MITIGATING GRAPH COVARIATE SHIFT VIA SCORE-BASED OUT-OF-DISTRIBUTION AUGMENTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Distribution shifts between training and testing datasets significantly impair the model performance on graph learning. A commonly-taken causal view in graph invariant learning suggests that stable predictive features of graphs are causally associated with labels, whereas varying environmental features lead to distribution shifts. In particular, covariate shifts caused by unseen environments in test graphs underscore the critical need for out-of-distribution (OOD) generalization. Existing graph augmentation methods designed to address the covariate shift often disentangle the stable and environmental features in the input space, and selectively perturb or mixup the environmental features. However, such perturbationbased methods heavily rely on an accurate separation of stable and environmental features, and their exploration ability is confined to existing environmental features in the training distribution. To overcome these limitations, we introduce a novel approach using score-based graph generation strategies that synthesize unseen environmental features while preserving the validity and stable features of overall graph patterns. Our comprehensive empirical evaluations demonstrate the enhanced effectiveness of our method in improving graph OOD generalization.

025 026 027

024

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 029

Deep learning algorithms have become predominant in the analysis of graph-structured data. However, a common limitation of existing methods is the assumption that both training and testing graphs are independently and identically distributed (i.i.d.). This assumption often falls short in real-world scenarios, where shifts in data distribution frequently occur, leading to significant degradation in model performance. As a result, there has been considerable progress in improving graph out-ofdistribution (OOD) generalization, evidenced by advancements in invariant graph learning (Chen et al., 2022; Wu et al., 2022; Huang et al., 2024) and graph data augmentation (Rong et al., 2019; Wang et al., 2021; Han et al., 2022; Yao et al., 2022; Sui et al., 2024; Li et al., 2024).

Recent studies (Gui et al., 2022; Sui et al., 2024) have identified two primary types of distribution 038 shifts. Correlation shifts occur when the statistical relationships between environments and labels 039 differ between the training and testing datasets, assuming that the test environments are represented 040 within the training dataset. Covariate shifts, on the other hand, arise when the test environments are 041 not present in the training dataset. A prevalent causal perspective in graph invariant learning (Chen 042 et al., 2022; Wu et al., 2022) suggests that stable features of graphs, which causally determine labels, 043 remain invariant across different environments, whereas varying environmental features contribute 044 to distribution shifts. Consequently, previous studies (Miao et al., 2022; Chen et al., 2022; Wu et al., 2022) have primarily focused on correlation shifts by isolating invariant stable graph patterns from the environmental features. In this work, we focus on the relatively neglected but challenging 046 problem of covariate shift in graph learning. 047

While different graph data augmentation techniques have been proposed to generate new data across various domains (Rong et al., 2019; Han et al., 2022; Sui et al., 2024), these methods mainly mod-ify existing data within the training set by mixing or dropping edges, which either have limited environmental exploration ability or could result in invalid data samples (e.g., molecular graphs violating chemical rules). Moreover, indiscriminate augmentations (Rong et al., 2019) can distort stable patterns, resulting in uncontrollable augmented distributions. While controlled augmentations (Sui et al., 2024) have shown promising outcomes, they heavily depend on the accurate separation of

stable and environmental patterns, which remains a nontrivial challenge and could be inherently infeasible. These observations prompt an essential inquiry: "Is it possible to explore the training distribution under control, such that the exploration extends beyond the confines of the training environments while still preserving essential stable patterns?"

058 In response, this work introduces an innovative score-based graph augmentation strategy that mit-059 igates graph covariate shift by improving the exploration of training distribution while preserving 060 stable predictive patterns on the generated graphs. In high level, we formulate the problem of OOD 061 data augmentation as graph generation simultaneously conditioned on graph labels and exploration 062 variables, based on the graph generation hypothesis widely used in prior studies (Wu et al., 2022; 063 Yang et al., 2022; Gui et al., 2022; Chen et al., 2022). Specifically, we employ a score-based diffu-064 sion probabilistic model, commonly known as a diffusion model (Song et al., 2020), to effectively capture the data distribution of unlabeled graphs. During the generation phase, we introduce a novel 065 guidance scheme that generates augmented graphs, concurrently retaining predictive stable patterns 066 and incorporating explored environments. Our proposed Out-of-Distribution Diffusion Augmenta-067 tion (OODA) framework utilizes graph labels to guide the sampling process toward graphs that are 068 highly likely to contain stable patterns. The exploration parameter facilitates exploration beyond 069 the training graph space by flexibly adjusting the discrepancy from the training distribution. The robustness of the score-based diffusion model ensures the validity of the generated graphs, prevent-071 ing the formation of invalid structures (e.g., non-viable molecules) that could impair downstream 072 classification performance. Furthermore, our guidance scheme eliminates the need to explicitly split 073 graphs into stable and environmental subgraphs. We experimentally validate our method on both 074 synthetic and real-world graph classification tasks under diverse covariate shift settings. Our results 075 demonstrate that OODA outperforms state-of-the-art baselines, including invariant graph learning and graph data augmentation, highlighting its effectiveness in exploring environments under control 076 while preserving stable patterns. 077

078 079

080

081

082 083

084

085

Our main contributions are summarized as follows:

- We propose a novel graph generation-based environment augmentation approach to address covariate distribution shifts in graph learning. Our method enables controlled exploration of environmental patterns while preserving stable patterns, without the need to explicitly separate them.
- Our approach can simultaneously generate out-of-distribution (OOD) graph structures, node features, and edge features, making it uniquely capable of handling covariate shifts in both feature and structural distributions, as well as when these shifts occur simultaneously.
- Extensive empirical evaluations demonstrate that our framework outperforms state-of-the-art graph OOD generalization methods across diverse tasks, including synthetic, semi-artificial, real-world molecular, and natural language sentiment analysis datasets.
- 088 089 090

2 RELATED WORK

Graph-structured data are inherently complex, characterized by the intricate challenges of irregularity and nuanced structural information. This complexity gives rise to graph out-of-distribution (OOD) problems that not only necessitate addressing shifts in feature distributions but also demand attention to variations of structural distributions. In this context, we summarize two principal categories of algorithms for graph OOD robustness: (i) *invariant graph learning* strategies, which aim to ensure model stability across varying distributions; and (ii) *graph data augmentation* techniques, designed to enhance model generalizability by simulating diverse distribution scenarios.

099 **Invariant Graph Learning.** The concept of invariant graph learning draws inspiration from semi-100 nal works such as those by (Arjovsky et al., 2019; Rosenfeld et al., 2020; Ahuja et al., 2021). This 101 approach aims at identifying stable graph structures (e.g., subgraphs) or representations (predictors) 102 that remain consistent across different environments, thereby enhancing out-of-distribution (OOD) 103 generalization. This is achieved by capturing salient graph features and minimizing empirical risks 104 across varying conditions. In scenarios where establishing causality is complex or where strong as-105 sumptions may not hold, the task can be approximated by identifying features that demonstrate invariance under distributional shifts, thereby facilitating OOD generalization (Li et al., 2022). Effec-106 tive OOD generalization is achieved by basing predictions solely on invariant information (Li et al., 107 2022). For example, DIR (Wu et al., 2022) distinguishes between invariant and environment-specific 108 subgraphs by creating varied interventional distributions on the training distribution. CIGA (Chen 109 et al., 2022) further explores this domain by employing synthetic environments and the graph gen-110 eration process to identify stable features under various distribution shifts. However, this line of 111 research assumes access to test environments during training, which is an unrealistic assumption 112 given the impracticality of covering all possible test scenarios. Training in limited environments reduces spurious correlations but fails to generalize to new, unseen environments. DISGEN (Huang 113 et al., 2024) gains promising results in disentangling the size factors from graph representations by 114 minimizing the shared information between size- and task-related information, however, the tech-115 nique is constrained to handle size generalization. In this work, we propose a framework capable of 116 generalizing to unseen environments characterized by differences not only in graph size but also in 117 graph structure, node features, and edge features. 118

Graph Data Augmentation. Beyond invariant graph learning, graph data augmentation aims to 119 diversify the training distribution, thereby enhancing the out-of-distribution (OOD) generalization 120 of models. DropEdge (Rong et al., 2019) introduces randomness by selectively removing edges, 121 thus varying the training data's structure. M-Mixup (Wang et al., 2021) enriches the dataset by 122 interpolating diverse and irregular graphs within semantic space. G-Mixup (Han et al., 2022) ex-123 tends this concept to graph classification, interpolating across different graph generators (graphons) 124 to produce augmented graphs. Adversarial augmentation techniques, such as FLAG (Kong et al., 125 2022), apply gradient-based perturbations to node features, and AIA (Sui et al., 2024) generates 126 adversarial masks on graphs, both aimed at probing environmental discrepancies. Despite these ad-127 vancements, overcoming the limitations in environmental exploration caused by modifying graphs 128 within the original training set remains a challenge, indicating ongoing opportunities for innovation 129 in graph data augmentation strategies. Recently, environment-aware augmentation frameworks (Li et al., 2024) have utilized environment information to linearly explore training graph structures and 130 node features, however, they depend heavily on high-quality and sufficiently diverse environment in-131 formation. In practice, annotating environment labels or capturing diverse environment information 132 is costly and often infeasible. In this work, we introduce a generation-based augmentation method 133 that eliminates the need for accessing environment information. 134

135 136

137

153 154

3 PROBLEM FORMULATION

Notations. We represent a graph with n nodes as G = (A, X, E), where $A \in \mathbb{R}^{n \times n}$ is the 138 adjacency matrix, $X \in \mathbb{R}^{n \times a}$ denotes a-dimensional node features and $E \in \mathbb{R}^{n \times n \times b}$ encodes 139 b-dimensional edge features. Without the loss of generality, we focus on the graph classification 140 task where each graph G is associated with a label $Y \in \mathcal{Y}$, determined by a predefined labelling 141 rule $\mathcal{G} \to \mathcal{Y}$. Following invariant learning (Ahuja et al., 2021; Chen et al., 2022), we denote the 142 graph dataset as $\mathcal{D} = \{(G_i^e, Y_i^e)\}_{e \in \mathcal{E}_{all}}$, where $(G_i^e, Y_i^e) \sim P_e(G, Y)$ is an i.i.d. draw in the 143 environment e sampled from all possible environments \mathcal{E}_{all} . The complete dataset can be partitioned 144 into a training set $\mathcal{D}_{tr} = \{(G_i^e, Y_i^e)\}_{e \in \mathcal{E}_{tr}}$ and a test set $\mathcal{D}_{te} = \{(G_i^e, Y_i^e)\}_{e \in \mathcal{E}_{te}}$, where \mathcal{E}_{tr} and \mathcal{E}_{te} 145 index the training and testing environments, respectively. In practice, environment information may 146 not be explicitly given, and we further denote the training distribution as $P_{tr}(G,Y)$ and the testing 147 distribution as $P_{\text{te}}(G, Y)$.

Graph Classification under Covariate Shift. With only observing the training set \mathcal{D}_{tr} sampled from the training distribution P_{tr} in training environments \mathcal{E}_{tr} , our generalization objective under graph covariate shift is to train an optimal graph classifier $f : \mathcal{G} \to \mathcal{Y}$ that performs well across any possible environments $\mathcal{E}_{all} \supseteq \mathcal{E}_{tr}$. We formulate this goal as the following minimization problem:

$$\min_{f} \mathbb{E}_{e \in \mathcal{E}_{all}} \mathbb{E}_{(G^e, Y^e) \sim P_e(G, Y)}[\ell(f(G^e), Y^e)], \tag{1}$$

where $\ell(\cdot, \cdot)$ denotes the loss function for graph classification and the expectation is with respect to graphs under all possible environments. However in practice, the training environments \mathcal{E}_{tr} may not cover all environments, causing degraded classification performance when applying the learned classifier in unseen test environments. This covariate shift calls for an effective manner to sufficiently explore unseen data distribution or environments during model training. We summarize and discuss the various types of graph covariate shifts in detail in Appendix A.2.

Issues in Graph Augmentation via Environmental Exploration. To augment the training distribution for mitigating graph covariate shift, existing solutions often approach Eq. (1) by separating

162 and augmenting the environments: $\min_{f} \mathbb{E}_{e \in \{\mathcal{E}_{tr} \cup \mathcal{E}_{aug}\}} \mathbb{E}_{(G^e, Y^e) \sim P_e(G, Y)}[\ell(f(G^e), Y^e)]$, where the augmented environments \mathcal{E}_{aug} are obtained based on either interpolating explicitly given environments \mathcal{E}_{aug} . 163 164 mental labels (Li et al., 2024) or perturbing implicitly separated environmental components (Sui 165 et al., 2024; Wu et al., 2022; Miao et al., 2022; Chen et al., 2022). Obtaining accurate environmental 166 labels and components itself could be high-cost and nontrivial tasks, and separating environmental components could be inherently unfeasible (Chen et al., 2024), which limit the practicability of such 167 strategy. In addition, the subgraph perturbations based augmentation is mainly operated by edge 168 dropping (Sui et al., 2024; Rong et al., 2019) and mixup (Han et al., 2022), which is confined to existing subgraphs in training data and could cause invalid samples (e.g., generating molecules that 170 are chemically invalid). 171

Distribution Augmentation with OOD Control. This work overcomes these limitations by formulating the augmentation problem as a generation-based graph OOD augmentation strategy, which directly models and augments the training distribution, without explicitly requiring the knowledge or separation of environmental information. Specifically, we target on synthesizing an augmented training distribution $\tilde{P}_{tr}(G, Y)$, which is combined with the original training distribution to obtain the classifier, stated as:

$$\min_{f} \mathbb{E}_{(G,Y)\sim\{P_{\mathrm{tr}}(G,Y)\cup\tilde{P}_{\mathrm{tr}}(G,Y)\}}[\ell(f(G),Y)].$$
(2)

The augmented distribution $\tilde{P}_{tr}(G, Y)$ can be implemented in multiple ways, but it needs to satisfy two principles: (1) $\tilde{P}_{tr}(G, Y)$ should deviate from $P_{tr}(G, Y)$ in a controlled manner, and (2) the explored graphs in $\tilde{P}_{tr}(G, Y)$ should preserve the stable patterns of graphs in $P_{tr}(G, Y)$. However, current graph generation models (Jo et al., 2022; Martinkus et al., 2022; Vignac et al., 2022) cannot directly generate graphs that meet these two criteria. To address this, we propose a novel score-based generative model in Section 4 that captures the augmented distribution $\tilde{P}_{tr}(G, Y)$ while adhering to both principles.

190

202

203

178

179

181

182

183

184

185

4 SCORE-BASED OUT-OF-DISTRIBUTION GRAPH AUGMENTATION

In this section, we present the novel score-based graph augmentation framework, OODA, designed
 to generate augmented graphs that retain predictable stable features while also exploring new environments. We begin by discussing the score-based generative model for unlabeled graphs and then
 extend the model to handle out-of-distribution scenarios with controlled adaptation. Thereafter, we
 illustrate the working principles and implementation details of OODA.

196 Motivation From the perspective of graph generation, the goal of exploring the training distribution 197 $P_{tr}(G, Y)$ is to generate OOD graph samples from the conditional distribution $P_{tr}(G, Y | \mathbf{y}_{ood})$ 198 where \mathbf{y}_{ood} represents the OOD exploration condition. We assume an exploration variable λ controls 199 the extent of exploration within the training distribution $P_{tr}(G, Y)$. The augmented distribution 200 $\tilde{P}_{tr}(G, Y)$ is then modelled by the conditional graph distribution $P_{tr}(G, Y | \mathbf{y}_{ood} = \lambda)$, which can be decomposed as follows:

$$P_{\rm tr}(G, Y \mid \mathbf{y}_{\rm ood} = \lambda) \propto p(G) \, p(Y \mid G) \, p(\mathbf{y}_{\rm ood} = \lambda \mid G, Y) \tag{3}$$

Existing graph generation models (Jo et al., 2022; Martinkus et al., 2022; Vignac et al., 2022) cannot directly sample graphs from the conditional distribution in Equation (3), as it is infeasible to enumerate all possible λ values and their corresponding graphs and labels to compute the normalized probabilities. To overcome this limitation, we propose a novel guidance scheme to direct the score-based generative model (Song et al., 2020) towards the target distribution.

Score-based Graph Generation p(G) in Equation 3 is the distribution of unlabelled graphs, which can be captured by score-based generative model (Song et al., 2020). The foundational work by (Song et al., 2020) introduced a method for modeling the diffusion process of data into noise and vice versa using stochastic differential equations (SDEs). For graph generation, this diffusion process gradually corrupts graphs into a prior distribution like the normal distribution. The model subsequently samples noise from the prior distribution and learns a score function to denoise the perturbed graphs. Given an unlabeled graph G, we use continuous time $t \in [0, T]$ to index the diffusion steps $\{G_t\}_{t=1}^T$ of the graph, where G_0 represents the original distribution and G_T follows

Figure 1: Overview of OODA. The diffusion process iteratively transforms an unlabeled original graph G_0 into noise G_T . During the denoising process, G_{t-1} is computed using the conditional score $\nabla_{G_t} \log p_t (G_t | \mathbf{y}_G, \mathbf{y}_{ood} = \lambda)$, constrained by the target class \mathbf{y}_G and the exploration parameter λ . Ultimately, the clean OOD graph \tilde{G}_0 is generated.

a prior distribution. The forward diffusion process from the graph to the prior distribution is defined through an Itô SDE:

$$\mathrm{d}G_t = \mathbf{f}_t \left(G_t \right) \mathrm{d}t + g_t \,\mathrm{d}\mathbf{w},\tag{4}$$

that incorporates linear drift coefficient $\mathbf{f}_t(\cdot) : \mathcal{G} \to \mathcal{G}^1$ and scalar diffusion coefficient $g_t : \mathcal{G} \to \mathbb{R}$ related to the amount of noise corrupting the unlabelled graph at each infinitesimal step t, along with a standard Wiener process w. In contrast, the reverse diffusion employs SDE that factors in the gradient fields or scores of the perturbed graphs G_t for denoising and graph generation from T to 0:

$$\mathrm{d}G_{t} = \left[\mathbf{f}_{t}\left(G_{t}\right) - g_{t}^{2}\nabla_{G_{t}}\log p_{t}\left(G_{t}\right)\right]\mathrm{d}\overline{t} + g_{t}\,\mathrm{d}\overline{\mathbf{w}},$$

239 where $p_t(G_t)$ denotes the marginal distribution at time t in forward diffusion, with $\mathbf{f}_t(G_t)$ and q_t representing the drift and diffusion coefficients, respectively. $d\overline{\mathbf{w}}$ here is the reverse-time standard 240 Wiener process, and $d\bar{t}$ is an infinitesimal negative time step. The score network $s_{\theta,t}(G_t)$ is trained 241 to approximate the unknown score function $\nabla_{G_t} \log p_t(G_t)$. Although the score-based generative 242 model can capture the distribution of unlabeled graphs, it cannot generate the pairs (G, Y) from the 243 OOD distribution. To address this limitation, we introduce a novel OOD guidance scheme designed 244 to generate OOD graphs and their corresponding label from a score-based generative model trained 245 on unlabeled graphs. 246

Score-based Graph Generation with OOD Control To explore the training distribution in a controlled manner, we propose a novel OOD-controlled score-based graph generative model capable of generating OOD graph samples and their corresponding labels. The extent of exploration in the generative process is regulated by the hyperparameter λ . An overview is provided in Figure 1. Our approach involves sampling (G, Y) from $P_{tr}(G, Y | \mathbf{y}_{ood} = \lambda)$ and solving the conditional reversetime SDE:

$$dG_t = \left[\mathbf{f}_t\left(G_t\right) - g_t^2 \nabla_{G_t} \log p_t\left(G_t, \mathbf{y}_G \mid \mathbf{y}_{\text{ood}} = \lambda\right)\right] d\overline{t} + g_t \, d\overline{\mathbf{w}} \tag{5}$$

254 Where \mathbf{y}_G denotes the graph's label and \mathbf{y}_{ood} specifies the amount of OOD exploration. To sam-255 ple explored graph instances from $P_{tr}(G, Y | \mathbf{y}_{ood} = \lambda)$ using a diffusion model, we note that 256 $\nabla_{G_t} \log p_t (G_t, \mathbf{y}_G | \mathbf{y}_{ood} = \lambda) = \nabla_{G_t} \log p_t (G_t | \mathbf{y}_G, \mathbf{y}_{ood} = \lambda)$. The proof is in Appendix A.1. 257 Therefore, the desired conditional reverse-time SDE becomes:

$$\mathrm{d}G_t = \left[\mathbf{f}_t\left(G_t\right) - g_t^2 \nabla_{G_t} \log p_t\left(G_t \mid \mathbf{y}_G, \mathbf{y}_{\mathrm{ood}} = \lambda\right)\right] \mathrm{d}\overline{t} + g_t \,\mathrm{d}\overline{\mathbf{w}} \tag{6}$$

According to Equation 3, the conditional score function $\nabla_{G_t} \log p_t (G_t | \mathbf{y}_G, \mathbf{y}_{ood} = \lambda)$ is the sum of three components:

$$\nabla_{G_t} \log p_t \left(G_t \mid \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right) = \nabla_{G_t} \log p_t \left(G_t \right) + \nabla_{G_t} \log p_t \left(\mathbf{y}_G \mid G_t \right) + \nabla_{G_t} \log p_t \left(\mathbf{y}_{\text{ood}} = \lambda \mid G_t, \mathbf{y}_G \right)$$
(7)

264 265

262 263

253

258 259

224

225

226 227

228 229

230

231 232

237

238

Based on Bazhenov et al. (2022); Wu et al. (2023), OOD graphs are those with low likelihood under the original distribution $P_{tr}(G, Y)$. For instance, in the Motif training dataset (Gui et al., 2022), a house motif (stable subgraph) is only connected with wheel graphs, tree graphs or ladder graphs (environmental subgraphs). Consequently, when environmental graphs are explored, the entire graph patterns exist in the low-density region of the original distribution. Inspired by Lee et al. (2023), we

276 277

model the distribution p_t ($\mathbf{y}_{ood} = \lambda | G_t, \mathbf{y}_G$) as proportional to the negative exponent of the joint density of G_t and \mathbf{y}_G , p_t (G_t, \mathbf{y}_G):

$$p_t \left(\mathbf{y}_{\text{ood}} = \lambda \mid G_t, \mathbf{y}_G \right) \propto p_t \left(G_t, \mathbf{y}_G \right)^{-\sqrt{\lambda}} = p_t \left(G_t \right)^{-\sqrt{\lambda}} p_t \left(\mathbf{y}_G \mid G_t \right)^{-\sqrt{\lambda}}$$
(8)

Accordingly, the gradient of the log probability for conditional reverse diffusion is expressed as:

$$\nabla_{G_t} \log p_t \left(G_t \mid \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right) = (1 - \sqrt{\lambda}) \nabla_{G_t} \log p_t \left(G_t \right) + (1 - \sqrt{\lambda}) \nabla_{G_t} \log p_t \left(\mathbf{y}_G \mid G_t \right)$$
⁽⁹⁾

As seen in Equation 9, we need to compute the target class probability for the conditional score functions. To achieve this, we train a classifier ϕ_t to predict graph label \mathbf{y}_G from the noisy graph G_t at time step t: $\phi_t(G_t) = \hat{\mathbf{y}}_G$. The output probability of ϕ_t can approximate the distribution $p_t(\mathbf{y}_G | G_t)$.

282 Consequently, the conditional score function in Equation 6 results in a marginal distribution pro-283 portional to $p_t (G_t, \mathbf{y}_G)^{1-\sqrt{\lambda}}$. When $\lambda = 0$, the marginal distribution in Equation 6 simplifies to 284 $p_t(G_t, \mathbf{y}_G)$. The reverse-time diffusion process denoises the perturbed graphs to the augmented 285 distribution $P_{tr}(G, Y \mid \mathbf{y}_{ood} = 0)$, which closely resembles the original distribution $P_{tr}(G, Y)$. As 286 λ increases, the augmented distribution $P_{\rm tr}(G, Y \mid \mathbf{y}_{\rm ood} = \lambda)$ becomes broader relative to the orig-287 inal data distribution. By adjusting λ , we can flexibly control the dispersion, making the generated graphs more likely to be out-of-distribution. Consequently, we can increase the divergence between 288 $P_{\mathrm{tr}}(G, Y \mid \mathbf{y}_{\mathrm{ood}} = \lambda)$ and $P_{\mathrm{tr}}(G, Y)$. 289

290 Working principles of OODA. OODA not only explores controllable environmental features but 291 also preserves stable features. According to Equation 7, the term $\nabla_{G_t} \log p_t (\mathbf{y}_{ood} = \lambda \mid G_t, \mathbf{y}_G)$ 292 directs the reverse diffusion process towards out-of-distribution regions with graphs that exhibit the 293 explored environmental patterns. Additionally, the term $\nabla_{G_t} \log p_t (\mathbf{y}_G \mid G_t)$ guides the reverse 294 diffusion process towards regions containing graphs that are highly likely to possess patterns de-295 termining the target class. Although we use a classifier to approximate the target class probability $p_t(\mathbf{y}_G \mid G_t)$, the classifier is able to predict the target class even in the presence of noise. By 296 iteratively adding noise, the classifier captures the relationship between the stable patterns in the 297 perturbed graph G_t and the target class. Together, these two terms guide the sampling process to 298 generate graphs that contain desired stable patterns and extend beyond the training environments. 299

In addition to the aforementioned principles, OODA can generate diverse and valid OOD graph
 instances for the final graph classification problem under distributional shifts. This capability is
 based on the inherent randomness in the forward processes and the effectiveness of the reverse
 process in the diffusion model.

Implementations of OODA. Directly applying this framework to graphs proved inadequate for capturing the intricate relationships between nodes and edges, essential for accurately learning graph distributions (Jo et al., 2022). To overcome this, we simultaneously models the diffusion processes of node features and adjacency matrices of perturbed graphs $\{G_t = (X_t, A_t)\}_{t=0}^T$ using a set of SDEs for Equation 6:

$$\begin{cases} \mathrm{d}\boldsymbol{X}_{t} = \left[\mathbf{f}_{1,t}\left(\boldsymbol{X}_{t}\right) - (1 - \sqrt{\lambda})g_{1,t}^{2}\nabla_{\boldsymbol{X}_{t}}\log p_{t}\left(\boldsymbol{X}_{t},\boldsymbol{A}_{t}\right)\right] \\ -(1 - \sqrt{\lambda})g_{1,t}^{2}\nabla_{\boldsymbol{X}_{t}}\log p_{t}\left(\mathbf{y}_{G} \mid \boldsymbol{X}_{t},\boldsymbol{A}_{t}\right)\right] \mathrm{d}\bar{t} + g_{1,t} \,\mathrm{d}\overline{\mathbf{w}}_{1} \\ \mathrm{d}\boldsymbol{A}_{t} = \left[\mathbf{f}_{2,t}\left(\boldsymbol{A}_{t}\right) - (1 - \sqrt{\lambda})g_{2,t}^{2}\nabla_{\boldsymbol{A}_{t}}\log p_{t}\left(\boldsymbol{X}_{t},\boldsymbol{A}_{t}\right)\right] \\ -(1 - \sqrt{\lambda})g_{2,t}^{2}\nabla_{\boldsymbol{A}_{t}}\log p_{t}\left(\mathbf{X}_{t},\boldsymbol{A}_{t}\right) \\ -(1 - \sqrt{\lambda})g_{2,t}^{2}\nabla_{\boldsymbol{A}_{t}}\log p_{t}\left(\mathbf{y}_{G} \mid \boldsymbol{X}_{t},\boldsymbol{A}_{t}\right)\right] \mathrm{d}\bar{t} + g_{2,t} \,\mathrm{d}\overline{\mathbf{w}}_{2}. \end{cases}$$
(10)

where $\mathbf{f}_t(\mathbf{X}, \mathbf{A}) = (\mathbf{f}_{1,t}(\mathbf{X}), \mathbf{f}_{2,t}(\mathbf{A}))$ and $g_t = (g_{1,t}, g_{2,t})$ representing the drift and diffusion coefficients, respectively. The reverse-time processes are captured by standard Wiener processes $\overline{\mathbf{w}}_1$ and $\overline{\mathbf{w}}_2$, with $d\overline{t}$ indicating an infinitesimally small negative time step. We train one graph transformer (Dwivedi & Bresson, 2020; Vignac et al., 2022), denoted as $s_{\theta,t} = (s_{\theta_1,t}, s_{\theta_2,t})$ to closely estimate the partial score functions $\nabla_{\mathbf{X}_t} \log p_t(\mathbf{X}_t, \mathbf{A}_t)$ and $\nabla_{\mathbf{A}_t} \log p_t(\mathbf{X}_t, \mathbf{A}_t)$, facilitating the backward simulation of the equation to simultaneously generate node features and adjacency matrices of unlabelled graphs. Therefore, the denoising graph transformer is only trained with unlabelled graphs without λ values and graph labels. The graph transformer with perturbed node features X_t , adjacency matrices A_t and normalized timestep as input. The timestep t value is treated as a global graph feature, and an embedding layer is used to embed t.

We also use a graph transformer model ϕ_t with the same architecture to predict the class label of the noisy graphs $G_t = (\mathbf{X}_t, \mathbf{A}_t)$ at time step t. The target class j probability $p_t (\mathbf{y}_G = j | \mathbf{X}_t, \mathbf{A}_t)$ is then given by:

$$p_t \left(\mathbf{y}_G = j \mid \mathbf{X}_t, \mathbf{A}_t \right) = \frac{e^{\phi_t(\mathbf{X}_t, \mathbf{A}_t)_{[j]}}}{\sum_{j=1}^M e^{\phi_t(\mathbf{X}_t, \mathbf{A}_t)_{[j]}}}$$

Once both the score transformer and the classifier are trained, we use them to compute the conditional partial scores during the sampling process.

We adopt the two popular time-dependent hyperparameters $\alpha_{1,t}$ and $\alpha_{2,t}$ for the target class probability predicted by ϕ_t . These hyperparameters are defined as follows:

$$\alpha_{1,t} = 0.1^{t} \frac{r_{1} \| \boldsymbol{s}_{\theta_{1,t}} (\boldsymbol{G}_{t}) \|}{\| \nabla_{\boldsymbol{X}_{t}} \log p_{t} (\boldsymbol{y}_{G} \mid \boldsymbol{X}_{t}, \boldsymbol{A}_{t}) \|}$$

$$\alpha_{2,t} = 0.1^{t} \frac{r_{2} \| \boldsymbol{s}_{\theta_{2,t}} (\boldsymbol{G}_{t}) \|}{\| \nabla_{\boldsymbol{A}_{t}} \log p_{t} (\boldsymbol{y}_{G} \mid \boldsymbol{X}_{t}, \boldsymbol{A}_{t}) \|}$$
(11)

339 340

337 338

330

331

341 342

where $\alpha_t = (\alpha_{1,t}, \alpha_{2,t})$, r_1 and r_2 are the weights for node features and adjacency matrices respectively, and $\|\cdot\|$ is the entry-wise matrix norm.

Intuitively, at the early stages of the reverse-time SDEs, the graphs are highly perturbed, resembling
 the prior noise distribution. Therefore, the classifier cannot accurately approximate the target class
 probability. Consequently, in the initial denoising steps, we focus more on guiding the reverse-time
 SDEs towards the OOD distribution. As the reverse-time SDEs progressively denoise the graphs,
 we introduce guidance to direct the reverse-time SDEs towards regions exhibiting the desired stable
 patterns and the explored OOD environmental patterns.

351

352 353

5 EXPERIMENTS

In this section, we first demonstrate the effectiveness of our diffusion models on graph OOD tasks in
 Section 5.2, then validate the efficacy of our OOD-controlled diffusion process on GOOD-Motif and
 GOOD-HIV datasets in Section 5.3. We further conduct an ablation study to verify the effectiveness
 of our diffusion models to generate OOD graphs in Section 5.3

357 358 359

5.1 EXPERIMENTAL SETTINGS

Setup. For a fair comparison, we adopt the same evaluation metrics as those used in (Gui et al., 2022). The model that achieves the best performance on the OOD validation sets is then evaluated on the OOD test sets. Furthermore, to ensure fair comparison across all methods, we utilize the same GNN backbones—GIN (Xu et al., 2019) and GIN-Virtual (Xu et al., 2018; Gilmer et al., 2017)—as
 applied in the GOOD benchmark (Gui et al., 2022) for each dataset. The experimental details, including evaluation metrics and hyperparameter configurations, are summarized in Appendix A.4.

Datasets. We use synthetic, semi-artificial, and real-world datasets from GOOD (Gui et al., 2022),
 including GOOD-Motif, GOOD-CMNIST, GOOD-HIV, and GOOD-SST2. Consistent with (Gui et al., 2022), we apply base, size, color, scaffold, and length data splits to introduce diverse covariate
 shifts in graph structure, node features, and edge features. Detailed descriptions of the datasets are
 provided in Appendix A.4.

Baselines. We adopt 16 baselines, which can be divided into the following three specific categories:(i) *general generalization algorithms*, including ERM, IRM (Arjovsky et al., 2019), Group-DRO (Sagawa et al., 2019), VREx (Krueger et al., 2021), DANN (Ganin et al., 2016), Deep Coral (Sun & Saenko, 2016); (ii) *graph generalization algorithms*, including DIR (Wu et al., 2022), GSAT (Miao et al., 2022), CIGA (Chen et al., 2022), and (iii) *graph data augmentation techniques*, including DropNode (Feng et al., 2020), DropEdge (Rong et al., 2019), MaskFeature (Thakoor et al., 2021), FLAG (Kong et al., 2022), M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022), AIA (Sui et al., 2024).

070								
378	Туре	Method	Motif		CMNIST	MNIST Molhiv		GOOD-SST2
379			base	size	color	scaffold	size	length
380		ERM	68.66 ± 4.25	51.74 ± 2.88	28.60 ± 1.87	69.58 ± 2.51	59.94 ± 2.37	81.30 ± 0.35
		IRM	70.65 ± 4.17	51.41 ± 3.78	27.83 ± 2.13	67.97 ± 1.84	59.00 ± 2.92	79.91 ± 1.97
381		GroupDRO	68.24 ± 8.92	51.95 ± 5.86	29.07 ± 3.14	70.64 ± 2.57	58.98 ± 2.16	81.35 ± 0.54
202	General Generalization	VREx	71.47 ± 6.69	52.67 ± 5.54	28.48 ± 2.87	70.77 ± 2.84	58.53 ± 2.88	80.64 ± 0.35
302		DANN	65.47 ± 5.35	51.46 ± 3.41	29.14 ± 2.93	70.63 ± 1.82	62.38 ± 2.65	79.71 ± 1.35
383		Deep Coral	68.88 ± 3.61	53.71 ± 2.75	29.05 ± 2.19	68.61 ± 1.70	$\overline{60.11\pm3.53}$	79.81 ± 0.22
384		DIR	62.07 ± 8.75	52.27 ± 4.56	33.20 ± 6.17	68.07 ± 2.29	58.08 ± 2.31	77.65 ± 1.93
504	Graph Generalization	GSAT	62.80 ± 11.41	53.20 ± 8.35	28.17 ± 1.26	68.66 ± 1.35	58.06 ± 1.98	81.49 ± 0.76
385		CIGA	66.43 ± 11.31	49.14 ± 8.34	32.22 ± 2.67	69.40 ± 2.39	59.55 ± 2.56	80.44 ± 1.24
386		DropNode	74.55 ± 5.56	54.14 ± 3.11	33.01 ± 0.12	$\underline{71.18 \pm 1.16}$	58.52 ± 0.49	81.14 ± 1.73
		DropEdge	45.08 ± 4.46	45.63 ± 4.61	22.65 ± 2.90	70.78 ± 1.38	58.53 ± 1.26	78.93 ± 1.34
387		MaskFeature	64.98 ± 6.95	52.24 ± 3.75	44.85 ± 2.42	65.90 ± 3.68	62.30 ± 3.17	82.00 ± 0.73
388	Graph Augmentation	FLAG	61.12 ± 5.39	51.66 ± 4.14	32.30 ± 2.69	68.45 ± 2.30	60.59 ± 2.95	$\overline{77.05 \pm 1.27}$
500	Graph Augilientation	M-Mixup	70.08 ± 3.82	51.48 ± 4.91	26.47 ± 3.45	68.88 ± 2.63	59.03 ± 3.11	80.88 ± 0.60
389		G-Mixup	59.66 ± 7.03	52.81 ± 6.73	31.85 ± 5.82	70.01 ± 2.52	59.34 ± 2.43	80.28 ± 1.49
		AIA	73.64 ± 5.15	55.85 ± 7.98	36.37 ± 4.44	71.15 ± 1.81	61.64 ± 3.37	81.69 ± 0.57
390		OODA(Ours)	75.25 ± 3.84	60.81 ± 7.80	$\overline{54.60 \pm 2.27}$	72.67 ± 1.28	66.47 ± 2.29	82.69 ± 0.28

Table 1: Performance on synthetic and real-world datasets. Bold numbers indicate the best performance, while the underlined numbers indicate the second best performance.

5.2 **GRAPH OUT-OF-DISTRIBUTION CLASSIFICATION**

The graph classification performances under covariate shift are presented in Table 1. As shown, 397 OODA consistently outperforms all baseline methods across diverse covariate shifts and different 398 datasets. 399

400 On the synthetic dataset GOOD-Motif, OODA achieves a performance improvement of 6.59% over 401 ERM under base shift and 9.07% under size shift. For the semi-artificial dataset GOOD-CMNIST, designed for node feature shifts, performance is significantly enhanced by 18.23% compared to the 402 leading graph augmentation method, AIA, and improved by 21.40% over the best graph invariant 403 learning method, DIR. In the real-world molecular dataset GOOD-HIV, where covariate shifts oc-404 cur in graph structure, node features, and edge features simultaneously, OODA outperforms ERM 405 by 2.09% on scaffold shift and by 6.53% on size shift. For the real-world natural language senti-406 ment analysis dataset GOOD-SST2, while AIA is outperformed by MaskFeature by 0.31%, OODA 407 exceeds MaskFeature by 0.69%. 408

These results demonstrate that no baseline graph invariant learning or graph data augmentation 409 methods consistently outperform each other under various covariate shifts. OODA enhances envi-410 ronmental exploration by generating out-of-distribution (OOD) graphs in a controlled manner while 411 preserving stable features. Consequently, OODA reliably improves performance across different 412 datasets facing various covariate shifts.

413 414 415

391

392

393 394

5.3 OOD CONTROLLED GRAPH GENERATION

416 In this section, we present both qualitative and quantitative experiments to demonstrate the effective-417 ness of our out-of-distribution diffusion augmentation framework. The experiments are conducted 418 using the GOOD-Motif-base and GOOD-HIV-scaffold datasets.

419 Controlled OOD generation. We first validate that our framework 420 can explore the space of the original distribution $P_{tr}(G, Y)$ and gen-421 erate an augmented distribution $P_{tr}(G, Y)$ in a controlled manner. 422 To evaluate the deviation of the augmented distribution from the 423 training graphs, we employ existing random Graph Isomorphism 424 Networks (GIN)-based metrics (Thompson et al., 2022), which are 425 well-suited for graph generative models. These metrics are more 426 expressive, and significantly reduce computational costs, particu-427 larly on large graph datasets. As recommended by (Thompson 428 et al., 2022), we utilize the maximum mean discrepancy (MMD) with a radial basis function (RBF) kernel, which is widely recog-429 nized as a robust metric for measuring distributional differences. 430 MMD RBF is used to measure the discrepancy between the aug-431

Figure 2: Distance between original and OOD graph distributions on GOOD-Motif.

mented and training distributions. We vary λ uniformly in the range [0, 1) with a step size of 0.1

432 to generate ten augmented datasets, each containing the same number of graphs as the training set, 433 and compute the MMD RBF between each augmented dataset and the original training dataset. 434 A detailed description of the estimation procedure is provided in Appendix A.3. The results for 435 GOOD-Motif with base covariate shift are presented in Figure 2. As shown in Figure 2, the MMD 436 RBF between the original GOOD-Motif-base graph distribution $P_{tr}(G, Y)$ and the augmented graph 437 distribution $P_{\rm tr}(G, Y)$ increases as λ grows. When $\lambda = 0.0$, the MMD RBF is 0.072 ± 0.002 . As λ 438 increases to 0.9, the MMD RBF becomes 1.5 times larger than that at $\lambda = 0.0$. These results demonstrate that OODA can generate OOD graph samples in a controlled manner by flexibly adjusting the 439 440 value of λ .

441 Stable patterns preservation. we utilize a pretrained graph trans-442 former ϕ_t , which was trained on noisy graphs from the training dis-443 tribution, to compute the probability of each augmented OOD graph 444 sample possessing stable patterns that determine the target class, de-445 noted as $p(\mathbf{y}_G \mid \tilde{G}_0)$, where \mathbf{y}_G represents the target class of \tilde{G}_0 . 446 We then compute the expected value $\mathbb{E}_{\tilde{G}_0 \sim \tilde{P}} \left| p\left(\mathbf{y}_G \mid \tilde{G}_0 \right) \right|$ across 447 448 the augmented distribution. This approach verifies that the explored 449 graphs in $P_{tr}(G, Y)$ preserve the stable patterns characteristic of the 450 graphs in $P_{tr}(G, Y)$. The results for GOOD-Motif with base co-451 variate shifts are illustrated in Figure 3. As depicted, the expected probability $\mathbb{E}_{\tilde{G}_0 \sim \tilde{P}} \left[p\left(\mathbf{y}_G \mid \tilde{G}_0 \right) \right]$ consistently exceeds 0.95 as λ 452 453 increases, demonstrating the capability of OODA to generate OOD 454

Figure 3: Expected probabilities that the OOD GOOD-Motif graphs retain stable patterns.

Visualization of OOD graphs. We further demonstrate the efficacy of OODA by visualizing the OOD graphs generated by our approach in Table 3. In this visualization, three label-determining motifs—house, cycle, and crane—are highlighted in red, while the three environmental base graphs in the training distribution—wheel, tree, and ladder—are indicated in green. As illustrated in Table 3, increasing λ leads to gradual modifications in the structures of the base graphs, while the motifs remain preserved.

462 OOD molecules generation. To further val-463 idate the effectiveness of OODA in generating valid OOD molecules, we assess both the ex-464 ploration of new patterns and the preservation 465 of stable features. The Fréchet ChemNet Dis-466 tance (FCD) (Preuer et al., 2018) is employed to 467 quantify the distance between the training and 468 augmented distributions of molecules, based on 469 the penultimate activations of ChemNet. Ad-470 ditionally, RDKit (Landrum et al., 2016) is 471 used to evaluate the fraction of valid molecules. 472 We also compute the $\mathbb{E}_{\tilde{G}_0 \sim \tilde{P}} \left| p\left(\mathbf{y}_G \mid G_0 \right) \right|$ to 473 confirm that the OOD molecules retain stable 474 patterns necessary for inhibiting HIV replica-475

graphs that retain stable patterns.

455

Figure 4: (Left): Distance between the original GOOD-HIV graph distribution and the augmented graph distribution. (Right): The validity of the OOD molecules and the expected probabilities that the OOD GOOD-HIV molecules retain stable patterns.

tion. The results, shown in Figure 4, demonstrate that as λ increases, the FCD between the training molecules and the generated OOD molecules grows. Despite this, the OOD molecules consistently preserve stable patterns, with $\mathbb{E}_{\tilde{G}_0 \sim \tilde{P}}\left[p\left(\mathbf{y}_G \mid \tilde{G}_0\right)\right]$ remaining above 0.97, while maintaining a 100% validity rate.

Ablation study. In this section, we present experiments to evaluate the impact of exploration guidance (λ) and stable patterns preservation guidance (α). The results are summarized in Table 2. As shown, incorporating α guidance improves the OOD performance of the diffusion model trained on unlabeled graphs by ensuring that the generated graphs retain the stable patterns that determine the labels. Without α guidance, a diffusion model guided only by λ tends to push the augmented graphs into arbitrary out-of-distribution (OOD) regions, which negatively impacts performance to

$\lambda \alpha$	Motif-base	Molhiv-scaffold	GOOD-SST2-length	
ERM	68.66 ± 4.25	69.58 ± 2.51	81.30 ± 0.35	
XX	68.55 ± 6.04	68.94 ± 1.26	80.86 ± 0.76	
√ X	66.25 ± 7.42	70.01 ± 1.71	78.87 ± 3.04	
X 🗸	74.57 ± 4.50	71.71 ± 1.77	81.59 ± 0.65	
OODA	75.25 ± 3.84	72.67 ± 1.28	82.69 ± 0.28	

Table 2: Performance of OODA w/o environmental exploration guidance and stable pattern preservation guidance on synthetic and real-world datasets. Bold numbers indicate the best performance.

Table 3: Visualizations of the augmented GOOD-Motif-base graphs generated by OODA. The graphs \tilde{G} with $\lambda = 0.1$, $\lambda = 0.2$, and $\lambda = 0.3$ represent the OOD graphs generated by OODA under different values of λ .

some extent. Ultimately, the combination of both α and λ guidance enables the augmented distribution to capture both stable patterns and novel environmental patterns, resulting in the best overall performance.

6 CONCLUSION

In this work, we proposed OODA, an out-of-distribution graph generation framework based on a score-based diffusion probabilistic model, designed to address covariate shifts in graph learning. Our approach generates OOD graph samples that integrate both explored environmental and stable features, eliminating the need to separate them during training. Furthermore, OODA can simul-taneously explore new environments in graph structure, node features, and edge features. While score-based diffusion models demonstrate significant potential in handling diverse covariate shifts, they present scalability challenges when applied to large-scale graphs. Additionally, generating OOD graphs may require careful tuning of hyperparameters in the guidance scheme to balance exploration quality, particularly across different datasets. In this study, we applied minimal hyper-parameter tuning to achieve competitive results. Future work could focus on developing scalable diffusion models and exploring parameter-efficient tuning strategies to further enhance OOD graph generation.

540 REFERENCES

554

581

582

583

584

- Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio,
 Ioannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-ofdistribution generalization. *Advances in Neural Information Processing Systems*, 34:3438–3450,
 2021.
- Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 arXiv preprint arXiv:1907.02893, 2019.
- Gleb Bazhenov, Sergei Ivanov, Maxim Panov, Alexey Zaytsev, and Evgeny Burnaev. Towards
 ood detection in graph classification from uncertainty estimation perspective. *arXiv preprint arXiv:2206.10691*, 2022.
- Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
 Journal of medicinal chemistry, 39(15):2887–2893, 1996.
- Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu, Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution generalization on graphs. *Advances in Neural Information Processing Systems*, 35:22131–22148, 2022.
- Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
 graph learning via environment augmentation learn invariance? *Advances in Neural Information Processing Systems*, 36, 2024.
- Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
 arXiv preprint arXiv:2012.09699, 2020.
- Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
 Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
 Advances in neural information processing systems, 33:22092–22103, 2020.
- Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of machine learning research, 17(59):1–35, 2016.
- Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 message passing for quantum chemistry. In *International conference on machine learning*, pp. 1263–1272. PMLR, 2017.
- Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
 Advances in Neural Information Processing Systems, 35:2059–2073, 2022.
- 578 Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
 579 graph classification. In *International Conference on Machine Learning*, pp. 8230–8248. PMLR,
 580 2022.
 - Zheng Huang, Qihui Yang, Dawei Zhou, and Yujun Yan. Enhancing size generalization in graph neural networks through disentangled representation learning. *arXiv preprint arXiv:2406.04601*, 2024.
- Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
 system of stochastic differential equations. In *International Conference on Machine Learning*,
 pp. 10362–10383. PMLR, 2022.
- Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and Tom Goldstein. Robust optimization as data augmentation for large-scale graphs. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 60–69, 2022.
- David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In *International Conference on Machine Learning*, pp. 5815–5826. PMLR, 2021.

594 595 596	Greg Landrum et al. Rdkit: Open-source cheminformatics software. 2016. URL http://www. rdkit. org/, https://github. com/rdkit/rdkit, 149(150):650, 2016.
597 598 599	Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of- distribution generation. In <i>International Conference on Machine Learning</i> , pp. 18872–18892. PMLR, 2023.
600 601 602	Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs: A survey. <i>arXiv preprint arXiv:2202.07987</i> , 2022.
603 604	Xiner Li, Shurui Gui, Youzhi Luo, and Shuiwang Ji. Graph structure extrapolation for out-of- distribution generalization. In <i>Forty-first International Conference on Machine Learning</i> , 2024.
605 606 607 608	Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In <i>International Conference on Machine Learning</i> , pp. 15159–15179. PMLR, 2022.
609 610 611	Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic atten- tion mechanism. In <i>International Conference on Machine Learning</i> , pp. 15524–15543. PMLR, 2022.
612 613 614 615	Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 5115–5124, 2017.
616 617 618 619	Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer. Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. <i>Journal of chemical information and modeling</i> , 58(9):1736–1741, 2018.
620 621	Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional networks on node classification. <i>arXiv preprint arXiv:1907.10903</i> , 2019.
622 623 624	Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimization. <i>arXiv preprint arXiv:2010.05761</i> , 2020.
625 626 627	Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. <i>arXiv preprint arXiv:1911.08731</i> , 2019.
628 629 630 631	Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. <i>arXiv preprint arXiv:2011.13456</i> , 2020.
632 633 634	Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, and Xiangnan He. Unleashing the power of graph data augmentation on covariate distribution shift. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
635 636 637 638	Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In <i>Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14</i> , pp. 443–450. Springer, 2016.
639 640 641	Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via bootstrapping. <i>arXiv preprint arXiv:2102.06514</i> , 2021.
642 643 644 645	Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W. Taylor. On evalu- ation metrics for graph generative models. In <i>International Conference on Learning Representa-</i> <i>tions</i> , 2022. URL https://openreview.net/forum?id=EnwCZixjSh.
646 647	Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas- cal Frossard. Digress: Discrete denoising diffusion for graph generation. <i>arXiv preprint</i> <i>arXiv:2209.14734</i> , 2022.

- Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph classification. In Proceedings of the Web Conference 2021, pp. 3663–3674, 2021.
- Oitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection for graph neural networks. arXiv preprint arXiv:2302.02914, 2023.
- Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales for graph neural networks. arXiv preprint arXiv:2201.12872, 2022.
- Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-ing. Chemical science, 9(2):513-530, 2018.
- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.
 - Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In International Conference on Learning Representations, 2019. URL https: //openreview.net/forum?id=ryGs6iA5Km.
- Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure in-variance for out-of-distribution molecular representations. Advances in Neural Information Pro-cessing Systems, 35:12964–12978, 2022.
- Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Im-proving out-of-distribution robustness via selective augmentation. In International Conference on Machine Learning, pp. 25407-25437. PMLR, 2022.
- Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic graphs with deep auto-regressive models. In International conference on machine learning, pp. 5708–5717. PMLR, 2018.
- Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(5): 5782-5799, 2022.
- Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 617–626, 2020.

A Appendix

704 A.1 PROOFS 705

 $\nabla_{G_t} \log p_t \left(G_t, \mathbf{y}_G \mid \mathbf{y}_{ood} = \lambda \right) = \nabla_{G_t} \log p_t \left(G_t \mid \mathbf{y}_G, \mathbf{y}_{ood} = \lambda \right)$ Proof:

$$\log p_t \left(G_t, \mathbf{y}_G \mid \mathbf{y}_{\text{ood}} = \lambda \right) = \log p_t \left(G_t, \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right) - \log p_t \left(\mathbf{y}_{\text{ood}} = \lambda \right)$$

Since $p_t (\mathbf{y}_{ood} = \lambda)$ is independent of $G_t, \nabla_{G_t} \log p_t (\mathbf{y}_{ood} = \lambda) = 0$. Therefore,

$$\nabla_{G_t} \log p_t \left(G_t, \mathbf{y}_G \mid \mathbf{y}_{\text{ood}} = \lambda \right) = \nabla_{G_t} \log p_t \left(G_t, \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right)$$

Additionally,

$$\log p_t \left(G_t \mid \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right) = \log p_t \left(G_t, \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right) - \log p_t \left(\mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right)$$

720 721

722 723 724

715

702

703

706

708

709 710

Since $p_t(\mathbf{y}_G, \mathbf{y}_{ood} = \lambda)$ is independent of $G_t, \nabla_{G_t} \log p_t(\mathbf{y}_G, \mathbf{y}_{ood} = \lambda) = 0$. Therefore,

$$\nabla_{G_t} \log p_t \left(G_t \mid \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right) = \nabla_{G_t} \log p_t \left(G_t, \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right)$$

Finally,

$$\nabla_{G_t} \log p_t \left(G_t, \mathbf{y}_G \mid \mathbf{y}_{\text{ood}} = \lambda \right) = \nabla_{G_t} \log p_t \left(G_t \mid \mathbf{y}_G, \mathbf{y}_{\text{ood}} = \lambda \right)$$

725 A.2 GRAPH COVARIATE SHIFT

726 In this work, we address the challenge of OOD graph classification, where the goal is to de-727 velop models trained on a dataset \mathcal{D}_{tr} that can generalize effectively to a dataset \mathcal{D}_{te} . Consider-728 ing invariant perspectives under covariate shifts (Gui et al., 2022; Sui et al., 2024), we note while 729 $P_{\rm tr}(Y \mid G) = P_{\rm te}(Y \mid G)$ holds, the marginal distributions of graphs differ, i.e., $P_{\rm tr}(G) \neq P_{\rm te}(G)$. 730 This discrepancy may stem from the training set's limited size or diversity and the unpredictable 731 conditions in test environments. For instance, acquiring sufficient samples of molecules for prop-732 erty prediction can be costly and challenging. Moreover, geometric deep learning models are fre-733 quently applied to predict properties of molecules with unseen scaffolds. Prior study (Li et al., 2024) identifies two primary types of covariate distribution discrepancies: (1) $P_{\rm tr}(\mathbf{X}) \neq P_{\rm te}(\mathbf{X})$ while 734 $P_{\rm tr}(\mathbf{A}) = P_{\rm te}(\mathbf{A})$ and $P_{\rm tr}(\mathbf{E}) = P_{\rm te}(\mathbf{E})$, exemplified by the GOOD-CMNIST dataset (Gui et al., 735 2022), where digits of different colors indicate different environments that correspond to dataset 736 splits. (2) $P_{tr}(A, E) \neq P_{te}(A, E)$ or $P_{tr}(A, X, E) \neq P_{te}(A, X, E)$, as seen in the GOOD-Motif 737 dataset (Gui et al., 2022) where training and testing environments differ in graph size and bases. In 738 the GOOD-HIV benchmark (Gui et al., 2022), the molecular scaffolds differ between the training 739 and testing datasets. 740

The covariate shift, whether in graph structure, node features or eddge features, poses significant
challenges to OOD generalization. This work aims to provide a general framework to address all
three types of covariate shifts.

744 745

A.3 METRICS FOR MEASURING DISTRIBUTIONAL DIFFERENCES

⁷⁴⁶ In this section, we provide detailed implementation steps for measuring the distributional differences ⁷⁴⁷ between the augmented dataset and the training dataset. Following (Thompson et al., 2022), we ⁷⁴⁸ first use an untrained random GIN, h, to extract graph embeddings from both the augmentation ⁷⁴⁹ distribution and the training distribution. The maximum mean discrepancy (MMD) is then computed ⁷⁵⁰ to quantify the dissimilarity between the graph embedding distributions:

$$\mathrm{MMD}^{2}(P\|\tilde{P}) = \mathbb{E}_{g,\tilde{g}\sim P}[k(h(g),h(\tilde{g}))] + \mathbb{E}_{g,\tilde{g}\sim\tilde{P}}[k(h(g),h(\tilde{g}))] - 2\mathbb{E}_{g\sim P,\tilde{g}\sim\tilde{P}}[k(h(g),h(\tilde{g}))]$$

752 753

751

where $k(\cdot, \cdot)$ is the RBF kernel proposed by (You et al., 2018). As recommended by (Thompson et al., 2022), the MMD RBF scalar is also one of the most reliable metrics for measuring distributional differences:

Additionally, we employ the Earth Mover's Distance (EMD) from (Thompson et al., 2022) to compute pairwise distances $d(\cdot, \cdot)$.

 $k(h(g), h(\tilde{g})) = \exp\left(-d(h(g), h(\tilde{g}))/2\sigma^2\right)$

A.4 EXPERIMENTAL DETAILS

764 A.4.1 DATASET DETAILS

756

758

761 762

763

772

773

774

775

776

777

779

780

We utilize six datasets from the GOOD benchmark (Gui et al., 2022), including GOOD-Motif-base,
GOOD-Motif-size, GOOD-CMNIST-color, GOOD-HIV-scaffold, GOOD-HIV-size, and GOOD-SST2-length. The GOOD benchmark (Gui et al., 2022) is the state-of-the-art framework for systematically evaluating graph OOD generalization. It carefully designs data environments to induce
reliable and valid distribution shifts. The selected datasets span a diverse range of domains, covering covariate shifts in general graphs, image-transformed graphs, molecular graphs, and natural language sentiment analysis graphs. The dataset details are as follows:

- **GOOD-Motif:** GOOD-Motif is a synthetic dataset from Spurious-Motif (Wu et al., 2022) specifically designed to investigate structure shifts. Each graph consists of an environmental base graph connected to a label-determining motif. The two primary covariate shift domains are the base graph type and graph size. For base covariate shift, the training distribution includes graphs with wheel, tree, and ladder base structures, while the validation set features star base graphs, and the test set contains path base graphs. For size covariate shift, the training distribution consists of graphs with sizes ranging from 6 to 45 nodes, the validation set contains graphs with sizes between 20 and 75 nodes, and the test set comprises graphs with sizes ranging from 68 to 155 nodes.
- GOOD-CMNIST: GOOD-CMNIST is a semi-synthetic dataset designed to investigate node feature shifts. It consists of graphs transformed from MNIST handwritten digit images using superpixel techniques (Monti et al., 2017). Node color features are manually applied, making the color shift environment independent of the underlying structure. Specifically, for covariate shift, digits are colored using seven different colors. The training distribution includes digits colored with the first five colors, while the validation and test distributions contain digits with the remaining two colors, respectively.
- GOOD-HIV: GOOD-HIV is a small-scale, real-world molecular dataset sourced from MoleculeNet (Wu et al., 2018). The nodes in these molecular graphs represent atoms, and the edges represent chemical bonds. This dataset is designed to study node feature shifts, edge feature shifts, and structure shifts. The two covariate shift domains are scaffold graph type and molecular graph size. For the scaffold covariate shift, environments are partitioned based on the Bemis-Murcko scaffold (Bemis & Murcko, 1996), a two-dimensional structural base that does not determine a molecule's ability to inhibit HIV replication. For the size covariate shift, the training distribution consists of molecular graphs ranging in size from 17 to 222 atoms. The validation set contains molecules with sizes between 15 and 16 atoms, while the test set includes molecules with sizes from 2 to 14 atoms.
- GOOD-SST2: GOOD-SST2 is a real-world natural language sentimental analysis dataset 798 from (Yuan et al., 2022), designed to investigate node feature shifts and structure shifts. 799 Each graph is derived from a sentence, transformed into a grammar tree, where nodes 800 represent words, and node features are corresponding word embeddings. The task is to 801 predict the sentiment polarity of each sentence. Sentence length is chosen as the covariate 802 shift environment, as sentence length should not inherently affect sentiment polarity. For the length covariate shift, the training distribution consists of grammar graphs with sizes 804 ranging from 1 to 7 nodes, the validation distribution includes graphs with sizes from 8 to 805 14 nodes, and the test distribution contains graphs with sizes from 15 to 56 nodes.
- 80
- A.4.2 IMPLEMENTATION SETTINGS
- **Diffusion models:** Following (Jo et al., 2022), we preprocess each graph into two matrices: $X \in \mathbb{R}^{n \times a}$ for node features, and $A \in \mathbb{R}^{n \times n \times b}$ for adjacency and edge features. Here, *n* represents the

828 829

1						
2 -		Hyperparameter	Motif	CMNIST	Molhiv	GOOD-SST2
3		Number of graph transformer layers	8	8	9	8
-	e .	Number of attention heads	8	8	8	8
4	s_{θ}	Hidden dimension of X	256	256	256	256
		Hidden dimension of \boldsymbol{A}	64	64	64	64
		Туре	VP	VP	VP	VP
	SDE for X	Number of sampling steps	1000	1000	1000	1000
	SDE IOI A	β_{\min}	0.1	0.1	0.1	0.1
		β_{\max}	1.0	1.0	1.0	1.0
		Туре	VP	VP	VE	VP
	SDE for A	Number of sampling steps	1000	1000	1000	1000
	SDL IOI A	β_{\min}	0.1	0.1	0.2	0.2
		β_{\max}	1.0	1.0	1.0	0.8
		Туре	EM + Langevin	EM + Langevin	Reverse	EM
	Solver	SNR	0.2	0.2	0.0	0.0
_		Scale coefficient	0.7	0.7	0.0	0.0
		Optimizer	AdamW	AdamW	AdamW	AdamW
		Learning rate	4×10^{-4}	4×10^{-4}	2×10^{-4}	2×10^{-4}
	Train	Weight decay	1×10^{-12}	1×10^{-12}	1×10^{-12}	1×10^{-12}
		Batch size	128	64	512	64
		EMA	0.999	0.999	0.999	0.999

Table 4: Hyperparameters of diffusion models.

830 maximum number of nodes in a graph for the given dataset, while a and b denote the dimensions 831 of node features and edge features, respectively. The graph structure, including edge features, is 832 encoded in A. For the GOOD-Motif dataset, a corresponds to the node degree of a node. In GOOD-833 CMNIST, each node feature is the concatenation of its degree and color. In GOOD-SST2, the node 834 feature is the word embedding. In the molecular dataset GOOD-HIV, a represents possible atom 835 types and b denotes the types of bonds (e.g., single, double, triple). All molecules are converted 836 to their kekulized form, with hydrogens removed using the RDKit library (Landrum et al., 2016). Additionally, we apply the valency correction proposed by (Zang & Wang, 2020) to post-process 837 the generated molecules. 838

839 We train a graph transformer model (Dwivedi & Bresson, 2020; Vignac et al., 2022), $s_{\theta,t}$, to approx-840 imate the partial score functions $\nabla_{\mathbf{X}_t} \log p_t(\mathbf{X}_t, \mathbf{A}_t)$ and $\nabla \mathbf{A}_t \log p_t(\mathbf{X}_t, \mathbf{A}_t)$ for the unlabelled 841 graphs in the OOD training set and evaluate them on the OOD validation set. In line with (Jo et al., 842 2022), we use VP or VE SDEs to model the diffusion process for both node features and adjacency matrices. The specific details of the diffusion models are provided in Table 4. 843

844 We also train a graph transformer model, ϕ_t , with the same architecture described in Table 4, to 845 predict the class labels of the noisy graphs $G_t = (X_t, A_t)$ at each time step t. 846

Graph Out-of-Distribution Classification: Following prior work (Gui et al., 2022; Li et al., 2024), 847 we employ GIN-Virtual (Xu et al., 2018; Gilmer et al., 2017) as the GNN backbone for the GOOD-848 CMNIST, GOOD-HIV, and GOOD-SST2 datasets. For the GOOD-Motif dataset, we adopt GIN (Xu 849 et al., 2019). To ensure a fair comparison across all methods, we utilize the same GNN backbone 850 architecture for all models. 851

For each experiment, we select the best checkpoints for OOD testing based on the performance on 852 the OOD validation sets. All experiments are optimized using the Adam optimizer, with weight 853 decay selected from $\{0, 1 \times 10^{-2}, 1 \times 10^{-3}, 1 \times 10^{-4}\}$ and a dropout rate of 0.5. The number of 854 convolutional layers in the GNN models is tuned from the set $\{3, 5\}$, with mean global pooling and 855 ReLU activation. The hidden layer dimension is set to 300. We explore the maximum number of 856 epochs from $\{100, 200, 500\}$, the initial learning rate from $\{1 \times 10^{-3}, 3 \times 10^{-3}, 5 \times 10^{-3}, 1 \times 10^{-4}\}$, 857 and the batch size from $\{32, 64, 128\}$. All models are trained to convergence. 858

For computation, we typically run each experiment on an NVIDIA GeForce RTX 4090. We report 859 results as the mean and standard deviation across 10 random runs for all experiments. 860

We perform a grid search for the hyperparameter $\alpha \in \{0.5, 1.0\}$ across all datasets and find 861 that $\alpha = 0.5$ consistently yields satisfactory results throughout the experiments. For λ , the grid 862 search is tailored to each dataset. Specifically, we explore $\lambda \in \{0.01, 0.02, 0.03, 0.04, 0.05\}$ for 863 the GOOD-Motif-base and GOOD-HIV-scaffold datasets. For GOOD-CMNIST-color, we tune

 $\begin{array}{lll} &\lambda \in \{0.05,0.1\}. \mbox{ In the case of GOOD-SST2-length, where $\lambda = 0.01$ corresponds to an increase of one node in the graph size relative to the training distribution, we expand the grid search to $\lambda \in \{0.01,0.02,...,0.14\}.$ Similarly, for GOOD-Motif-size, where $\lambda = 0.01$ reflects an increase of one node, we use a search space of $\lambda \in \{0.01,0.02,0.03,0.04,0.05\}.$ For GOOD-HIV-size, where $\lambda = 0.01$ corresponds to a decrease of ten nodes in graph size from the training distribution, we also use $\lambda \in \{0.01,0.02,0.03,0.04,0.05\}.$ Since this hyperparameter tuning is performed during the sampling phase rather than the training phase, it is not computationally intensive. \end{tabular}$

871 872

873

A.5 BASELINE SETTINGS

874 The implementation details for GNN backbones and hyperparameter tuning are consistent with 875 those outlined in Appendix A.4.2. For methods including ERM, IRM (Arjovsky et al., 2019), 876 GroupDRO (Sagawa et al., 2019), VREx (Krueger et al., 2021), DANN (Ganin et al., 2016), Deep 877 Coral (Sun & Saenko, 2016), DIR (Wu et al., 2022), DropNode (Feng et al., 2020), DropEdge (Rong 878 et al., 2019), MaskFeature (Thakoor et al., 2021), FLAG (Kong et al., 2022), M-Mixup (Wang et al., 879 2021), and G-Mixup (Han et al., 2022), we report results from the study in (Li et al., 2024), which uses the same GNN backbones and hyperparameter tuning as specified in Appendix A.4.2. For 880 GSAT (Miao et al., 2022), CIGA (Chen et al., 2022), and AIA (Sui et al., 2024), we use their pub-881 licly available source code, adopting default settings and hyperparameters as detailed in their papers. 882

883 884

885

899

900

901

A.6 ADDITIONAL EXPERIMENTAL RESULTS

We also utilize the GOOD-SST2-length dataset to validate that OODA can generate an augmented 887 distribution, $\tilde{P}_{tr}(G, Y)$, in a controlled manner while preserving stable patterns. In the context 888 of GOOD-SST2-length, the parameter λ regulates the OOD size of the augmented graphs, with 889 $\lambda = 0.1$ corresponding to an increase of one unit in the graph size from the training distribution. We 890 systematically vary λ within the range [0, 1) in increments of 0.1 to generate ten augmented datasets, 891 each containing the same number of graphs as the training set. The results for GOOD-SST2-length 892 under length covariate shift are illustrated in Figure 5. As shown in Figure 5 (Left), the MMD 893 RBF between the original GOOD-SST2-length graph distribution, $P_{tr}(G, Y)$, and the augmented graph distribution, $P_{tr}(G, Y)$, increases with increasing values of λ . Specifically, when $\lambda = 0.0$, 894 the MMD RBF is 0.032 ± 0.005 . As λ rises to 0.9, the MMD RBF escalates to 25 times its value 895 at $\lambda = 0.0$. These results indicate that OODA can effectively generate OOD graph samples in a 896 controlled manner by flexibly adjusting λ . 897

Moreover, as depicted in Figure 5 (Right), the expected probability $\mathbb{E}_{\tilde{G}_0 \sim \tilde{P}}\left[p\left(\mathbf{y}_G \mid \tilde{G}_0\right)\right]$ of the augmented GOOD-SST2-length graph distribution consistently exceeds 0.94 as λ increases. This result demonstrates the capability of OODA to generate OOD graphs that retain stable patterns.

Figure 5: (Left): Distance between the original GOOD-SST2-length graph distribution $P_{tr}(G, Y)$ and the augmented graph distribution $\tilde{P}_{tr}(G, Y)$. (Right): Expected probabilities that the augmented GOOD-SST2-length graph distributions retain stable patterns that determine the target class.

λ	GOOD-Motif-base	GOOD-HIV-scaffold
0.01	91.80	78.45
0.02	92.97	78.50
0.03	92.83	79.49
0.04	93.03	78.71
0.05	92.77	78.69

Table 5: Performance on the GOOD-Motif-base and GOOD-HIV-scaffold datasets across varying λ values.

Table 6: Performance on the GOOD-CMNIST-color dataset across varying λ values.

λ	GOOD-CMNIST-color
0.05	68.66
0.1	67.91

A.7 Sensitivity of hyperparameter λ

We determine the value of λ by evaluating its effectiveness on OOD validation sets across various datasets. The sensitivity of our method to different λ values is illustrated in Tables 5 and 6.

A.8 TIME AND MEMORY COMPLEXITY

941 Our pipeline consists of two stages: data augmentation, and training of the GNN classifier on aug-942 mented graphs. The second stage of classification follows general GNN training setup, without 943 introducing additional complexity: the time/memory complexity per layer of using Graph Isomor-943 phism Networks (GIN) as backbone is $\Theta(n+e)$, where *n* is the number of nodes and *e* is the number 944 of edges. For the data augmentation stage, we introduce graph transformer whose memory and time 945 complexity per layer is $\Theta(n^2)$. This arises from the computation of attention scores and predictions 946 across each edge.