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Figure 1: Visualization comparison between method of fixed number control conditions (Uni-
ControlNet (Zhao et al., 2024)) and our proposed method in different conditional controls with
the same text prompt. (a, left two columns) Text and various visual controls, where C1, C2, C3 and
C4 denotes different control conditions. (b, middle three or four columns) Generation results from
UniControlNet. (c, last column) Generation results from our DynamicControl. Previous methods
struggled to generate coherent results under multiple conditions, while our results maintain strong
similarity to the respective visual controls.

ABSTRACT

To enhance the controllability of text-to-image diffusion models, current
ControlNet-like models have explored various control signals to dictate image
attributes. However, existing methods either handle conditions inefficiently or
use a fixed number of conditions, which does not fully address the complexity of
multiple conditions and their potential conflicts. This underscores the need for
innovative approaches to manage multiple conditions effectively for more reliable
and detailed image synthesis. To address this issue, we propose a novel frame-
work, DynamicControl , which supports dynamic combinations of diverse control
signals, allowing adaptive selection of different numbers and types of conditions.
Our approach begins with a double-cycle controller that generates an initial real
score sorting for all input conditions by leveraging pre-trained conditional gen-
eration models and discriminative models. This controller evaluates the similar-
ity between extracted conditions and input conditions, as well as the pixel-level
similarity with the source image. Then, we integrate a Multimodal Large Lan-
guage Model (MLLM) to build an efficient condition evaluator. This evaluator
optimizes the ordering of conditions based on the double-cycle controller’s score
ranking. Our method jointly optimizes MLLMs and diffusion models, utilizing
MLLMs’ reasoning capabilities to facilitate multi-condition text-to-image (T2I)
tasks. The final sorted conditions are fed into a parallel multi-control adapter,
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which learns feature maps from dynamic visual conditions and integrates them to
modulate ControlNet, thereby enhancing control over generated images. Through
both quantitative and qualitative comparisons, DynamicControl demonstrates its
superiority over existing methods in terms of controllability, generation quality
and composability under various conditional controls. The code and models will
be available for further research.

1 INTRODUCTION

The emergence of generative diffusion models (Dhariwal & Nichol, 2021; Rombach et al., 2022;
Ho et al., 2020; Song et al., 2020a;b) has revolutionized image synthesis tasks, attributing to the
significant enhancements in the quality and variety of generated images. Built upon ControlNet-
like models (Zhang et al., 2023; Li et al., 2025), various control signals such as layout constraints,
segmentation maps, and depth maps have been explored to dictate the spatial arrangement, object
shapes, and depth of field in generated images (Mou et al., 2024; Qin et al., 2023; Ye et al., 2023;
Hu et al., 2023; Zhao et al., 2024; Sun et al., 2024). As noted in (Sun et al., 2024), different visual
control signals have complementary properties. For instance, depth maps can effectively govern
spatial relationships between objects but fall short in capturing fine-grained object details, while
canny maps excel at capturing precise texture contours yet overlook the global structural context.
In practical use cases, it is often necessary to describe the visual features of a key object through
multiple visual conditions to achieve accurate control over its generation. Users generally aim to
control both the overall layout and intricate details simultaneously. However, integrating visual
conditions that contain rich layout and detail information into a single visual condition map remains
a challenge.

Given the multiple conditions of a subject, one line (e.g. UniControl (Qin et al., 2023), Uni-
ControlNet (Zhao et al., 2024)) chooses to activate one condition at a time during the training
process randomly. This capacity to handle diverse visual conditions is quite inefficient and will
greatly increase the computational burden and time costs of training. Another line of methods (e.g.
AnyControl (Sun et al., 2024), ControlNet++ (Li et al., 2025)) uses a fixed number (usually 2 or 4) of
conditions and adopts MoE design or multi-control encoder to solve the varying-number conditions
problem.

However, this fixed number scheme does not fundamentally solve the problem of multiple condi-
tions, nor does it consider whether multiple conditions conflict with the generated results. As shown
in Fig. 1(b), it is suboptimal to select only one or a fixed number of conditions in previous methods
without considering their importance in generating an image closer to the source image and the in-
ternal relationship between each condition. While these methods have expanded the feasibility and
applications of controlled image generation, a clear and comprehensive approach to enhance control-
lability under diverse conditions remains an area of ongoing research and development. This high-
lights the need for continued innovation in integrating and optimizing control mechanisms within
T2I diffusion models to achieve more reliable and detailed image synthesis.

To address this issue, we propose DynamicControl , a new framework that supports dynamic com-
binations of diverse control signals, which can adaptively select different numbers and types of
conditions, facilitating more harmonious and natural generation results, as shown in Fig. 1(c).

Specifically, we begin by designing a double-cycle controller that aims to generate the initial real
score sorting for all the input conditions. Within the double-cycle controller, a pre-trained condi-
tional generation model is utilized to generate an image based on each given image condition and
text prompt, then we extract the corresponding image condition from the generated image using
pre-trained discriminative models. Thus, the first cycle consistency is defined as the similarity be-
tween the extracted condition and each input condition. Furthermore, considering the pixel-level
similarity of source image, the second cycle consistency is performed in the calculation of the sim-
ilarity between the generated image and the source image. Combining the two similarity scores,
this double-cycle controller will give the combined score ranking. However, this ranking requires
generating initial images for all the conditions with random noise and the source image cannot be
acquired during inference, which limits its full potential. To address these limitations, we introduce
the Multimodal Large Language Model (MLLM) (e.g., LLaVA) (Liu et al., 2024b; Zhu et al., 2023)
into our model to build an efficient condition evaluator. This evaluator takes various conditions and
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promptable instructions as input and optimizes the best ordering of the conditions with the score
ranking from the double-cycle controller. With a dynamic selection scheme, the final sorting re-
sults from the pre-trained condition evaluator are fed into the parallel multi-control adapter to learn
necessary different level feature maps from dynamic visual conditions, where unique information
from different visual conditions is captured adaptively. In this way, only those control conditions
that are harmonious and mutually advantageous to the generated results are preserved. The output
embeddings can be integrated to modulate ControlNet (Zhang et al., 2023), facilitating task-specific
visual conditioning controls. Consequently, our DynamicControl promotes enhanced and more har-
monious control over the generated images. Our main contributions are summarized as follows:

• New Insight: We reveal that current efforts in controllable generation still perform subopti-
mal performance in terms of controllability, fail to fully and effectively harness the potential
of multiple conditions. And we propose the dynamic condition selection scheme, avoiding
the generated images exhibit substantial deviations from the specified input conditions.

• Efficient Condition Evaluator Learning: We leverage MLLMs to build a condition eval-
uator that produces the consistency ranking score for the multiple conditions, with the
supervision from an auxiliary double-cycle controller.

• Flexible Multi-Control Adapter: We propose a novel dynamic multi-control adapter that
incorporates a series of alternating multi-control fusion and alignment blocks, designed to
choose conditions adaptively and facilitate an in-depth comprehension of multi-modal user
inputs.

• Promising Results: We provide a consolidated and public evaluation of controllability
across diverse conditional controls, and illustrate that our DynamicControl comprehen-
sively outperforms existing methods.

2 RELATED WORK

Text-to-image Generation. Text-to-Image (T2I) diffusion models (Nichol et al., 2021; Ramesh
et al., 2022; Rombach et al., 2022; Saharia et al., 2022) have rapidly evolved as a leading approach
for generating high-quality images from textual prompts, offering a fresh perspective on image syn-
thesis (Kingma et al., 2021; Ho & Salimans, 2022; Dhariwal & Nichol, 2021). Initially rooted in
image generation, diffusion models (Ho et al., 2020; Song et al., 2020a) have been adeptly tailored to
the T2I domain, utilizing a process that incrementally introduces and then removes noise, allowing
for the progressive refinement of image quality (Podell et al., 2023; Ramesh et al., 2021; Ron-
neberger et al., 2015; Raffel et al., 2020). This iterative denoising process, coupled with the ability
to condition on both text inputs and intermediate image representations, enhances control over the
generation process. Recent advancements (Gal et al., 2022; Meng et al., 2021; Brooks et al., 2023;
Kawar et al., 2023; Cao et al., 2023; Huang et al.) in T2I diffusion models have incorporated vari-
ous techniques to improve alignment between textual and visual features. Other models, including
notable variants like DALLE-2 (Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022),
have demonstrated superior capability in capturing fine-grained structures and textures compared
to earlier generative approaches. Stable Diffusion, in particular, has scaled up the latent diffusion
approach with larger models and datasets, making these models accessible to the public.

Controllable Image Synthesis. To achieve fine-grained control over generated images, text de-
scriptions alone often fall short in providing detailed guidance, necessitating the integration of di-
verse modalities for enhanced control. For instance, instance-based controllable generation meth-
ods (Wang et al., 2024b; Zhou et al., 2024) allow for location control through more free-form inputs
like points, scribbles, and boxes, while structure signals like sketches and depth maps further refine
the visual output.

Recent advancements have seen the development of frameworks like ControlNet (Zhang et al.,
2023), ControlNet++ (Li et al., 2025) and T2I-Adapter (Mou et al., 2024), which incorporate train-
able modules within T2I diffusion models to encode additional control signals into latent represen-
tations. Moreover, unified models (Huang et al., 2022; Ham et al., 2023; Hu et al., 2023; Qin et al.,
2023; Sun et al., 2024) akin to ControlNet have been proposed to handle multiple control signals
within a single framework, supporting multi-control image synthesis. These models typically use
fixed-length input channels or a mixture of experts (MoE) design with hand-crafted weighted sum-
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Figure 2: Overall pipeline of the proposed DynamicControl . For the multiple conditions, we
first integrate a MLLM to build an efficient condition evaluator to rank the input conditions, which
is supervised by the double-cycle controller. The ranked conditions from the pre-trained evaluator
are then selected adaptively and sent into the multi-control adapter to learn dynamic visual features
in parallel, thus enhancing the quality of the generated images.

mation to aggregate conditions effectively. However, despite these innovations, challenges persist in
managing conditions with complex interrelations and achieving harmonious, natural results under
varied control signals. Bridging the redundant information among these visual conditions and rea-
sonably utilizing the emphasis of various visual conditions to coordinate the generation of the object
is exactly the issue that this paper wants to focus on.

MLLM with Diffusion Models. Recent advancements in Vision Large Language Models (VLLMs)
have significantly enhanced the performance of vision tasks, leveraging the extensive world knowl-
edge and complex instruction comprehension capabilities of these models (Bai et al., 2023; Lin et al.,
2023; Liu et al., 2024b;a; Chen et al., 2023). Notably, the open-sourced LLaMA model (Touvron
et al., 2023) has been instrumental in improving image-text alignment through instruction-tuning,
a technique further refined by models such as LLaVA (Liu et al., 2024a) and MiniGPT-4 Liu et al.
(2024b); Zhu et al. (2023). These models have demonstrated robust capabilities across a variety of
tasks, particularly those reliant on text generation. In the realm of image generation, fine-tuning
VLLMs has shown great success (Ge et al., 2024; Li et al., 2023b; Koh et al., 2024; Ge et al.,
2023a;b). For instance, SmartEdit (Huang et al., 2024b) adapts the LLaVA model to specialize
in image editing tasks. FlexEdit (Wang et al., 2024a) employs a VLLM in comprehending the
image content, mask, and user instructions. Additionally, models like Emu (Sun et al., 2023) and
CM3Leon (Yu et al., 2023) have expanded the capabilities of multi-modal language models, employ-
ing architectures and training methods adapted from text-only models to execute both text-to-image
and image-to-text generation tasks effectively.

3 METHOD

The pipeline of DynamicControl is demonstrated in Fig. 2. Given the multiple conditions, we first
introduce the double-cycle controller (Section 3.1) to produce the real ranking score as the supervi-
sion signal for training the condition evaluator (Section 3.2) combined with MLLMs. Then, these
ranked conditions with selection scores from the pre-trained condition evaluator are dynamically
encoded by the multi-control adapter (Section 3.3) to fulfill controllable image generation. Finally,
we discuss how to jointly optimize MLLMs with diffusion models and train our multiple conditional
T2I model (Section 3.4).

3.1 DOUBLE-CYCLE CONTROLLER

Given that we conceptualize multi-conditional controllability as a dynamic selection among input
conditions, it becomes feasible to measure this selection using a discriminative reward model. By
quantifying the outputs of the generative model, we are then able to enhance the optimization of
various conditional controls collectively, relying on these quantitative assessments, to facilitate more
controlled generation processes.

To be more specific, given the multiple conditions along with text prompts, we first utilize a pre-
trained conditional generation model (Zhang et al., 2023; Li et al., 2025) to generate images for each
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condition. Then corresponding reverse conditions are extracted by different pre-trained discrimina-
tive models. Based on these generated images and reverse conditions, we design a double-cycle
controller to make an initial importance assessment of the input multiple control conditions. This
double-cycle controller consists of two consistency scores, namely condition consistency and image
consistency.

Condition Consistency. Inspired by (Zhu et al., 2017; Li et al., 2025), for each input condition ci,v
(i = 1, 2, ..., N , N is the total number of conditions) and the corresponding output condition ĉi,v of
the generated image x′

0, we optimize the condition cycle consistency loss for better controllability,
which is formulated as:

Lcondition = L(ci,v, ĉi,v)
= L(ci,v,D[G(ci,t, ci,v, x

′
t, t)]).

(1)

Here we perform single-step sampling (Ho et al., 2020) on disturbed image x′
t, which means

x0 ≈ x′
0 =

x′
t−

√
1−αtϵθ(x′

t,ci,v,ci,t,t)√
αt

, where D is the discriminative reward model to optimize the
controllability of G. L represents an abstract metric function that is adaptable to various concrete
forms depending on specific visual conditions. This flexibility allows it to be tailored to meet the
unique requirements of different visual analysis tasks, enhancing the applicability and effectiveness
of the model across diverse scenarios.

Reverse Image Consistency. Apart from the condition consistency, we employ a reverse image
consistency loss to guarantee that the original image is similar to the generated one. We achieve this
by minimizing pixel-wise and semantic discrepancies between the generated image and the source
image. Given the CLIP embeddings (Radford et al., 2021) of the source image EIsource

, generated
image EIgen , the loss is defined as:

Limage = 1− cos(EIsource
, EIgen). (2)

This loss ensures that the model can faithfully reverse conditions and return to the source image
when the conditions and text instructions are applied, enforcing the model by minimizing differences
between the source and generated images.

3.2 CONDITION EVALUATOR

Although the double-cycle controller can make a combined score ranking for the various control
conditions, it remains two challenges: (i) employing a pre-trained generative model for image syn-
thesis, regardless of its proficiency, introduces an elevated level of uncertainty in the outcomes,
which means a significant reliance on the foundational generative model employed, (ii) the source
image is not available during the inference, especially in user-specified tasks. To address this issue,
we introduce a Multimodal Large Language Model (MLLM) into our network architecture.

As shown in Fig. 2, given the conditions c1, c2, . . . , cN and instruction τ , our primary objective
is to optimize the best ordering of the conditions with the score ranking from the double-cycle
controller. Inspired by (Koh et al., 2023; Huang et al., 2024a), we expand the original LLM vo-
cabulary of LLaVA (Liu et al., 2024b) with N new tokens “<con0>, . . . , <conN>” to represent
generation information and append these tokens to the end of instruction τ . Then, the conditions
c1, c2, . . . , cN and the reorganized instruction τ ′ are fed into the Vision Large Language Model
(VLLM) LLaV A(·;ω) to obtain response tokens, which are processed to extract the corresponding
hidden states hi ∈ H, capturing the deeper semantic information from the VLLM’s representations
of the inputs. However, these hidden states predominantly exist within the text vector space of
the LLM, presenting compatibility issues when interfacing with a diffusion model, especially one
trained on CLIP text embeddings (Radford et al., 2021). This discrepancy can hinder effective inte-
gration between the models. Considering this, we transfer Q-Former (Li et al., 2023a) to refine the
hidden states into embeddings fc compatible with the diffusion model. The transformation process
is represented as:

R = LLaV A(c1, c2, ..., cN , τ ′;ω),

hi = H(c1, c2, ..., cN , τ ′;ω|ri),
fc = Q(H),

(3)

where r = {“<con0>, . . . , <conN>”} ∈ R is the condition tokens set and fc represents the
transformed embeddings by the Q-Former function Q. For fine-tuning efficiency, we utilize the
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LoRA (Hu et al., 2021) scheme, where the majority of parameters θ in the LLM are kept frozen.
The recurrent optimization process can be formulated as:

LLLM(τ) = −
N∑
i=1

log pω+∆ω(θ)(<coni> | c1, c2, ..., cN , τ ′). (4)

Subsequently, the predicted results from the LLM for each condition are supervised by correspond-
ing ranking scores from double-cycle controller, optimizing the final sorting rankings. The process
is represented as Leval = −

∑N
i=1 ci log pi.

3.3 MULTI-CONTROL ADAPTER

Conditions

“A photo of a bowl of vegan curry with chickpeas”

Results

depthbbox hedsketch normal seg hed

Figure 3: Results of adding different conditions ranked
by the condition evaluator. Starting from the leftmost with
the lowest score, we gradually add the control conditions
with higher scores from left to right.

To accommodate the simultaneous
application of multiple dynamic con-
trol conditions, we have innovatively
designed a multi-control adapter.
This adapter is engineered to inter-
pret complex control signals adap-
tively, enabling the extraction of
comprehensive multi-control embed-
dings from textual prompts and dy-
namic spatial conditions.

After acquiring the well-pretrained
condition evaluator, its robust under-
standing capabilities can be leveraged
to score all input conditions. From the pool of scored conditions, only those that meet or exceed a
predefined threshold are selected to participate in the subsequent optimization of the T2I model. This
selective approach ensures that only the most relevant and high-quality conditions contribute to the
training process, potentially enhancing the effectiveness and efficiency of the T2I model. Regarding
the threshold setting, it is not manually predefined nor maintained consistently across all data pairs
within the training set. Instead, it is configured as a parameter that is subject to learning, allowing
the model to adaptively determine and adjust the threshold for various datasets. Consequently, as
experimented in Sec. 4.2, this adaptive mechanism results in dynamic and diverse control conditions
with no conflicts, both in quantity and type. These conditions are employed in the training process
depending on the specific characteristics of each dataset. This approach ensures that the training is
tailored to the unique demands and nuances of various data inputs.

As illustrated in Fig. 2, these selected conditions are then consumed by the following controllable
image generation module. More details about can be found in the Appendix. Fig. 3 shows the results
of the six non-conflicting control conditions selected by our adapter dynamically. The conditions
with high scores are added from left to right. It can be seen that as the high-scoring control conditions
are gradually added, the generated results are of higher quality and gradually closer to the text
description.

3.4 TRAINING STRATEGY

The whole training of our network consists of two processes. The first process involves training the
condition evaluator, is represented as follows:

Lcondi = Lcondition + Limage + λ1LLLM + λ2Leval, (5)

where λ1 and λ2 are positive constants to balance the different losses. This evaluator is then frozen,
remaining unchanged during any subsequent optimization processes. The second training process
involves the multi-control diffusion model.

4 EXPERIMENTS

We validate the effectiveness of DynamicControl on five conditions with more common control
conditions: canny, hed, segmentation mask, openpose and depth. Our evaluation primarily focuses

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Prompt Conditions Ours ControlNet++ CocktailUni-ControlNet Uni-Control T2I-Adapter

“Bok Choy & 
Turnip Miso-Ramen 
with Soy Sauce 

Eggs ”

“Nestled on a sandy beach 
table under the mid-afternoon 

sun, it radiates with 
tropical hues in a pitcher, 
flanked by seashells and a 

distant view of rolling waves 
hitting the shores.”

“In a snowy glade during a 
gentle snowfall, it is 
captured head-on, its 

delicate features outlined 
against the backdrop of 
frosted pine trees.”

“Olivia Jordan, Miss poses 
in her evening gown upon 

arriving to Planet Hollywood 
Resort & Casino.”

Prompt Conditions Ours Uni-ControlNet Uni-Control T2I-Adapter Cocktail

“Wild Arctic fox 
in Iceland. 

Sometimes called 
mountain-fox”

“Are Fruits Good 
For Skin ? Skin 
Friendly Fruit 

List ”

(a) Single Condition Comparison

(b) Multiple Conditions Comparison

Figure 4: Visualization comparison between selected SOTA methods and our proposed model in
different conditional controls. Conditions are the conditions that are ultimately used by the model.

on several leading methods in the realm of controllable text-to-image diffusion models, including
Gligen (Li et al., 2023c), T2I-Adapter (Mou et al., 2024), ControlNet v1.1 (Zhang et al., 2023),
GLIGEN (Li et al., 2023c), Uni-ControlNet (Zhao et al., 2024), UniControl (Qin et al., 2023),
Cocktail (Hu et al., 2023) and ControlNet++ (Li et al., 2025). These methods are pioneering in
their field and provide public access to their codes and model weights, which accommodate various
image conditions. Although the models of other approaches such as AnyControl (Sun et al., 2024)
are public, their code cannot be successfully run after many attempts. Implementation details
including network structure, datasets, evaluation metrics, computational complexities, hyper-
parameters of training and inference can be found in the Appendix C.

4.1 MAIN RESULTS

Comparison in Multiple Conditions. Our DynamicControl aims to boost the control over diffusion
models by multiple utilizing image-based conditions selection. As shown in Tab. 1, DynamicCon-
trol effectively addresses issues of line coarsening and subject distortion in multi - visual control
conditions, as shown by quantitative (improved FID and leading MUSIQ scores) results. It also
shows superior performance under full conditional control in terms of CLIP score, balancing vi-
sual control and text adherence better than other methods. Moreover, it maintains high consistency
across different condition combinations and outperforms others in relevant metrics, especially under
full-condition control.

Comparison of Image Quality and CLIP Score. To ascertain whether enhanced controllabil-
ity correlates with a reduction in image quality, we present the Fréchet Inception Distance (FID)
metrics across multiple conditional generation tasks, as detailed in Tab. 3. We can find that our
model quantitatively reveals superior performance across all conditions compared to existing ap-
proaches. This significant achievement indicates that DynamicControl effectively handles intri-
cate combinations of multiple spatial conditions, producing high-quality, coherent outcomes that
align well with the spatial conditions. Further, to address concerns about its impact on text con-
trollability, we employ CLIP-Score metrics to evaluate different methods across various datasets,
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Table 1: Comparison of generation quality, controllability, and text-image consistency on the
MultiGen-20M (Li et al., 2025) and Subject-200K (Tan et al., 2024) datasets in multiple condi-
tions. “all” under the Conditions column represents that all conditions are used for generation.

MultiGen-20M Subject-200KMethods Conditions FID (↓) CLIP Score (↑) SSIM (↑) MUSIQ (↑) FID (↓) CLIP Score (↑) SSIM (↑) MUSIQ (↑)
T2I-Adapter (Mou et al., 2024) all 66.95 71.47 24.03 57.95 64.72 74.35 31.76 55.07

Uni-ControlNet (Zhao et al., 2024) all 32.58 78.08 29.37 65.85 44.35 77.40 37.98 66.75
UniControl (Qin et al., 2023) all 25.15 74.09 35.58 72.05 30.95 72.96 47.31 67.50

Cocktail (Hu et al., 2023) pose+hed 24.67 79.87 24.14 67.13 51.51 79.38 29.59 64.16

Ours all 12.01 81.36 43.85 74.11 11.51 81.66 60.22 69.28

Table 3: FID (↓) / CLIP-score (↑) comparison under different conditional controls and datasets.
All the results are conducted on 512×512 image resolution for fair comparisons. We generate four
groups of images and report the average result to reduce random errors.

Seg. Mask Canny Hed Openpose DepthMethod ADE20K COCO MultiGen-20M MultiGen-20M MultiGen-20M MultiGen-20M
Gligen (Li et al., 2023c) 33.02 / 31.12 - 18.89 / 31.77 - 28.65 / 31.26 18.36 / 31.75

T2I-Adapter (Mou et al., 2024) 39.15 / 30.65 - 15.96 / 31.71 - 26.07 / 33.54 22.52 / 31.46
UniControlNet (Zhao et al., 2024) 39.70 / 30.59 - 17.14 / 31.84 17.08 / 31.94 27.66 / 34.58 20.27 / 31.66

UniControl (Qin et al., 2023) 46.34 / 30.92 - 19.94 / 31.97 15.99 / 32.02 24.58 / 35.01 18.66 / 32.45
ControlNet (Zhang et al., 2023) 33.28 / 31.53 21.33 / 13.31 14.73 / 32.15 15.41 / 32.33 - 17.76 / 32.45

Cocktail (Hu et al., 2023) 31.56 / 31.77 19.35 / 13.68 12.92 / 33.16 14.71 / 33.07 22.59 / 35.78 -
ControlNet++ (Li et al., 2025) 29.49 / 31.96 19.29 / 13.13 18.23 / 31.87 15.01 / 32.05 - 16.66 / 32.09

Ours 25.23 / 34.38 16.29 / 16.21 10.98 / 35.75 11.37 / 36.07 20.12 / 37.25 11.28 / 35.49

ControlNet++
（canny）

ControlNet++
（depth）

Ours
（pose+depth）

ControlNet++
（hed）

Ours
（pose）

Ours
（pose+depth+

hed）

Ours
（pose+depth+
hed+canny）

Source

Figure 5: Comparison of multi-condition image generation by DynamicControl with different
combinations against single-condition image generation by ControlNet++.

ensuring that the generated images closely match the input text. As shown in Tab. 3, Dynam-
icControl achieves superior CLIP-Score results on several datasets relative to existing methods.

Table 2: Results of combining different condi-
tion types. A quantitative comparison with mod-
els controlled by single visual conditions and var-
ious combinations of visual conditions. “Source”
refers to the original reference image.

MultiGen-20MMethods Conditions FID (↓) SSIM (↑) MUSIQ (↑)

Source - - - 69.30
ControlNet++ canny 17.69 36.69 65.67
ControlNet++ hed 13.93 42.12 71.22
ControlNet++ depth 17.56 27.79 71.23

Ours pose 29.68 27.88 58.62
Ours pose+depth 19.85 31.69 61.02
Ours pose+depth+hed 13.55 41.52 66.35
Ours all 12.01 43.85 74.11

This indicates that our approach not only sig-
nificantly improves conditional controllability,
but also maintains the original model’s capabil-
ity to generate images from text.

Condition Types Comparison. To examine
the effect of the number of condition types,
Fig.5 shows the visual results under various
condition combinations, with qualitative eval-
uation metrics provided in Tab.2. Examples in
Fig.5 demonstrate that as the number of con-
ditions increases, the layout and texture within
images become increasingly refined and ac-
curate, demonstrating that the control effects
of different visual conditions are not identical.
Furthermore, as can be seen from Tab.2, an in-
crease in visual conditions is beneficial for the overall quality and controllability of the images,
which aligns with the observed visual effects. As evidenced by the comparison with Control-
Net++ (Li et al., 2025), integrating multi-conditions improves control precision and enables finer-
grained manipulation of the generated output.
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Table 4: Ablation on loss functions. CLIP score
and FID are reported on ADE20K and MultiGen-
20M datasets. Base is a custom reduced version
of DynamicControl.

ADE20K MultiGen-20MLoss CLIP Score (↑) FID (↓) CLIP Score (↑) FID (↓)
Base 28.18 38.76 31.26 22.58
+Lcondition 30.11 33.59 33.05 19.62
+Limage 31.23 29.66 34.22 18.22
+LLLM 33.04 27.58 35.26 16.85
+Leval 34.38 25.23 36.68 15.28

Figure 6: Ablation on different selection
schemes. (CLIP score, SSIM) is reported on
MultiGen-20M dataset.

“A giant misty stag with glowing eyes stands in the 
background, viewed by someone holding a lantern”

n=1
(23.12, 0.6271)

n=2
(25.56, 0.6625)

n=3
(30.56, 0.7235)

n=4
(31.77, 0.7826)

n=5
(32.35, 0.8022)

n=6
(35.02, 0.8835)

n=7
(34.31, 0.8415)

n=8
(34.29, 0.8426)

n=9
(34.58, 0.8522)

Adaptive
(36.58, 0.9558)

Qualitative Comparison In Fig. 4, we visually compare different tasks in both single and multiple
conditions. Our method consistently outperforms other models in terms of both visual quality and
alignment with the specified conditions or prompts. This demonstrates the effectiveness of our
approach in handling a diverse range of image generation tasks, while maintaining high fidelity to
the input conditions. The comparative visual analysis highlights the robustness and adaptability of
our method, demonstrating its efficacy across a broad spectrum of tasks.

4.2 ABLATION STUDY

Loss Functions. To assess the effectiveness of different loss functions, we start with the base model
which only contains the diffusion training loss. As shown in Tab. 4, adding the loss from the double-
cycle controller significantly improves the alignment between the generated images and instruction
conditions, as evidenced by the improved scores. Finally, the incorporation of combining the losses
from LLM yields the best results across all metrics, underscoring the significance of condition eval-
uator for achieving high-fidelity and semantically accurate multiple condition generation.

Canny + hed Openpose + depthours ours oursCanny + depth

Figure 7: Results of multiple conditions corre-
spond to different subjects.

Selection Schemes. As mentioned in Sec. 3.3,
one of our key designs is to select dynamic
number of conditions when performing the
multi-control adapter, where we have tried dif-
ferent strategies of fixed numbers and adaptive
number iteration. As shown in Fig. 6, in the
scheme with a fixed number of iterations, the
results vary with the iteration, but are still lower than those in the adaptive iteration method. This
largely illustrates the effectiveness of the dynamic condition selection method in the multiple con-
dition generation task.

Limitation Discussion. As shown in Fig. 7, we illustrate the results of multiple mismatched con-
ditions, which demonstrates that our method has learned the combination of different conditions.
But we still want to clarify that this non-aligned control generation is completely different from our
setting. What we want to address is the complexity of multiple conditions and their potential con-
flicts for the same subject as we describe in the abstract and introduction. And we will dive into the
exploration of this non-aligned control generation task in the future.

5 CONCLUSION

In this paper, we demonstrate from both quantitative and qualitative perspectives that existing works
focusing on controllable generation still fail to fully harness the potential of multiple control con-
ditions, leading to inconsistency between generated images and input conditions. To address this
issue, we introduce DynamicControl , it explicitly optimizes the consistency between multiple in-
put conditions and generated images using an efficient condition evaluator to rank the conditions,
which integrates MLLM’s reasoning capabilities into the T2I generation task. Experimental results
from various conditional controls reveal that DynamicControl substantially enhances controllabil-
ity, without sacrificing image quality or image-text alignment. This provides fresh perspectives on
controllable visual generation.

9
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APPENDIX

A REPRODUCIBILITY STATEMENT

We have already elaborated on all the models or algorithms proposed, experimental configurations,
and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
we declare that the entire code used in this work will be released after acceptance.

B THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.

C IMPLEMENTATION DETAILS

Datasets. In our framework, we include up to 12 control conditions, the majority of which are
sourced from the MultiGen-20M dataset, as proposed by UniControl (Qin et al., 2023). This dataset
is a specialized subset derived from the larger LAION-Aesthetics (Schuhmann et al., 2022). More
specifically, for the segmentation mask condition, our framework utilizes the ADE20K (Zhou et al.,
2017; 2019) and COCOStuff (Caesar et al., 2018) datasets, following ControlNet (Zhang et al.,
2023). For instances where the text caption data is missing in ADE20K, we supplement it with data
from ControlNet++ (Li et al., 2025). In the testing dataset, due to the small size of the MultiGen-20M
test set, and to ensure fairness in comparison, we combine the test and validation sets of MultiGen-
20M to form a test set of up to 5500 text-image pairs. Additionally, to increase the confidence in our
conclusions, we randomly sample 5000 text-image pairs from the Subject-200K(Tan et al., 2024)
dataset as a second test set.

Figure A1: The results of user studies, comparing the results generated by ControlNet++, Uni-
ControlNet, Uni-Control, T2I-Adapter and Cocktail. Based on the results from the Image-Text
Alignment, Image-Condition Alignment and Image Quality perspectives, DynamicControl demon-
strates superior effectiveness.

Evaluation Metrics. Our DynamicControl is trained using the training subsets of the respective
datasets, and evaluations of all methods are conducted on the validation subsets. To ensure a fair
comparison, the resolution for both training and inference in our framework is set at 512×512 for all
datasets and methods involved. Since the existing methods do not have so many control conditions,
in order to facilitate fair comparison, we compare the quantitative evaluation on five conditions with
more common control conditions: canny, hed, segmentation mask, openpose and depth. For each
condition, controllability is assessed by quantifying the resemblance between the input conditions
and the conditions extracted from the images generated by diffusion models. For the evaluation
of segmentation, openpose and depth controls, we employ the mIoU, mAP and RMSE as metrics
respectively, which is a common practice in related research fields. In the task of canny detection,
we utilize the F1-Score as it effectively addresses the binary classification of pixels into categories
of 0 (non-edge) and 1 (edge). This metric is particularly suitable given the pronounced long-tail
distribution observed in edge data (Xie & Tu, 2015). For evaluating other methods, we use the open-
source code provided by the respective developers to generate images. We ensure a fair comparison
by conducting evaluations under identical conditions, using the same datasets and without altering
their inference configurations.
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Details of Multi-control Adapter. As illustrated in Fig. 2, these selected conditions are then con-
sumed by Mixture-of-Experts (MoEs) (Shazeer et al., 2017), where all conditions are captured in
parallel as features of various low-level visual conditions. Subsequently, the extracted features are
channeled into L blocks, each comprising criss-cross attention (Huang et al., 2019) and cross atten-
tion mechanisms. Within each block, the input features are initially processed through n(n ≤ N)
criss-cross attentions operating in parallel, aligning them across various feature space dimensions.
Following this alignment, the diversified features are concatenated, which are then forwarded to the
cross attention module. This sequential processing ensures a comprehensive integration of feature
dimensions, enhancing the depth and relevance of the attention mechanisms applied. Finally, these
multi-control embeddings are utilized to direct the generative process, ensuring that the output is
aligned with the nuanced requirements specified by the multiple control conditions.

Baselines. Our evaluation primarily focuses on several leading methods in the realm of controllable
text-to-image diffusion models, including Gligen (Li et al., 2023c), T2I-Adapter (Mou et al., 2024),
ControlNet v1.1 (Zhang et al., 2023), GLIGEN (Li et al., 2023c), Uni-ControlNet (Zhao et al., 2024),
UniControl (Qin et al., 2023), Cocktail (Hu et al., 2023) and ControlNet++ (Li et al., 2025). These
methods are pioneering in their field and provide public access to their codes and model weights,
which accommodate various image conditions. Other approaches such as AnyControl (Sun et al.,
2024), although their models are public, their code cannot be successfully run after many attempts.

Training Details. During the first stage of training, we adopt the pre-trained LLaVAv1.1-7B (Liu
et al., 2024b) and QFormer (Li et al., 2023a) and employ DeepSpeed (Aminabadi et al., 2022) Zero-
2 to perform LoRA (Hu et al., 2021) fine-tuning. The Stable Diffusion-1.5 (Rombach et al., 2022) is
diffusion model pre-trained weights. The learning rate and weight decay parameters are set to 2e-4
and 0, respectively. In the second stage, the values of learning rate, weight decay, and warm-up ratio
are set to 1e-5, 0, and 0.001, respectively. We train the model for totally 50K iterations. Furthermore,
we take the AdamW (Loshchilov, 2017) as the optimizer based on PyTorch Lightning (Paszke et al.,
2019) for both stages. Our full-version DynamicControl is trained on 8 H20 GPUs with the batch
size of 4 and the whole training process can be completed within 3 days. It takes an average of 34s
to generate one image on one H20 GPU. The values of λ in Eq.10 are experimentally tested through
a series of experiments, which are set to 2 and 1.5 respectively in our practice. These values vary
from 0.1 to 3 at every 0.1 interval. In all the experiments, we adopt DDIM (Song et al., 2020a)
sampler with 50 timesteps for all the compared methods.

D MORE EXPERIMENTS

D.1 COMPARISON OF CONTROLLABILITY

As shown in Tab. A1, we report the controllability comparison results across different conditions and
datasets. Our DynamicControl significantly outperforms existing works in terms of controllability
across various conditional controls. Specifically, DynamicControl obtains 4.92% and 3.22% im-
provements in terms of mIoU for images generated under the condition of segmentation masks. For
the canny and depth conditions, DynamicControl still outperforms other methods by 2.26% on F1
Score and 5.11% on RMSE. Furthermore, apart from using SD 1.5 (Rombach et al., 2022), we also
report the results of SDXL-based (Podell et al., 2023) ControlNet and T2I-Adapter. As illustrated
in the table, although the SDXL-based ControlNet and T2I-Adapter exhibit improved controllabil-
ity on certain specific tasks where the robustness of the text-to-image backbone does not influence
its controllability for controllable diffusion models, the enhancement is modest and they are not
significantly superior to their counterparts.

D.2 COMPARISON ON COMPUTATIONAL COMPLEXITIES

As shown in Tab. A2, we report the GPU memory and inference time for one image comparison
results of different methods. It is worth noting that compared with other methods, our method is still
in the normal range in terms of resource consumption and inference time although we use MLLM.
Other methods such as UniControl and Uni-ControlNet activate one control condition at a time.
This serialized multi-condition processing will cause the inference time to increase exponentially as
the number of conditions increases. In our method, we use the trained MLLM to score the input
conditions during the inference phase, and then send the sorted multiple conditions to the Multi-
Control Adapter for final image generation. There is no such serial sequence operation.
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Condition
(Metric)

Canny
(F1 Score ↑)

Hed
(SSIM ↑)

Openpose
(mAP ↑)

Depth
(RMSE ↓)

Seg. Mask
(mIoU ↑)

Dataset

T2I
Model MultiGen-20M MultiGen-20M MultiGen-20M MultiGen-20M ADE20K COCO-Stuff

ControlNet (Zhang et al., 2023) SDXL - - - 40.01 - -
T2I-Adapter (Mou et al., 2024) SDXL 28.03 - 63.89 39.76 - -
T2I-Adapter (Mou et al., 2024) SD1.5 23.66 - 60.17 48.40 12.60 -

Gligen (Li et al., 2023c) SD1.4 26.92 0.5641 69.88 38.82 23.77 -
Uni-ControlNet (Zhao et al., 2024) SD1.5 27.31 0.6912 72.71 40.66 19.39 -

UniControl (Qin et al., 2023) SD1.5 30.83 0.7967 75.87 39.17 25.45 -
ControlNet (Zhang et al., 2023) SD1.5 34.66 0.7622 - - 32.56 27.47

Cocktail (Hu et al., 2023) SD1.5 35.22 0.8152 78.82 35.90 36.55 29.68
ControlNet++ (Li et al., 2025) SD1.5 37.04 0.8097 - 28.32 43.64 34.56

Ours SD1.5 39.26 0.8376 82.63 23.21 48.56 37.78

Table A1: Controllability comparison under different conditional controls and datasets. We
generate four groups of images and report the average result to reduce random errors.

Ours ControlNet++ Uni-ControlNet Uni-Control T2I-Adapter Cocktail
40G / 34s 48G / 30s 32G / 33s 40G / 39s 32G / 43s 80G / 55s

Table A2: GPU memory(G) / inference time(s) comparison of different methods.

D.3 MORE MODEL OPTIONS

Considering the model size and inference speed, we trained a lightweight model, as shown in the
following table. The lightweight version further accelerates the inference speed at the expense of
certain indicators. We will make these models public in subsequent open source versions for users
to choose from, so as to balance the indicators and speed.

FID (↓) CLIP Score (↑) SSIM (↑) MUSIQ (↑) inference time (↓)
DynamicControl-3B 14.23 80.62 41.22 72.01 28s
DynamicControl-7B 12.01 81.36 43.85 74.11 34s

Table A3: More model options.

D.4 USER STUDY

To further verify the effectiveness of DynamicControl , we perform a user study. Specifically, we
randomly select 50 images corresponding to five different control conditions, with 10 images allo-
cated to each condition. For each image, we obtain the results of ControlNet++, Uni-ControlNet,
Uni-Control, T2I-Adapter and Cocktail, and randomly shuffle the order of these method results. For
each set of images, we ask participants to independently select the three best pictures. The first one
is the best picture corresponding to the text prompt (i.e., Image-Text Alignment), and the second one
is the picture corresponding to the text prompt (i.e., Image-Condition Alignment) while the third one
is the picture with the highest visual quality under the condition (i.e., Image Quality). A total of 30
people participate in the user study. The result is shown in Fig. A1. Notably, we can find that over
64% and 46% of participants think that the effect of DynamicControl corresponds better with the
text and control conditions and more than 75% of participants prefer the results generated by our
DynamicControl . These results further indicates the superiority of our DynamicControl .

D.5 MORE ABLATION STUDY

Since these training losses fully represent the modules we proposed, we mainly perform their related
ablations in the main paper. For other parts, we supplemented the relevant ablation experiments as
shown in the following table. It can be seen that the removal or replacement of these parts does not
affect our main experimental conclusions.
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Prompt Conditions Ours ControlNet++ Uni-Control

“Saarburg City 
By Night”

“Lawrence Alma-
Tadema - Summer 

Offering ”

T2I-Adapter

Figure A2: Comparison on Normal and Hedsketch conditions.

FID (↓) CLIP Score (↑) SSIM (↑) MUSIQ (↑)
base 12.01 81.36 43.85 74.11

w/o MoE 12.02 81.35 43.85 74.12
w/o criss-attention 12.00 81.35 43.86 74.11

Table A4: GPU memory(G) / inference time(s) comparison of different methods.

E MORE QUALITATIVE RESULTS

More qualitative results of different conditional controls including canny, depth map, hed, human
pose and segmentation map are shown in Fig. A2, Fig. A3, Fig. A4, Fig. A5, Fig. A6, Fig. A7 and
Fig. A8 respectively.
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“grosse moustache acteur 
fracais photo exempl 

styles moustaches barbe 
hipster.”

Conditions

Ours

Uni-ControlNet

Uni-Control

T2I-Adapter

Cocktail

“Water lily.”
“Gumballs in a Glass11.”

Figure A3: Visualization comparison between official or re-implemented methods and our pro-
posed model in canny and depth controls with the same text prompt.
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“Amidst the early morning mist, 
it gallops along the tranquil 

countryside, its muscles rippling 
in the soft golden light as 

distant hills provide a serene 
backdrop.”

Conditions

Ours

Uni-ControlNet

Uni-Control

T2I-Adapter

Cocktail

“During a lively family 
gathering, it occupies the 
center of the dining table, 

amidst the chatter and 
laughter, with evening 

lights casting a warm hue 
over the cheerful faces 

around it.”

“Gumballs in a Glass11.”

Figure A4: Visualization comparison between official or re-implemented methods and our pro-
posed model in canny and depth controls with the same text prompt.
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“Amid the vibrant blooms 
of a garden, it dangles 
elegantly from a low 

branch, the early morning 
dew sparkling like 

diamonds around it.”

Conditions

Ours

Uni-ControlNet

Uni-Control

T2I-Adapter

Cocktail

“Enjoyable 55 Men39S 
Curly Hairstyle Ideas 

Photos Amp 
Inspirations 
Hairstyles .”

“Bride wedding suit red chinese 
cheongsam dress costume headdress 
hair accessories wedding dress 
frontlet tassel step shake.”

Figure A5: Visualization comparison between official or re-implemented methods and our pro-
posed model in canny and depth controls with the same text prompt.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Conditions

Ours

ControlNet++

Cocktail

Uni-ControlNet

Uni-Control

T2I-Adapter

“Canoeing Emerald Lake” “Bacon Ranch Cheese Ball 
on a white plate” “Pasta with red sauce”

Figure A6: Visualization comparison between official or re-implemented methods and our pro-
posed model in canny and depth controls with the same text prompt.
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“Two Birds of a 
Feather-original 
fine art by Laurie 
Johnson Lepkowska”

“Bluethroat”
“Bovet 1822 Tourbillon 

Virtuoso”

Conditions

Ours

ControlNet++

Cocktail

Uni-ControlNet

Uni-Control

T2I-Adapter

Figure A7: Visualization comparison between official or re-implemented methods and our pro-
posed model in hed, openpose and segmentation maps controls with the same text prompt.
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“a skulk of foxes” “Darren haley Winter 
Chickadee”

“Denim Bib Apron with A 
Pocket”

Conditions

Ours

ControlNet++

Cocktail

Uni-ControlNet

Uni-Control

T2I-Adapter

Figure A8: Visualization comparison between official or re-implemented methods and our pro-
posed model in hed, openpose and segmentation maps controls with the same text prompt.
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Conditions

Ours

ControlNet++

Cocktail

Uni-ControlNet

Uni-Control

T2I-Adapter

“Andre Holland as 
Henry Deaver”

“A large, empty 
room with a long 

table in the center 
and several chairs 
arranged around it”

“A bedroom with 
two beds, a desk, 

and a chair”

Figure A9: Visualization comparison between official or re-implemented methods and our pro-
posed model in hed, openpose and segmentation maps controls with the same text prompt.
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