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Abstract

Learning with softmax cross-entropy on one-hot labels of-
ten leads to overconfidence on the correct class. While label
smoothing regulates this overconfidence by redistributing α
confidence from the correct class to other incorrect classes, it
compromises the representation in the logits about the simi-
larity between samples of different classes and may hurt cal-
ibration if a larger α is required for high accuracy. To over-
come these limitations, we propose a Virtual Smoothing la-
bel that redistributes certain confidence from the correct class
to additional Virtual Smoothing (VS) classes to regularize
overconfidence. In VS labels, the VS class nodes act as ad-
versaries to the original class nodes, enforcing regularization
by clustering samples across all classes. The zero confidence
of each incorrect class also allows the incorrect logits to be
different from each other without erasing information about
sample similarities. The prediction probability can still ap-
proach 1 when applying softmax to the logits of the original
real classes, which avoids harming but consistently improves
calibration. Experiments show that VS labels consistently im-
prove accuracy and calibration while providing better logits
for improved knowledge distillation. Additionally, VS labels
exhibit effectiveness in improving adversarial training, robust
distillation, and out-of-distribution detection.

1 Introduction
Deep Neural Networks (DNNs) have shown impressive per-
formance in various tasks. Training DNN classifiers with
one-hot labels is a widely adopted norm in the classifi-
cation task. One-hot labels enable DNNs to extract class-
specific information (Yang et al. 2021) and learn knowledge
in the logits about the similarity between samples of differ-
ent classes (Müller, Kornblith, and Hinton 2019), from in-
put samples. The well-known knowledge distillation (Hin-
ton et al. 2015) further uses soft labels from teacher models
to improve student model performance. However, training
with one-hot labels easily cause overconfidence on the cor-
rect class, as minimizing the cross-entropy loss encourages
the correct class node to extract any information unavailable
in the samples of other classes as its predictive information.

It is widely recognized that DNNs are susceptible to
yielding confidently error predictions for adversarial sam-
ples with imperceptible perturbations (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014). Among various
defenses, adversarial training (Goodfellow, Shlens, and

Szegedy 2014; Madry et al. 2017), which treats adversar-
ial samples as a form of data regularization, effectively en-
hances the robustness of DNNs (Athalye, Carlini, and Wag-
ner 2018). Its successful variants (Zhang et al. 2019; Car-
mon et al. 2019; Goldblum et al. 2020) introduce more reg-
ularization, e.g., weight perturbation (Wu, Xia, and Wang
2020), to further improve robustness. On the other hand,
DNNs also tend to be overconfident on unseen Out-Of-
Distribution (OOD) samples (Hendrycks and Gimpel 2016),
and semi-supervised training using diverse auxiliary out-
liers (Hendrycks, Mazeika, and Dietterich 2018; Mohseni
et al. 2020) significantly improves and achieves state-of-the-
art (SOTA) performance in OOD detection. These methods
all improve DNNs by introducing increased regularization.
However, they rely on one-hot labels and fail to consider the
regularization from a label perspective.

As a label considering regularization, Label Smoothing
(LS) (Szegedy et al. 2016) effectively improve DNN perfor-
mance by redistributing some confidence from the correct
class to other incorrect classes:

yLS = (1− α) · y + α/K (1)

where K is the number of sample classes, and α ∈ [0,1] con-
trols the smoothness. However, due to the non-zero supervi-
sory signals applied on incorrect classes, LS hurts the repre-
sentation in the logits about sample similarities, which fur-
ther impairs the downstream knowledge distillation (Müller,
Kornblith, and Hinton 2019). Moreover, as shown in our
later experiments (Sec 4.1), LS may lead to a trade-off be-
tween accuracy and calibration (Guo et al. 2017) when a
model requires a larger α to achieve higher accuracy. With
the model’s accuracy increases (up to 1), the prediction con-
fidence of the correct class decreases (up to 1-α), which is
detrimental to calibration.

In this work, we propose a Virtual Smoothing (VS) la-
bel to help regularize overconfidence but eliminate the lim-
itations in LS. Similar to the philosophy of GANs (Good-
fellow et al. 2020) and adversarial training, VS labels use
additional virtual classes (named VS classes) as adversaries
to the original real classes to uniformly regulate all input
samples, as shown in Fig 1. By assigning the VS classes
the same confidence across samples from different classes,
these VS classes compete with each correct class to collect
information that is unspecific to any correct class, thereby
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Figure 1: An intuitive example of VS labels. While the
first three real classes classify input samples (by extracting
class-specific information) for classification, the last two VS
classes act as their adversaries to cluster input samples (by
collecting class-unspecific information) for regularization.

regularizing overconfidence. Meanwhile, the confidence of
each incorrect class in VS labels remains zero, as in one-hot
labels, allowing the logits of incorrect classes to differ with-
out erasing sample similarity information. In the inference
stage, by applying softmax only to the logits of the original
real classes, the upper bound of the prediction probability on
the correct class is still 1, aligning with that of the accuracy.

Experiments show that VS labels enable the model to
achieve better accuracy and calibration while providing bet-
ter logits for downstream knowledge distillation, which are
not achievable with one-hot and LS labels. In adversarial set-
tings, VS labels also outperform one-hot and LS labels in
terms of robustness and downstream robust knowledge dis-
tillation. Additionally, VS labels outperform one-hot and LS
labels in out-of-distribution detection. Our contributions are:
• We propose a Virtual Smoothing (VS) label, designed to

regularize overconfidence in the correct class by cluster-
ing all input samples using additional VS classes.

• We present a mathematical analysis of VS labels and
demonstrate that VS classes avoid erasing information in
the logits regarding sample similarities and introducing
a trade-off between accuracy and calibration while regu-
larizing overconfidence (on the correct classes).

• Through extensive experiments, we demonstrate that VS
labels simultaneously enhance accuracy, calibration, and
downstream knowledge distillation. In additional sce-
narios, VS labels further improve adversarial training
and downstream robust distillation, as well as out-of-
distribution detection.

2 Related Work
We discuss standard training and adversarial training but
include adversarial attacks, robust evaluation and out-of-
distribution detection in Sec A in the Appendix.

2.1 Standard Training
Training DNN classifiers with cross-entropy (CE) loss on
one-hot labelled data has been the norm for the classification
task for many years (He et al. 2019; Chen et al. 2018). One-
hot labels enable DNN classifiers to extract class-specific
information from input samples. Let yi ∈ {0, 1}K be the
one-hot label for the i-th sample and fθ(xi) ∈ [0, 1]K (ab-
breviated as fi) be the predicted probabilities of the DNN

classifier fθ on the input xi. Then, the CE loss ℓ(f, y) is:
− 1

N

∑N
i=1

∑K
j=1 yij log(fij) = − 1

N

∑N
i=0 log(fik), where

fik represents the predicted probability of the correct class
k of xi. One-hot labels also enable DNN classifiers to learn
the dark knowledge about input samples, e.g., information
in the logits about the similarities between samples of dif-
ferent classes. The well-known model compression method,
knowledge distillation (Hinton et al. 2015), exploits the dark
knowledge in the logits of large models to teach small mod-
els to achieve better performance.

2.2 Adversarial Training
DNNs are vulnerable to adversarial attacks (Szegedy et al.
2013; Goodfellow, Shlens, and Szegedy 2014). Across vari-
ous defenses (Papernot et al. 2016; Bai et al. 2019; Ma et al.
2018; Tramèr et al. 2017; Goodfellow, Shlens, and Szegedy
2014; Madry et al. 2017), Adversarial Training (AT) (Good-
fellow, Shlens, and Szegedy 2014; Madry et al. 2017) is one
of the most effective methods to defending against adver-
sarial attacks (Athalye, Carlini, and Wagner 2018). It treats
adversarial samples as a data augmentation:

argmin
θ

1

N

N∑
i=1

max
||δ||p≤ϵ

ℓ(fθ(xi + δi), yi) (2)

where δi is the adversarial perturbation bounded by an Lp

norm within the ϵ-ball of the clean sample xi and ℓ(·) repre-
sents the adversarial loss, e.g., the CE loss. In the inner max-
imization, a K-step Projected Gradient Descent (PGD-K)
Attack (Goodfellow, Shlens, and Szegedy 2014; Kurakin,
Goodfellow, and Bengio 2017) is used to approximately
search for the optimal perturbation. AT inspires a group
of variants to further improve robustness, e.g., TRADES
(Zhang et al. 2019), semi-supervised RST (Carmon et al.
2019), Adversarial Weight Perturbation (AWP) (Wu, Xia,
and Wang 2020) and Adversarial Robust Distillation (ARD)
(Goldblum et al. 2020). We put more details of them in
Sec A.3 in the Appendix.

3 Proposed Approach
We present the construction method and analysis of VS la-
bels in Sec 3.1 and Sec 3.2, respectively.

3.1 Virtual Smoothing (VS) Label
Suppose we add V VS class nodes to the last layer of a
K-way classifier, the classifier becomes a new (K+V )-way
classifier fθ whose first K-way, fθ [1:K], corresponds to the
original classifier. Given a K-dimension one-hot label y, its
(K+V )-dimension VS label ỹ is:

(ỹ)j :

{
(1-α) · y, where 1 ≤ j ≤ K

α/V, where K+1 ≤ j ≤ K+V (3)

where (ỹ)j is the j-th element of ỹ, α ∈ [0, 1] is the to-
tal confidence of all VS classes. Taking all VS classes as a
super-virtual class for easy understanding. While the orig-
inal real classes classify input samples for prediction, the
super-virtual class with a confidence of α cluster all input



samples for regularization. In the inference phase, we con-
sider the index of the maximum logit within the first K
real classes as the predicted result. Applying softmax to the
first K logits ensures that the upper bound of the prediction
probability on the correct class remains 1, independent of α,
avoiding the issue in LS where the upper bounds of predic-
tion confidence (1-α) and accuracy (1) are inconsistent.

Assigning the VS classes a uniform distribution (with a
sum of α) encourages them to collect information unspecific
to any correct class as unnecessary predictive information
for regularization. A larger α encourages the VS classes (to
compete with each correct classes) to collect more informa-
tion as class-unspecific information to regularize overconfi-
dence, as analyzed in the next Sec 3.2. Note that the VS class
differs from the reject class (Vernekar et al. 2019; Mohseni
et al. 2020) in that it is designed for regularization and its
confidence assigned is independent of the ground-truth of
the input sample. However, when the total confidence of the
VS classes is set to 1, VS labels represent information un-
specific to any sample in the training set.

3.2 Analysis
The Cross-Entropy (CE) loss on the VS label is:

−[(1−α) log(fŷ)+

K∑
i=1,i̸=ŷ

0 · log(fi)+
K+V∑

j=K+1

α

V
log(fj)]

(4)
where ŷ is the correct class, the second term is 0 can be
eliminated, and the third is the regularization term (called
VS regularization term) only related to VS classes.

Following (Müller, Kornblith, and Hinton 2019), we write

the prediction of a DNN as a function fk = ep
T wk∑L

l=1 ep
T wl

,

where fk denotes the prediction probability of the k-th class,
p denotes the activation of the penultimate layer, and wk de-
notes the weight parameter of last layer corresponding to the
k-th class. The logit pTwk of the k-th class can be viewed
as a measure of the Euclidean distance between the penulti-
mate layer activation p and the template wk. This is because
||p− wk||2 = pT p−2pTwk+wT

k wk, where pT p is factored
out after calculating softmax outputs and wTw remains con-
stant across classes. Therefore, we can rewrite fk to:

fk ⇒ e−||p−wk||2∑L
l=1 e

−||p−wl||2
(5)

Replacing fŷ and fj in Eq (4) by the rightmost side of Eq (5)
respectively, we find that minimizing Eq (4) is equivalent
to minimizing (1-α)||p− wŷ||2 and

∑K+V
j=K+1

α
V ||p− wj ||2.

This encourages the penultimate activation p to be close to
the template wŷ of the correct class (with weight 1-α) and
equally distant to the template wj of each VS class (with
weight α/V). We call this as the competition between the
correct class and the VS classes, as depicted in Fig 1.

During training, each correct class template competes
with the same VS class templates {wK+1, ..., wK+V },
forcing the penultimate layer activation p to always be
equally distant to each VS class template with the weight

Table 1: Comparison between LS regularization and VS reg-
ularization.

√
, ̸= and × represent ‘favorable to’, ‘possibly

unfavorable to’ and ‘unfavorable to’, respectively. ‘Similar-
ity’ refers to the representation in the logits regarding the
similarity between samples from different classes.

labels Accuracy Similarity Calibration
LS

√
× ≠

VS
√ √ √

of α/V (regardless of the ground-truth class of the input
sample), collecting class-unspecific information {pTwK+1,
..., pTwK+V } to regularize overconfidence on all correct
classes. Obviously, a larger α encourages the penultimate
layer activation p to move more toward the VS templates,
and a larger V encourages p to be equidistant from more
VS templates. This increases the difficulty of fitting and is
beneficial for achieving better generalization if the DNN
is powerful enough. Moreover, the confidence of all incor-
rect classes remains 0, which does not force the penultimate
layer activation to be close to any incorrect class template
(due to 0 · log(fi) = 0), saving information in the logits
about similarities between samples of different classes.

Conversely, minimizing the CE loss on the LS label, i.e.,
−[(1−α) log(fŷ)+

∑K
i=1

α
K log(fi)], encourages the penul-

timate layer activation p to be close to the template wŷ of the
correct class and equidistant to the template wi of each in-
correct class. This erases the similarity information between
samples of different classes, which is one of the most signif-
icant difference between LS and VS. Tab 1 summarizes the
comparison between VS and LS regularization, where VS si-
multaneously improve model accuracy and calibration while
avoiding damage to the representation in the logits about the
similarity between samples of different classes. In contrast,
LS not only harms the similarity information but may also
impair calibration (especially when a larger α is required to
achieve better performance).

4 Experiments
We evaluate the impact of VS labels on model accuracy, cal-
ibration, and knowledge distillation (Sec 4.1), followed by
assessing their effects on robustness and robust distillation
in adversarial settings (Sec 4.2), as well as their effects on
out-of-distribution detection (Sec A.4).

4.1 Standard Training
Experimental Settings On SVHN (Netzer et al. 2011),
CIFAR10, and CIFAR100 (Krizhevsky, Hinton et al. 2009),
we train ResNet-18 (He et al. 2016) and ResNeXt-29
(2x64d) (Xie et al. 2017) for 200 epochs using SGD op-
timizer with momentum 0.9, weight decay 0.0001, batch
size 128 and an initial Learning Rate (LR) 0.1 divided by
10 at the 100-th and 150-th epochs. Standard data aug-
mentation includes random crop and random horizontal flip
are adopted. On Tiny-ImageNet-2001, we select ResNet-
18 and ResNeXt-50 (32x4d) and use the same settings for

1https://tiny-imagenet.herokuapp.com/



training. On ImageNet (Russakovsky et al. 2015), we train
ResNet-18 and ResNeXt-50 (32x4d) for 120 epochs with
similar settings but set batch size to 256 and divide the LR
by 10 at the 60-th, 90-th and 110-th epochs. Besides, we
train Transformer architectures T2T-ViT-14 and T2T-ViT-24
(Yuan et al. 2021), which can be trained from scratch more
easily than the original ViT (Dosovitskiy et al. 2020), on
ImageNet. We use the AdamW scheduler with an initial LR
of 0.001, batch sizes 256 (512), weight decay 0.05 (0.065)
for T2T-ViT-14 (T2T-ViT-24). Additional data augmentation
including MixUp and RandAugment are applied. Note that
ViTs typically require more training epochs and larger batch
sizes to achieve better performance. However, we use the
above settings to save computational cost due to the numer-
ous experiments required for different αs.

On all datasets, we set the number of VS classes to the
number of the original real classes (V =K). The confidence
α will be detailed in the subsequent subsections.

Table 2: Test accuracy (%). ResNeXt refers to ResNeXt-29
for SVHN and CIFAR but ResNeXt-50 for Tiny-ImageNet-
200 (Tiny-200), and ‘imp.’ is the obtained improvement over
baseline one-hot.

Model Label SVHN CIFAR10 CIFAR100 Tiny-200

R
esN

et-18

one-hot 95.58 94.56 75.43 64.10
LS [α]
imp.

95.74 [0.3]
+ 0.16

94.99 [0.5]
+ 0.43

77.56 [0.4]
+ 2.13

65.00 [0.5]
+ 0.9

VS [α]
imp.

96.02 [0.6]
+ 0.67

95.30 [0.5]
+ 0.74

78.05 [0.8]
+ 2.62

65.86 [0.8]
+ 1.76

R
esN

eX
t

one-hot 96.12 93.86 76.54 64.43
LS [α]
imp.

96.51 [0.1]
+ 0.39

94.88 [0.4]
+ 1.02

78.18 [0.9]
+ 1.64

65.77 [0.9]
+ 1.34

VS [α]
imp.

96.79 [0.7]
+ 0.67

95.27 [0.8]
+ 1.41

79.84 [0.9]
+ 3.3

66.19 [0.8]
+ 1.76

Table 3: Test accuracy (%) on Image-Net.

Model one-hot LS [α] imp. VS [α] imp.
ResNet-18 70.63 70.69 [0.05] + 0.06 70.74 [0.05] + 0.11
ResNeXt-50 77.57 78.31 [0.3] + 0.74 78.39 [0.3] + 0.82
T2T-ViT-14 78.67 79.01 [0.3] + 0.35 79.08 [0.4] + 0.42
T2T-ViT-24 78.68 79.45 [0.7] + 0.77 79.70 [0.8] + 1.02

Accuracy We search for the optimal α within [0, 1] for
all models, using a step size of 0.1, except for ResNet-18
ImageNet, which uses a step size of 0.05. Tab 2 shows the
test accuracy in standard training on SVHN, CIFAR10, CI-
FAR100, and Tiny-ImageNet-200 (Tiny-200), with the op-
timal α also reported. The accuracy improvement (‘imp.’)
achieved by VS labels over baseline one-hot labels is more
pronounced than that of LS labels, especially on CIFAR100
and Tiny-200. For example, while LS labels achieve a 1.64%
improvement on ResNeXt-29 for CIFAR100, VS labels
achieve a 3.3% improvement. On ImageNet, VS labels again
outperform LS labels across ResNet and ViT models, as
shown in Tab 3. Furthermore, we observe that when fix-
ing the dataset, a larger model usually require a larger α
for higher accuracy. For instance, on CIFAR10, ResNeXt-29
needs a larger α compared to ResNet-18. Similarly, simpler
datasets often necessitate a higher α for the same model.
This supports our intuition that if a model is sufficiently
powerful relative to the dataset, using a higher α to impose
a larger penalty can enhance performance.

However, model accuracy is not our only concern. The
effects on model calibration and learned representations in
logits for downstream knowledge distillation are also signif-
icant. We will report these results after the visualization.

Visualization Following (Müller, Kornblith, and Hin-
ton 2019), we visualize the penultimate layer activations.
Specifically, we pick samples from three classes and find
an orthogonal basis of the plane that crosses the templates
of these three classes, and then project the activations of the
penultimate layer onto this plane. For models trained on VS
labels, we only consider its first K-way. The selected model
is ResNet-18 on CIFAR10, where α is set to 0.5 for LS and
VS labels for a fair comparison.

Fig 2 shows the visualization of the penultimate activa-
tions of training and validation samples, where the selected
three classes are ‘airplane’ (blue), ‘automobile’ (orange) and
‘bird’ (green) respectively. Our observations are as follows:
(1) The clusters corresponding to these three classes in LS
and VS (columns 3-6) exhibit greater separability compared
to the One-Hot (OH) (columns 1-2). (2) The clusters on LS
labels are more closely arranged in the shape of an equi-
lateral triangle, which diminishes the similarity information
between different sample classes. In contrast, the clusters for
the semantically similar classes ‘airplane’ and ‘bird’ in the
OH and VS labels are positioned closer together, preserv-
ing the similarity information between classes. These visu-
alizations illustrate that, while LS labels make the classifica-
tion boundary more separable at the cost of erasing sample
similarities, VS labels also make the classification boundary
more separable but avoid erasing sample similarities. More
visualization can be found in Sec F in the Appendix.

Model Calibration To better analyze the impact of dif-
ferent α values on calibration, we not only report the Ex-
pected Calibration Error (ECE) of the model in Sec 4.1 at its
peak accuracy but also provide ECEs under varying α val-
ues. Tab 4 shows the results, where the ECE corresponding
to the α yielding the highest accuracy enclosed in brackets
‘[]’. Instances where results deviate unfavorably from the
baseline One-Hot (OH) label are highlighted in red. The se-
lected models for CIFAR and ImageNet are ResNet-18 and
ResNeXt-50, respectively. We observe that LS labels signif-
icantly impair calibration when a larger α is required for
higher accuracy, since the predicted probability (1-α) over
the correct class in LS-trained models becomes smaller than
1 as α increases. Conversely, regardless of the α value, VS
labels consistently benefit calibration.

Note that normalizing LS model predictions to the range
[0, 1] cannot rectify the adverse impact of LS on calibration,
and incorporating temperature scaling (TS) enhance calibra-
tion but VS labels consistently achieve better calibration. We
put these results in Sec B in the Appendix.

Knowledge Distillation We employ models trained on
One-Hot (OH), LS and VS labels in Sec 4.1 as teachers to
study their effect on Knowledge Distillation (KD). The in-
terpolation parameter γ and temperature parameter τ are 1
and 30 respectively, following (Goldblum et al. 2020). Other
training settings follow Sec 4.1.
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Figure 2: Visualization for the penultimate layer activation of ResNet-18 CIFAR10. The selected three classes are ‘airplane’
(blue), ‘automobile’ (orange) and ‘bird’ (green) respectively. We observe that (1) the clusters of these three classes on the
LS and VS labels in columns 3-6 appear to be more separable, (2) the clusters of these three classes on the LS labels are
organized more closely to a equilateral triangle (erase similarities between samples from different classes), whereas the clusters
of ‘airplane’ (blue) and ‘bird’ (green) on the One-Hot (OH) and VS labels are closer to each other (save similarities between
samples from different classes).

Table 4: ECE of models with different labels. ECEs for the α with highest accuracy are enclosed in brackets ‘[]’, and ECEs
worse than the baseline One-Hot (OH) label are marked red. We observe that VS consistently benefits calibration, whereas LS
may impair calibration when it needs a larger α to achieve high accuracy.

Labels 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
CIFAR10

(OH: 0.0306)
LS 0.0559 0.0884 0.1721 0.2529 [0.3466] 0.4207 0.5034 0.5937 0.6744 0.7557
VS 0.0166 0.0172 0.0180 0.0167 0.0172 0.0209 0.0206 0.0166 [0.0154] 0.0098

CIFAR100
(OH: 0.0942)

LS 0.1381 0.2006 0.2960 0.2432 0.4109 0.4671 0.5263 0.5977 0.6490 [0.6947]
VS 0.0377 0.0245 0.0165 0.0168 0.0223 0.0238 0.0277 0.0146 0.0267 [0.0302]

ImageNet
(OH: 0.1054)

LS - 0.0601 0.0873 [0.1056] 0.1275 - - - - -
VS - 0.0485 0.04153 [0.0374] 0.0356 - - - - -

Table 5: Results of knowledge distillation. ‘plain’ denotes
models trained on one-hot labels without teachers.

Dataset Teacher → Student plain one-hot LS VS
SVHN ResNet-18 → MobileNet-V2 95.94 96.27 96.57 96.62

CIFAR10 ResNet-18 → MobileNet-V2 94.54 94.87 94.61 95.21
CIFAR100 ResNet-18 → MobileNet-V2 75.39 76.47 77.15 78.61

Tiny-ImageNet-200 ResNeXt-50 → ResNet-18 64.10 65.32 54.17 66.37

Tab 5 shows the results of KD, where ‘plain’ denotes stu-
dents trained on OH labels without teachers. Overall, VS
teachers consistently enable students to achieve higher ac-
curacy compared to OH and LS teachers. In contrast, while
LS teachers perform better than OH teachers (as shown in
Tab 2), they may lead to poorer student performance, as seen
with MobileNet-V2 on CIFAR10 and Tiny-ImageNet-200.
These results demonstrate that VS labels provide superior
logits, enhancing downstream knowledge distillation while
yielding higher accuracy and better calibration.

4.2 Adversarial Settings
In this section, we investigate the impact of VS labels on AT
(and its variants) and robust distillation. We put the details of
incorporating VS labels into ATs in Sec C in the Appendix.

Experimental Settings. Following the mainstream set-
ting, we use the L∞ threat model with a perturbation radius
ϵ of 0.031 (≈ 8/255). We train WRN-34-10 on CIFAR10
and CIFAR100 for AT, TRADES, and AWP, and WRN-28-
10 on CIFAR10 with 500K unlabeled data for RST. AT and
TRADES are trained for 160 epochs using SGD with mo-
mentum 0.9, weight decay 5e-4, batch size 128, and an ini-
tial LR 0.1 divided by 10 at the 150th and 155th epochs to

Table 6: Test robustness (%) on WRN-34-10 CIFAR10. VS
labels improve robustness of all defenses.

Defense Para.
β, α

Clean
(↑)

PGD
-20 (↑)

CW
(↑)

AA
(↑)

AA+

(↑)
AT -, 0 87.42 54.87 54.49 51.88 51.88
ATV S -, 0.9 87.37 56.67 56.69 54.72 53.16
TRADES 6, 0 86.26 57.21 55.24 54.01 54.01
TRADESV S 12, 0.6 86.26 58.34 57.43 57.11 54.80
AWP 6, 0 85.65 59.82 57.61 56.20 56.20
AWPV S 12, 0.8 86.30 61.96 61.93 60.68 57.34
RST 6, 0 89.49 62.92 60.88 59.57 59.57
RSTV S 10, 0.7 89.62 63.63 63.78 62.24 59.94

prevent robust overfitting (Rice, Wong, and Kolter 2020).
AWP follows its original paper’s settings, with the LR re-
duced at the 150th and 180th epochs (200 epochs in total).
RST is trained for 300 epochs with a batch size of 256, re-
ducing the learning rate at the 150th and 225th epochs. The
training attack is PGD-10 with a step-size of 0.00784 (≈
2/255). We increase α from 0 to 0.9 in 0.1 increments to find
the optimal initial α, then fine-tune by 0.05 increments. For
the evaluation, we use 20-step PGD, CW, and Auto-Attack.
We also modify the number of targets in Auto-Attack from 9
to K+V -1 (denoted as Auto-Attack+) to avoid overestima-
tion by targeting the VS class.

Robustness Following the training suggesting from (He
et al. 2019; Gowal et al. 2020), we retrain AT, TRADES,
AWP (with TRADES header), and RST to build strong base-
lines. For TRADESV S , AWPV S and RSTV S , we increase
the weight of the robust regularization term (i.e., β in Equa-
tion (7) in the Appendix) to re-balance the trade-off between
accuracy and robustness since the CE loss over VS labels



Table 7: Test robustness (%) on WRN-34-10 CIFAR100.
ATV S obtains higher robustness than more costly TRADES.

Defense Para.
β, α

Clean
(↑)

PGD
-20 (↑)

CW
(↑)

AA
(↑)

AA+

(↑)
AT -, 0 62.85 32.41 30.81 28.10 28.13
ATV S -, 0.75 62.50 32.07 31.56 29.70 29.00
TRADES 6, 0 62.84 32.39 29.89 28.82 28.64
TRADESV S 18, 0.6 63.26 34.22 30.53 30.07 29.19
AWP 6, 0 62.59 34.63 30.67 29.66 29.63
AWPV S 18, 0.8 62.95 36.58 31.82 31.67 30.71

tends to be larger than one-hot labels2.
Tab 6 and Tab 7 show the test robustness on WRN-34-

10 over CIFAR10 and CIFAR100. In general, VS labels
consistently improve the worst model robustness of all de-
fenses under Auto-Attack+ (AA+), while maintaining sim-
ilar or even slightly higher clean accuracy. For example, on
CIFAR10, VS labels improve AT’s AA+ robustness from
51.88% to 53.16%. On more complex CIFAR100, ATV S

even achieves higher robustness to TRADES using about
it’s half the training cost3. These results demonstrate that
VS regularization is effective in improving robustness.

Further, an interesting result in Tab 6 and Tab 7 is that the
robustness of VS models under standard Auto-Attack (AA)
is significantly higher than other methods. We emphasize
that this is not regular gradient obfuscation (Athalye, Car-
lini, and Wagner 2018), but that the robustified competition
between the correct class and VS classes effectively defends
targeted attacks, e.g., targeted DLR(Croce and Hein 2020b),
from minimizing confidence over VS classes and maximiz-
ing confidence over incorrect classes. These results mean
that multi-targeted attacks have to consume more compu-
tational cost to decrease the robustness of VS models. More
analysis can be found in Sec D in the Appendix.

Visualization of Extracted Input Features We calculate
the loss gradients w.r.t., input pixels to visualize extracted
input features (Tsipras et al. 2019). Specifically, we cal-
culate ∇xfθ(x)k and ∇x

∑K+V
v=K+1 fθ(x)v to visualize in-

put features extracted by the correct class (VS.correct) and
the VS classes (VS.vs) respectively. The selected model is
TRADES on WRN-34-10 (α=0.6) over CIFAR10.

As depicted in Fig 3, the information extracted by the cor-
rect classes in both the VS (VS.correct) and LS (LS.correct)
models adequately identifies the input samples. In the VS
model, an optimal scenario occurs where most irrelevant fea-
tures, such as green leaves and red watermarks unrelated
to the true labels, are excluded from the correct class but
captured by the VS classes (VS.vs). In contrast, the fea-
tures extracted by the correct class and the incorrect class
(LS.incorrect) in the LS model are difficult to distinguish.

Comparison to Label Smoothing Existing work (Pang
et al. 2020) shows that LS improves standard AT to some
extent. We compare VS and LS labels on AT in Tab 8, where

2Some recent work has further improved the record on Robust-
Bench, e.g., (Wang et al. 2023), which uses data generated by the
diffusion model. However, we do not consider these works as they
do not introduce new loss heads and our conclusions apply to them.

3TRADES’s KL consumes double the training cost of AT.

Figure 3: Visualization of extracted input features.
‘VS.correct’ and ‘VS.vs’ (‘LS.correct’ and ‘LS.incorrect’)
represent features extracted by the correct class and VS (in-
correct) classes in the VS (LS) model. An ideal case in the
VS model is that most green leaves and red watermarks are
better excluded from correct classes, which is more in line
with human perception.

Table 8: Comparison to Label Smoothing on AT.

Dataset Label Clean PGD CW AA+ (imp.)

CIFAR10
one-hot 87.42 54.87 54.49 51.88
LS (α=0.7) 87.16 55.92 54.70 52.79 (+ 0.91)
VS (α=0.9) 87.37 56.67 56.69 53.16 (+ 1.28)

CIFAR100
one-hot 62.85 32.41 30.81 28.13
LS (α=0.6) 62.21 33.89 30.86 28.68 (+ 0.55)
VS (α=0.75) 62.50 32.07 31.56 29.00 (+ 0.87)

Table 9: Robustness (%) of teacher ResNet-18.

Clean / Auto-Attack+

Dataset one-hot LS (α) VS (α)
CIFAR10 84.24 / 48.87 84.38 / 49.66 (0.6) 84.40 / 50.03 (0.85)
CIFAR100 58.08 / 25.77 58.90 / 26.50 (0.8) 59.28 / 26.75 (0.8)

Table 10: Robust performance (%) of students.

Clean / Auto-Attack+
Dataset Student plain one-hot LS VS
CIFAR10 MobileNet-V2 82.59 / 47.24 82.70 / 48.77 82.07 / 49.37 82.33 / 49.79
CIFAR100 MobileNet-V2 57.15 / 25.48 55.72 / 26.37 52.79 / 25.83 56.29 / 26.68
CIFAR10 ResNet-18 84.24 / 48.87 84.81 / 49.25 84.23 / 49.69 84.56 / 49.90
CIFAR100 ResNet-18 58.08 / 25.77 59.45 / 26.76 58.08 / 27.39 59.22 / 27.52

the model is WRN-34-10. We see that VS labels again out-
perform LS labels in improving robustness. Next, we further
study the effects of their learned robust representations in
the logits on downstream adversarial robust distillation.

Adversarial Robust Distillation We study the effect of
using robust models trained on different labels on the ro-
bustness of students. The teacher of ResNet-18 is AT WRN-
34-10 trained in Sec 4.2; the teacher of MobileNet-V2 is AT
ResNet-18 trained using settings in Sec 4.2. Tab 9 shows
the performance of teacher AT ResNet-18, where VS la-
bels again outperform one-hot and LS labels. We train stu-
dents for 200 epochs and decay LR at the 150-th and 180-th
epochs but set the weight decay to 0.0002 for MobileNet-
V2. The interpolation parameter γ and temperature param-
eter τ are both set to 1 following (Goldblum et al. 2020).
Here, we also consider VS models’ first K-way as teachers.

As shown in Tab 10, VS teachers teach students to achieve
higher robustness than one-hot and LS teachers. Like KD
in Sec 4.1, LS teachers achieve higher robustness than one-
hot teachers but teach a worse MobileNet-V2 on CIFAR100,
hurting ARD. These results prove the better regularization



Table 11: OOD detection (%).

Din Method Acc AUC FPR-95

C
IFA

R
10

OE 94.89 98.93 3.44
OE + LS 95.42 99.10 2.53
OE+VS1 95.12 99.20 2.48
OE+VS2 95.44 99.27 2.16

SSL 94.43 99.03 2.97
SSL + LS 94.21 99.23 3.18
SSL+VS 94.74 99.39 2.10

Din Method Acc AUC FPR-95

C
IFA

R
100

OE 77.92 91.42 34.44
OE + LS 78.16 91.37 36.78
OE+VS1 76.00 92.84 30.24
OE+VS2 77.90 92.77 30.77

SSL 75.63 91.14 37.82
SSL + LS 75.39 91.90 36.29
SSL+VS 75.58 93.00 33.22

Table 12: Effect of varying V on the accuracy.

CF10
Model [α] 0 3 5 10 15 20

ResNet-18 [0.5] 94.56 94.95 95.03 95.3 95.29 95.03
ResNeXt-29 [0.8] 93.86 94.39 94.83 95.27 95.27 95.49

CF100
Model [α] 0 10 50 100 150 200

ResNet-18 [0.8] 75.43 76.79 77.29 78.05 77.59 77.53
ResNeXt-29 [0.9] 76.54 76.44 79.74 79.84 79.48 80.01

effect of VS labels without hurting the representation in the
logits for the downstream ARD.

4.3 Out-Of-Distribution (OOD) Detection
In OOD detection, semi-supervised OE (Hendrycks,
Mazeika, and Dietterich 2018) and SSL (Mohseni et al.
2020) achieve and maintain leading performance by using
diverse, real-word OOD samples. We apply VS labels to
them to study the effect of VS regularization on OOD de-
tection4. For OE with a uniform distribution, we consider
two options for generating pseudo-labels for OOD samples:
(1) set the confidence of each real class and each VS class
to (1 − α)/K and α/V respectively (denoted as VS1); (2)
set the confidence of each real class to 0 but each VS class
to 1/V (denoted as VS2). For SSL using multiple reject
classes, we treat its reject classes as ordinary classes and
add V VS classes and use Eq (3) to generate pseudo-labels.
We set a small α, i.e., 0.05, for all experiments since OE and
SSL have regularized the overconfidence from the perspec-
tive of auxiliary OOD data.

Tab 11 shows the results, where the number of reject
classes in SSL is K. The test OOD dataset is a mixture of
six test sets: Textures (Cimpoi et al. 2014), Places365 (Zhou
et al. 2017), iSUN (Xu et al. 2015), LSUN (crop), LSUN (re-
size) (Yu et al. 2015), and SVHN (Netzer et al. 2011). AUC
is the area under the ROC curve (higher is better). FPR-95
is the false recognition rate for ID samples when 95% of
OOD samples are correctly identified (lower is better). Note
that significantly enhancing these two state-of-the-art meth-
ods poses a challenge, considering their good-enough per-
formance in OOD detection (Augustin, Meinke, and Hein
2020). VS labels achieve better detection performance com-
pared to one-hot and LS labels, demonstrating their superior
regularization effect on OOD data.

4.4 Ablation Studies
In this section, we study how different confidences and num-
bers of VS classes affect accuracy, with further analysis on
the robustness in Sec E in the Appendix.

4We replaced their originally used 80 million Tiny Images
with 300K random images (https://github.com/hendrycks/outlier-
exposure) due to their containing offensive elements.

Table 13: Effect of varying the confidence of VS classes on
the accuracy. ‘0’ denotes both V and α are 0.

Data Model 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CF10 ResNet-18 94.56 94.69 94.91 95.21 95.20 95.3 95.12 95.20 95.27 94.98
ResNeXt-29 93.86 94.44 94.59 94.76 95.02 95.19 94.88 95.16 95.27 94.91

CF100 ResNet-18 75.43 76.29 76.64 76.94 77.04 77.06 76.99 77.67 78.05 77.51
ResNeXt-29 76.54 76.59 77.06 77.86 77.74 77.23 77.72 78.58 79.06 79.84

Varying the Number of VS Classes We fix the confi-
dence of VS classes and vary the number (V ) of VS classes
to observe its effect on model accuracy in standard training,
with the results presented in Tab 12. For ResNet-18, the opti-
mal V s are 10 and 100 for CIFAR10 (CF10) and CIFAR100
(CF100), respectively, while for ResNeXt-29, they are 20
and 200. Notably, setting V to 10 and 100 for CIFAR10 and
CIFAR100 on ResNeXt-29 achieves performance very close
to that of setting V to 20 and 200. These results support our
analysis in Sec 3.2, which suggests that a larger V encour-
ages the penultimate layer activation to be equidistant from
more VS class templates and enhances performance (if the
DNN is sufficiently powerful). In practice, setting V to the
number of original real classes is usually adequate.

Varying the Confidence of VS Classes We fix V to
K and vary the confidence α to test its effect on accu-
racy in standard training. Tab 13 shows the results. On
the same dataset, the larger ResNeXt-29 requires a larger
α than ResNet-18 to achieve peak accuracy. Furthermore,
both ResNet-18 and ResNeXt-29 on the more complex CI-
FAR100 require a larger α to achieve higher accuracy than
CIFAR10. These suggest that a more complex dataset re-
quires a higher α if the model is powerful enough. Note that
ResNet-18 in Tab 3 achieves peak accuracy with a much
smaller α compared to Tab 13, because ResNet-18 is suf-
ficiently powerful for CIFAR100 but not for ImageNet.

In Sec E.1 and Sec E.2 of the Appendix, we observe simi-
lar trends in adversarial training. Based on these, we summa-
rize the guidelines for tuning V and α: (1) set V close to the
number of original real classes, (2) assign a larger α if the
model is powerful enough for the dataset. Besides, we con-
duct studies on the confidence distribution over VS classes
in Sec E.3 in the Appendix, which shows that assigning VS
classes a uniform distribution yields the best performance.

5 Conclusion
Training on one-hot labels easily leads to overconfidence.
While label smoothing regularizes the overconfidence from
the perspective of labels, it hurts representations in the log-
its about sample similarities and may hurt calibration espe-
cially when a larger α is required for optimal performance.
To address these limitations, we propose Virtual Smoothing
(VS) labels, which introduce additional VS classes as adver-
saries to the original classes, clustering all input samples for
regularization. Experiments demonstrate that VS labels can
simultaneously improve accuracy and calibration while pro-
viding better logits for improved knowledge distillation. Ad-
ditionally, VS labels prove to be more effective in enhancing
adversarial training and downstream robust distillation, and
out-of-distribution detection.
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