
On Representation of Natural Image Patches

Anonymous Author(s)
Affiliation
Address
email

Abstract

To optimize survival, organisms need to accurately and efficiently relay new in-1

formation throughout their systems for processing and responses. Furthermore,2

they benefit from predicting environmental occurrences, or in mathematical terms,3

understanding the probability distribution of their environment, based on both4

personal experiences and inherited evolutionary memory. These twin objectives5

of information transmission and learning environmental probabilistic distributions6

form the core of an organism’s information processing system. While the early7

vision neuroscience field has primarily focused on the former, employing infor-8

mation theory as a guiding framework [3, 32, 19, 1, 9, 28], the latter is largely9

explored by the machine learning community via probabilistic generative models.10

However, the relationship between these two objectives has not been thoroughly11

investigated. In this paper, we study a biologically inspired information processing12

model and prove that these two objectives can be achieved independently. By13

evenly partitioning the input space to model input probability, our model bypasses14

the often intractable normalization factor computation. When applied to image15

patches, this model produces a sparse, nonlinear binary population code similar16

to early visual systems, with features like edge-detection and orientation-selective17

units. Our results not only offer potential new insights into the functioning of18

neurons in early vision systems, but also present a novel approach to represent19

natural image patches.20

1 Introduction21

Nature, through billions of years of evolution, has likely developed optimal methods for processing22

visual information within the constraints of biological feasibility. However, attempting to precisely23

emulate every detail of these biological systems [30, 21] in order to construct an optimal visual24

information processing model presents significant complexities, especially without a comprehensive25

understanding of the underlying principles.26

In parallel, deep learning models, particularly Convolutional Neural Networks (CNNs), have demon-27

strated exceptional performance in various computer vision tasks, such as image classification, object28

detection, and semantic segmentation. Despite their success, these models still fall short of biological29

vision systems in several key areas such as the ability to generalize from limited data, robustness to30

variations, 3D understanding, and processing speed and efficiency.31

Moreover, deep learning models pose several unresolved challenges. Firstly, their decision-making32

processes are often opaque, leading to the "black box" label. Secondly, deep learning architectures33

typically involve numerous layers without explicit functions associated with each layer [12, 8], unlike34

the biological brain where each stage of visual processing has a distinct role and purpose [7]. Lastly,he35

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

sequence of information processing in deep learning models is largely dictated by their architectural36

structure. It is still a question how to ascertain when one processing stage is finished and when it’s37

appropriate to pass information to the next layer.38

Drawing inspiration from biological systems and prior studies [19, 1, 9, 28], and with a view to39

find an alternative approach to the current deep learning framework, this paper aims to explore the40

fundamentals of the first stage of an optimal visual information processing system. This exploration is41

undertaken incrementally, starting from a single pixel, and progressively advancing to image patches.42

2 One Pixel43

We begin with the simplest conceivable case, where the input to the model consists of a single pixel44

with one color channel. Although seemingly trivial, this model can represent various biological units.45

For example, it could model the eyespot of single-celled organisms like Euglena, the large monopolar46

cells found in an insect’s compound eye or the bipolar cells in the retina. The single pixel case has47

been studied [14, 1]. We aim to review it to introduce the central concepts and the main theory, which48

will also be applicable to more complex scenarios.49

Let us denote the light intensity of the pixel as x, and let p(x) represent its probability distribution.50

We define an information processing unit (IPU) as a model that receives inputs and passes processed51

information to subsequent stages. As the first stage in an organism’s information processing system,52

the single pixel IPU carries the same dual objectives as later stages: transmitting information and53

learning environmental probabilistic distributions. Therefore, the two objectives for the single pixel54

IPU are to transmit information about x efficiently through its output and to learn p(x).55

Information is quantified by Shannon entropy. To compute the Shannon entropy of the input, we56

assume x is a discrete variable with M states, after all light intensity is quantized according to quantum57

mechanics, although M could be a very large number, making x practically indistinguishable from a58

continuous variable. The information obtained from the pixel when we know the intensity is x can be59

represented as I(x) = − log p(x). The average information a state of the pixel contains, the Shannon60

entropy, is given by:61

Hp = −
M∑
i=1

p(xi) log p(xi). (1)

The IPU transforms the input x into the output y = f(x), where the output space comprises N62

distinct states. In contrast to previous studies that assumed one-to-one mapping between input and63

output, here we posit that N ≪ M . This assumption is more congruent with biological constraints;64

for instance, the luminance resolution levels at synapse terminals in a zebrafish’s retina are only about65

10 [25]. Moreover, this assures that after processing the information is significantly reduced, thereby66

simplifying the tasks for subsequent stages.67

The function f(x) assigns x into N groups, each corresponding to a fixed y. We denote all x values68

in group j as Gj , and the size of this group as nj . The entropy of the output is given by69

HQ = −
N∑
j=1

Q(yj) logQ(yj), (2)

where Q(y) represents the probability distribution of the output states.70

Previous research [14, 1] has primarily emphasized the first objective of an IPU, which is maximizing71

the rate of transmission [19]. This goal is particularly relevant for early-stage IPUs, where the72

distinction between signal and noise is not yet clear. Maximizing the rate of transmission is equivalent73

to maximizing HQ (see proof in Appendix A), leading to a constant Q(y). Biological neurons have74

been observed to follow this coding scheme [14].75

Simultaneously, an IPU should also strive to fullfil the second objective and model p(x) as accurately76

as possible. Mathematically, this involves minimizing the Kullback–Leibler divergence between77

2

p(x) and the distribution learned by the IPU. This raises an interesting question: Are these two78

optimization objectives contradictory, or do they essentially represent the same task?79

3 Even Code Principle80

To determine how an IPU models p(x) we need to translate the output probability distribution Q(y)81

into the input space as q(x). q(x) is a step function:82

q(x) = qj , for x ∈ Gj , (3)
and we have the following relations:83

Q(yj) =
∑
x∈Gj

p(x) =
∑
x∈Gj

q(x) = njqj . (4)

Minimizing the difference between p(x) and q(x) can be achieved by minimizing their Kull-84

back–Leibler divergence:85

DKL(p||q) = Hpq −Hp, (5)
where Hpq is the cross entropy. It can be proved that the cross entropy Hpq is equal to the entropy of86

the learned distribution in the input space defined as (see proof in Appendix B):87

Hq = −
∑
x

q(x) log q(x), (6)

and we get88

DKL(p||q) = Hq −Hp. (7)
Since Hp is fixed, minimizing the KL divergence requires minimizing Hq . The previous question now89

transforms into understanding the relationship between maximizing the entropy of the distribution in90

the output space (HQ) and minimizing the entropy of the learned distribution in the input space (Hq).91

Suppose we have two adjacent zones in the transformed space where the corresponding Q(y1) and92

Q(y2) are not equal, let’s assume Q(y1) > Q(y2). One can reduce the inequality by shifting the93

boundary between these two zones and moving one x value from G1 to G2. This shift corresponds94

to a small change of probability, δ, for both zones. Note that δ is comparable to q1 and q2, as we95

assume the distribution is smooth. We know that reducing the inequality of Q(y1) and Q(y2) always96

increases HQ. If the two optimization problems are the same, then Hq should increase; if they are97

contradictory, Hq should decrease. The change of Hq can be calculated as:98

∆Hq = −[Q(y1)− δ] log
Q(y1)− δ

n1 − 1
− [Q(y2) + δ] log

Q(y2) + δ

n2 + 1

+Q(y1) log
Q(y1)

n1
+Q(y2) log

Q(y2)

n2
(8)

= q2 − q1 + δ(log q1 − log q2 +
1

n1
+

1

n2
) +O(δ2) +O(

1

n2
1

) +O(
1

n2
2

) (9)

≈ q2 − q1 + δ log
q1
q2

. (10)

The change can either be positive or negative depending on q1 and q2. Since minimizing Hq and99

maximizing HQ are not contradictory, these objectives can be tackled independently. Given a fixed100

number of output levels N , we first maximize HQ to retain as much input information as possible. If101

further refinement of p(x) modeling is required, we can increase the output resolution N .102

The aforementioned reasoning extends naturally to multivariate scenarios, as no assumptions about103

one-dimensionality of the input were made. We articulate the goal of a general information processing104

unit as follows: An information processing unit (IPU) transforms input space with M states into105

output space with N states, where N ≪ M . Given a smooth input probability distribution as106

M → ∞ and a piecewise smooth transformation function, the sole goal of an IPU with a fixed output107

resolution N is to yield an even output probability distribution, hence retaining maximum information108

from the input. To attain better modeling precision, the output resolution N of the IPU should be109

increased. This will be referred to as the principle of even code. In the next sections, we will apply110

the even code principle to more complex inputs.111

3

4 Two Pixels112

For two pixels (x1, x2), we can either use one IPU directly to model p(x1, x2) or use two IPUs to113

model p(x1) and p(x2) separately, followed by another IPU to model the outputs p(y1, y2). We will114

use the second approach, as processing as much information locally reduces the cost of information115

transfer. In fact, when images are stored on computers, gamma encoding is utilized to create an116

approximately even distribution of pixel values. When these images are displayed, pixel values117

undergo gamma correction to recover the original statistics for human eyes to process. In the118

following sections, we will assume that all pixel values x have already been processed by dedicated119

IPUs, resulting in a roughly even probability distribution.120

The probability distribution p(x1, x2) of natural images is relatively simple. The majority of the121

probability is concentrated around the diagonal line x1 − x2 = 0, with p(x1, x2) rapidly decaying122

as |x1 − x2| increases (see Fig. 1 (a) for example). Intuitively, we can use lines parallel or/and123

perpendicular to x1 − x2 = 0 to divide the probability distribution into even partitions.124

4.1 One Basis125

To investigate how IPUs learn p(x1, x2), we conduct numerical experiments using a multilayer126

perceptron (MLP) as the IPU to approximate y = f(x) and model p(x) [23]. Other function127

approximation methods may also be applicable. To partition the input probability distribution with128

one set of parallel lines, only one IPU with N output nodes is needed. According to the even code129

principle, for each input, only one of the N output nodes should be activated, and the probability130

of activating any one of the N output nodes should be equal. We use the softmax function as the131

last layer of the MLP to ensure each output value is within [0, 1], and that if a node is activated132

(output value equals 1), it is the only node being activated. We use stochastic gradient descent and133

the following loss function to train the MLP:134

E =
∑
i

⟨ysi⟩s log⟨ysi⟩s + k⟨−
∑
i

ysi log ysi⟩s. (11)

ysi represents the value of the i-th output node for the s-th input sample, while ⟨⟩s denotes the average135

over all samples in a training batch. The first term in the loss function ensures each output node has136

an equal chance to be activated on average. The second term promotes activation of only one node137

per input while suppressing the remaining nodes, mimicking lateral inhibition when combined with138

the softmax function. The factor k balances the two terms to achieve the desired result. Fig. 1 (a)139

show the results learned by MLPs with 16 output nodes.140

4.2 Multiple Bases141

To partition the input space with two sets of orthogonal lines we need two MLPs. The orthogonality142

is achieved by enforcing143

Q(y1, y2) =
1

N1N2
, (12)

where N1 and N2 represent the number of output nodes of the two MLPs (refer Appendix C for144

proof). If more than two orthogonal bases are required for partitioning the space, we can enforce145

Eq. (12) for each combination of two bases to ensure orthogonality between them. The loss function146

for multiple orthogonal bases with independent states is147

E =
1(
B
2

) ∑
<b,b′>

∑
ij

⟨ybsiyb′sj⟩s log⟨ybsiyb′sj⟩s +
k

B
⟨−

B∑
b=1

∑
i

ybsi log ybsi⟩s, (13)

where b is the base index, and B is the number of bases.
∑

<b,b′> denotes the sum over all
(
B
2

)
148

combinations of two distinct bases. ybsiyb′sj is the probability Q(yb, yb′) for the sample s when yb149

and yb′ take their i-th and j-th value respectively.150

Fig. 1 (b) shows an example of two-pixel input space partitioning using two orthogonal bases. For a151

more detailed discussion on the experiments and additional results, refer to Appendix D.152

4

(a) (b)

Figure 1: Evenly partitioning the two-pixel probability distribution learned by multilayer perceptrons
(MLPs). The X and Y axes represent the rescaled intensities x1 and x2 of the two pixels in the range
[0, 1]. The quantity n(x1, x2) + 1 is plotted in gray on a log scale, where n(x1, x2) denotes the
number of occurrences of the two-pixel values among the sampled data. Color lines indicate the
boundaries of states for each basis learned by an MLP, with one color representing one basis. (a) One
basis with 16 independent states, which partitions the space based on the total intensity x1 + x2. (b)
Two orthogonal bases, each with 10 independent states, dividing the space based on the total intensity
x1 + x2 and the contrast x1 − x2 approximately.

Additionally, it’s worth noting that orthogonal bases with independent states might model grid cells153

[11] in the entorhinal cortex, though this topic is beyond the scope of the current paper.154

5 Image Patches155

Next we move on to study gray and color image patches. We use x to represent the vector of input156

pixel values of the image patch. The multivariate input probability distribution p(x) is considerably157

more complex compared to the previous examples. If we use only one basis to discretize the input158

probability space (e.g. Fig. 1 (a) in Appendix D), the required number of independent states for a good159

approximation would be very large, making the evaluation of the softmax function computationally160

expensive. On the other hand, using multiple orthogonal bases would also significantly increase the161

computational cost to ensure orthogonality if the number of bases is more than just a few. Additionally,162

determining the optimal number of bases and the number of independent states for each basis are163

challenging.164

Aside from the computational cost, another issue arises when working with image patches: we want165

the representation to capture the similarity between inputs. However, using orthogonal bases with166

independent states makes it difficult to gauge input similarity through methods such as calculating167

the difference between representations, even if we can establish an order for the states of each basis.168

Therefore, we need a more suitable coding scheme for complex inputs like image patches.169

Real-valued vectors are a natural choice, given their extensive use in representing a variety of entities170

such as images, texts, and categorical variables [13, 22, 10]. The norm of the difference between171

two vectors can function as a measure of similarity. Nevertheless, if we want the representation y to172

mirror input similarity, each value of y should encapsulate all samples perceived as identical within173

the same group G. Under this constraint, Q(y) cannot remain constant, thereby conflicting with the174

even code principle.175

5

The resolution to this conflict involves permitting the representation to mirror input similarity at the176

most granular level, while enforcing the even code principle at a larger scale in the transformed space.177

We will detail this method in subsequent sections.178

5.1 Loss Function179

To promote even distribution, we incorporate a loss function that compels input samples to repel each180

other in the transformed space. This repulsive force diminishes with increasing distance, as described181

by the following equation:182

E = ⟨− ln |ys − ys′ |⟩<s,s′>. (14)
Here, − ln |ys − ys′ | represents the potential energy due to the repulsive force, which is proportional183

to the inverse of the Minkowski distance between the representations of samples s and s′ in the184

transformed space. Alternative forms of potential energy and distance measures could also be185

applicable. ⟨⟩<s,s′> denotes the average over all sample pairs.186

Should numerous samples converge at one point in the transformed space, they will exert a strong187

repulsive force in the surrounding area, thereby discouraging other samples from occupying nearby188

positions. To prevent samples from pushing each other infinitely far apart, we restrict the represen-189

tation values to be within the range [0, 1]. With this constraint, the repulsive force pushes samples190

towards the vertices of the unit hypercube, effectively reducing the representations from real vectors191

to binary vectors. As a result, an even distribution is achieved on a larger scale in the transformed192

space, which consists solely of the vertices.193

In the context of binary vectors, the collection of output nodes can be viewed as a vocabulary,194

and activated nodes by an input image patch act as its representative tokens. Unlike fixed-length195

representations with real-valued vectors, binary representations can employ fewer tokens for more196

common image patches (e.g., homogeneous patches), and more tokens for less common, structurally-197

rich patches. This can be accomplished by introducing a second term, ⟨|ys|⟩s, to the loss function,198

which echoes the sparsity regularization term found in various studies [9, 16, 26, 27, 29, 4]. The199

updated loss function becames:200

E = ⟨− ln |ys − ys′ |⟩<s,s′> + α⟨|ys|⟩s, (15)

where α is a free parameter to adjust sparsity.201

In practice, we add a small value ϵ = 10−38 to the distance, allowing slightly different samples202

to share the same representation and enhancing numerical stability. Another approach to improve203

numerical stability involves using a theoretically equivalent form of the loss function, which instead204

of allowing samples to repel each other in the output space, we enable nodes to repel one another,205

encouraging output nodes to be as independent as possible [24].206

5.2 Experiments207

In the following experiments, we use either a single MLP with N outputs, or N MLPs each with208

one output, as the IPU to approximate the transformation function y = f(x) and model p(x). The209

last layer of the MLP is a sigmoid layer, ensuring the output value ranges between 0 and 1. Our210

training data comprises random image patches extracted from the COCO 2017 image dataset [18] or211

the ImageNet dataset [6]. No image preprocessing is used. Additional training details are provided in212

Appendix E.213

5.2.1 Output Statistics214

First, we examine the statistics of the learned representation. Across all experiments, we observe215

qualitatively similar output statistics, irrespective of the IPU architectures and training specifics,216

provided the training has properly converged. For illustration, we present an example using a model217

trained on 5 × 5 color image patches. It uses 96 MLPs, each with one output node and a middle218

layer of 48 nodes, as the IPU. Following training, the model is used to generate representations for 1219

million random image patches for this analysis.220

6

(a) (b)

Figure 2: Statistical analysis of the learned representation using the loss function Eq. (15). (a)
Histogram of the model’s output values on a log scale. (b) Probability of an output node being
activated by a random image patch.

Fig. 2 (a) presents the histogram of output values on a logarithmic scale. The vast majority of output221

values are either at 0 or 1. As such during inference, we can round the outputs to yield a binary222

representation. Fig. 2 (b) illustrates the probability of an output node being activated by a random223

image patch. All nodes demonstrate similar activation probabilities, indicating an even distribution at224

this coarse scale. Further statistical analysis of the output representation is available in Appendix F.225

5.2.2 Image Patch Similarity226

Next, to examine how the learned representation reflects the similarity between image patches, we227

display 16 random image patches, each followed by 9 image patches similar to them in the binary228

representation space, as shown in Fig. 3 (a). The same 5× 5 color image patch model is used. The229

learned representation clearly captures perceptual similarity. The results shown in Fig. 2, Fig. 3 (a),230

and additional results in Appendix E confirm that with the loss function Eq. (15), we can indeed learn231

a sparse binary representation which reflects the image similarity while adhering to the even code232

principle.233

For comparison with a traditional convolutional neural network, we present the results generated with234

the first 10 layers of a VGG16 model [31] pre-trained on ImageNet in Fig. 3 (b). The image patch235

representation from the first 10 layers of the VGG16 model is a float vector of size 128. The even236

code model, with only 96 binary outputs, achieves results similar to the VGG16 model. These 96237

binary outputs occupy the same storage space as a float vector of length 3 — just 1/42 of the VGG16238

representation’s size, which underscores the exceptional efficiency of the even code method in image239

patch representation.240

5.2.3 Local Edge Detectors and Orientation-Selective Units241

Biological visual systems’ initial stages are known to possess local edge detectors and orientation-242

selective units [17, 2]. While CNNs have been successfully trained to detect boundaries via supervised243

learning [20], their initial layers have not shown proficiency in edge detection [15]. Notably, prevalent244

local edge detection algorithms, such as the Canny edge detector [5], still primarily rely on non-deep245

learning methods.246

Does the even code model, proposed as the initial stage of an optimal image processing system,247

resemble biological systems more closely? To answer this, we trained an even code model on 4× 4248

grayscale image patches and applied it to images with a stride of 1 pixel, generating feature maps for249

each output node. The model comprises a MLP with 64 outputs and an intermediary layer with 100250

nodes. Fig. 4 illustrates the feature maps of 4 output nodes of the even code model for 4 different251

input images. It also shows edges generated by the Canny edge detector as comparison. Interestingly,252

7

(a) Even code model with 96 binary outputs (b) Early layers of VGG16 with 128 real outputs

Figure 3: Image patches with the shortest distance in the representation space to 16 randomly selected
image patches. The first column presents the 16 random image patches, while the succeeding nine
columns display patches that are closest to the first-column patches in the same row. (a) Distances
are computed using using an even code model with 96 binary outputs. (b) Distances are computed
using the first 10 layers of a pretrained VGG16 model with 128 real outputs.

with this simple network architecture, the even code model demonstrated a remarkable capability in253

edge detection, rivaling the multi-stage Canny edge detector.254

Furthermore, Fig. 5 shows the feature maps of 5 output nodes for a sample bike image. Spokes of255

different orientations activate different nodes, indicating that these output nodes of the even code256

model have varying orientation preferences, similar to orientation-selective units found in bilogical257

systems.258

6 Conclusion259

In summary, this paper demonstrates that maximizing the information-carrying capacity of output260

channels and modeling the input probability distribution are not mutually exclusive objectives and261

can be pursued independently. Given a specific output resolution, the sole goal of an information262

processing unit is to preserve as much information from the input as possible by ensuring an even263

distribution of samples in the output space. We applied the even code principle to study the probability264

distributions of two-pixel systems and image patches. For the two-pixel system, we learned orthogonal265

bases with independent states to model its probability distribution. For image patches, the even code266

approach naturally led to a nonlinear sparse binary representation. The even code model also shares267

additional similarities with early visual systems, such as the presence of local edge-detecting and268

orientation-selective units. These similarities suggest that the even code model could potentially269

serve as a new representation for neurons in early visual systems.270

8

Figure 4: Feature maps of nodes resembling local edge detectors. The first column presents four
grayscale test images. Each subsequent column, except the last one, displays the feature maps
corresponding to the same output node for the four test images. The last column shows edges
generated by the multi-stage Canny edge detector for comparison.

Figure 5: Feature maps of five orientation-selective nodes applied to a test image. Spokes in different
orientations activate distinct nodes, illustrating the orientation-selectivity of these nodes.

There are several intriguing directions for future research. First, the even code model has been271

applied to inputs ranging from as simple as one pixel to more complex color image patches. Can we272

extend its application beyond the early stage of visual information processing? Second, the even code273

model could be extended to videos by incorporating an additional time dimension alongside color,274

width, and height dimensions. Investigating time-varying inputs, which produce spike train-like275

outputs, and conducting an in-depth comparison with early visual systems would be very interesting.276

Third, the even code model can also be extended to binocular vision data by adding another input277

dimension of size two. Whether the model with binocular and/or video data can construct a 3D278

model of the world based on data of two spatial dimensions is an intriguing question. Fourth, while279

this paper focuses on visual information, the even code model is a general method that could be280

applied to model other multivariate probability distributions as well. Lastly, on the application281

side, the even code model has potential in various areas, including local edge detection, image and282

video compression/denoising/retrieval, texture classification, and multispectral/hyperspectral image283

processing.284

References285

[1] Joseph J. Atick. Could information theory provide an ecological theory of sensory processing?286

Network: Computation in neural systems, 3(2):213–251, 1992.287

[2] Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, and288

Thomas Euler. The functional diversity of retinal ganglion cells in the mouse. Nature,289

529(7586):345–350, 2016.290

9

[3] Horace B Barlow et al. Possible principles underlying the transformation of sensory messages.291

Sensory communication, 1(01):217–233, 1961.292

[4] Michael Beyeler, Emily L. Rounds, Kristofor D. Carlson, Nikil Dutt, and Jeffrey L. Krichmar.293

Neural correlates of sparse coding and dimensionality reduction. PLOS Computational Biology,294

15(6):e1006908, jun 2019.295

[5] John Canny. A computational approach to edge detection. IEEE Transactions on pattern296

analysis and machine intelligence, (6):679–698, 1986.297

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-298

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern299

recognition, pages 248–255. Ieee, 2009.300

[7] James J DiCarlo, Davide Zoccolan, and Nicole C Rust. How does the brain solve visual object301

recognition? Neuron, 73(3):415–434, 2012.302

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,303

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.304

An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint305

arXiv:2010.11929, 2020.306

[9] David J. Field. What Is the Goal of Sensory Coding? Neural Computation, 6(4):559–601, jul307

1994.308

[10] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. arXiv preprint309

arXiv:1604.06737, 2016.310

[11] Torkel Hafting, Marianne Fyhn, Sturla Molden, May Britt Moser, and Edvard I. Moser. Mi-311

crostructure of a spatial map in the entorhinal cortex. Nature 2005 436:7052, 436(7052):801–312

806, jun 2005.313

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image314

recognition. arxiv 2015. arXiv preprint arXiv:1512.03385, 14, 2015.315

[13] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural316

Networks. Science, 313(5786):504–507, 2006.317

[14] Simon Laughlin. A Simple Coding Procedure Enhances a Neuron’s Information Capacity.318

Zeitschrift für Naturforschung C, 36(9-10):910–912, oct 1981.319

[15] Minh Le and Subhradeep Kayal. Revisiting edge detection in convolutional neural networks. In320

2021 International Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2021.321

[16] Ann B Lee, Kim S Pedersen, and David Mumford. The Nonlinear Statistics of High-Contrast322

Patches in Natural Images. International Journal of Computer Vision, 54(5413):83–103, 2003.323

[17] William R Levick. Receptive fields and trigger features of ganglion cells in the visual streak of324

the rabbit’s retina. The Journal of physiology, 188(3):285, 1967.325

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,326

Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common327

objects in context, 2014.328

[19] Ralph Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117, 1988.329

[20] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect natural image330

boundaries using local brightness, color, and texture cues. IEEE transactions on pattern analysis331

and machine intelligence, 26(5):530–549, 2004.332

[21] Richard H. Masland. The Neuronal Organization of the Retina, oct 2012.333

10

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word334

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.335

[23] Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the Number of336

Linear Regions of Deep Neural Networks. Advances in Neural Information Processing Systems,337

4(January):2924–2932, feb 2014.338

[24] Jean Pierre Nadal and Nestor Parga. Nonlinear neurons in the low-noise limit: a factorial code339

maximizes information transfer. http://dx.doi.org/10.1088/0954-898X_5_4_008, 5(4):565–581,340

2009.341

[25] Benjamin Odermatt, Anton Nikolaev, and Leon Lagnado. Encoding of Luminance and Contrast342

by Linear and Nonlinear Synapses in the Retina. Neuron, 73:758–773, 2012.343

[26] Bruno A Olshausen. sparse codes and spikes. Probabilistic models of the brain, page 257, 2002.344

[27] Bruno A Olshausen and David J Field. Sparse coding of sensory inputs. Current opinion in345

neurobiology, 14(4):481–487, 2004.346

[28] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by347

learning a sparse code for natural images. Nature, oct 2015.348

[29] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann Cun. Efficient learning of349

sparse representations with an energy-based model. Advances in neural information processing350

systems, 19, 2006.351

[30] Joshua R. Sanes and S. Lawrence Zipursky. Design Principles of Insect and Vertebrate Visual352

Systems, 2010.353

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale354

image recognition. arXiv preprint arXiv:1409.1556, 2014.355

[32] JH van Hateren. A theory of maximizing sensory information. Biol. Cybern, 68:23–29, 1992.356

11

	Introduction
	One Pixel
	Even Code Principle
	Two Pixels
	One Basis
	Multiple Bases

	Image Patches
	Loss Function
	Experiments
	Output Statistics
	Image Patch Similarity
	Local Edge Detectors and Orientation-Selective Units

	Conclusion

