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ABSTRACT

Distribution shifts between training and testing datasets significantly impair the
model performance on graph learning. A commonly-taken causal view in graph
invariant learning suggests that stable predictive features of graphs are causally
associated with labels, whereas varying environmental features lead to distribu-
tion shifts. In particular, covariate shifts caused by unseen environments in test
graphs underscore the critical need for out-of-distribution (OOD) generalization.
Existing graph augmentation methods designed to address the covariate shift often
disentangle the stable and environmental features in the input space, and selec-
tively perturb or mixup the environmental features. However, such perturbation-
based methods heavily rely on an accurate separation of stable and environmental
features, and their exploration ability is confined to existing environmental fea-
tures in the training distribution. To overcome these limitations, we introduce a
novel approach using score-based graph generation strategies that synthesize un-
seen environmental features while preserving the validity and stable features of
overall graph patterns. Our comprehensive empirical evaluations demonstrate the
enhanced effectiveness of our method in improving graph OOD generalization.

1 INTRODUCTION

Deep learning algorithms have become predominant in the analysis of graph-structured data. How-
ever, a common limitation of existing methods is the assumption that both training and testing graphs
are independently and identically distributed (i.i.d.). This assumption often falls short in real-world
scenarios, where shifts in data distribution frequently occur, leading to significant degradation in
model performance. As a result, there has been considerable progress in improving graph out-of-
distribution (OOD) generalization, evidenced by advancements in invariant graph learning (Chen
et al., 2022; Wu et al., 2022; Huang et al., 2024) and graph data augmentation (Rong et al., 2019;
Wang et al., 2021; Han et al., 2022; Yao et al., 2022; Sui et al., 2024; Li et al., 2024).

Recent studies (Gui et al., 2022; Sui et al., 2024) have identified two primary types of distribution
shifts. Correlation shifts occur when the statistical relationships between environments and labels
differ between the training and testing datasets, assuming that the test environments are represented
within the training dataset. Covariate shifts, on the other hand, arise when the test environments are
not present in the training dataset. A prevalent causal perspective in graph invariant learning (Chen
et al., 2022; Wu et al., 2022) suggests that stable features of graphs, which causally determine labels,
remain invariant across different environments, whereas varying environmental features contribute
to distribution shifts. Consequently, previous studies (Miao et al., 2022; Chen et al., 2022; Wu
et al., 2022) have primarily focused on correlation shifts by isolating invariant stable graph patterns
from the environmental features. In this work, we focus on the relatively neglected but challenging
problem of covariate shift in graph learning.

While different graph data augmentation techniques have been proposed to generate new data across
various domains (Rong et al., 2019; Han et al., 2022; Sui et al., 2024), these methods mainly mod-
ify existing data within the training set by mixing or dropping edges, which either have limited
environmental exploration ability or could result in invalid data samples (e.g., molecular graphs vio-
lating chemical rules). Moreover, indiscriminate augmentations (Rong et al., 2019) can distort stable
patterns, resulting in uncontrollable augmented distributions. While controlled augmentations (Sui
et al., 2024) have shown promising outcomes, they heavily depend on the accurate separation of
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stable and environmental patterns, which remains a nontrivial challenge and could be inherently
infeasible. These observations prompt an essential inquiry: ”Is it possible to explore the training
distribution under control, such that the exploration extends beyond the confines of the training
environments while still preserving essential stable patterns?”

In response, this work introduces an innovative score-based graph augmentation strategy that mit-
igates graph covariate shift by improving the exploration of training distribution while preserving
stable predictive patterns on the generated graphs. In high level, we formulate the problem of OOD
data augmentation as graph generation simultaneously conditioned on graph labels and exploration
variables, based on the graph generation hypothesis widely used in prior studies (Wu et al., 2022;
Yang et al., 2022; Gui et al., 2022; Chen et al., 2022). Specifically, we employ a score-based diffu-
sion probabilistic model, commonly known as a diffusion model (Song et al., 2020), to effectively
capture the data distribution of unlabeled graphs. During the generation phase, we introduce a novel
guidance scheme that generates augmented graphs, concurrently retaining predictive stable patterns
and incorporating explored environments. Our proposed Out-of-Distribution Diffusion Augmenta-
tion (OODA) framework utilizes graph labels to guide the sampling process toward graphs that are
highly likely to contain stable patterns. The exploration parameter facilitates exploration beyond
the training graph space by flexibly adjusting the discrepancy from the training distribution. The
robustness of the score-based diffusion model ensures the validity of the generated graphs, prevent-
ing the formation of invalid structures (e.g., non-viable molecules) that could impair downstream
classification performance. Furthermore, our guidance scheme eliminates the need to explicitly split
graphs into stable and environmental subgraphs. We experimentally validate our method on both
synthetic and real-world graph classification tasks under diverse covariate shift settings. Our results
demonstrate that OODA outperforms state-of-the-art baselines, including invariant graph learning
and graph data augmentation, highlighting its effectiveness in exploring environments under control
while preserving stable patterns.

Our main contributions are summarized as follows:

• We propose a novel graph generation-based environment augmentation approach to address co-
variate distribution shifts in graph learning. Our method enables controlled exploration of envi-
ronmental patterns while preserving stable patterns, without the need to explicitly separate them.

• Our approach can simultaneously generate out-of-distribution (OOD) graph structures, node fea-
tures, and edge features, making it uniquely capable of handling covariate shifts in both feature
and structural distributions, as well as when these shifts occur simultaneously.

• Extensive empirical evaluations demonstrate that our framework outperforms state-of-the-art
graph OOD generalization methods across diverse tasks, including synthetic, semi-artificial, real-
world molecular, and natural language sentiment analysis datasets.

2 RELATED WORK

Graph-structured data are inherently complex, characterized by the intricate challenges of irregu-
larity and nuanced structural information. This complexity gives rise to graph out-of-distribution
(OOD) problems that not only necessitate addressing shifts in feature distributions but also demand
attention to variations of structural distributions. In this context, we summarize two principal cate-
gories of algorithms for graph OOD robustness: (i) invariant graph learning strategies, which aim
to ensure model stability across varying distributions; and (ii) graph data augmentation techniques,
designed to enhance model generalizability by simulating diverse distribution scenarios.

Invariant Graph Learning. The concept of invariant graph learning draws inspiration from semi-
nal works such as those by (Arjovsky et al., 2019; Rosenfeld et al., 2020; Ahuja et al., 2021). This
approach aims at identifying stable graph structures (e.g., subgraphs) or representations (predictors)
that remain consistent across different environments, thereby enhancing out-of-distribution (OOD)
generalization. This is achieved by capturing salient graph features and minimizing empirical risks
across varying conditions. In scenarios where establishing causality is complex or where strong as-
sumptions may not hold, the task can be approximated by identifying features that demonstrate in-
variance under distributional shifts, thereby facilitating OOD generalization (Li et al., 2022). Effec-
tive OOD generalization is achieved by basing predictions solely on invariant information (Li et al.,
2022). For example, DIR (Wu et al., 2022) distinguishes between invariant and environment-specific
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subgraphs by creating varied interventional distributions on the training distribution. CIGA (Chen
et al., 2022) further explores this domain by employing synthetic environments and the graph gen-
eration process to identify stable features under various distribution shifts. However, this line of
research assumes access to test environments during training, which is an unrealistic assumption
given the impracticality of covering all possible test scenarios. Training in limited environments
reduces spurious correlations but fails to generalize to new, unseen environments. DISGEN (Huang
et al., 2024) gains promising results in disentangling the size factors from graph representations by
minimizing the shared information between size- and task-related information, however, the tech-
nique is constrained to handle size generalization. In this work, we propose a framework capable of
generalizing to unseen environments characterized by differences not only in graph size but also in
graph structure, node features, and edge features.

Graph Data Augmentation. Beyond invariant graph learning, graph data augmentation aims to
diversify the training distribution, thereby enhancing the out-of-distribution (OOD) generalization
of models. DropEdge (Rong et al., 2019) introduces randomness by selectively removing edges,
thus varying the training data’s structure. M-Mixup (Wang et al., 2021) enriches the dataset by
interpolating diverse and irregular graphs within semantic space. G-Mixup (Han et al., 2022) ex-
tends this concept to graph classification, interpolating across different graph generators (graphons)
to produce augmented graphs. Adversarial augmentation techniques, such as FLAG (Kong et al.,
2022), apply gradient-based perturbations to node features, and AIA (Sui et al., 2024) generates
adversarial masks on graphs, both aimed at probing environmental discrepancies. Despite these ad-
vancements, overcoming the limitations in environmental exploration caused by modifying graphs
within the original training set remains a challenge, indicating ongoing opportunities for innovation
in graph data augmentation strategies. Recently, environment-aware augmentation frameworks (Li
et al., 2024) have utilized environment information to linearly explore training graph structures and
node features, however, they depend heavily on high-quality and sufficiently diverse environment in-
formation. In practice, annotating environment labels or capturing diverse environment information
is costly and often infeasible. In this work, we introduce a generation-based augmentation method
that eliminates the need for accessing environment information.

3 PROBLEM FORMULATION

Notations. We represent a graph with n nodes as G = (A,X,E), where A ∈ Rn×n is the
adjacency matrix, X ∈ Rn×a denotes a-dimensional node features and E ∈ Rn×n×b encodes
b-dimensional edge features. Without the loss of generality, we focus on the graph classification
task where each graph G is associated with a label Y ∈ Y , determined by a predefined labelling
rule G → Y . Following invariant learning (Ahuja et al., 2021; Chen et al., 2022), we denote the
graph dataset as D = {(Ge

i , Y
e
i )}e∈Eall

, where (Ge
i , Y

e
i ) ∼ Pe(G, Y ) is an i.i.d. draw in the

environment e sampled from all possible environments Eall. The complete dataset can be partitioned
into a training set Dtr = {(Ge

i , Y
e
i )}e∈Etr and a test set Dte = {(Ge

i , Y
e
i )}e∈Ete , where Etr and Ete

index the training and testing environments, respectively. In practice, environment information may
not be explicitly given, and we further denote the training distribution as Ptr(G, Y ) and the testing
distribution as Pte(G, Y ).

Graph Classification under Covariate Shift. With only observing the training set Dtr sampled
from the training distribution Ptr in training environments Etr, our generalization objective under
graph covariate shift is to train an optimal graph classifier f : G → Y that performs well across any
possible environments Eall ⊇ Etr. We formulate this goal as the following minimization problem:

min
f

Ee∈Eall
E(Ge,Y e)∼Pe(G,Y )[ℓ(f(G

e), Y e)], (1)

where ℓ(·, ·) denotes the loss function for graph classification and the expectation is with respect
to graphs under all possible environments. However in practice, the training environments Etr may
not cover all environments, causing degraded classification performance when applying the learned
classifier in unseen test environments. This covariate shift calls for an effective manner to sufficiently
explore unseen data distribution or environments during model training. We summarize and discuss
the various types of graph covariate shifts in detail in Appendix A.2.

Issues in Graph Augmentation via Environmental Exploration. To augment the training distri-
bution for mitigating graph covariate shift, existing solutions often approach Eq. (1) by separating
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and augmenting the environments: minf Ee∈{Etr∪Eaug}E(Ge,Y e)∼Pe(G,Y )[ℓ(f(G
e), Y e)], where the

augmented environments Eaug are obtained based on either interpolating explicitly given environ-
mental labels (Li et al., 2024) or perturbing implicitly separated environmental components (Sui
et al., 2024; Wu et al., 2022; Miao et al., 2022; Chen et al., 2022). Obtaining accurate environmental
labels and components itself could be high-cost and nontrivial tasks, and separating environmental
components could be inherently unfeasible (Chen et al., 2024), which limit the practicability of such
strategy. In addition, the subgraph perturbations based augmentation is mainly operated by edge
dropping (Sui et al., 2024; Rong et al., 2019) and mixup (Han et al., 2022), which is confined to
existing subgraphs in training data and could cause invalid samples (e.g., generating molecules that
are chemically invalid).

Distribution Augmentation with OOD Control. This work overcomes these limitations by formu-
lating the augmentation problem as a generation-based graph OOD augmentation strategy, which
directly models and augments the training distribution, without explicitly requiring the knowledge
or separation of environmental information. Specifically, we target on synthesizing an augmented
training distribution P̃tr(G, Y ), which is combined with the original training distribution to obtain
the classifier, stated as:

min
f

E(G,Y )∼{Ptr(G,Y )∪P̃tr(G,Y )}[ℓ(f(G), Y )]. (2)

The augmented distribution P̃tr(G, Y ) can be implemented in multiple ways, but it needs to satisfy
two principles: (1) P̃tr(G, Y ) should deviate from Ptr(G, Y ) in a controlled manner, and (2) the
explored graphs in P̃tr(G, Y ) should preserve the stable patterns of graphs in Ptr(G, Y ). However,
current graph generation models (Jo et al., 2022; Martinkus et al., 2022; Vignac et al., 2022) cannot
directly generate graphs that meet these two criteria. To address this, we propose a novel score-based
generative model in Section 4 that captures the augmented distribution P̃tr(G, Y ) while adhering to
both principles.

4 SCORE-BASED OUT-OF-DISTRIBUTION GRAPH AUGMENTATION

In this section, we present the novel score-based graph augmentation framework, OODA, designed
to generate augmented graphs that retain predictable stable features while also exploring new envi-
ronments. We begin by discussing the score-based generative model for unlabeled graphs and then
extend the model to handle out-of-distribution scenarios with controlled adaptation. Thereafter, we
illustrate the working principles and implementation details of OODA.

Motivation From the perspective of graph generation, the goal of exploring the training distribution
Ptr(G, Y ) is to generate OOD graph samples from the conditional distribution Ptr (G, Y | yood )
where yood represents the OOD exploration condition. We assume an exploration variable λ controls
the extent of exploration within the training distribution Ptr(G, Y ). The augmented distribution
P̃tr(G, Y ) is then modelled by the conditional graph distribution Ptr (G, Y | yood = λ), which can
be decomposed as follows:

Ptr (G, Y | yood = λ) ∝ p (G) p (Y | G) p (yood = λ | G, Y ) (3)

Existing graph generation models (Jo et al., 2022; Martinkus et al., 2022; Vignac et al., 2022) can-
not directly sample graphs from the conditional distribution in Equation (3), as it is infeasible to
enumerate all possible λ values and their corresponding graphs and labels to compute the normal-
ized probabilities. To overcome this limitation, we propose a novel guidance scheme to direct the
score-based generative model (Song et al., 2020) towards the target distribution.

Score-based Graph Generation p (G) in Equation 3 is the distribution of unlabelled graphs, which
can be captured by score-based generative model (Song et al., 2020). The foundational work
by (Song et al., 2020) introduced a method for modeling the diffusion process of data into noise
and vice versa using stochastic differential equations (SDEs). For graph generation, this diffusion
process gradually corrupts graphs into a prior distribution like the normal distribution. The model
subsequently samples noise from the prior distribution and learns a score function to denoise the
perturbed graphs. Given an unlabeled graph G, we use continuous time t ∈ [0, T ] to index the
diffusion steps {Gt}Tt=1 of the graph, where G0 represents the original distribution and GT follows
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Original graph

OOD Controlled Denoising

OOD graph

Figure 1: Overview of OODA. The diffusion process iteratively transforms an unlabeled original
graph G0 into noise GT . During the denoising process, Gt−1 is computed using the conditional
score ∇Gt log pt (Gt | yG,yood = λ), constrained by the target class yG and the exploration pa-
rameter λ. Ultimately, the clean OOD graph G̃0 is generated.

a prior distribution. The forward diffusion process from the graph to the prior distribution is defined
through an Itô SDE:

dGt = ft (Gt) dt+ gt dw, (4)

that incorporates linear drift coefficient ft(·) : G → G1 and scalar diffusion coefficient gt : G → R
related to the amount of noise corrupting the unlabelled graph at each infinitesimal step t, along
with a standard Wiener process w. In contrast, the reverse diffusion employs SDE that factors in the
gradient fields or scores of the perturbed graphs Gt for denoising and graph generation from T to 0:

dGt =
[
ft (Gt)− g2t∇Gt

log pt (Gt)
]
dt̄+ gt dw,

where pt (Gt) denotes the marginal distribution at time t in forward diffusion, with ft (Gt) and gt
representing the drift and diffusion coefficients, respectively. dw here is the reverse-time standard
Wiener process, and dt̄ is an infinitesimal negative time step. The score network sθ,t (Gt) is trained
to approximate the unknown score function ∇Gt

log pt (Gt). Although the score-based generative
model can capture the distribution of unlabeled graphs, it cannot generate the pairs (G, Y ) from the
OOD distribution. To address this limitation, we introduce a novel OOD guidance scheme designed
to generate OOD graphs and their corresponding label from a score-based generative model trained
on unlabeled graphs.

Score-based Graph Generation with OOD Control To explore the training distribution in a con-
trolled manner, we propose a novel OOD-controlled score-based graph generative model capable
of generating OOD graph samples and their corresponding labels. The extent of exploration in the
generative process is regulated by the hyperparameter λ. An overview is provided in Figure 1. Our
approach involves sampling (G, Y ) from Ptr (G, Y | yood = λ) and solving the conditional reverse-
time SDE:

dGt =
[
ft (Gt)− g2t∇Gt log pt (Gt,yG | yood = λ)

]
dt̄+ gt dw (5)

Where yG denotes the graph’s label and yood specifies the amount of OOD exploration. To sam-
ple explored graph instances from Ptr (G, Y | yood = λ) using a diffusion model, we note that
∇Gt log pt (Gt,yG | yood = λ) = ∇Gt log pt (Gt | yG,yood = λ). The proof is in Appendix A.1.
Therefore, the desired conditional reverse-time SDE becomes:

dGt =
[
ft (Gt)− g2t∇Gt

log pt (Gt | yG,yood = λ)
]
dt̄+ gt dw (6)

According to Equation 3, the conditional score function ∇Gt
log pt (Gt | yG,yood = λ) is the sum

of three components:

∇Gt
log pt (Gt | yG,yood = λ) =∇Gt

log pt (Gt)

+∇Gt log pt (yG | Gt)

+∇Gt
log pt (yood = λ | Gt,yG)

(7)

Based on Bazhenov et al. (2022); Wu et al. (2023), OOD graphs are those with low likelihood under
the original distribution Ptr(G, Y ). For instance, in the Motif training dataset (Gui et al., 2022),
a house motif (stable subgraph) is only connected with wheel graphs, tree graphs or ladder graphs
(environmental subgraphs). Consequently, when environmental graphs are explored, the entire graph
patterns exist in the low-density region of the original distribution. Inspired by Lee et al. (2023), we
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model the distribution pt (yood = λ | Gt,yG) as proportional to the negative exponent of the joint
density of Gt and yG, pt (Gt,yG):

pt (yood = λ | Gt,yG) ∝ pt (Gt,yG)
−
√
λ
= pt (Gt)

−
√
λ
pt (yG | Gt)

−
√
λ (8)

Accordingly, the gradient of the log probability for conditional reverse diffusion is expressed as:

∇Gt
log pt (Gt | yG,yood = λ) = (1−

√
λ)∇Gt

log pt (Gt) + (1−
√
λ)∇Gt

log pt (yG | Gt)
(9)

As seen in Equation 9, we need to compute the target class probability for the conditional score
functions. To achieve this, we train a classifier ϕt to predict graph label yG from the noisy graph
Gt at time step t: ϕt(Gt) = ŷG. The output probability of ϕt can approximate the distribution
pt (yG | Gt).

Consequently, the conditional score function in Equation 6 results in a marginal distribution pro-
portional to pt (Gt,yG)

1−
√
λ. When λ = 0, the marginal distribution in Equation 6 simplifies to

pt (Gt,yG). The reverse-time diffusion process denoises the perturbed graphs to the augmented
distribution Ptr (G, Y | yood = 0), which closely resembles the original distribution Ptr (G, Y ). As
λ increases, the augmented distribution Ptr (G, Y | yood = λ) becomes broader relative to the orig-
inal data distribution. By adjusting λ, we can flexibly control the dispersion, making the generated
graphs more likely to be out-of-distribution. Consequently, we can increase the divergence between
Ptr (G, Y | yood = λ) and Ptr (G, Y ).

Working principles of OODA. OODA not only explores controllable environmental features but
also preserves stable features. According to Equation 7, the term ∇Gt

log pt (yood = λ | Gt,yG)
directs the reverse diffusion process towards out-of-distribution regions with graphs that exhibit the
explored environmental patterns. Additionally, the term ∇Gt

log pt (yG | Gt) guides the reverse
diffusion process towards regions containing graphs that are highly likely to possess patterns de-
termining the target class. Although we use a classifier to approximate the target class probability
pt (yG | Gt), the classifier is able to predict the target class even in the presence of noise. By
iteratively adding noise, the classifier captures the relationship between the stable patterns in the
perturbed graph Gt and the target class. Together, these two terms guide the sampling process to
generate graphs that contain desired stable patterns and extend beyond the training environments.

In addition to the aforementioned principles, OODA can generate diverse and valid OOD graph
instances for the final graph classification problem under distributional shifts. This capability is
based on the inherent randomness in the forward processes and the effectiveness of the reverse
process in the diffusion model.

Implementations of OODA. Directly applying this framework to graphs proved inadequate for
capturing the intricate relationships between nodes and edges, essential for accurately learning graph
distributions (Jo et al., 2022). To overcome this, we simultaneously models the diffusion processes
of node features and adjacency matrices of perturbed graphs {Gt = (Xt,At)}Tt=0 using a set of
SDEs for Equation 6:

dXt =
[
f1,t (Xt)− (1−

√
λ)g21,t∇Xt

log pt (Xt,At)

−(1−
√
λ)g21,t∇Xt

log pt (yG | Xt,At)
]
dt̄+ g1,t dw1

dAt =
[
f2,t (At)− (1−

√
λ)g22,t∇At

log pt (Xt,At)

−(1−
√
λ)g22,t∇At

log pt (yG | Xt,At)
]
dt̄+ g2,t dw2.

(10)

where ft(X,A) = (f1,t(X), f2,t(A)) and gt = (g1,t, g2,t) representing the drift and diffusion co-
efficients, respectively. The reverse-time processes are captured by standard Wiener processes w1

and w2, with dt̄ indicating an infinitesimally small negative time step. We train one graph trans-
former (Dwivedi & Bresson, 2020; Vignac et al., 2022), denoted as sθ,t = (sθ1,t, sθ2,t) to closely
estimate the partial score functions ∇Xt

log pt (Xt,At) and ∇At
log pt (Xt,At), facilitating the

backward simulation of the equation to simultaneously generate node features and adjacency matri-
ces of unlabelled graphs. Therefore, the denoising graph transformer is only trained with unlabelled
graphs without λ values and graph labels. The graph transformer with perturbed node features Xt,
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adjacency matrices At and normalized timestep as input. The timestep t value is treated as a global
graph feature, and an embedding layer is used to embed t.

We also use a graph transformer model ϕt with the same architecture to predict the class label of the
noisy graphs Gt = (Xt,At) at time step t. The target class j probability pt (yG = j | Xt,At) is
then given by:

pt (yG = j | Xt,At) =
eϕt(Xt,At)[j]∑M
j=1 e

ϕt(Xt,At)[j]

Once both the score transformer and the classifier are trained, we use them to compute the condi-
tional partial scores during the sampling process.

We adopt the two popular time-dependent hyperparameters α1,t and α2,t for the target class proba-
bility predicted by ϕt. These hyperparameters are defined as follows:

α1,t = 0.1t
r1 ∥sθ1,t (Gt)∥

∥∇Xt log pt (yG | Xt,At)∥

α2,t = 0.1t
r2 ∥sθ2,t (Gt)∥

∥∇At
log pt (yG | Xt,At)∥

(11)

where αt = (α1,t, α2,t), r1 and r2 are the weights for node features and adjacency matrices respec-
tively, and ∥ · ∥ is the entry-wise matrix norm.

Intuitively, at the early stages of the reverse-time SDEs, the graphs are highly perturbed, resembling
the prior noise distribution. Therefore, the classifier cannot accurately approximate the target class
probability. Consequently, in the initial denoising steps, we focus more on guiding the reverse-time
SDEs towards the OOD distribution. As the reverse-time SDEs progressively denoise the graphs,
we introduce guidance to direct the reverse-time SDEs towards regions exhibiting the desired stable
patterns and the explored OOD environmental patterns.

5 EXPERIMENTS

In this section, we first demonstrate the effectiveness of our diffusion models on graph OOD tasks in
Section 5.2, then validate the efficacy of our OOD-controlled diffusion process on GOOD-Motif and
GOOD-HIV datasets in Section 5.3. We further conduct an ablation study to verify the effectiveness
of our diffusion models to generate OOD graphs in Section 5.3

5.1 EXPERIMENTAL SETTINGS

Setup. For a fair comparison, we adopt the same evaluation metrics as those used in (Gui et al.,
2022). The model that achieves the best performance on the OOD validation sets is then evaluated
on the OOD test sets. Furthermore, to ensure fair comparison across all methods, we utilize the same
GNN backbones—GIN (Xu et al., 2019) and GIN-Virtual (Xu et al., 2018; Gilmer et al., 2017)—as
applied in the GOOD benchmark (Gui et al., 2022) for each dataset. The experimental details,
including evaluation metrics and hyperparameter configurations, are summarized in Appendix A.4.

Datasets. We use synthetic, semi-artificial, and real-world datasets from GOOD (Gui et al., 2022),
including GOOD-Motif, GOOD-CMNIST, GOOD-HIV, and GOOD-SST2. Consistent with (Gui
et al., 2022), we apply base, size, color, scaffold, and length data splits to introduce diverse covariate
shifts in graph structure, node features, and edge features. Detailed descriptions of the datasets are
provided in Appendix A.4.

Baselines. We adopt 16 baselines, which can be divided into the following three specific cate-
gories:(i) general generalization algorithms, including ERM, IRM (Arjovsky et al., 2019), Group-
DRO (Sagawa et al., 2019), VREx (Krueger et al., 2021), DANN (Ganin et al., 2016), Deep
Coral (Sun & Saenko, 2016); (ii) graph generalization algorithms, including DIR (Wu et al., 2022),
GSAT (Miao et al., 2022), CIGA (Chen et al., 2022), and (iii) graph data augmentation techniques,
including DropNode (Feng et al., 2020), DropEdge (Rong et al., 2019), MaskFeature (Thakoor
et al., 2021), FLAG (Kong et al., 2022), M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022),
AIA (Sui et al., 2024).
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Type Method Motif CMNIST Molhiv GOOD-SST2

base size color scaffold size length

General Generalization

ERM 68.66± 4.25 51.74± 2.88 28.60± 1.87 69.58± 2.51 59.94± 2.37 81.30± 0.35
IRM 70.65± 4.17 51.41± 3.78 27.83± 2.13 67.97± 1.84 59.00± 2.92 79.91± 1.97

GroupDRO 68.24± 8.92 51.95± 5.86 29.07± 3.14 70.64± 2.57 58.98± 2.16 81.35± 0.54
VREx 71.47± 6.69 52.67± 5.54 28.48± 2.87 70.77± 2.84 58.53± 2.88 80.64± 0.35
DANN 65.47± 5.35 51.46± 3.41 29.14± 2.93 70.63± 1.82 62.38± 2.65 79.71± 1.35

Deep Coral 68.88± 3.61 53.71± 2.75 29.05± 2.19 68.61± 1.70 60.11± 3.53 79.81± 0.22

Graph Generalization
DIR 62.07± 8.75 52.27± 4.56 33.20± 6.17 68.07± 2.29 58.08± 2.31 77.65± 1.93

GSAT 62.80± 11.41 53.20± 8.35 28.17± 1.26 68.66± 1.35 58.06± 1.98 81.49± 0.76
CIGA 66.43± 11.31 49.14± 8.34 32.22± 2.67 69.40± 2.39 59.55± 2.56 80.44± 1.24

Graph Augmentation

DropNode 74.55± 5.56 54.14± 3.11 33.01± 0.12 71.18± 1.16 58.52± 0.49 81.14± 1.73
DropEdge 45.08± 4.46 45.63± 4.61 22.65± 2.90 70.78± 1.38 58.53± 1.26 78.93± 1.34

MaskFeature 64.98± 6.95 52.24± 3.75 44.85± 2.42 65.90± 3.68 62.30± 3.17 82.00± 0.73
FLAG 61.12± 5.39 51.66± 4.14 32.30± 2.69 68.45± 2.30 60.59± 2.95 77.05± 1.27

M-Mixup 70.08± 3.82 51.48± 4.91 26.47± 3.45 68.88± 2.63 59.03± 3.11 80.88± 0.60
G-Mixup 59.66± 7.03 52.81± 6.73 31.85± 5.82 70.01± 2.52 59.34± 2.43 80.28± 1.49

AIA 73.64± 5.15 55.85± 7.98 36.37± 4.44 71.15± 1.81 61.64± 3.37 81.69± 0.57
OODA(Ours) 75.25± 3.84 60.81± 7.80 54.60± 2.27 72.67± 1.28 66.47± 2.29 82.69± 0.28

Table 1: Performance on synthetic and real-world datasets. Bold numbers indicate the best perfor-
mance, while the underlined numbers indicate the second best performance.

5.2 GRAPH OUT-OF-DISTRIBUTION CLASSIFICATION

The graph classification performances under covariate shift are presented in Table 1. As shown,
OODA consistently outperforms all baseline methods across diverse covariate shifts and different
datasets.

On the synthetic dataset GOOD-Motif, OODA achieves a performance improvement of 6.59% over
ERM under base shift and 9.07% under size shift. For the semi-artificial dataset GOOD-CMNIST,
designed for node feature shifts, performance is significantly enhanced by 18.23% compared to the
leading graph augmentation method, AIA, and improved by 21.40% over the best graph invariant
learning method, DIR. In the real-world molecular dataset GOOD-HIV, where covariate shifts oc-
cur in graph structure, node features, and edge features simultaneously, OODA outperforms ERM
by 2.09% on scaffold shift and by 6.53% on size shift. For the real-world natural language senti-
ment analysis dataset GOOD-SST2, while AIA is outperformed by MaskFeature by 0.31%, OODA
exceeds MaskFeature by 0.69%.

These results demonstrate that no baseline graph invariant learning or graph data augmentation
methods consistently outperform each other under various covariate shifts. OODA enhances envi-
ronmental exploration by generating out-of-distribution (OOD) graphs in a controlled manner while
preserving stable features. Consequently, OODA reliably improves performance across different
datasets facing various covariate shifts.

5.3 OOD CONTROLLED GRAPH GENERATION

In this section, we present both qualitative and quantitative experiments to demonstrate the effective-
ness of our out-of-distribution diffusion augmentation framework. The experiments are conducted
using the GOOD-Motif-base and GOOD-HIV-scaffold datasets.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 2: Distance between
original and OOD graph dis-
tributions on GOOD-Motif.

Controlled OOD generation. We first validate that our framework
can explore the space of the original distribution Ptr(G, Y ) and gen-
erate an augmented distribution P̃tr(G, Y ) in a controlled manner.
To evaluate the deviation of the augmented distribution from the
training graphs, we employ existing random Graph Isomorphism
Networks (GIN)-based metrics (Thompson et al., 2022), which are
well-suited for graph generative models. These metrics are more
expressive, and significantly reduce computational costs, particu-
larly on large graph datasets. As recommended by (Thompson
et al., 2022), we utilize the maximum mean discrepancy (MMD)
with a radial basis function (RBF) kernel, which is widely recog-
nized as a robust metric for measuring distributional differences.
MMD RBF is used to measure the discrepancy between the aug-
mented and training distributions. We vary λ uniformly in the range [0, 1) with a step size of 0.1
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to generate ten augmented datasets, each containing the same number of graphs as the training set,
and compute the MMD RBF between each augmented dataset and the original training dataset.
A detailed description of the estimation procedure is provided in Appendix A.3. The results for
GOOD-Motif with base covariate shift are presented in Figure 2. As shown in Figure 2, the MMD
RBF between the original GOOD-Motif-base graph distribution Ptr(G, Y ) and the augmented graph
distribution P̃tr(G, Y ) increases as λ grows. When λ = 0.0, the MMD RBF is 0.072± 0.002. As λ
increases to 0.9, the MMD RBF becomes 1.5 times larger than that at λ = 0.0. These results demon-
strate that OODA can generate OOD graph samples in a controlled manner by flexibly adjusting the
value of λ.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 3: Expected probabil-
ities that the OOD GOOD-
Motif graphs retain stable pat-
terns.

Stable patterns preservation. we utilize a pretrained graph trans-
former ϕt, which was trained on noisy graphs from the training dis-
tribution, to compute the probability of each augmented OOD graph
sample possessing stable patterns that determine the target class, de-
noted as p

(
yG | G̃0

)
, where yG represents the target class of G̃0.

We then compute the expected value EG̃0∼P̃

[
p
(
yG | G̃0

)]
across

the augmented distribution. This approach verifies that the explored
graphs in P̃tr(G, Y ) preserve the stable patterns characteristic of the
graphs in Ptr(G, Y ). The results for GOOD-Motif with base co-
variate shifts are illustrated in Figure 3. As depicted, the expected
probability EG̃0∼P̃

[
p
(
yG | G̃0

)]
consistently exceeds 0.95 as λ

increases, demonstrating the capability of OODA to generate OOD
graphs that retain stable patterns.

Visualization of OOD graphs. We further demonstrate the efficacy of OODA by visualizing the
OOD graphs generated by our approach in Table 3. In this visualization, three label-determining
motifs—house, cycle, and crane—are highlighted in red, while the three environmental base graphs
in the training distribution—wheel, tree, and ladder—are indicated in green. As illustrated in Ta-
ble 3, increasing λ leads to gradual modifications in the structures of the base graphs, while the
motifs remain preserved.
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Validity

Figure 4: (Left): Distance between the original
GOOD-HIV graph distribution and the augmented
graph distribution. (Right): The validity of the
OOD molecules and the expected probabilities
that the OOD GOOD-HIV molecules retain sta-
ble patterns.

OOD molecules generation. To further val-
idate the effectiveness of OODA in generating
valid OOD molecules, we assess both the ex-
ploration of new patterns and the preservation
of stable features. The Fréchet ChemNet Dis-
tance (FCD) (Preuer et al., 2018) is employed to
quantify the distance between the training and
augmented distributions of molecules, based on
the penultimate activations of ChemNet. Ad-
ditionally, RDKit (Landrum et al., 2016) is
used to evaluate the fraction of valid molecules.
We also compute the EG̃0∼P̃

[
p
(
yG | G̃0

)]
to

confirm that the OOD molecules retain stable
patterns necessary for inhibiting HIV replica-
tion. The results, shown in Figure 4, demonstrate that as λ increases, the FCD between the training
molecules and the generated OOD molecules grows. Despite this, the OOD molecules consistently
preserve stable patterns, with EG̃0∼P̃

[
p
(
yG | G̃0

)]
remaining above 0.97, while maintaining a

100% validity rate.

Ablation study. In this section, we present experiments to evaluate the impact of exploration
guidance (λ) and stable patterns preservation guidance (α). The results are summarized in Table 2.
As shown, incorporating α guidance improves the OOD performance of the diffusion model trained
on unlabeled graphs by ensuring that the generated graphs retain the stable patterns that determine
the labels. Without α guidance, a diffusion model guided only by λ tends to push the augmented
graphs into arbitrary out-of-distribution (OOD) regions, which negatively impacts performance to
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λ α Motif-base Molhiv-scaffold GOOD-SST2-length

ERM 68.66± 4.25 69.58± 2.51 81.30± 0.35
✗ ✗ 68.55± 6.04 68.94± 1.26 80.86± 0.76
✓ ✗ 66.25± 7.42 70.01± 1.71 78.87± 3.04
✗ ✓ 74.57± 4.50 71.71± 1.77 81.59± 0.65
OODA 75.25± 3.84 72.67± 1.28 82.69± 0.28

Table 2: Performance of OODA w/o environmental exploration guidance and stable pattern preser-
vation guidance on synthetic and real-world datasets. Bold numbers indicate the best performance.

Original Graphs G̃(λ = 0.1) G̃(λ = 0.2) G̃(λ = 0.3)

House Class

Cycle Class

Crane Class

Table 3: Visualizations of the augmented GOOD-Motif-base graphs generated by OODA. The
graphs G̃ with λ = 0.1, λ = 0.2, and λ = 0.3 represent the OOD graphs generated by OODA
under different values of λ.

some extent. Ultimately, the combination of both α and λ guidance enables the augmented distri-
bution to capture both stable patterns and novel environmental patterns, resulting in the best overall
performance.

6 CONCLUSION

In this work, we proposed OODA, an out-of-distribution graph generation framework based on a
score-based diffusion probabilistic model, designed to address covariate shifts in graph learning.
Our approach generates OOD graph samples that integrate both explored environmental and stable
features, eliminating the need to separate them during training. Furthermore, OODA can simul-
taneously explore new environments in graph structure, node features, and edge features. While
score-based diffusion models demonstrate significant potential in handling diverse covariate shifts,
they present scalability challenges when applied to large-scale graphs. Additionally, generating
OOD graphs may require careful tuning of hyperparameters in the guidance scheme to balance
exploration quality, particularly across different datasets. In this study, we applied minimal hyper-
parameter tuning to achieve competitive results. Future work could focus on developing scalable
diffusion models and exploring parameter-efficient tuning strategies to further enhance OOD graph
generation.
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A APPENDIX

A.1 PROOFS

∇Gt
log pt (Gt,yG | yood = λ) = ∇Gt

log pt (Gt | yG,yood = λ)

Proof:
log pt (Gt,yG | yood = λ) = log pt (Gt,yG,yood = λ)− log pt (yood = λ)

Since pt (yood = λ) is independent of Gt, ∇Gt
log pt (yood = λ) = 0. Therefore,

∇Gt log pt (Gt,yG | yood = λ) = ∇Gt log pt (Gt,yG,yood = λ)

Additionally,

log pt (Gt | yG,yood = λ) = log pt (Gt,yG,yood = λ)− log pt (yG,yood = λ)

Since pt (yG,yood = λ) is independent of Gt, ∇Gt
log pt (yG,yood = λ) = 0. Therefore,

∇Gt log pt (Gt | yG,yood = λ) = ∇Gt log pt (Gt,yG,yood = λ)

Finally,
∇Gt

log pt (Gt,yG | yood = λ) = ∇Gt
log pt (Gt | yG,yood = λ)

A.2 GRAPH COVARIATE SHIFT

In this work, we address the challenge of OOD graph classification, where the goal is to de-
velop models trained on a dataset Dtr that can generalize effectively to a dataset Dte. Consider-
ing invariant perspectives under covariate shifts (Gui et al., 2022; Sui et al., 2024), we note while
Ptr(Y | G) = Pte(Y | G) holds, the marginal distributions of graphs differ, i.e., Ptr(G) ̸= Pte(G).
This discrepancy may stem from the training set’s limited size or diversity and the unpredictable
conditions in test environments. For instance, acquiring sufficient samples of molecules for prop-
erty prediction can be costly and challenging. Moreover, geometric deep learning models are fre-
quently applied to predict properties of molecules with unseen scaffolds. Prior study (Li et al., 2024)
identifies two primary types of covariate distribution discrepancies: (1) Ptr(X) ̸= Pte(X) while
Ptr(A) = Pte(A) and Ptr(E) = Pte(E), exemplified by the GOOD-CMNIST dataset (Gui et al.,
2022), where digits of different colors indicate different environments that correspond to dataset
splits. (2) Ptr(A,E) ̸= Pte(A,E) or Ptr(A,X,E) ̸= Pte(A,X,E), as seen in the GOOD-Motif
dataset (Gui et al., 2022) where training and testing environments differ in graph size and bases. In
the GOOD-HIV benchmark (Gui et al., 2022), the molecular scaffolds differ between the training
and testing datasets.

The covariate shift, whether in graph structure, node features or eddge features, poses significant
challenges to OOD generalization. This work aims to provide a general framework to address all
three types of covariate shifts.

A.3 METRICS FOR MEASURING DISTRIBUTIONAL DIFFERENCES

In this section, we provide detailed implementation steps for measuring the distributional differences
between the augmented dataset and the training dataset. Following (Thompson et al., 2022), we
first use an untrained random GIN, h, to extract graph embeddings from both the augmentation
distribution and the training distribution. The maximum mean discrepancy (MMD) is then computed
to quantify the dissimilarity between the graph embedding distributions:

MMD2(P∥P̃ ) = Eg,g̃∼P [k(h(g), h(g̃))] + Eg,g̃∼P̃ [k(h(g), h(g̃))]− 2Eg∼P,g̃∼P̃ [k(h(g), h(g̃))]

where k(·, ·) is the RBF kernel proposed by (You et al., 2018). As recommended by (Thompson
et al., 2022), the MMD RBF scalar is also one of the most reliable metrics for measuring distribu-
tional differences:
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k (h(g), h(g̃)) = exp
(
−d (h(g), h(g̃)) /2σ2

)
Additionally, we employ the Earth Mover’s Distance (EMD) from (Thompson et al., 2022) to com-
pute pairwise distances d(·, ·).

A.4 EXPERIMENTAL DETAILS

A.4.1 DATASET DETAILS

We utilize six datasets from the GOOD benchmark (Gui et al., 2022), including GOOD-Motif-base,
GOOD-Motif-size, GOOD-CMNIST-color, GOOD-HIV-scaffold, GOOD-HIV-size, and GOOD-
SST2-length. The GOOD benchmark (Gui et al., 2022) is the state-of-the-art framework for sys-
tematically evaluating graph OOD generalization. It carefully designs data environments to induce
reliable and valid distribution shifts. The selected datasets span a diverse range of domains, cov-
ering covariate shifts in general graphs, image-transformed graphs, molecular graphs, and natural
language sentiment analysis graphs. The dataset details are as follows:

• GOOD-Motif: GOOD-Motif is a synthetic dataset from Spurious-Motif (Wu et al., 2022)
specifically designed to investigate structure shifts. Each graph consists of an environmen-
tal base graph connected to a label-determining motif. The two primary covariate shift
domains are the base graph type and graph size. For base covariate shift, the training distri-
bution includes graphs with wheel, tree, and ladder base structures, while the validation set
features star base graphs, and the test set contains path base graphs. For size covariate shift,
the training distribution consists of graphs with sizes ranging from 6 to 45 nodes, the vali-
dation set contains graphs with sizes between 20 and 75 nodes, and the test set comprises
graphs with sizes ranging from 68 to 155 nodes.

• GOOD-CMNIST: GOOD-CMNIST is a semi-synthetic dataset designed to investigate
node feature shifts. It consists of graphs transformed from MNIST handwritten digit images
using superpixel techniques (Monti et al., 2017). Node color features are manually applied,
making the color shift environment independent of the underlying structure. Specifically,
for covariate shift, digits are colored using seven different colors. The training distribution
includes digits colored with the first five colors, while the validation and test distributions
contain digits with the remaining two colors, respectively.

• GOOD-HIV: GOOD-HIV is a small-scale, real-world molecular dataset sourced from
MoleculeNet (Wu et al., 2018). The nodes in these molecular graphs represent atoms,
and the edges represent chemical bonds. This dataset is designed to study node feature
shifts, edge feature shifts, and structure shifts. The two covariate shift domains are scaffold
graph type and molecular graph size. For the scaffold covariate shift, environments are par-
titioned based on the Bemis-Murcko scaffold (Bemis & Murcko, 1996), a two-dimensional
structural base that does not determine a molecule’s ability to inhibit HIV replication. For
the size covariate shift, the training distribution consists of molecular graphs ranging in size
from 17 to 222 atoms. The validation set contains molecules with sizes between 15 and 16
atoms, while the test set includes molecules with sizes from 2 to 14 atoms.

• GOOD-SST2: GOOD-SST2 is a real-world natural language sentimental analysis dataset
from (Yuan et al., 2022), designed to investigate node feature shifts and structure shifts.
Each graph is derived from a sentence, transformed into a grammar tree, where nodes
represent words, and node features are corresponding word embeddings. The task is to
predict the sentiment polarity of each sentence. Sentence length is chosen as the covariate
shift environment, as sentence length should not inherently affect sentiment polarity. For
the length covariate shift, the training distribution consists of grammar graphs with sizes
ranging from 1 to 7 nodes, the validation distribution includes graphs with sizes from 8 to
14 nodes, and the test distribution contains graphs with sizes from 15 to 56 nodes.

A.4.2 IMPLEMENTATION SETTINGS

Diffusion models: Following (Jo et al., 2022), we preprocess each graph into two matrices: X ∈
Rn×a for node features, and A ∈ Rn×n×b for adjacency and edge features. Here, n represents the
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Table 4: Hyperparameters of diffusion models.

Hyperparameter Motif CMNIST Molhiv GOOD-SST2

sθ

Number of graph transformer layers 8 8 9 8
Number of attention heads 8 8 8 8
Hidden dimension of X 256 256 256 256
Hidden dimension of A 64 64 64 64

SDE for X

Type VP VP VP VP
Number of sampling steps 1000 1000 1000 1000

βmin 0.1 0.1 0.1 0.1
βmax 1.0 1.0 1.0 1.0

SDE for A

Type VP VP VE VP
Number of sampling steps 1000 1000 1000 1000

βmin 0.1 0.1 0.2 0.2
βmax 1.0 1.0 1.0 0.8

Solver
Type EM + Langevin EM + Langevin Reverse EM
SNR 0.2 0.2 0.0 0.0

Scale coefficient 0.7 0.7 0.0 0.0

Train

Optimizer AdamW AdamW AdamW AdamW
Learning rate 4× 10−4 4× 10−4 2× 10−4 2× 10−4

Weight decay 1× 10−12 1× 10−12 1× 10−12 1× 10−12

Batch size 128 64 512 64
EMA 0.999 0.999 0.999 0.999

maximum number of nodes in a graph for the given dataset, while a and b denote the dimensions
of node features and edge features, respectively. The graph structure, including edge features, is
encoded in A. For the GOOD-Motif dataset, a corresponds to the node degree of a node. In GOOD-
CMNIST, each node feature is the concatenation of its degree and color. In GOOD-SST2, the node
feature is the word embedding. In the molecular dataset GOOD-HIV, a represents possible atom
types and b denotes the types of bonds (e.g., single, double, triple). All molecules are converted
to their kekulized form, with hydrogens removed using the RDKit library (Landrum et al., 2016).
Additionally, we apply the valency correction proposed by (Zang & Wang, 2020) to post-process
the generated molecules.

We train a graph transformer model (Dwivedi & Bresson, 2020; Vignac et al., 2022), sθ,t, to approx-
imate the partial score functions ∇Xt

log pt (Xt,At) and ∇At log pt (Xt,At) for the unlabelled
graphs in the OOD training set and evaluate them on the OOD validation set. In line with (Jo et al.,
2022), we use VP or VE SDEs to model the diffusion process for both node features and adjacency
matrices. The specific details of the diffusion models are provided in Table 4.

We also train a graph transformer model, ϕt, with the same architecture described in Table 4, to
predict the class labels of the noisy graphs Gt = (Xt,At) at each time step t.

Graph Out-of-Distribution Classification: Following prior work (Gui et al., 2022; Li et al., 2024),
we employ GIN-Virtual (Xu et al., 2018; Gilmer et al., 2017) as the GNN backbone for the GOOD-
CMNIST, GOOD-HIV, and GOOD-SST2 datasets. For the GOOD-Motif dataset, we adopt GIN (Xu
et al., 2019). To ensure a fair comparison across all methods, we utilize the same GNN backbone
architecture for all models.

For each experiment, we select the best checkpoints for OOD testing based on the performance on
the OOD validation sets. All experiments are optimized using the Adam optimizer, with weight
decay selected from {0, 1 × 10−2, 1 × 10−3, 1 × 10−4} and a dropout rate of 0.5. The number of
convolutional layers in the GNN models is tuned from the set {3, 5}, with mean global pooling and
ReLU activation. The hidden layer dimension is set to 300. We explore the maximum number of
epochs from {100, 200, 500}, the initial learning rate from {1×10−3, 3×10−3, 5×10−3, 1×10−4},
and the batch size from {32, 64, 128}. All models are trained to convergence.

For computation, we typically run each experiment on an NVIDIA GeForce RTX 4090. We report
results as the mean and standard deviation across 10 random runs for all experiments.

We perform a grid search for the hyperparameter α ∈ {0.5, 1.0} across all datasets and find
that α = 0.5 consistently yields satisfactory results throughout the experiments. For λ, the grid
search is tailored to each dataset. Specifically, we explore λ ∈ {0.01, 0.02, 0.03, 0.04, 0.05} for
the GOOD-Motif-base and GOOD-HIV-scaffold datasets. For GOOD-CMNIST-color, we tune
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λ ∈ {0.05, 0.1}. In the case of GOOD-SST2-length, where λ = 0.01 corresponds to an increase
of one node in the graph size relative to the training distribution, we expand the grid search to
λ ∈ {0.01, 0.02, ..., 0.14}. Similarly, for GOOD-Motif-size, where λ = 0.01 reflects an increase of
one node, we use a search space of λ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. For GOOD-HIV-size, where
λ = 0.01 corresponds to a decrease of ten nodes in graph size from the training distribution, we
also use λ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Since this hyperparameter tuning is performed during
the sampling phase rather than the training phase, it is not computationally intensive.

A.5 BASELINE SETTINGS

The implementation details for GNN backbones and hyperparameter tuning are consistent with
those outlined in Appendix A.4.2. For methods including ERM, IRM (Arjovsky et al., 2019),
GroupDRO (Sagawa et al., 2019), VREx (Krueger et al., 2021), DANN (Ganin et al., 2016), Deep
Coral (Sun & Saenko, 2016), DIR (Wu et al., 2022), DropNode (Feng et al., 2020), DropEdge (Rong
et al., 2019), MaskFeature (Thakoor et al., 2021), FLAG (Kong et al., 2022), M-Mixup (Wang et al.,
2021), and G-Mixup (Han et al., 2022), we report results from the study in (Li et al., 2024), which
uses the same GNN backbones and hyperparameter tuning as specified in Appendix A.4.2. For
GSAT (Miao et al., 2022), CIGA (Chen et al., 2022), and AIA (Sui et al., 2024), we use their pub-
licly available source code, adopting default settings and hyperparameters as detailed in their papers.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

We also utilize the GOOD-SST2-length dataset to validate that OODA can generate an augmented
distribution, P̃tr(G, Y ), in a controlled manner while preserving stable patterns. In the context
of GOOD-SST2-length, the parameter λ regulates the OOD size of the augmented graphs, with
λ = 0.1 corresponding to an increase of one unit in the graph size from the training distribution. We
systematically vary λ within the range [0, 1) in increments of 0.1 to generate ten augmented datasets,
each containing the same number of graphs as the training set. The results for GOOD-SST2-length
under length covariate shift are illustrated in Figure 5. As shown in Figure 5 (Left), the MMD
RBF between the original GOOD-SST2-length graph distribution, Ptr(G, Y ), and the augmented
graph distribution, P̃tr(G, Y ), increases with increasing values of λ. Specifically, when λ = 0.0,
the MMD RBF is 0.032 ± 0.005. As λ rises to 0.9, the MMD RBF escalates to 25 times its value
at λ = 0.0. These results indicate that OODA can effectively generate OOD graph samples in a
controlled manner by flexibly adjusting λ.

Moreover, as depicted in Figure 5 (Right), the expected probability EG̃0∼P̃

[
p
(
yG | G̃0

)]
of the

augmented GOOD-SST2-length graph distribution consistently exceeds 0.94 as λ increases. This
result demonstrates the capability of OODA to generate OOD graphs that retain stable patterns.
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Figure 5: (Left): Distance between the original GOOD-SST2-length graph distribution Ptr(G, Y )

and the augmented graph distribution P̃tr(G, Y ). (Right): Expected probabilities that the augmented
GOOD-SST2-length graph distributions retain stable patterns that determine the target class.
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Table 5: Performance on the GOOD-Motif-base and GOOD-HIV-scaffold datasets across varying λ
values.

λ GOOD-Motif-base GOOD-HIV-scaffold
0.01 91.80 78.45
0.02 92.97 78.50
0.03 92.83 79.49
0.04 93.03 78.71
0.05 92.77 78.69

Table 6: Performance on the GOOD-CMNIST-color dataset across varying λ values.

λ GOOD-CMNIST-color
0.05 68.66
0.1 67.91

A.7 SENSITIVITY OF HYPERPARAMETER λ

We determine the value of λ by evaluating its effectiveness on OOD validation sets across various
datasets. The sensitivity of our method to different λ values is illustrated in Tables 5 and 6.

A.8 TIME AND MEMORY COMPLEXITY

Our pipeline consists of two stages: data augmentation, and trainng of the GNN classifier on aug-
mented graphs. The second stage of classification follows general GNN training setup, without
introducing additional complexity: the time/memory complexity per layer of using Graph Isomor-
phism Networks (GIN) as backbone is Θ(n+e), where n is the number of nodes and e is the number
of edges. For the data augmentation stage, we introduce graph transformer whose memory and time
complexity per layer is Θ(n2). This arises from the computation of attention scores and predictions
across each edge.
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