209 0.157 0.177 0.167 0.079 0.070 0.075 0.496 0.441 0.481
GPT-4 (OpenAI, 2023) 0.298 0.233 0.266 0.293 0.260 0.277 0.096 0.092 0.094 0.510 0.484 0.497
Qwen-72B-Chat (Bai et al., 2023) 0.279 0.216 0.248 0.357 0.343 0.350 0.159 0.148 0.154 0.499 0.463 0.481

Table 8: The performance of some powerful commercial models on 1000 randomly selected test samples in each
dataset.

leveraging total history length with L = 20, and520

both add inverse quadruples and structure-based521

augmentation data for fine-tuning. The results, as522

shown in Tbl. 7, depict that these three sizes mod-523

els achieve very similar results in Hits@1. Unusu-524

ally, Hits@1 on ICEWS18 dataset decreases by525

3.7% and 0.9% compared to Llama-2-7b-CoH. We526

point out that increasing the size of the model is527

a relatively inefficient approach in the context of528

temporal logical reasoning. Larger models do not529

necessarily result in a better understanding of inter-530

active information along the temporal chain. This531

leads us to explore data-centric approaches and im-532

provements in the inherent reasoning limitations533

of LLMs, such as catastrophic forgetting and the534

curse of reversibility.535

6.5 Performance of Commercial LLMs536

In this section, we test the effectiveness of three537

powerful commercial LLMs on the TKGC task,538

aiming to explore the performance differences after539

multi-task instruction fine-tuning and Reinforce-540

ment Learning from Human Feedback (RLHF). We541

provide the same 8-shot ICL prompt samples for542

each of the three models on different datasets, as543

detailed in the appendix. For the test data, we ran-544

domly select 1000 queries for both directions on545

each dataset. Since these models do not provide546

output probabilities, we only present the most accu-547

rate exact match metric, equivalent to the Hits@1548

metric under the raw setting. After confirming that549

there are no fine-tuning on TKGC task and related550

datasets in the available technical reports (OpenAI,551

2023; Bai et al., 2023), we consider this compari-552

son to be relatively fair.553

The evaluation results are shown in Tbl. 8.554

Firstly, we can observe that Qwen-72B-Chat is able555

to achieve performance comparable to or surpass556

GPT-4. In contrast, the performance of GPT-3.5-557

turbo is not satisfactory. We are currently observing558

that the few-shot capabilities of Qwen-72B-Chat on559

the MMLU evaluation set are approaching those of560

GPT-4 and surpassing the performance of GPT-3.5-561

turbo. This eliminates a significant bias in terms of562

language tendency. On the other hand, we demon- 563

strate that chat models, carefully fine-tuned and 564

applying RLHF, exhibit superior performance in 565

TKGC tasks. However, when we compare the re- 566

sults of Tbl. 8 and Tbl. 3, we can observe that the 567

8-shot ICL capability of commercial LLMs is still 568

significantly lower on the ICEWS series dataset 569

compared to the capabilities of Llama-2-7b-CoH, 570

while the difference is not substantial on the YAGO. 571

This is because YAGO is a dataset biased towards 572

common knowledge, and therefore, commercial 573

LLMs may already be familiar with a considerable 574

number of rules. However, the reasoning in the 575

ICEWS series news dataset emphasizes the inter- 576

action and evolutionary information of nodes in 577

the graph rather than relying on textual features. 578

This results in commercial LLMs underperforming 579

in ICL, as they struggle to effectively capture the 580

evolutionary patterns along historical chains. 581

7 Conclusion 582

In this study, we conceptualize Temporal Knowl- 583

edge Graph Completion (TKGC) as a dual-process 584

of fine-tuning and generative procedures of LLMs 585

along the historical chain. Our comprehensive ex- 586

ploration extends to the perceptual capabilities of 587

LLMs to interpret graph modality and structured 588

knowledge. To augment the understanding of cen- 589

tral nodes by LLMs, we devise a series of structure- 590

based enhanced quadruples, premised on entity 591

nodes and relations. Furthermore, we address the 592

reversal curse in LLMs by introducing reverse logic 593

data. Our approach surpasses or equals the perfor- 594

mance of existing models. We also offer in-depth 595

analysis of the factors influencing the model’s infer- 596

ence capabilities, highlighting the contributions of 597

the proposed fine-tuning pipeline. Our findings still 598

indicate that models tend to fit better with extended 599

historical data. However, the model’s size is a less 600

significant factor, and the subpar performance of 601

commercial LLMs suggests that RLHF in broad 602

domains may not necessarily enhance inference 603

tasks. We posit that our discoveries will stimulate 604

the reciprocal advancement of LLMs and TKGC. 605
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8 Limitaions606

Our research still has many limitations. The in-607

tegration of TKGs and LLMs has some inherent608

flaws. For example, whether LLMs have previ-609

ously stored the knowledge in these widely-used610

datasets in the form of unstructured text, and a611

considerable portion of the queries in the bench-612

mark of TKGs cannot be answered correctly by613

known events. These factors limit the accuracy and614

scalability of the study. Moreover, in exploring615

the impact of model size on experimental results,616

we have not yet explored models larger than 33b617

parameters. Although current data suggests that618

model size does not bring about positive gains in619

inference, there is still the possibility of qualitative620

changes due to quantitative changes. Our model621

selection is also limited to the Llama and Vicuna622

series, without extending to other open-source mod-623

els.624
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A Discussion about Data Leakage 939

We believe that data leakage issue should be taken seriously. We have considered two paths of testing for 940

your question. The first approach is to judge the correctness of the knowledge in the test set, which means 941

telling LLM to response ’true’ or ’false’. However, the Llama-2-7b model shows a nearly 1:1 voting result 942

on the ICEWS series dataset, indicating excessive randomness. Considering recent concerns about the 943

discriminative ability of LLMs (Lin et al., 2024), we instead try the second method, leveraging the more 944

reliable generative capabilities of LLMs. We consider using few-shot prompts to let the model directly 945

answer queries in the test set without providing historical information. We group all queries with the same 946

head and relation in the test set into a single query, thus generating a time-independent candidate answer 947

set for each of new query. For example, ( Citizen (Malaysia), Make an appeal or request, [’Government 948

(Malaysia)’, ’Lim Guan Eng’, ’Malaysia’, ’Lawyer/Attorney (Malaysia)’, ’Mahathir Mohamad’, ’Party 949

Member (Malaysia)’]). If the model prediction is one of candidates, we consider the query to be at risk. 950

The statistics of risky queries in the new grouped set are shown in Table. 9. 951

ICEWS14 ICEWS05-15 ICEWS18 YAGO
Query quantity 3810 11877 19049 2947
Ratio 4.59% 4.92% 5.84% 0.14%

Table 9: Data leakage discussion on four used datasets.

B Comparison with ICL on Augmentation 952

In this section, we discuss the limitations of in-context learning under our proposed method, illustrating 953

that ICL cannot effectively understand the inference information drawn from additional edges. The results 954

are demonstrated in Tbl. 10. 955

Datasets YAGO ICEWS14 ICEWS05-15 ICEWS18
Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

Llama-2-7b-ICL w/ aug 0.275 0.433 0.561 0.367 0.523 0.613 0.174 0.309 0.425 0.732 0.834 0.867
Llama-2-7b-ICL w/o aug 0.286 0.397 0.453 0.353 0.490 0.563 0.177 0.294 0.364 0.767 0.852 0.868

Table 10: ICL results comparison using Llama-2-7b.
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C Instruction Used by CoH956

In this section, we provide a comprehensive design for the prompt, including versions that utilize only957

entity text (Tbl. 13) and versions identified by number id (Tbl. 14).958

D Prompt for 8-shot ICL959

We design different prompts on different datasets to test the ability of different models to perform ICL on960

the TKGC task. We show the prompt template on the ICEWS18 dataset as a concrete example, as shown961

in the Tbl. 11.962

8-shot Prompt
You must be able to correctly predict the next {object} from a given text consisting of multiple
quadruplets in the form of "{time}:[{subject}, {relation}, {object}]" and the query in the form of
"{time}:[{subject}, {relation}," in the end.
Example 1: 3864: [Police (Malaysia), Confiscate property, Malaysia] 4272: [Police (Malaysia),
Confiscate property, Malaysia] 4944: [Police (Malaysia), Confiscate property, Malaysia] 5952: [Police
(Malaysia), Confiscate property, Malaysia] 6072: [Police (Malaysia), Confiscate property, Malaysia]
6192: [Police (Malaysia), Confiscate property, Indonesia] 6288: [Police (Malaysia), Confiscate property,
Citizen (Malaysia)] 6336: [Police (Malaysia), Confiscate property, Citizen (Malaysia)]
Example 2: 6408: [Police (India), Accuse, Criminal (India)] 6408: [Police (India), Accuse, Student
(India)] 6408: [Police (India), Accuse, Citizen (India)] 6432: [Police (India), Accuse, Criminal (India)]
6456: [Police (India), Accuse, Inspector General (India)] 6456: [Police (India), Accuse, Citizen (India)]
6456: [Police (India), Accuse, Children (India)] 6456: [Police (India), Accuse, Women (India)]
Example 3: 6120: [China, Reject, India] 6336: [China, Reject, United States] 6384: [China, Reject,
United States] 6432: [China, Reject, Naval (United States)] 6432: [China, Reject, Donald Trump] 6432:
[China, Reject, United States] 6456: [China, Reject, Donald Trump] 6456: [China, Reject, United
States]
Example 4: 6408: [Shinzo Abe, Consult, North Korea] 6408: [Shinzo Abe, Consult, Head of Govern-
ment (South Korea)] 6432: [Shinzo Abe, Consult, Kim Jong-Un] 6432: [Shinzo Abe, Consult, Moon
Jae-in] 6432: [Shinzo Abe, Consult, Hassan Rouhani] 6432: [Shinzo Abe, Consult, Donald Trump]
6432: [Shinzo Abe, Consult, UN General Assembly] 6456: [Shinzo Abe, Consult, Donald Trump]
Example 5: 5568: [Joao Lourenco, Make a visit, Germany] 5592: [Joao Lourenco, Make a visit,
Germany] 5616: [Joao Lourenco, Make a visit, Germany] 5736: [Joao Lourenco, Make a visit, Angola]
5976: [Joao Lourenco, Make a visit, China] 6408: [Joao Lourenco, Make a visit, United States] 6720:
[Joao Lourenco, Make a visit, China] 6768: [Joao Lourenco, Make a visit, China]
Example 6: 5208: [Saudi Arabia, Demand, Foreign Affairs (Canada)] 5256: [Saudi Arabia, Demand,
Student (Saudi Arabia)] 5256: [Saudi Arabia, Demand, Canada] 5304: [Saudi Arabia, Demand, Student
(Saudi Arabia)] 5760: [Saudi Arabia, Demand, Sudan] 6288: [Saudi Arabia, Demand, Citizen (Saudi
Arabia)] 6792: [Saudi Arabia, Demand, Jamal Khashoggi] 6816: [Saudi Arabia, Demand, Jamal
Khashoggi]
Example 7: 4248: [Wei Fenghe, Express intent to cooperate, James Mattis] 6552: [Wei Fenghe,
Consult, Department of Defense] 6552: [Wei Fenghe, Halt negotiations, James Mattis] 6960: [Wei
Fenghe, Consult, James Mattis] 6960: [Wei Fenghe, Meet at a ’third’ location, James Mattis] 6960:
[Wei Fenghe, Make a visit, ASEAN Defense Ministers] 6960: [Wei Fenghe, Engage in negotiation,
James Mattis] 6960: [Wei Fenghe, Halt negotiations, James Mattis]
Example 8: 6936: [Police (India), Arrest, detain, or charge with legal action, Student (India)] 6960:
[Police (India), Arrest, detain, or charge with legal action, Men (India)] 6960: [Police (India), Arrest,
detain, or charge with legal action, Criminal (India)] 6960: [Police (India), Arrest, detain, or charge
with legal action, Children (India)] 6960: [Police (India), Arrest, detain, or charge with legal action,
Citizen (India)] 6960: [Police (India), Arrest, detain, or charge with legal action, Student (India)] 6960:
[Police (India), Arrest, detain, or charge with legal action, Parkash Singh Badal] 6960: [Police (India),
Arrest, detain, or charge with legal action, Women (India)]

Table 11: 8-shot ICL prompt design on ICEWS18.
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Parameter Candidates
batch_size 4, 8
lora_rank 8, 32
lora_dropout 0.1
lora_target_modules {q_proj,k_proj,v_proj,o_proj}, {q_proj, k_proj}
lora_alpha 16
truncation_length 3000
L 10, 20, 30, 40, 50
single_step_inference_candidate 10

Table 12: Parameter search space.

Section Prompt
Instruction Given contexts consisting of multiple quadruplets in the form of {time}: [{subject},

{relation}, {object}], please predict the missing entity in the query quadruplet {time}:
[{subject}, {relation}, ] in the end.

Input 295: [Germany, Support, China]
295: [Germany, Support, Greece]
296: [Germany, Support, Afghanistan]
296: [Germany, Condemn, Russia]
301: [Germany, Support, Nigeria]
301: [Germany, Agreement, Denmark]
301: [Denmark, Support, Ukraine]
304: [Germany, Support,

Output The missing entity of query quadruplet is Ukraine.

Table 13: Prompt design using text and id.

Section Prompt
Instruction Given contexts consisting of multiple quadruplets in the form of {time}: [{subject},

{relation}, {label}.{object}], please predict the missing entity in the query quadruplet
{time}: [{subject}, {relation}, ] in the end.

Input 295: [Germany, Support, 0.China]
295: [Germany, Support, 1.Greece]
296: [Germany, Support, 2.Afghanistan]
296: [Germany, Condemn, 3.Russia]
301: [Germany, Support, 4.Nigeria]
301: [Germany, Agreement, 5.Denmark]
301: [Denmark, Support, 6.Ukraine]
304: [Germany, Support,

Output The missing entity of query quadruplet is 6.Ukraine.

Table 14: Prompt design using text and id.

E Supplementary Details 963

In this section, we describe the supplementary settings of our experiments. The open-source models mainly 964

used are llama-2-7b, llama-2-13b, vicuna-7b-v1.5, and vicuna-33b-v1.3. The key search parameters 965

during fine-tuning and inference are shown in the Tbl. 12. Our main experiments in Tbl. 3 and Tbl. 4 run 966

on 4*NVIDIA GeForce RTX 4090, and studies of vicuna-33b-v1.3 run on 4*NVIDIA A100-SXM-80G. 967
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