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Abstract

Accurate lung nodule detection for computed tomography (CT) scan imagery is1

challenging in real-world settings due to the sparse occurrence of nodules and2

similarity to other anatomical structures. In a typical positive case, nodules may3

appear in as few as 3% of CT slices, complicating detection. To address this, we4

reframe the problem as an anomaly detection task, targeting rare nodule occurrences5

in a predominantly normal dataset. We introduce a novel solution leveraging6

custom data preprocessing and Deformable Detection Transformer (Deformable-7

DETR). A 7.5mm Maximum Intensity Projection (MIP) is utilized to combine8

adjacent lung slices into single images, reducing the slice count and decreasing9

nodule sparsity. This enhances spatial context, allowing for better differentiation10

between nodules and other structures such as complex vascular structures and11

bronchioles. Deformable-DETR is employed to detect nodules, with a custom12

focal loss function to better handle the imbalanced dataset. Our model achieves13

state-of-the-art performance on the LUNA16 dataset with an F1 score of 94.2%14

(95.2% recall, 93.3% precision) on a dataset sparsely populated with lung nodules15

that is reflective of real-world clinical data.16

1 Introduction and Related Work17

Lung cancer remains one of the leading causes of cancer-related deaths globally; early detection is18

vital for improving patient outcomes. Despite significant advances in medical imaging, models see19

limited adoption in real-world settings. While there are many successful architectures for LUNA1620

nodule detection that achieve high accuracy, many of the works include training on datasets of21

predominantly nodule-positive images. We fail to find a comprehensive solution that adequately22

addresses the issue of nodule sparsity in real-world data. For a model to be truly effective it must23

mitigate substantial class imbalance, where the number of slices containing only healthy tissue is24

much higher than those with lung nodules. The goal is to achieve high tumor detection accuracy while25

minimizing false positives and negatives. Such a model would be capable of providing meaningful26

medical insights to patients and could be deployed to underserved regions, offering affordable and27

accurate diagnoses for patients that could not otherwise access a physician.28

Computed Tomography (CT) data consists of volumetric images, created by concatenating cross-29

sectional slices of the body, which provide detailed views of internal structures. These slices are30

then stacked to form a comprehensive 3D representation of anatomical regions. However, nodule31

occurrences are sparse if they are present at all, with typically between 0 and to 3% of slices showing32

signs of a nodule (1). This imbalance presents a challenge for deep learning models, which must33

detect nodules while processing a disproportionately large volume of healthy slices.34

Handling Imbalanced Data in Deep Learning models is challenging because they are optimized35

to minimize overall error which leads to a bias favouring the majority class (e.g., healthy tissue) at36
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the expense of the minority class (e.g., nodule slices). In cases of significant class imbalance, models37

are at risk of converging to a majority class classifier. This keeps error low and accuracy high but38

results in highly inaccurate detection of lung nodules. This issue is particularly critical in medical39

contexts, where false negatives, such as missed nodules, can have severe consequences. The scarcity40

of nodule data also hinders the model’s ability to learn subtle distinctions necessary to differentiate41

nodules from other structures, further complicating detection.42

There are various strategies to mitigate class imbalance, including oversampling, class weighting, and43

focal loss. Oversampling tumor slices artificially balances the dataset by increasing the number of44

minority class examples, but this approach misrepresents real-world conditions, leading the model to45

expect a higher prevalence of tumors than it will see at test time. Class weighting addresses imbalance46

by increasing the loss contribution of the minority class, forcing the model to pay more attention to47

underrepresented cases like tumors (2). However, this can also increase false positives, as the model48

may overestimate the presence of the minority class (3; 4). A more advanced approach, focal loss,49

modifies the cross-entropy loss by down-weighting well-classified examples (e.g., healthy slices) and50

emphasizing hard-to-classify ones like tumors, adjusting the loss based on prediction confidence. This51

method effectively targets the imbalance by prioritizing difficult examples, avoiding the shortcomings52

of class weighting and reducing the false positive rate, leading to improved precision and recall for53

rare classes (5).54

The LUNA16 Dataset consists of 888 CT scan sets containing 1186 lung nodules. Lung nodules55

in LUNA16 are annotated based on the consensus of at least three out of four radiologists, with56

only nodules larger than 3 mm included as relevant findings. Nodules under 3 mm or identified by57

fewer than three radiologists are excluded from evaluation. LUNA16, derived from the LIDC-IDRI58

dataset, serves as a critical benchmark for developing deep learning models for lung nodule detection.59

Numerous studies using architectures such as CNNs, 3D-CNNs, U-Net, SAM, and V-Net have shown60

high detection accuracies on this dataset (6; 7). However, variations in data processing across studies61

complicate direct comparison. These studies often focus on detecting nodules in slices already known62

to contain tumors, a task not reflective of real-world applications (8). Moreover, individual slices63

often lack the 3D context needed to differentiate between nodules and other structures, making it64

essential to incorporate adjacent slices in the analysis.65

Maximum Intensity Projection (MIP) enhances nodule visibility by combining adjacent CT into66

a single 2D image, projecting the highest-intensity voxels from adjacent slices to preserve crucial67

3D spatial information. Widely used by radiologists, MIP helps distinguish nodules from vessels,68

vascular structures and bronchioles. Nodules generally appear as compact blobs, whereas vessels are69

elongated tube-like structures. This method is shown to be extremely effective in detecting small70

pulmonary nodules between 3 mm and 10 mm while also reducing false positives (9; 10).71

Detection Transformer (DETR) Transformer architectures have become a strong alternative to72

CNNs in medical computer vision. While CNNs capture local features, they struggle with long-range73

dependencies, which refer to the model’s ability to understand relationships between distant parts74

of an image, such as recognizing that a pattern in one corner of the scan may relate to another75

feature far across the image. This limitation arises because CNNs have a restricted receptive field,76

meaning they primarily focus on nearby pixels without fully capturing global context. Transformers77

use self-attention to capture complex relationships across the entire image. This is crucial for78

differentiating between structures such as nodules and vessels. DETR performs object detection by79

using self-attention to directly predict object locations (11). However, DETR struggles with slow80

convergence and detecting small objects, such nodules (12). Deformable-DETR improves efficiency81

by incorporating a custom attention mechanism that selectively focuses on a sparse set of relevant82

sampling points around a reference point, rather than attending to the entire feature map. This83

approach allows the model to dynamically adapt its focus to the most informative regions, enhancing84

efficiency and performance for small features such as nodules in CT scans (12).85

Method Overview This paper presents a novel approach to lung tumor detection in CT data by86

framing the task as anomaly detection with a focus on real-world applicability. Our method is the87

first to combine Deformable-DETR, Focal Loss, and Maximum Intensity Projection (MIP) into a88

unified framework specifically tailored for detecting sparse lung nodules. We build a customized89

transformer the training regimen for the processed LUNA16 dataset to address severe class imbalance90

by focusing the model’s learning on difficult cases. This combination of architectural choices and91
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Figure 1: Data Processing Pipeline With Tumor Visible Top Left of Lung

training strategies has not been explored before in this context, allowing our model to achieve high92

sensitivity and precision in clinically relevant scenarios.93

2 Methodology94

In this section, we describe our proposed approach for detecting sparse lung nodules in CT scans95

using Deformable-DETR, evaluated on the LUNA16 dataset. We train Deformable-DETR to achieve96

a balance between high sensitivity and specificity, detecting nodules in a dataset where healthy tissue97

dominates while minimizing false positives and negatives. Our custom LUNA16 preprocessing98

pipeline begins with isolating lung regions using Otsu’s method for segmentation, followed by99

applying CLAHE to enhance contrast and direct the model’s attention to the most relevant areas.100

Maximum Intensity Projection (MIP) is employed to merge adjacent CT slices into a single 2D image.101

To further optimize detection, we integrate a custom loss function that combines focal loss with the102

DETR loss function. The details of each component are described in the following subsections.103

2.1 Data Preprocessing104

Our preprocessing pipeline prepares CT scan data from the LUNA16 dataset for input into DETR,105

enhancing critical features and reducing noise. We visualize this process in Figure 1. CT data and106

mask annotations are loaded in MetaImage (mhd/raw) format. To standardize anatomical structures,107

images are resampled by calculating a resize factor based on the original and target voxel spacings,108

addressing inconsistencies between scans. The resampling factor R is calculated as shown in Equation109

(1), where the image is scaled accordingly to achieve the desired voxel spacing:110

R =
S

S′ =

[
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S′
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,
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S′
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]
(1)

Otsu’s method is an image thresholding technique that automatically determines the optimal thresh-111

old value to separate foreground from background by minimizing intra-class variance. To reduce112

information, we utilize Otsu’s method to set a threshold that segments lung tissue from surrounding113

background structures to isolate the lung areas. This is followed by morphological operations, includ-114

ing connected component analysis and region erosion, to obtain clean binary masks to separate lungs115

from other features. Slices near the periphery, which provide minimal diagnostic information, are116

also automatically removed based on the size of the non-zero area. These steps decrease the number117

of non-zero pixels from around 15 million to 5.25 million per patient on average, allowing the model118

to focus on the most critical anatomical structures. After segmentation, we enhance contrast using119
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Figure 2: Lung-DETR Architecture

Contrast Limited Adaptive Histogram Equalization (CLAHE), improving the visibility of subtle120

features like small nodules by adjusting contrast in localized regions. This is particularly useful when121

evaluating medical images as low contrast can obscure early-stage nodules and increasing can help122

models detect subtle abnormalities more effectively (13). This process is illustrated by the leftmost123

arrow of Figure 1.124

Maximum Intensity Projection (MIP) projects the highest attenuation voxel from a 3D volume onto a125

2D image (14). This process can be mathematically described by Equation (2), where the highest126

intensity voxel along the z-axis is selected for each (x, y) coordinate, producing a 2D image that127

highlights the most dense features of the volume. Based on empirical testing, a slab thickness of128

7.5mm was found to best highlight nodules without surrounding structures. This process is illustrated129

by the rightmost arrow of Figure 1.130

IMIP(x, y) = max
z

{I(x, y, z)} (2)

2.2 Dataset131

The final processed dataset consists of 9,676 CT scan slices, each with a 7.5mm Maximum Intensity132

Projection (MIP) applied. Among these, 1,226 images are annotated with nodules, while the remaining133

8,450 images contain healthy tissue. The dataset was split into 70% for training, 20% for validation,134

and 10% for testing prior to any augmentation to avoid data contamination and ensure rigorous135

evaluation. In the training and validation sets, 12.7% of the images contained a lung nodule. To136

better mimic real-world conditions, the test set had a reduced lung nodule rate of 3%, contrasting137

with the higher rate used during training. This elevated rate in training was necessary to strike a138

balance between realism and model performance, as lower rates resulted in a dataset too sparse for139

effective training. Empirical tests confirmed that models trained on this higher rate generalized well140

when exposed to the lower nodule sparsity in testing. Post-split, a set of data augmentations was141

applied to the training set only to increase the dataset’s size and variability. These include horizontal142

and vertical flips, rotations between -15 and +15, brightness adjustments within -15% to +15%, and143

Gaussian noise (0.001 to 0.18% SD) simulated typical CT scan sensor noise.144

2.3 Deformable-Detection Transformer145

Detection Transformer (DETR) was chosen for lung tumor detection due to its strong performance in146

complex object detection tasks. To further enhance these capabilities, we adopted the deformable147

variant of DETR, as introduced by Zhu et al. (12). Deformable attention dynamically focuses148

on a sparse set of sampling points around a reference point, making it both spatially adaptive and149

computationally efficient. By directing attention to the most relevant regions, Deformable-DETR150

significantly improves detection accuracy while reducing unnecessary computations and accelerating151

convergence.152
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Initial experimentation with DETR yielded a recall rate of 42% after 20 epochs, performing well on153

tumors larger than 10mm but struggling with smaller ones. Switching to Deformable-DETR improved154

recall to over 80% across all tumor sizes after just 8 epochs. With 74% of tumors in the LUNA16155

dataset measuring 3-10mm, the deformable attention variant was selected for tumor detection.156

Figure 2 illustrates the custom deformable-DETR architecture used for sparse lung nodule detection.157

The detection task is formulated as a bounding box region proposal problem, where the model predicts158

bounding boxes and class probabilities for potential tumor regions. These predictions are evaluated159

against the ground truth annotations using an Intersection over Union (IoU) threshold of 50%.160

The proposed architecture begins by feeding processed Maximum Intensity Projection (MIP) images161

into a pretrained ResNet-50 backbone. This CNN backbone extracts multi-scale feature maps from162

stages C3 to C5 of ResNet-50, capturing both low-level textures and high-level semantic features163

to highlight critical lung regions. These feature maps are augmented by 2D sine-cosine positional164

encodings, which are crucial for preserving spatial relationships in 2D medical images, thus providing165

necessary spatial context to the encoder for accurate tumor detection.166

The encoder utilizes a series of Deformable Self-Attention (DSA) layers to dynamically refine the167

multi-scale feature maps. Each DSA layer selectively attends to a sparse set of learnable sampling168

points around each query. The computational complexity of self-attention is O(H2W 2C), where169

H and W are the feature map height and width, and C represents the number of channels. The170

encoder also integrates a multi-scale attention mechanism to process information at different feature171

scales, enhancing the model’s ability to detect nodules of varying sizes. The encoder outputs refined172

multi-scale feature maps enriched with context-aware representations.173

The decoder stage consists of both cross-attention and self-attention modules. It starts by integrating174

the encoder’s refined feature maps with object queries, a learnable set of positional embeddings175

representing potential nodules within the image. The cross-attention modules leverage these object176

queries to dynamically interact with the encoder’s feature maps. This approach ensures the decoder177

directs attention efficiently to search for nodules, optimizing the detection of small nodules amidst178

complex lung structures.179

The pipeline concludes with the decoder outputs being processed by two heads: the Bounding Box180

Regression Head, which predicts the coordinates (center, width, height) of potential nodules, and181

the Classification Head, which estimates the probability of each bounding box containing a nodule182

versus background. Both heads utilize the decoder’s output embeddings, with the regression head183

ensuring precise localization and the classification head accurately distinguishing nodules.184

2.4 Focal Loss for Classification185

To handle the significant class imbalance in the LUNA16 dataset, we customize the DETR loss186

function to incorporate focal loss. By adding a modulating factor, focal loss down-weights well-187

classified samples and emphasizes hard-to-classify samples, assisting in the detection of rare nodule188

instances. The focal loss function is defined in Equation (3):189

FL(pt) = −αt(1− pt)
γ log(pt), (3)

where pt is the predicted probability of the correct class, αt balances positive and negative examples,190

and γ adjusts focus towards challenging samples.191

Empirical analysis demonstrated γ = 2 and αt = 0.25 effectively balances the model’s focus on192

hard-to-classify examples, improving detection of small pulmonary nodules. These values optimize193

the trade-off between precision and recall, minimizing false positives and negatives.194

3 Results195

This section evaluates the performance of the proposed Lung-DETR architecture on the LUNA16196

dataset with a focus on key metrics such as recall, precision, and F1 score. Figure 3 provides197

visualizations of model predictions on slices with nodules, demonstrating its ability to precisely198

differentiate nodule from non-nodule regions.199
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Figure 3: Lung-DETR Predicitions on Slices with Tumor

The proposed model was trained and evaluated in a Google Colab environment using an L4 GPU,200

ensuring enough computational power for high-resolution 3D CT scans. The training was conducted201

over 15 epochs using the AdamW optimizer with a learning rate of 1e-4 for the main parameters202

and 1e-5 for the backbone parameters, combined with a weight decay of 1e-4 to reduce overfitting.203

The learning rate was adjusted dynamically using a Step Learning Rate Scheduler with a step size of204

10 and a gamma of 0.1, which reduced the learning rate by a factor of 10 every 10 epochs to help205

stabilize training. The model utilized a batch size of 6 with mixed precision (16-bit floating-point),206

which improved training speed and efficiency. Gradient clipping was applied with a value of 0.1 to207

prevent exploding gradients, and the model’s gradient updates were accumulated over 6 batches to208

stabilize learning.209

Table 1: Performance Metrics of Deformable-DETR for Sparse Lung Tumor Detection

Metric Value

F1 Score 94.2%
Average Precision @ IoU 0.5 (All Areas) 93.3%
Average Precision @ IoU 0.5 (Small Areas) 78.4%
Average Precision @ IoU 0.5 (Medium Areas) 96.7%
Average Precision @ IoU 0.5 (Large Areas) 97.8%
Average Recall @ IoU 0.5 (All Areas) 95.2%
Average Recall @ IoU 0.5 (Small Areas) 83.3%
Average Recall @ IoU 0.5 (Medium Areas) 97.0%
Average Recall @ IoU 0.5 (Large Areas) 99.2%

Table 1 summarizes the performance metrics for Lung-DETR on the LUNA16 test dataset. Nodules210

are categorized by size: small (up to 7 mm), medium (7 mm to 15 mm), and large (greater than 15211

mm). Precision measures the proportion of correctly identified nodules among all predictions, while212

recall indicates the proportion of actual nodules detected. Average Precision (AP) at an Intersection213

over Union (IoU) threshold of 0.5 reflects the area under the precision-recall curve, specifically for214

detections with at least 50% overlap with the ground truth, highlighting the model’s balance between215

precision and recall. Average Recall (AR) measures the average proportion of true positives detected216
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across different nodule sizes. The F1 score combines precision and recall, providing a balanced217

evaluation of the model’s accuracy in handling false positives and negatives.218

The results show that Lung-DETR achieves strong precision and recall across most tumor size bands,219

demonstrating its effectiveness in distinguishing between tumor and non-tumor regions despite a220

significant class imbalance, with only 12.7% of the data representing the positive class. For medium221

and large tumors, the model maintains high precision (96.7% and 100%, respectively) and high recall222

(100% for both), minimizing false positives, which is crucial in medical imaging to avoid unnecessary223

tests, procedures, and patient anxiety. Its high recall also indicates a high detection rate for actual224

tumors, which is vital for early diagnosis and treatment, particularly given the sparse occurrence of225

positive cases in the dataset.226

The model shows relatively lower precision and recall for small nodules (up to 7 mm in diameter),227

reflecting the inherent challenges of detecting small nodules due to their lower contrast in CT scans.228

This also poses difficulties in real-world clinical practice. Notably, the prevalence of malignancy in229

nodules smaller than 6 mm is very low, ranging between 0 and 1%, and guidelines from the European230

Respiratory Society now suggest a threshold of 6 mm for follow-up consideration due to the low231

malignancy risk associated with these small nodules (15).232

Figure 3 shows six CT slices with positive nodule regions, where green boxes denote ground truth233

annotations and red boxes indicate Lung-DETR’s predictions. The images reveal complex vascular234

structures and bronchioles that can easily mimic or obscure small nodules. Despite these complexities235

Lung-DETR’s predictions closely match the ground truth across all slices, even when nodules are236

located near dense vascular networks or airways with minimal visual contrast. The model’s consistent237

accuracy in detecting lung nodules and ability to detect the absence of nodules in intervening slices238

indicates its potential effectiveness in real world scenarios.239

This work proposes Lung-DETR, a Deformable Detection Transformer-based approach for detecting240

sparse lung tumors in CT scans, formulated as an anomaly detection problem to effectively manage the241

lung nodule sparsity present in real-world datasets. Leveraging custom preprocessing techniques, such242

as Maximum Intensity Projection (MIP) for enhanced 3D contextual representation, and incorporating243

focal loss to prioritize challenging detections, Lung-DETR achieved cutting-edge performance on the244

LUNA16 dataset with an F1 score of 94.2%. The model demonstrated near-perfect precision and245

recall across medium and large tumor size bands, indicating its robustness in accurately distinguishing246

tumor regions from non-tumor regions, even in anatomically complex settings. The model’s ability247

to balance sensitivity and specificity shows promise for clinical applications in early lung cancer248

detection. Future research will aim to validate the model’s utility across a wider range of clinical249

datasets from different CT machines and hospitals to enhance generalizability and improve detection250

capabilities for small tumors, which remain a critical challenge in early diagnosis.251
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