
Structure-Guided Large Language Models for Text-to-SQL Generation

Qinggang Zhang 1 Hao Chen 2 Junnan Dong 1 Shengyuan Chen 1 Feiran Huang 3 Xiao Huang 1

Abstract
Recent advancements in large language models
(LLMs) have shown promise in bridging the gap
between natural language queries and database
management systems, enabling users to interact
with databases without the background of SQL.
However, LLMs often struggle to comprehend
complex database structures and accurately inter-
pret user intentions. Decomposition-based meth-
ods have been proposed to enhance the perfor-
mance of LLMs on complex tasks, but decompos-
ing SQL generation into subtasks is non-trivial
due to the declarative structure of SQL syntax and
the intricate connections between query concepts
and database elements. In this paper, we pro-
pose a novel Structure GUided text-to-SQL frame-
work (SGU-SQL) that incorporates syntax-based
prompting to enhance the SQL generation capabil-
ities of LLMs. Specifically, SGU-SQL establishes
structure-aware links between user queries and
database schema and decomposes the complex
generation task using syntax-based prompting to
enable more accurate LLM-based SQL genera-
tion. Extensive experiments on two benchmark
datasets demonstrate that SGU-SQL consistently
outperforms state-of-the-art text-to-SQL models.

1. Introduction
Text-to-SQL (Hong et al., 2024c) is a challenging task that
aims to bridge the gap between natural language queries and
database management systems, enabling users to interact
with databases without knowing SQL syntax. In the past
few years, this task has been incrementally evolving due to
the complexity of SQL syntax and the intricate connections
between user queries and database elements. Models need

1Department of Computing, The Hong Kong Polytechnic Uni-
versity, Hung Hom, Hong Kong SAR, China 2City University
of Macau, Macau SAR, China 3College of Information Science
and Technology, Jinan University, GZ, China. Correspondence to:
Shengyuan Chen <shengyuan.chen@connect.polyu.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

to interpret intricate natural language queries and construct
SQL queries with precise syntax structure, all while linking
with the correct tables and columns in the database. A wide
range of research has been proposed to address these issues,
including intermediate query languages and skeleton query
generation (Wang et al., 2019; Li et al., 2023a;b).

Recently, this field has seen significant progress with the
emergence of Large Language Models (LLMs) like GPT se-
ries (Radford et al., 2018; Achiam et al., 2023; Zhang et al.,
2024; 2025). Training on a wide array of corpora, LLMs ex-
hibit exceptional ability in understanding and producing text
that closely mimics human communication. Researchers
have started exploring the potential of LLMs for text-to-
SQL by leveraging their extensive knowledge reserves and
superior generation capabilities (Rajkumar et al., 2022; Gao
et al., 2024; Hong et al., 2024a). These approaches often
involve prompt engineering to guide proprietary LLMs in
SQL generation (Chang & Fosler-Lussier, 2023; Pourreza
& Rafiei, 2023) or fine-tuning open-source LLMs on text-
to-SQL datasets (Gao et al., 2024; Yuan et al., 2025).

Despite their advancements, LLM-based text-to-SQL mod-
els encounter several limitations that impede their success-
ful application in practice: ❶ Ambiguous User Intent.
Accurately interpreting the user’s intents in natural lan-
guage remains a significant challenge for LLM-based mod-
els. Natural language is inherently ambiguous and context-
dependent, making it difficult for models to discern precise
requirements. For example, a query like "Show me last
quarter’s sales performance" requires the model to
infer specific details such as relevant tables, metrics defin-
ing "performance" and the exact time frame for "last
quarter". Additionally, nuanced language involving im-
plied conditions or comparisons, such as "better than
average" or "most recent" can lead to misinterpretations,
resulting in queries that do not fully align with the user’s
intent. ❷ Sophisticated Database Architecture. Map-
ping natural language terms to specific database columns
and tables is another critical area where LLM-based mod-
els struggle. Databases often have complex schemas with
interrelated tables and non-intuitive naming conventions.
For instance, a user referring to "customer purchases"
might imply multiple tables like "Customers", "Orders"
and "OrderDetails". The model must accurately identify
and relate these tables, which is challenging without com-

1

Structure-Guided Large Language Models for Text-to-SQL Generation

prehensive schema awareness. Moreover, similar column
names across different tables can cause confusion, leading
to incorrect selections and incomplete queries, especially
in large or poorly documented databases. ❸ Complex Syn-
tax Structure of SQL. Generating syntactically accurate
and logically coherent SQL queries is a challenging task.
SQL requires precise clause arrangement, correct operator
usage, and adherence to grammatical rules. LLMs may
produce queries with syntax errors, such as missing com-
mas, incorrect JOIN conditions, or misplaced keywords.
Constructing complex queries involving nested subqueries,
aggregate functions, or window operations demands high
precision, which is typically beyond the current capabilities
of LLMs. Recently, decomposition-based methods have
been proposed to enhance the performance of LLMs on
complex tasks. However, decomposing the complicated
linked structure into smaller, manageable components for
step-by-step SQL generation requires effective strategies.
Traditional approaches often struggle with complex queries
due to the declarative structure of SQL and the intricate
connections between user queries and database elements.

In this paper, we propose a novel Structure Guided text-to-
SQL framework (SGU-SQL). SGU-SQL addresses the above
issues by leveraging the structural information in queries
and databases through structure-aware linking and syntax-
based decomposition, providing additional guidance to the
LLM for better SQL generation. Specifically, SGU-SQL rep-
resents user queries and databases into unified and structured
graphs and employs a tailored structure-learning model to
establish a connection between the user queries and the
databases. The linked structure is then decomposed into
sub-syntax trees, guiding the LLMs to generate the SQL
query incrementally. Our main contributions are summa-
rized as follows:

• We identify the limitations of LLM-based Text-to-SQL
models and introduce SGU-SQL, which breaks down the
complex generation task in a syntax-aware manner. This
ensures that the generated queries maintain both semantic
accuracy (correctly capturing user intentions) and syntac-
tic correctness (following proper SQL structure).

• SGU-SQL proposes graph-based structure construction to
comprehend user query and database structure and then
link query and database with dual-graph encoding.

• SGU-SQL introduces tailored structure-decomposed gen-
eration strategies to decompose queries with syntax trees
and then incrementally generate accurate SQL with LLM.

• Experiments on two benchmarks verify that SGU-SQL
outperforms state-of-the-art baselines, including 11 fine-
tuning models, 7 structure learning models, and 14 in-
context learning models.

2. Problem Statement
Let D be a database schema consisting of a set of tables
T = {T1, T2, . . . , Tn}, where each table Ti has a set of
columns Ci = {Ci1, Ci2, . . . , Cim}. The database schema
D can be represented as a tuple (T , C), where C =

⋃n
i=1 Ci.

Using the above notations, we describe our problem below.

Definition 1. Structure Learning for Text-to-SQL: Given
a natural language query D and a database schema Q, the
task of graph learning for Text-to-SQL aims to generate a
graph-based representation G that captures the structural and
semantic relationships between the query and the schema,
and to learn a mapping function f : Gq → Gd, where Gq

is the structural user queries, and Gd is the corresponding
database contents linked to the query Gq .

Definition 2. Text-to-SQL Generation: Given a natural
language query Q and a database schema D, the task of
Text-to-SQL generation aims to translate Q into a corre-
sponding SQL query S that accurately retrieves the desired
information from the database.

3. The Framework of SGU-SQL
In this section, we will introduce the key components of
SGU-SQL in detail. We leverage the implicit structural in-
formation in both queries and databases from three aspects:
(i) A graph-based structure construction for both user query
and database understanding; (ii) A tailored structure linking
method is proposed to map the natural language query to the
relevant database elements. (iii) Structure-based prompting
to LLMs for accurate SQL generation, which decomposes
the complex generation into sub-tasks and guides LLMs to
generate the SQL query incrementally, adhering to the syn-
tax structure. The overall framework is shown in Figure 1.

3.1. Revisiting User Query and Database via Graph

Bridging the gap between textual queries and the struc-
tured database poses several challenges. Firstly, construct-
ing an accurate structure that captures the relationships be-
tween query terms and database entities is a non-trivial task.
Secondly, linking the query to the appropriate tables and
columns in the database is challenging, especially when
there is ambiguity or a lack of explicit connections. In
this paper, we build a comprehensive query-schema graph
designed to structure the query concept, the schema, and pre-
defined relations between the query phrases and the tables
or columns present within the schema. The graph contains
three key structures: (i) Query Structure (Rq): Encodes
dependencies between tokens in the question, derived from
its syntactic parse. (ii) Database Structure (Rs): Repre-
sents intrinsic relationships within the database schema, like
foreign keys. (iii) Linking Structure (Rl): Aligns query
entities with the columns or tables in the database.

2

Structure-Guided Large Language Models for Text-to-SQL Generation

User Query:

What is the id of the semester
that had both Masters and
Bachelors students enrolled?

CREATE TABLE ` ` (

 `student_course_id` INTEGER NOT NULL,

 `transcript_id` INTEGER NOT NULL,

 FOREIGN KEY (`student_course_id`)
REFERENCES
`Student_Enrolment_Courses`(`student_cou
rse_id`),

 FOREIGN KEY (`transcript_id`)
REFERENCES `Transcripts`(`transcript_id`)

);

Transcript_Contents

Dual Graph Encoding Syntax-based Decomposing Prompts

SELECT

Semantic Dependency

Syntactic Dependency

Query Graph

Schema GraphD.B. Schema

R Result

A Start

C Column

T Table

FILTER

CREATE TABLE
` `

(

 `student_course_id` INTEGER
PRIMARY KEY,

 `course_id` INTEGER NOT NULL,

 `student_enrolment_id` INTEGER NOT
NULL,

 FOREIGN KEY (`course_id`)
REFERENCES `Courses`(`course_id`),

 FOREIGN KEY
(`student_enrolment_id`)
REFERENCES
`Student_Enrolment`(`student_enrolmen
t_id`)

);

Student_Enrolment_Courses

Sub-Tasks 1

Sub-Tasks 2

R

R

C

A

T

C

A

T

Decomposing Tasks

User Query

Database Schema

Figure 1: The overall framework of SGU-SQL.

3.1.1. USER QUERY UNDERSTANDING AND
REPRESENTATION

A query graph can be depicted as Gq = (Vq, Rq), where
Vq denotes the node set that characterizes the keywords
specified in the question, and Rq signifies the relationships
among these keywords. To differentiate the relationship
between various words, we establish three separate link
categories, including Forward-Syntax, Backward-Syntax
and None-Syntax relations to encapsulate the particular syn-
tactic connections among words in the vernacular question.

a) Query Parsing: Syntactic parsing can help resolve struc-
tural ambiguities in the query by providing a hierarchical
representation of the sentence structure. Specifically, we
first define a context-free grammar Gq for the query lan-
guage:

Gq = (Nq,Σq, Pq, Sq), (1)

where Nq is a finite set of non-terminal symbols represent-
ing query concepts. Σq is a finite set of terminal symbols
representing query terms. Pq is a finite set of production
rules that map non-terminals to sequences of terminals and
non-terminals. Sq ∈ Nq is the start symbol.

The production rules Pq define the syntactic structure of the
query language.

Parsing a user query Q using the grammar Gq yields a
syntax tree Tq = (Vq, Eq), where Vq is the set of vertices
representing query concepts. Eq ∈ Rq is the set of edges
representing syntactic relationships between the query con-
cepts.

b) Coreference resolution: Natural language queries often
contain ambiguities, such as polysemy (words with multiple
meanings) and syntactic ambiguity (multiple possible syntax
trees). Let Q be the set of all possible interpretations of a
query q. The ambiguity challenge can be formulated as
selecting the most likely interpretation q̂ from Q:

q̂ = argmax
qi∈Q

P (qi | q), (2)

where P (qi | q) is the probability of interpretation qi given
the original query q.

Natural language queries may contain multiple mentions of
the same entity, which need to be resolved to construct an
accurate graph representation. Let M be the set of entities
mentioned in the query and E be the set of unique entities.
The coreference resolution can be formulated as finding a
mapping function ϕ : M → E that maps each mention to
its corresponding entity:

ϕ(m) = argmaxe∈EP (e | m), (3)

where P (e | m) is the probability of entity e given the
mentioned entity m.

c) Query Graph Construction: Once the syntax tree Tq is ob-
tained, we can construct the graph structure Gq = (Vq, Eq)
representing the user query. The vertices Vq = Vq is the set
of query concepts and terms and edges Eq are defined as
follows:

Eq = Eq ∪ (vi, vj) | vi, vj ∈ Vq ∧ relation(vi, vj). (4)

The edges Eq in the graph structure include both the syntac-
tic relationships from the syntax tree and additional edges
based on semantic relationships between query concept-
s/terms. The resulting graph structure Gq captures both
the syntactic structure of the user query and the semantic
relationships between query concepts/terms.

3.1.2. DATABASE UNDERSTANDING AND
REPRESENTATION

To generate accurate SQL queries, text-to-SQL systems
also need to have a comprehensive understanding of the
database structure, including table names, column names,
and relationships between or across various tables/columns.
Representing and encoding the database in a way that can be
effectively utilized by the text-to-SQL model is a challeng-
ing task. In this paper, we introduce a schema graph to rep-
resent database structure. Specifically, let D be a database

3

Structure-Guided Large Language Models for Text-to-SQL Generation

consisting of a set of tables T = T1, T2, . . . , Tn. Each table
Ti ∈ T has a set of columns Ci = {Ci1, Ci2, . . . , Cim}. We
define a database schema graph Gd = (Vd, Rd) to represent
the structure of the database schema, where S denotes the
set of nodes representing tables and columns, and Rd is the
set of edges representing the relationships between them.

a) Node Representation: Each table Ti ∈ T is represented as
a node vTi

∈ S in the schema graph. Similarly, each column
Cij ∈ Ci of table Ti is represented as a node vCij

∈ S. The
set of nodes S in the schema graph is defined as:

S = vTi
| Ti ∈ T ∪ vCij

| Cij ∈ Ci, Ti ∈ T . (5)

b) Edge Representation: The relationships between tables
and columns in the database schema are represented as
edges in the schema graph. We define the following three
types of edges:

• Table-Column Edges: For each column Cij ∈ Ci of table
Ti, we add an edge E{Ti, Cij} ∈ RS connecting the table
node vTi

to the column node vCij
. This edge represents

the relationship between a table and its columns.

E(Ti, Cij) = {vTi
, vCij

, "has"}. (6)

• Primary-Key Edges: If a column Cij ∈ Ci is the primary
key column of table Ti, we add an edge E{Cij , Ti} ∈ Rd

connecting the corresponding column nodes vCij and the
table vTi . The primary-key relations in the schema graph
provide information about the structure and integrity con-
straints of the database.

E(Ti, Cij) = {vTi , vCij , "primary_key"}. (7)

• Foreign-Key Edges: If a column Cij ∈ Ci of table Ti is a
foreign key referencing a primary key column Ckl ∈ Ck of
table Tk, we add an edge E{Cij , Ckl} ∈ Rd connecting
the corresponding column nodes vCij

and vCkl
. This

edge represents the foreign key relationship between the
columns.

E(Cij , Ckl) = {vCij
, vCkl

, "foreign_key"}. (8)

3.1.3. STRUCTURE LINKING WITH DUAL GRAPH
ENCODING

The syntax tree Tq obtained from parsing the user query Q
captures the syntactic structure of the query. It represents
the hierarchical relationships between query concepts and
terms, which is crucial for understanding the intent behind
the query. By incorporating the syntax tree into the query
graph Gq, we preserve the syntactic structure of the query
and its inherent meaning. The schema graph Gd represents

the structure of the database schema, with vertices repre-
senting tables and columns and edges representing their re-
lationships. By combining the syntax tree with the schema
graph through the mapping function ϕ, we establish a link
between the query concepts/terms and the corresponding
schema elements. This mapping allows us to identify which
tables and columns in the database are relevant to the user
query, enabling more accurate and targeted querying.

Specifically, given the constructed query and database
graphs, we value the adjacency information during the
matching process and propose to automatically build the
connection between the query structure and schema at the
node level. Specifically, we design a tailored structure-based
linking framework. Both query and schema structures are
first encoded through a Relational Graph Attention Network
(RGAT) (Busbridge et al., 2019) for initial node representa-
tions. The representation learning process is guided by the
message propagation within the self-structure. We formalize
the procedure of structure-aware question-schema structure
linking as follows:

G′
d = Agg(Gd,Gq), (9)

G′
q = Agg(Gq,Gd), (10)

where the structure-aware aggregation function Agg(.) is
employed to gather information from both the schema-graph
Gd and the query-graph Gq and transfer it to the adjacent
graph.

Let {hq
i }mi=1 represent a set of node embeddings in the query

graph Gq and let {hk
j }nj=1 denote a set of node embeddings

in the subgraph Gk that extracted from the schema graph
Gd. In particular, we first employ global-average pooling on
the node embedding hq

i of the query structure Gq to derive
the global query structure embedding hq

g. Following this,
to encapsulate globally pertinent information, the key node
embedding hk

j is updated subsequently:

hq
g =

1

m

∑m

i=1
hq
i , (11)

αj = θ
(
hq
g
TWgh

k
j

)
, (12)

hk
j =

∑
l∈Nj

αlWkh
k
l + αjWkh

k
j (13)

+(1− αj)Wqh
q
g (14)

where Wg, Wq, Wk represent trainable parameters, and
θ illustrates a sigmoid function. While αj denotes the rel-
evance score situated between the j-th key node and the
global query structure.

For each node a in the query structure Gq , it is necessary to
find a corresponding matching node s in the database Gd.
The proposed solution mainly consists of three steps. First,
a set of most relevant candidate nodes {s1, s2, . . . , sK} is
identified through string matching in the set of tables and

4

Structure-Guided Large Language Models for Text-to-SQL Generation

columns V . Second, for each candidate node s, an enclos-
ing subgraph G(a, s) is constructed. As shown in Figure 1,
G(a, s) includes the query graph Gq, adjacent nodes of sk,
and an edge connecting a and sk. Lastly, we adopt a struc-
ture learning model RGAT(·) to learn the graph-level repre-
sentation of G(a, sk) that captures the compatibility between
natural language concepts and database elements.

h = RGAT(G(a, s)). (15)

The matching score of the candidate pair (a, sk) is then
measured by the degree of compatibility:

S(a,sk) = σ(
∑

l∈G(a,sk)
hkl). (16)

Based on positive samples (a, s) and negative samples
(a, sk), where sk ̸= s, the structure learning model RGAT(·)
is iteratively trained:

LR = −min
∑

ai∈Gq

log
S(ai, s)

S(ai, s) +
∑

sk∈Gs,sk ̸=s S(ai, sk)
.

(17)

This contrastive training objective encourages the model
to maximize scores for correct matches while minimizing
scores for incorrect ones. Through this process, the match-
ing scores evolve into reliable indicators that guide the se-
lection of correct database elements during SQL generation.

Incorporating pre-defined relations: After we got the
accurate linking from the structure learning model, we
further incorporated several additional relations to supple-
ment effective connections between the user query and the
database schema. The mapping function ϕ relies on a set
of pre-defined relations R between query concepts/terms
and schema elements. These relations capture the semantic
connections between the query and the database schema. By
incorporating these relations into the query-schema graph
construction, we ensure that the final graph not only captures
the syntactic structure of the query but also incorporates the
semantic relationships between the query and the schema.

3.2. Structure-Decomposed Prompting with Syntax Tree

3.2.1. DECOMPOSING QUERY WITH SYNTAX TREE

The performance of LLMs on complex tasks can be im-
proved by using decomposing-based methods. However,
decomposing a SQL query into subtasks is challenging due
to its declarative structure and the intricate connections
between query concepts. To this end, in this section, we
introduce a context-free syntax tree to break down the text-
to-SQL generation task into smaller subtasks according to
the syntax structure of the user query. Specifically, we

first employ the query parsing described in Section 3.1.1
to build the syntax tree to achieve a linguistic understand-
ing of the natural language query and then adopt a node
mapper to match nodes in the linguistic syntax tree to SQL
operations (Kate, 2008). Following this, the original query
can be divided into several subtasks according to the SQL
operations distributed on the syntax tree.

3.2.2. SUBTASK DECOMPOSITION

Given the context-free syntax tree T , we decompose the
generation task into subtasks based on the syntactic structure
of the query. Each non-terminal node n ∈ N in the tree
represents a subtask that needs to be solved to generate the
corresponding part of the SQL query. The decomposition
process f : N → S maps each non-terminal node to its
corresponding SQL component.

3.2.3. SQL GENERATION

To generate the SQL component sn for a non-terminal node
n ∈ N , we employ a LLM M that takes the natural lan-
guage query Q and the subtask context cn as input and
produces the corresponding SQL component:

sn = M(Q, cn). (18)

The subtask context cn captures the relevant information
from the context-free syntax tree T that is needed to gener-
ate the SQL component for node n. It can include the parent
node, sibling nodes, and other relevant contextual informa-
tion. The final SQL query S is obtained by combining the
SQL components generated for all the non-terminal nodes
in the context-free syntax tree T , starting from the root node
n0: S = sn0

. By decomposing the text-to-SQL generation
task into subtasks based on the syntax structure of the user
query, we can leverage the hierarchical information captured
by the context-free syntax tree to generate more accurate
and structured SQL queries.

4. Experiments
This section empirically evaluates the proposed SGU-SQL.
Our experiment is motivated by the following questions: Q1
How does our proposed SGU-SQL perform in comparison
with the strongest baselines? Q2 Could our proposed Gram
enhance other LLMs by substituting the original framework
with the decomposing-based prompt? Q3 Is our proposed
structure prompting effective when handling queries of dif-
ferent complexity? Q4 Which type of queries are prone to
occur errors? And what is the underlying reason?

4.1. Experiment Setup

Datasets We assess the performance of text-to-SQL models
using two renowned datasets, Spider (Yu et al., 2019) and

5

Structure-Guided Large Language Models for Text-to-SQL Generation

Table 1: The Execution Accuracy of text-to-SQL models on SPIDER. The best and second-best results in each column are
highlighted in bold font and underlined. ✔ and ✘ represent that the case is applicable and not applicable, respectively.

Text-to-SQL
Method

Backbone
LM/LLM Finetuning Structure

Information
Prompt
Strategy

SPIDER

Easy Medium Hard Extra Overall

Baichuan2

Baichuan2-7B
SFT ✘ ✘ 0.5775±0.0106 0.3521±0.0130 0.2010±0.0089 0.0667±0.0115 0.3353±0.0125

LoRA ✘ ✘ 0.8714±0.0073 0.6305±0.0069 0.4489±0.0063 0.2958±0.0084 0.6035±0.0079
QLoRA ✘ ✘ 0.8919±0.0057 0.6367±0.0071 0.4885±0.0053 0.3306±0.0079 0.6242±0.0061

Baichuan2-13B
SFT ✘ ✘ 0.5805±0.0093 0.4133±0.0085 0.2644±0.0067 0.1875±0.0078 0.3927±0.0081

LoRA ✘ ✘ 0.9024±0.0075 0.7015±0.0069 0.5688±0.0083 0.3915±0.0071 0.6776±0.0080
QLoRA ✘ ✘ 0.8951±0.0103 0.6746±0.0123 0.5809±0.0115 0.3434±0.0109 0.6592±0.0114

LlaMA2

LlaMA2-7B LoRA ✘ ✘ 0.8868±0.0016 0.6410 ±0.0041 0.4892±0.0030 0.3311±0.0017 0.6259±0.0022
QLoRA ✘ ✘ 0.8472±0.0025 0.6234±0.0032 0.4658±0.0021 0.3309±0.0027 0.6083±0.0035

LlaMA2-13B LoRA ✘ ✘ 0.9066±0.0037 0.7292±0.0045 0.5517±0.0029 0.3430±0.0055 0.6809±0.0030
QLoRA ✘ ✘ 0.9110±0.0043 0.7004±0.0059 0.5523±0.0032 0.3190±0.0061 0.6648±0.0045

LlaMA2-70B SFT ✘ ✘ 0.4110±0.0093 0.2293±0.0075 0.1906±0.0081 0.0725±0.0090 0.2414±0.0108
LoRA ✘ ✘ 0.9151±0.0069 0.7323±0.0080 0.5575±0.0049 0.3921±0.0035 0.6869±0.0040

CodeLlama

CodeLlama-7B
SFT ✘ ✘ 0.2136±0.0150 0.1769±0.0161 0.0921±0.0169 0.0363±0.0144 0.1487±0.0163

LoRA ✘ ✘ 0.9228±0.0105 0.7562±0.0134 0.5863±0.0096 0.3485±0.0126 0.7018±0.0108
QLoRA ✘ ✘ 0.9115±0.0127 0.7506±0.0142 0.5982±0.0120 0.3310±0.0085 0.6961±0.0104

CodeLlama-13B
SFT ✘ ✘ 0.6980±0.0115 0.6015±0.0121 0.4073±0.0109 0.2708±0.0145 0.5288±0.0140

LoRA ✘ ✘ 0.9414±0.0086 0.7885±0.0073 0.6842±0.0081 0.4041±0.0069 0.7462±0.0092
QLoRA ✘ ✘ 0.9402±0.0053 0.7445±0.0066 0.6263±0.0085 0.3915±0.0061 0.7270±0.0085

CodeLlama-70B SFT ✘ ✘ 0.7223±0.0143 0.6245±0.0120 0.4432±0.0131 0.3028±0.0147 0.5675±0.0144
LoRA ✘ ✘ 0.9621±0.0053 0.8122±0.0069 0.7167±0.0055 0.4324±0.0069 0.7710±0.0061

Qwen

Qwen-7B
SFT ✘ ✘ 0.3956±0.0155 0.2561±0.0131 0.1384±0.0137 0.0427±0.0169 0.2356±0.0140

LoRA ✘ ✘ 0.8546±0.0060 0.6876±0.0089 0.5743±0.0076 0.3340±0.0065 0.6519±0.0073
QLoRA ✘ ✘ 0.9110±0.0045 0.6747±0.0081 0.5750±0.0076 0.3436±0.0055 0.6623±0.0069

Qwen-14B
SFT ✘ ✘ 0.8713±0.0105 0.6323±0.0140 0.3686±0.0139 0.1810±0.0120 0.5735±0.0135

LoRA ✘ ✘ 0.8946±0.0110 0.7021±0.0103 0.5517±0.0125 0.3669±0.0118 0.6625±0.0121
QLoRA ✘ ✘ 0.9185±0.0075 0.7439±0.0060 0.5976±0.0081 0.4583±0.0083 0.7010±0.0090

Qwen-72B SFT ✘ ✘ 0.8313±0.0100 0.6345±0.0077 0.4886±0.0065 0.2772±0.0123 0.6033±0.0110
LoRA ✘ ✘ 0.9269±0.0075 0.7563±0.0059 0.6215±0.0083 0.3673±0.0136 0.7127±0.0094

RAT-SQL ✘ ✘ ✔ ✘ 0.8044±0.0107 0.6395±0.0082 0.5573±0.0124 0.4036±0.0101 0.6271±0.0119
BERT-Large SFT ✔ ✘ 0.8643±0.0119 0.7367±0.0145 0.6210±0.0093 0.4279±0.0116 0.6955±0.0124

LGESQL ✘ ✘ ✔ ✘ 0.8633±0.0097 0.6952±0.0065 06154±0.0093 0.4106±0.0118 0.6768±0.0109
BERT-Large SFT ✔ ✘ 0.9150±0.0103 0.7647±0.0065 0.6673±0.0107 0.4888±0.0078 0.7421±0.0096

Graphix-T5 T5-Large SFT ✔ ✘ 0.8993±0.0075 0.7874±0.0068 0.5980±0.0102 0.4401±0.0083 0.7263±0.097
T5-3B SFT ✔ ✘ 0.9193±0.0038 0.8164±0.0062 0.6157±0.0053 0.5006±0.0081 0.7562±0.0065

RESDSQL
T5-Base SFT ✔ ✘ 0.9190±0.0047 0.8369±0.0051 0.6841±0.0070 0.5183±0.0065 0.7797±0.0073
T5-Large SFT ✔ ✘ 0.9355±0.0040 0.8543±0.0051 0.7241±0.0070 0.5361±0.0045 0.8008±0.0063

T5-3B SFT ✔ ✘ 0.9476±0.0081 0.8767±0.0104 0.7299±0.0120 0.5602±0.0094 0.8182±0.0100

DTS-SQL DeepSeek-7B SFT ✘ ✔ 0.9274±0.0091 0.9013±0.0075 0.7414±0.0090 0.5663±0.0103 0.8269±0.0094

CodeS CodeLlama-13B SFT ✘ ✔ 0.9274±0.0084 0.8789±0.0052 0.7069±0.0079 0.5904±0.0038 0.8150±0.0070

C3-SQL GPT-3.5 ✘ ✘ ✔ 0.9136±0.0068 0.8402±0.0094 0.7731±0.0064 0.6153±0.0080 0.8108±0.0095

DIN-SQL GPT-4 ✘ ✘ ✔ 0.9234±0.0059 0.8744±0.0080 0.7644±0.0091 0.6265±0.0103 0.8279±0.0098

DAIL-SQL GPT-4 ✘ ✘ ✔ 0.9153±0.0103 0.8924±0.0125 0.7701±0.0098 0.6024±0.0107 0.8308±0.0110

EPI-SQL GPT-4 ✘ ✘ ✔ 0.9310±0.0121 0.9053±0.0085 0.8178±0.0108 0.6189±0.0097 0.8511±0.0114

SuperSQL GPT-4 ✘ ✘ ✔ 0.9435±0.0074 0.9126±0.0050 0.8333±0.0062 0.6867±0.0055 0.8682±0.0068

PURPLE GPT-4 ✘ ✘ ✔ 0.9404±0.0086 0.9206±0.0041 0.8268±0.0055 0.6715±0.0080 0.8670±0.0072

SGU-SQL GPT-4 ✘ ✔ ✔ 0.9352±0.0061 0.9190±0.0043 0.8437±0.0045 0.7213±0.0067 0.8795±0.0063

6

Structure-Guided Large Language Models for Text-to-SQL Generation

BIRD (Li et al., 2023c). Spider, a cross-domain text-to-SQL
dataset, comprises 8659 instances in the training split and
1034 instances in the development split, spanning across
200 databases. Each instance comprises a natural language
question related to a specific database and its corresponding
SQL query. For evaluation purposes, we utilize the Spider-
dev development split since the test split has not been re-
leased. On the other hand, BIRD (BIg Bench for large-scale
Database Grounded text-to-SQL Evaluation) is another pio-
neering cross-domain dataset that focuses on exploring the
impact of extensive database contents on text-to-SQL pars-
ing. BIRD features over 12,751 unique question-SQL pairs,
encompassing 95 large databases with a total size of 33.4
GB. It encompasses more than 37 professional domains.

Baselines To valid SGU-SQL, we compare it with several
state-of-art baselines. Following the taxonomy in Sec-
tion D, we divide baselines into three categories: (i) Fine-
tuning: T5-base (Raffel et al., 2020), T5-large (Raffel
et al., 2020); (ii) structure-learning: RAT-SQL (Wang
et al., 2019), RASAT (Qi et al., 2022), S2SQL (Hui et al.,
2022) ,RESDSQL (Li et al., 2023a),GRAPHIX (Li et al.,
2023b); and (iii) incontext-learning: PaLM-2 (Anil et al.,
2023), CodeX (Chen et al., 2021), GPT-4 (OpenAI, 2023),
C3-GPT (Dong et al., 2023), DIN-SQL (Pourreza & Rafiei,
2023), DAIL-SQL (Gao et al., 2023), EPI-SQL (Liu &
Tan, 2024), SuperSQL (Li et al., 2024a), E-SQL (Cafer-
oğlu & Ulusoy, 2024), MAC-SQL (Wang et al., 2024),
PURPLE (Ren et al., 2024), CHESS (Talaei et al., 2024),
CHASE-SQL (Pourreza et al., 2024).

Evaluation Metrics We evaluate our models using three
key metrics: Exact-Set-Match Accuracy (EM Acc), Exe-
cution Accuracy (Exec Acc), and Valid Efficiency Score
(VES). EM Acc compares each predicted clause to the vali-
dated SQL query, but may produce false results due to value
omission. Exec Acc compares execution results of predicted
and confirmed SQL queries, offering a more comprehensive
assessment by acknowledging multiple valid SQL solutions
for a single question. VES measures the efficiency of gen-
erated SQLs that produce correct result sets, discounting
those that fail to retrieve accurate values. This metric com-
bines execution efficiency and accuracy to provide a holistic
performance evaluation.

4.2. Main Results: Q1

To answer Q1, we perform extensive experiments to com-
pare SGU-SQL with the strongest baselines, to the best of our
knowledge. The comparison results on Spider and Bird are
placed in Tables 1 and 2. We summarize our experimental
observations as follows.

Obs.1. Our proposed SGU-SQL significantly outperforms
SOTA text-to-SQL baselines. We compare SGU-SQL (ours)
with 11 fine-tuning based methods, 7 structure-learning-

based methods and 11 SOTA incontext-learning-based meth-
ods over two benchmark datasets. As shown in Table 1
and 2, SGU-SQL achieves superior performance across both
datasets, outperforming all baselines in terms of execution
accuracy and exact match accuracy.

Obs.2. In-context learning-based method is better than the
methods of the other two categories. Among the three cate-
gories of methods, in-context learning-based methods con-
sistently demonstrate superior performance. This suggests
that leveraging in-context learning mechanisms is crucial for
enhancing the understanding and generation of SQL queries
from natural language inputs. Specifically, the in-context
learning-based methods, i.e., DIN-SQL and DAIL-SQL in
our comparison set achieve higher accuracy rates and re-
quire less computational overhead compared to fine-tuning
and structure-learning-based methods. Additionally, the
in-context learning-based methods exhibit better generaliza-
tion across different datasets, indicating their robustness and
adaptability.

4.3. Ablation Staudy: Q2

The effect of prompting strategy In this part, we conduct
comprehensive experiments to investigate the effectiveness
of our proposed prompting strategy. Specifically, we
compare the structure-based decomposing strategy used in
our SGU-SQL with other prompting strategies like CoT (Wei
et al., 2022) and few-shot prompting. As shown in Table 4
and 8, we can have the following observations.

Obs.3. Our structure-based decomposing significantly
outperforms other simple prompting strategies. Our method
demonstrates superior performance across all tested LLMs.
Specifically, compared to CoT, our approach achieves
an average improvement of 5.03%, while outperforming
few-shot prompting by 4.98% on average.

Obs.4. Our structure-based decomposing significantly
outperforms other advanced prompting strategies. The key
distinction of our approach is that it dynamically decom-
poses queries based on their syntax structure, rather than
either using fixed decomposition patterns (like DIN-SQL)
or purely relying on LLM’s black-box understanding (like
ACT-SQL, MAC-SQL). This syntax-aware decomposition
strategy proves more effective for handling complex SQL
generation tasks.

Obs.5. Simple decomposing-based methods are ineffective
in the text-to-SQL task. While decomposing complex tasks
into subtasks like CoT, can enhance model performance
in many natural language understanding tasks, it proves
to be ineffective in the text-to-SQL task. As shown in

7

Structure-Guided Large Language Models for Text-to-SQL Generation

Table 2: The Execution Accuracy and Exact Match Accuracy of text-to-SQL models on SPIDER and BIRD. The best and
second-best results in each column are highlighted in bold font and underlined. NaN denotes that the result is not available.

Dataset Spider BIRD

Metric EX Acc EM Acc VES EX Acc EM Acc VES

Fi
ne

tu
ni

ng
-b

as
ed

Baichuan2-7B 0.6035 0.5793 0.6082 0.1719 0.0547 0.2097
Baichuan2-13B 0.6776 0.6078 0.6545 0.1766 0.0455 0.2126

LlaMA2-7B 0.6083 0.5816 0.5795 0.1675 0.0469 0.1670
LlaMA2-13B 0.6809 0.6400 0.6712 0.1993 0.0743 0.1739
LlaMA2-70B 0.6869 0.6555 0.6779 0.2414 0.0778 0.1987

CodeLlama-7B 0.7018 0.6431 0.7357 0.2370 0.1283 0.2504
CodeLlama-13B 0.7462 0.7056 0.7391 0.2944 0.2551 0.3004
CodeLlama-70B 0.7710 0.7139 0.7463 0.3287 0.2557 0.3428

Qwen-7B 0.6519 0.6106 0.6625 0.1709 0.0439 0.1915
Qwen-14B 0.6625 0.6238 0.6757 0.2286 0.0645 0.2396
Qwen-72B 0.7127 0.6812 0.7082 0.2392 0.0894 0.2488

St
ru

ct
ur

e
L

ea
rn

in
g RAT-SQL 0.6955 0.6597 0.6734 0.2639 0.2431 0.2431

BRIDGE 0.6928 0.7053 0.6893 0.2459 0.2068 0.2574
LGESQL 0.7421 0.7251 0.7067 0.2837 0.2493 0.2889
S2SQL 0.7643 0.7385 0.7539 0.2960 0.2649 0.3143

RESDSQL 0.8182 0.7580 0.8226 0.3312 0.3174 0.3286
Graphix-T5 0.7562 0.7463 0.7643 0.2984 0.2538 0.3062
METASQL 0.7695 0.7288 0.7498 0.3180 0.3011 0.3225

In
-C

on
te

xt
L

ea
rn

in
g

GPT-3.5 0.7394 0.5327 0.7457 0.3562 0.3041 0.3415
GPT-4 0.7665 0.5892 0.7390 0.4633 0.4255 0.4794

PaLM-2 0.6985 0.4438 0.7148 0.2735 0.2543 0.3061
CodeX 0.7167 0.4905 0.7011 0.3438 0.3019 0.3496

C3-GPT 0.8108 0.7036 0.8009 0.5020 0.4143 0.5077
DIN-SQL 0.8279 0.7187 0.8173 0.5072 0.4398 0.5879

DAIL-SQL 0.8308 0.7443 0.8317 0.5434 0.4581 0.5576
DTS-SQL 0.8269 0.7260 0.8163 0.5581 0.4825 0.6038

CodeS 0.8150 0.7069 0.8092 0.5714 0.4893 0.6120
SuperSQL 0.8682 0.7589 0.8410 0.5860 0.4745 0.6067
MAC-SQL 0.8635 0.7545 0.8541 0.5759 0.4906 0.5872
SGU-SQL 0.8795 0.7826 0.8652 0.6180 0.5144 0.6393

Tables 4 and 8, applying COT on PaLM-2 even leads to
a performance decrease of 1.08% compared to the naive
few-shot prompting. This is attributed to the complex
syntax of SQL, and the intricate correspondence between
query terms in user queries and database data units.
Conversely, we formally define the meta-operations in
SQL and propose a decomposing strategy according to the
syntax tree to separate the query into subtasks. This boosts
the LLMs’ comprehension of linked queries to generate
accurate SQLs.

The generalization ability of prompts

To further verify the generalization ability of our proposed
prompting strategy, in this part, we conduct comprehensive
experiments to investigate whether SGU-SQL could enhance
other LLMs by substituting their original framework with

the decomposing-based prompts. Specifically, we replace
GPT-4 used in SGU-SQL with other representative generative
LLMs, including PaLM-2 (Anil et al., 2023), CodeX (Chen
et al., 2021), ChatGPT and GPT-4 (OpenAI, 2023) as alter-
natives. Specifically, we used the model ‘chat-bison-001’
provided by GoogleAI as the implementation of PaLM-2,
and ‘ChatGPT-turbo’ and ‘gpt-4’ as the implementations
of ChatGPT and GPT-4, respectively. The text-to-SQL
task is conducted under the few-shot setting with the query
from the development set of Spider as input. As shown in
Figure 4, we have the following observations.

Obs.6. The performances of the original LLMs improved
significantly by integrating the prompt learned from our
SGU-SQL. Specifically, PaLM-2 improved by 4%, CodeX
by 3%, ChatGPT by 5%, and GPT-4 by almost 11%. The
substantial performance gains indicate the robustness and

8

Structure-Guided Large Language Models for Text-to-SQL Generation

Figure 2: Error Analysis of GPT-4 + SGU-SQL and C3-GPT
on the Dev Set: A Comparison of 125 and 188 Failures.

generalization ability of our proposed prompting strategy.
Furthermore, the consistent improvements across different
LLMs highlight the versatility and applicability of our ap-
proach in enhancing the capabilities of existing language
models.

Obs.7. LLMs with stronger reasoning abilities exhibit
greater improvement. We observe that LLMs with stronger
reasoning abilities benefit more from integrating the prompts
learned from SGU-SQL. Specifically, GPT-4, which is known
for its advanced reasoning capabilities, shows a more sub-
stantial performance improvement compared to PaLM-2,
CodeX, and ChatGPT. This suggests that our prompting
strategy is particularly effective in enhancing the perfor-
mance of LLMs that require more complex reasoning tasks.

4.4. Model Analysis

Difficulty analysis Q3: In this part, we first analyze the
performance of our proposed method on queries with differ-
ent levels of difficulty. Our analysis focused on evaluating
the performance of our proposed method across queries of
varying difficulty levels. Table 1 provides a comparative
assessment of our method against state-of-the-art (SOTA)
prompting methods on the Spider development set. Our
findings reveal that our method consistently outperforms
competing methods across all difficulty levels. Notably, we
observe the most substantial improvements in the extra hard
and hard classes, where other prompting models struggle.
Additionally, our method also shows a slight improvement
in the easy class, which suggests that our method is robust
and effective across queries of different difficulty levels,
highlighting its potential for practical applications in natural
language understanding and query generation tasks.

Error analysis Q4: We checked the errors in the generated
SQL answers and classified them into six categories, as
shown in Figure 2 following the classification by (Pourreza
& Rafiei, 2023). We discuss the failure cases of our model
in comparison with baseline models and then discuss the

reasons for the typical failure of LLMs in Text-to-SQL tasks.
Compared to the baseline model, we achieved a reduction
of approximately 33.5% in errors and made progress in
the schema-linking and join statement components where
traditional models often falter. In this section, we will first
discuss the failure cases of our model in comparison with
baseline models, and then discuss the reasons for the typical
failure for LLMs in text-sql tasks. We checked the errors
in the generated SQL answers and classified them into six
categories, as shown in Figure 2 followed by the major
classification by (Pourreza & Rafiei, 2023). Compared to the
baseline model, we achieved a reduction of approximately
33.5% in errors and made progress in the schema-linking
and join statement components where traditional models
often falter. Errors in the schema-linking segment decreased
by around 38%, primarily attributed to the utilization of
Precise Query Matching, wherein graph neural networks
were employed to learn and match the database schema.
This underscores the efficacy of Structure Linking.

5. Conclusion
Recent advancements in large language models (LLMs)
have shown promise in improving the accuracy of text-to-
SQL generation. However, existing models typically in-
put queries and database schemas into LLMs to perform
semantic-structure matching and generate structured SQL,
while often overlook the structural information inherent
in user queries and databases, which could significantly
enhance the generation of accurate SQL queries. This over-
sight can result in the production of inaccurate or unex-
ecutable SQL queries. To fully exploit the structure, we
propose the structure-to-SQL framework (SGU-SQL), which
leverages the inherent structure information to improve the
SQL generation of LLMs. Specifically, SGU-SQL links user
queries and databases in a structure-enhanced manner. It
then decomposes complicated linked structures with syn-
tax trees to guide the LLM to generate the SQL step by
step. Extensive experiments on two benchmarks demon-
strate that SGU-SQL consistently outperforms state-of-the-art
SQL generation baselines.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgement
The work in this paper was fully supported by a grant from
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (Project No. PolyU 25208322).

9

Structure-Guided Large Language Models for Text-to-SQL Generation

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Bi, B., Liu, S., Mei, L., Wang, Y., Ji, P., and Cheng, X. De-
coding by contrasting knowledge: Enhancing llms’ confi-
dence on edited facts. arXiv preprint arXiv:2405.11613,
2024.

Bi, B., Liu, S., Wang, Y., Xu, Y., Fang, J., Mei, L., and
Cheng, X. Parameters vs. context: Fine-grained control
of knowledge reliance in language models. arXiv preprint
arXiv:2503.15888, 2025.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Busbridge, D., Sherburn, D., Cavallo, P., and Hammerla,
N. Y. Relational graph attention networks. arXiv preprint
arXiv:1904.05811, 2019.

Caferoğlu, H. A. and Ulusoy, Ö. E-sql: Direct schema
linking via question enrichment in text-to-sql. arXiv
preprint arXiv:2409.16751, 2024.

Cao, R., Chen, L., Chen, Z., Zhao, Y., Zhu, S., and Yu,
K. Lgesql: line graph enhanced text-to-sql model with
mixed local and non-local relations. arXiv preprint
arXiv:2106.01093, 2021.

Chang, S. and Fosler-Lussier, E. How to prompt LLMs for
text-to-SQL: A study in zero-shot, single-domain, and
cross-domain settings. In NeurIPS 2023 Second Table
Representation Learning Workshop (NeurIPS), 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, S., Zhang, Q., Dong, J., Hua, W., Cao, J., and Huang,
X. Neuro-symbolic entity alignment via variational infer-
ence. arXiv preprint arXiv:2410.04153, 2024a.

Chen, S., Zhang, Q., Dong, J., Hua, W., Li, Q., and Huang,
X. Entity alignment with noisy annotations from large lan-
guage models. arXiv preprint arXiv:2405.16806, 2024b.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. In International
Conference on Learning Representations (ICLR), 2024c.

Choi, D., Shin, M. C., Kim, E., and Shin, D. R. Ryansql: Re-
cursively applying sketch-based slot fillings for complex
text-to-sql in cross-domain databases. Computational
Linguistics, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2019.

Dong, J., Zhang, Q., Zhou, C., Chen, H., Zha, D., and
Huang, X. Cost-efficient knowledge-based question an-
swering with large language models. arXiv preprint
arXiv:2405.17337, 2024.

Dong, X., Zhang, C., Ge, Y., Mao, Y., Gao, Y., lu Chen, Lin,
J., and Lou, D. C3: Zero-shot text-to-sql with chatgpt,
2023.

Dou, L., Gao, Y., Liu, X., Pan, M., Wang, D., Che, W.,
Zhan, D., Kan, M.-Y., and Lou, J.-G. Towards knowledge-
intensive text-to-SQL semantic parsing with formulaic
knowledge. In Empirical Methods in Natural Language
Processing (EMNLP), 2022.

Fang, J., Wang, Y., Wang, R., Yao, Z., Wang, K., Zhang,
A., Wang, X., and Chua, T.-S. Safemlrm: Demystifying
safety in multi-modal large reasoning models. arXiv
preprint arXiv:2504.08813, 2025.

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding,
B., and Zhou, J. Text-to-sql empowered by large lan-
guage models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B., and
Zhou, J. Text-to-sql empowered by large language mod-
els: A benchmark evaluation. In International Conference
on Very Large Data Bases (VLDB), 2024.

Guo, C., Tian, Z., Tang, J., Wang, P., Wen, Z., Yang, K., and
Wang, T. A case-based reasoning framework for adaptive
prompting in cross-domain text-to-sql. arXiv preprint
arXiv:2304.13301, 2023.

Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J.-G., Liu, T., and
Zhang, D. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv preprint
arXiv:1905.08205, 2019.

10

Structure-Guided Large Language Models for Text-to-SQL Generation

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 1997.

Hong, Z., Yuan, Z., Chen, H., Zhang, Q., Huang, F., and
Huang, X. Knowledge-to-sql: Enhancing sql generation
with data expert llm. arXiv preprint arXiv:2402.11517,
2024a.

Hong, Z., Yuan, Z., Chen, H., Zhang, Q., Huang, F., and
Huang, X. Knowledge-to-sql: Enhancing sql generation
with data expert llm. arXiv preprint arXiv:2402.11517,
2024b.

Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J., Huang,
F., and Huang, X. Next-generation database inter-
faces: A survey of llm-based text-to-sql. arXiv preprint
arXiv:2406.08426, 2024c.

Hui, B., Geng, R., Wang, L., Qin, B., Li, B., Sun, J., and Li,
Y. S2sql: Injecting syntax to question-schema interaction
graph encoder for text-to-sql parsers, 2022.

Kate, R. Transforming meaning representation grammars
to improve semantic parsing. In CoNLL 2008: Proceed-
ings of the Twelfth Conference on Computational Natural
Language Learning, pp. 33–40, 2008.

Lei, F., Chen, J., Ye, Y., Cao, R., Shin, D., Su, H., Suo,
Z., Gao, H., Hu, W., Yin, P., et al. Spider 2.0: Evaluat-
ing language models on real-world enterprise text-to-sql
workflows. arXiv preprint arXiv:2411.07763, 2024.

Li, B., Luo, Y., Chai, C., Li, G., and Tang, N. The dawn
of natural language to sql: Are we fully ready? arXiv
preprint arXiv:2406.01265, 2024a.

Li, F. and Jagadish, H. V. Constructing an interactive natural
language interface for relational databases. In Interna-
tional Conference on Very Large Data Bases (VLDB),
2014.

Li, H., Zhang, J., Li, C., and Chen, H. Resdsql: Decoupling
schema linking and skeleton parsing for text-to-sql. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 13067–13075, 2023a.

Li, H., Zhang, J., Liu, H., Fan, J., Zhang, X., Zhu, J., Wei,
R., Pan, H., Li, C., and Chen, H. Codes: Towards building
open-source language models for text-to-sql. In Confer-
ence on Management of Data (SIGMOD), 2024b.

Li, J., Hui, B., Cheng, R., Qin, B., Ma, C., Huo, N., Huang,
F., Du, W., Si, L., and Li, Y. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-to-
sql parsing. arXiv preprint arXiv:2301.07507, 2023b.

Li, J., Hui, B., Qu, G., Li, B., Yang, J., Li, B., Wang, B.,
Qin, B., Cao, R., Geng, R., et al. Can llm already serve as

a database interface? a big bench for large-scale database
grounded text-to-sqls. arXiv preprint arXiv:2305.03111,
2023c.

Liu, A., Hu, X., Wen, L., and Yu, P. S. A comprehensive
evaluation of chatgpt’s zero-shot text-to-sql capability.
arXiv preprint arXiv:2303.13547, 2023.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Liu, X. and Tan, Z. Epi-sql: Enhancing text-to-sql trans-
lation with error-prevention instructions. arXiv preprint
arXiv:2404.14453, 2024.

Mahmud, T., Hasan, K. A., Ahmed, M., and Chak, T. H. C.
A rule based approach for nlp based query processing. In
International Conference on Electrical Information and
Communication Technologies (EICT), 2015.

Müller, M. and Sennrich, R. Understanding the proper-
ties of minimum Bayes risk decoding in neural machine
translation. In Association for Computational Linguistics
and International Joint Conference on Natural Language
Processing (ACL-IJCNLP), 2021.

Nan, L., Zhao, Y., Zou, W., Ri, N., Tae, J., Zhang, E.,
Cohan, A., and Radev, D. Enhancing few-shot text-to-sql
capabilities of large language models: A study on prompt
design strategies. arXiv preprint arXiv:2305.12586, 2023.

Ni, A., Iyer, S., Radev, D., Stoyanov, V., Yih, W.-t., Wang,
S. I., and Lin, X. V. Lever: Learning to verify language-
to-code generation with execution. In International Con-
ference on Machine Learning (ICML), 2023.

OpenAI. Gpt-4 technical report, 2023.

Pourreza, M. and Rafiei, D. DIN-SQL: Decomposed
in-context learning of text-to-SQL with self-correction.
In Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Pourreza, M., Li, H., Sun, R., Chung, Y., Talaei, S., Kakkar,
G. T., Gan, Y., Saberi, A., Ozcan, F., and Arik, S. O.
Chase-sql: Multi-path reasoning and preference opti-
mized candidate selection in text-to-sql. arXiv preprint
arXiv:2410.01943, 2024.

Qi, J., Tang, J., He, Z., Wan, X., Cheng, Y., Zhou, C., Wang,
X., Zhang, Q., and Lin, Z. Rasat: Integrating relational
structures into pretrained seq2seq model for text-to-sql.
arXiv preprint arXiv:2205.06983, 2022.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. OpenAI blog, 2018.

11

Structure-Guided Large Language Models for Text-to-SQL Generation

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Rajkumar, N., Li, R., and Bahdanau, D. Evaluating the
text-to-sql capabilities of large language models. arXiv
preprint arXiv:2204.00498, 2022.

Ren, T., Fan, Y., He, Z., Huang, R., Dai, J., Huang, C., Jing,
Y., Zhang, K., Yang, Y., and Wang, X. S. Purple: Making
a large language model a better sql writer. arXiv preprint
arXiv:2403.20014, 2024.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Scholak, T., Schucher, N., and Bahdanau, D. Picard: Parsing
incrementally for constrained auto-regressive decoding
from language models. arXiv preprint arXiv:2109.05093,
2021.

Shi, F., Fried, D., Ghazvininejad, M., Zettlemoyer, L., and
Wang, S. I. Natural language to code translation with
execution. In Empirical Methods in Natural Language
Processing (EMNLP), 2022.

Sun, R., Arik, S. O., Nakhost, H., Dai, H., Sinha, R.,
Yin, P., and Pfister, T. Sql-palm: Improved large lan-
guage modeladaptation for text-to-sql. arXiv preprint
arXiv:2306.00739, 2023.

Talaei, S., Pourreza, M., Chang, Y.-C., Mirhoseini, A., and
Saberi, A. Chess: Contextual harnessing for efficient sql
synthesis. arXiv preprint arXiv:2405.16755, 2024.

Trummer, I. Codexdb: Synthesizing code for query pro-
cessing from natural language instructions using gpt-3
codex. Proceedings of the VLDB Endowment, 15(11):
2921–2928, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Wang, B., Shin, R., Liu, X., Polozov, O., and Richardson,
M. Rat-sql: Relation-aware schema encoding and linking
for text-to-sql parsers. arXiv preprint arXiv:1911.04942,
2019.

Wang, B., Ren, C., Yang, J., Liang, X., Bai, J., Chai, L.,
Yan, Z., Zhang, Q.-W., Yin, D., Sun, X., et al. Mac-sql: A
multi-agent collaborative framework for text-to-sql. arXiv
preprint arXiv:2312.11242, 2024.

Wang, C., Liu, Y., Li, B., Zhang, D., Li, Z., and Fang,
J. Safety in large reasoning models: A survey. arXiv
preprint arXiv:2504.17704, 2025.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Xu, F., Wu, Z., Sun, Q., Ren, S., Yuan, F., Yuan, S., Lin, Q.,
Qiao, Y., and Liu, J. Symbol-llm: Towards foundational
symbol-centric interface for large language models. arXiv
preprint arXiv:2311.09278, 2024.

Yang, C., Wang, X., Jiang, J., Zhang, Q., and Huang, X.
Evaluating world models with llm for decision making.
arXiv preprint arXiv:2411.08794, 2024.

Yin, P., Neubig, G., Yih, W.-t., and Riedel, S. Tabert: Pre-
training for joint understanding of textual and tabular data.
arXiv preprint arXiv:2005.08314, 2020.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., and
Radev, D. Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-
to-SQL task. In Empirical Methods in Natural Language
Processing (EMNLP), 2018.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., and
Radev, D. Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-
to-sql task, 2019.

Yu, T., Wu, C.-S., Lin, X. V., bailin wang, Tan, Y. C., Yang,
X., Radev, D., richard socher, and Xiong, C. Grappa:
Grammar-augmented pre-training for table semantic pars-
ing. In International Conference on Learning Represen-
tations (ICLR), 2021.

Yuan, Z., Chen, H., Hong, Z., Zhang, Q., Huang, F., and
Huang, X. Knapsack optimization-based schema link-
ing for llm-based text-to-sql generation. arXiv preprint
arXiv:2502.12911, 2025.

Zhang, Q., Dong, J., Chen, H., Zha, D., Yu, Z., and Huang,
X. Knowgpt: Knowledge graph based prompting for
large language models. Advances in Neural Information
Processing Systems, 37:6052–6080, 2024.

Zhang, Q., Chen, S., Bei, Y., Yuan, Z., Zhou, H., Hong, Z.,
Dong, J., Chen, H., Chang, Y., and Huang, X. A survey
of graph retrieval-augmented generation for customized
large language models. arXiv preprint arXiv:2501.13958,
2025.

12

Structure-Guided Large Language Models for Text-to-SQL Generation

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generating
structured queries from natural language using reinforce-
ment learning. arXiv preprint arXiv:1709.00103, 2017.

Zhou, C., Du, J., Zhou, H., Chen, H., Huang, F., and Huang,
X. Text-attributed graph learning with coupled augmenta-
tions. In Proceedings of the 31st International Conference
on Computational Linguistics, pp. 10865–10876, 2025.

Zhou, H., Zhou, S., Chen, H., Liu, N., Yang, F., and Huang,
X. Enhancing explainable rating prediction through anno-
tated macro concepts. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 11736–11748, 2024.

Zhuang, A., Zhang, G., Zheng, T., Du, X., Wang, J., Ren,
W., Huang, S. W., Fu, J., Yue, X., and Chen, W. Structlm:
Towards building generalist models for structured knowl-
edge grounding. arXiv preprint arXiv:2402.16671, 2024.

13

Structure-Guided Large Language Models for Text-to-SQL Generation

A. Ablation Study
In this section, we have conducted detailed experiments to validate the effectiveness of each component in SGU-SQL.

A.1. The Effect of Structure Learning

As shown in Table 3, we have the following observations: (i) Removing the query graph representation leads to significant
performance drops (-3.45% on Spider-dev, -2.87% on BIRD-dev), demonstrating that our proposed query graph is crucial
for understanding the intent behind the query. (ii) The ablation of the database graph results in performance decreases
of -2.14% on Spider-dev and -3.54% on BIRD-dev. The larger performance drop on BIRD (-3.54%) vs Spider (-2.14%)
indicates that graph-based database representation is particularly important for complex, realistic databases. (iii) When
removing structure-aware linking, we observe substantial performance degradation (-5.33% on Spider-dev, -6.49% on
BIRD-dev), representing the second-largest impact among all components. The more significant drop on BIRD emphasizes
that our linking mechanism is particularly crucial for complex queries and databases, effectively bridging the semantic gap
between natural language and database components while maintaining structural integrity.

Table 3: Ablation study on different components of SGU-SQL.

Variant Full Model w/o query graph w/o database graph w/o structure linking w/o decomposition

SPIDER-dev 87.95 84.50 (-3.45) 85.81 (-2.14) 82.62 (-5.33) 82.35 (-5.60)
BIRD-dev 61.80 58.93 (-2.87) 58.26 (-3.54) 55.31 (-6.49) 53.78 (-8.02)

A.2. The Effect of Syntax-based Decomposition

To verify the effectiveness of our syntax-based decomposition strategy, we conducted additional experiments to compare our
SGU-SQL with other advanced decomposition-based methods, including DIN-SQL, ACT-SQL and MAC-SQL.

Table 4: Performance comparison between SGU-SQL and advanced decomposition methods.

Text-to-SQL DIN-SQL ACT-SQL MAC-SQL SGU-SQL

SIPDER-dev 82.79 82.90 86.35 87.95

As shown in Tables 3 and 4, (i) the ablation of our decomposition strategy leads to the most significant performance decrease
(-5.60% on Spider-dev, -8.02% on BIRD-dev). These results validate our approach of breaking down complex queries
into manageable components while preserving structural relationships, especially beneficial for real-world applications
involving complex dabase structure and intricate query patterns. (ii) Our SGU-SQL achieves 87.95% execution accuracy
on SPIDER-dev, outperforming all these methods. The key distinction of our approach is that it dynamically decomposes
queries based on their syntax structure, rather than either using fixed decomposition patterns (like DIN-SQL) or purely
relying on LLM’s black-box understanding (like ACT-SQL, MAC-SQL). This syntax-aware decomposition strategy proves
more effective for handling complex SQL generation tasks.

A.3. The Effect of Backbone LLMs

For a thorough evaluation of SGU-SQL’s performance, we conduct additional experiments on BIRD dev with different
LLMs as backbones. Specifically, we compared SGU-SQL against two categories of methods: (i) Open-source models
with available paper and codes: MAC-SQL, Super-SQL, E-SQL and CHESS; and (ii) Undisclosed methods that have
demonstrated strong performance: PURPLE, Distillery and CHASE-SQL.

As shown in Table 5, our SGU-SQL achieves competitive performance across different LLM backbones. Specifically, we
have the following observations: Using GPT-4 as the backbone, SGU-SQL achieves the best performance compared to other
models using the same backbone. With GPT-4o, SGU-SQL achieves 69.28% in terms of execution accuracy, outperforming
several strong baselines: PURPLE (68.12%), CHESS (68.31%), E-SQL (65.58%) and Distillery (67.21%). The only model
showing higher performance is CHASE-SQL (released in October 2024), which uses Gemini 1.5 Pro as its backbone.
Notably, CHASE-SQL incorporates a query fixer module that leverages database execution feedback to guide LLMs to

14

Structure-Guided Large Language Models for Text-to-SQL Generation

iteratively refine generated queries. In contrast, our model generates SQL queries in a single pass without utilizing any
execution feedback.

B. Model Analysis
B.1. Performance on more Challenging Dataset

To further verify the effectiveness of our model, we conduct additional experiments on more challenging datasets, like
Spider 2.0-Snow and Spider 2.0-Lite (Lei et al., 2024). As shown in Table 6, while the performances are relatively low
across all models, SGU-SQL consistently demonstrates better capability in handling complex SQL generation tasks in both
single and multi-database scenarios.

B.2. Efficiency analysis

To assess our approach thoroughly, we conducted the efficiency analysis on the BIRD dataset, a large-scale benchmark in
text-to-SQL research with 12,751 unique question-SQL pairs across 95 databases (33.4 GB total). Given that the queries in
this dataset are categorized into 3 difficulty levels: simple, moderate, and challenging, we specifically tested our model on
the challenging set of the BIRD dataset and compared its performance with DIN-SQL and MAC-SQL.

As shown in Table 7, our model demonstrates superior performance while maintaining competitive computational efficiency.
Specifically, our model requires less time for both training and inference. This superior efficiency can be attributed to
our graph-based architecture. While baseline methods avoid the overhead of graph construction, they heavily rely on
prompt-based modules that require multiple calls to LLMs like GPT-4. These API calls introduce substantial latency that
accumulates during both the training and inference phases. In contrast, our graph-based approach, despite its initial graph
construction overhead, achieves faster end-to-end processing by minimizing dependence on time-consuming API calls.

B.3. Difficulty analysis Q3

In this part, we first analyze the performance of our proposed method on queries with different levels of difficulty. Our
analysis focused on evaluating the performance of our proposed method across queries of varying difficulty levels. Table 1
provides a comparative assessment of our method against state-of-the-art (SOTA) prompting methods on the Spider
development set. Our findings reveal that our method consistently outperforms competing methods across all difficulty
levels. Notably, we observe the most substantial improvements in the extra hard and hard classes, where other prompting
models struggle. Additionally, our method also shows a slight improvement in the easy class, which suggests that our
method is robust and effective across queries of different difficulty levels, highlighting its potential for practical applications
in natural language understanding and query generation tasks.

B.4. Error Analysis Q4

We checked the errors in the generated SQL answers and classified them into six categories, as shown in Figure 2 following
the classification by (Pourreza & Rafiei, 2023). We discuss the failure cases of our model in comparison with baseline
models and then discuss the reasons for the typical failure of LLMs in Text-to-SQL tasks. Compared to the baseline model,
we achieved a reduction of approximately 33.5% in errors and made progress in the schema-linking and join statement
components where traditional models often falter. In this section, we will first discuss the failure cases of our model in
comparison with baseline models, and then discuss the reasons for the typical failure for LLMs in text-sql tasks. As shown
in Figure 2, we checked the errors in the generated SQL answers and classified them into six categories.

Compared to the baseline model, we achieved a reduction of approximately 33.5% in errors and made progress in the

Table 5: Performance comparison on BIRD dev with different LLMs as backbones.

Backbone MAC-SQL PURPLE E-SQL CHESS Distillery CHASE-SQL SGU-SQL
GPT-4 59.59 60.71 58.95 61.37 - - 61.80
GPT-4o 65.05 68.12 65.58 68.31 67.21 - 69.28
Gemini-1.5 Pro - - - - - 73.14 -

15

Structure-Guided Large Language Models for Text-to-SQL Generation

schema-linking and join statement components where traditional models often falter. Errors in the schema-linking segment
decreased by around 38%, primarily attributed to the utilization of Precise Query Matching, wherein graph neural networks
were employed to learn and match the database schema. This underscores the efficacy of Structure Linking. In the sections
prone to errors, such as Group-by and Join, our errors decreased by 35%, indicating that our syntax tree decomposing
enables the model to more accurately utilize corresponding SQL Meta-operations to mine the intentions behind queries, thus
further enhancing the accuracy in identifying the targeted tables or columns for manipulation.

To further analyze the reasons for errors in the baseline model, we conducted a comprehensive case study by comparing the
results of the baseline model with those of our model, as shown in Figure 3.

Subtask Decomposing LLMs often do not adequately break down the task into its essential steps for reasoning. For
example, in Case 1, the primary subtask of linking flight data to specific cities was ignored. The question did not adequately
break down the task into its essential components without further guidance from LLMs. In Case 3, the query did not
decompose the task into two separate subtasks to identify semesters with Masters and Bachelors enrollments independently
which also leads to wrong returned answers.

Intention Understanding LLMs sometimes misunderstand the core intention of the question. In Case 2, LLMs fail to
identify the intention that the question is trying to find all countries where English is spoken, regardless of its official status
which leads to errors. It concentrated on the official language status, which did not align with the broader objective of
considering English-speaking countries in general. In Case 1, the query was centered around airport codes (SourceAirport),
misinterpreting the intention to identify the busiest city, not just the airport. In Case 3, LLM misinterprets the intention of
finding how many likes Kyle has received. It erroneously assumes the task is to count how many likes Kyle has given, not
received.

Data Schema Linking Since LLMs get data schema information with plain text as inputs, it might be challenging to
reason the right linking strategy to solve the problem correctly. It needs to understand the referenced tables and columns in
the question which are often being mentioned in an inexplicitly way, then matching with the database schema. In contrast,
our tailored GNN model can handle this situation well. In Case 1, the initial query failed to incorporate the airport’s table,
which was essential for linking airport codes to their respective cities. In Case 3, the query did not effectively link degree
program types (Masters, Bachelors) to semesters in databases in a way that would allow for the inclusive identification of
valid semesters. There was also a misalignment in linking: student_id from the Likes table was incorrectly associated
with the id in Highschooler table. It should link liked_id from Likes to id in Highschooler to align with the task’s
objective.

C. Preliminaries
C.1. Structure Learning for Text-to-SQL

Definition 1. Structure Learning for Text-to-SQL: Given a natural language query D and a database schema Q, the task
of graph learning for Text-to-SQL aims to generate a graph-based representation G that captures the structural and semantic
relationships between the query and the schema, and to learn a mapping function f : Gq → Gd, where Gq is the structural
user queries, and Gd is the corresponding database contents linked to the query Gq .

Let G = (V, E) denote the graph representation, where V is the set of nodes and E is the set of edges. The nodes v ∈ V
represent the entities and components in the query and schema, such as tables, columns, and query tokens. The edges e ∈ E
represent the relationships and dependencies between the nodes. The graph learning task involves two main components,

Table 6: Execution accuracy for baseline methods on Spider 2.0-Snow and Spider 2.0-Lite.

Datasets DAIL-SQL+GPT-4o CHESS+GPT-4o SGU-SQL+GPT-4o

Spider 2.0-Snow 2.20 1.28 4.39
Spider 2.0-Lite 5.68 3.84 6.40

16

Structure-Guided Large Language Models for Text-to-SQL Generation

NL Query: What is the code of airport that has the highest number of flights?

Prompts from
Baseline Model

/* Given the following database schema: */
CREATE TABLE ’flights’ (

Airline INTEGER,
...
/* Answer the following: What is the code of airport*/;
that has the highest number of flights? */;
Let’s think step by step.

Results from
Baseline Model’s
Prompt

SELECT SourceAirport, COUNT(*) AS NumberOfFlights
FROM flights GROUP BY SourceAirport
ORDER BY NumberOfFlights DESC LIMIT 1;

Gold SQL

SELECT T1.AirportCode
FROM AIRPORTS AS T1
JOIN FLIGHTS AS T2 ON T1.AirportCode = T2.DestAirport

OR T1.AirportCode = T2.SourceAirport
GROUP BY T1.AirportCode
ORDER BY count(*) DESC LIMIT 1;

(a) Case 1: Airports Database Question
NL Query: How many people live in countries that do not speak English?

Prompts from
Baseline Model

/* Given the following database schema: */
CREATE TABLE countrylanguage (

CountryCode char(3) NOT NULL DEFAULT ”,
...

FOREIGN KEY (CountryCode) REFERENCES country (Code));
/* Answer the following: What is the code of airport
that has the highest number of flights? */
Let’s think step by step.

Results from
Baseline Model’s
Prompt

SELECT SUM(c.Population) FROM country c
WHERE c.Code NOT IN (

SELECT cl.CountryCode FROM countrylanguage cl
WHERE cl.Language = ’English’ AND
cl.IsOfficial = ’T’);

Gold SQL

SELECT sum(Population) FROM country
WHERE Name NOT IN (

SELECT T1.Name FROM country AS T1
JOIN countrylanguage AS T2
ON T1.Code = T2.CountryCode
WHERE T2.Language = "English");

(b) Case 2: Languages Database Question
NL Query: Return the number of likes that the high schooler named Kyle has.

Prompts from
Baseline Model

/* Given the following database schema: */
CREATE TABLE Likes(
student_id int,
...

FOREIGN KEY (CountryCode) REFERENCES country (Code))
/* Answer the following: Return the number of likes that
the high schooler named Kyle has. */
Let’s think step by step.

Results from
Baseline Model’s
Prompt

SELECT count(*)
FROM Likes JOIN Highschooler

ON Likes.liked_id = Highschooler.ID
WHERE Highschooler.name = ’Kyle’);

Gold SQL
SELECT count(*) FROM Likes

ROM country AS T1 JOIN Highschooler AS T2
N T1.student_id = T2.id WHERE T2.name = "Kyle";

(c) Case 3: Social Network Database Question

Figure 3: NL query from Spider and the corresponding results from different prompting approaches

17

Structure-Guided Large Language Models for Text-to-SQL Generation

including graph construction and graph representation learning.

C.1.1. GRAPH CONSTRUCTION

The first step is to construct the graph G from the query Q and schema D. This involves extracting relevant entities and
relationships from the input and organizing them into a graph structure. The graph construction process can be formally
defined as:

G = Construct(Q,D), (19)

where Construct(·) is a method that maps the query and schema to the graph representation.

C.1.2. GRAPH REPRESENTATION LEARNING

Once the graph is constructed, the next step is to learn meaningful representations of the nodes and edges in the graph. This
is typically achieved using Graph Neural Networks (GNNs), which propagate information across the graph structure to
capture the structural and semantic relationships. The representation learning process can be formally defined as:

h(l+1)
v = GNN(h(l)

v , {h(l)
u : u ∈ N (v)}), (20)

where h
(l)
v is the representation of node v at layer l, N (v) is the set of neighboring nodes of v, and GNN(·) is the graph

neural network function that updates the node representations based on their neighbors. The learned graph representations
are then used to generate the corresponding SQL query S by applying a decoding function f to the graph:

S = f(G). (21)

The objective of graph learning for Text-to-SQL is to optimize the parameters of the graph construction and representation
learning components, as well as the decoding function, to generate accurate and executable SQL queries from natural
language queries and database schemas.

C.2. Text-to-SQL Generation with LLMs

We now formally define the problem of text-to-SQL generation. Let D be a database schema consisting of a set of tables
T = {T1, T2, . . . , Tn}, where each table Ti has a set of columns Ci = {Ci1, Ci2, . . . , Cim}. The database schema D can
be represented as a tuple (T , C), where C =

⋃n
i=1 Ci is the set of all columns across all tables.

Given a natural language query Q and a database schema D, the task of Text-to-SQL generation aims to translate Q into
a corresponding SQL query S that accurately retrieves the desired information from the database. Let M be the LLM
that maps the natural language query Q and the database schema D to the target SQL query S, the main objective can be
formulated as follows:

M : (Q,D, θ) → S. (22)

The objective of LLM-based text-to-SQL generation is to learn the optimal parameters or prompts θ∗ that minimize the
difference between the generated SQL query M(Q,D, θ) and the ground truth SQL query S:

θ∗ = argmin
θ

L(M(Q,D, θ), S), (23)

where L is a loss function that measures the discrepancy between generated and ground truth SQLs.

Table 7: Efficiency analysis on the ’Challenging’ set of BIRD.

Text-to-SQL Backbone LLM Training Time Inference Time Performance

DIN-SQL + GPT-4 4.69 h 0.39 h 36.7%
MAC-SQL + GPT-4 4.98 h 0.36 h 39.3%
SGU-SQL + GPT-4 3.47 h 0.22 h 42.1%

18

Structure-Guided Large Language Models for Text-to-SQL Generation

D. Related Work
Text-to-SQL has witnessed significant evolution over the past few years (Hong et al., 2024c). Early researchers focused
on well-designed rules, which were later superseded by deep learning-based techniques. More recently, the integration of
pre-trained language models (PLMs) and large language models (LLMs) (Wang et al., 2025; Fang et al., 2025) has further
advanced state-of-the-art text-to-SQL generation. This section traces the developmental trajectory of text-to-SQL methods,
highlighting the key milestones and innovations that have shaped the field.

D.1. Traditional Text-to-SQL Methods

Figure 4: Ablation Study of SGU-SQL on SPIDER.

Text-to-SQL has witnessed significant advancements in recent
years. Early research heavily relied on well-designed rules and
templates (Li & Jagadish, 2014; Mahmud et al., 2015; Yu et al.,
2021), which were suitable for simple database scenarios. How-
ever, the increasing complexity of database structure and the high
labor costs associated with rule-based methods have made such
approaches impractical. The advent of deep neural networks, such
as sequence-to-sequence models and encoder-decoder structures
like LSTMs (Hochreiter & Schmidhuber, 1997) and Transform-
ers (Vaswani et al., 2017), has revolutionized the field of text-to-
SQL (Guo et al., 2019; Choi et al., 2021). They automatically
learn a mapping from user queries to corresponding SQL queries.
Typically, RYANSQL (Choi et al., 2021) introduced intermediate

representations and sketch-based slot filling to handle complex questions and improve cross-domain generalization. More
recently, pre-trained language models (PLMs) with strong semantic parsing capabilities have become the new paradigm of
text-to-SQL systems. The initial adoption of PLMs in Text-to-SQL primarily focused on fine-tuning off-the-shelf models,
such as BERT (Devlin et al., 2019) and RoBERTa, on standard text-to-SQL datasets (Yu et al., 2018; Zhong et al., 2017).
Incremental research on PLM-based optimization, such as table content encoding (Guo et al., 2019; Yin et al., 2020; Dou
et al., 2022). and schema information incorporation (Li et al., 2023a), has further advanced this field.

D.2. LLM-based Text-to-SQL Models

Large language models (LLMs), such as GPT series (Radford et al., 2018; Brown et al., 2020; Achiam et al., 2023),
have gained significant attention in recent years due to their capability to generate coherent and fluent text (Zhou
et al., 2025; 2024; Chen et al., 2024b; Dong et al., 2024; Bi et al., 2024; 2025; Yang et al., 2024; Chen et al., 2024a).
Researchers have started exploring the potential of LLMs for text-to-SQL by leveraging their extensive knowledge
reserves and superior generation capabilities (Rajkumar et al., 2022; Gao et al., 2024). These approaches often involve
fine-tuning the open-source LLMs on text-to-SQL datasets (Anil et al., 2023; Hong et al., 2024b) or prompt engineering to
guide the closed-source LLMs in SQL generation (Chang & Fosler-Lussier, 2023; Pourreza & Rafiei, 2023; Gao et al., 2024).

D.2.1. FINE-TUNING LLMS FOR TEXT-TO-SQL

Recently, the emergence of large language models (LLMs) has markedly altered the landscape for text-to-SQL tasks.
LLMs, with their capacity for understanding and generating human-like text, present a robust solution for text-to-SQL
applications (Liu et al., 2023). The development of LLMs typically encompasses pre-training followed by fine-tuning.
Research has concentrated on fine-tuning with domain-specific data and optimization techniques to enhance base models for

Table 8: Ablation Study: Performance comparison of different prompting strategies on the development set of Spider.

Prompting strategy PaLM-2 CodeX ChatGPT GPT-4

+ Few-shot Prompting 0.6985 0.7167 0.7394 0.7665
+ CoT Prompting 0.6873 0.7198 0.7552 0.7834
+ SGU-SQL 0.7395 0.7418 0.7846 0.8795

19

Structure-Guided Large Language Models for Text-to-SQL Generation

coding tasks, including text-to-SQL. This process enables models to master programming language syntax and database
schema intricacies (Raffel et al., 2020; Roziere et al., 2023). Through training on tailored datasets of annotated SQL queries,
LLMs acquire the syntax and structure necessary for generating compliant SQL code (Trummer, 2022; Sun et al., 2023).
Furthermore, PICARD (Scholak et al., 2021) introduced a decoding mechanism for LLMs that ensures the generation of
valid sequences by discarding inadmissible tokens at each step, employing incremental parsing to guarantee the validity
of SQL queries produced by autoregressive language models. More recently, data-augmented fine-tuning techniques have
emerged as a promising approach to improve text-to-SQL generation models. By focusing on enhancing the quality and
diversity of the training data during supervised fine-tuning, these methods enable models to better capture the complexities
of translating natural language queries into SQL statements. For example, Symbol-LLM (Xu et al., 2024) proposes a
two-stage approach, consisting of an injection stage and an infusion stage, for data-augmented instruction tuning. This
method effectively incorporates additional data to improve the LLM’s ability to follow instructions. Similarly, CodeS (Li
et al., 2024b) leverages ChatGPT to generate bi-directional training data, augmenting the model’s training dataset and
enhancing its code generation capabilities. Additionally, StructLM (Zhuang et al., 2024) introduces a training paradigm
that involves multiple structured knowledge tasks, aiming to improve the model’s overall performance across a wide range
of applications. These approaches demonstrate the potential of data augmentation and multi-task learning in boosting the
performance of LLMs.

D.2.2. IN-CONTEXT LEARNING FOR TEXT-TO-SQL

In-context learning enhances LLM performance by providing detailed task instruction, background knowledge, and
contextual examples during inference, thereby improving performance for specific tasks. This approach has seen innovative
applications in text-to-SQL, with strategies aimed at optimizing prompt contents and formats based on user queries and
database structures. Typically, C3-SQL (Dong et al., 2023) designed a zero-shot prompting framework for ChatGPT
with clear prompting for effective input format and tailored hints for calibration and consistency checking during the
query generation. KATE (Liu et al., 2021) first investigated the impact of few-shot examples on GPT-3’s performance.
(Nan et al., 2023) further conducted a systematic investigation into different demonstration selection methods and optimal
instruction formats for prompting LLMs in the text-to-SQL task, whereas DESEM (Guo et al., 2023) developed a domain-
specific vocabulary masking technique, called similarity assessment, highlighting the relevance of SQL-specific terms.
DIN-SQL (Pourreza & Rafiei, 2023) introduced a decomposed framework, categorizing user queries by complexity and
breaking down the generation task into sub-problems and feeding the solutions of those sub-problems into LLMs to improve
the generation performance of complex SQL queries. DAIL-SQL (Gao et al., 2024) further enhanced the performance by
incorporating suitable formatting of the database schema and selecting examples based on skeleton similarities. Some recent
work improves the in-context learning framework by incorporating execution feedback through second-round prompting for
regeneration. For example, MRC-EXEC (Shi et al., 2022) introduced a natural language to code translation framework with
execution, which executes each sampled SQL query and selects the example with the minimal execution result–based Bayes
risk (Müller & Sennrich, 2021). LEVER (Ni et al., 2023) proposed an approach to verify NL2Code with execution, utilizing
a generation and execution module to collect sampled SQL set and their execution results, respectively, then using a learned
verifier to output the probability of the correctness. Similarly, the SELF-DEBUGGING (Chen et al., 2024c) framework is
presented to teach LLMs to debug their predicted SQL via few-shot demonstrations. The model can refine its mistakes by
investigating the execution results and explaining the generated SQL in natural language without human intervention.

D.3. Structure Learning for Text-to-SQL

Structure learning-based models, particularly those utilizing Graph Neural Networks (GNNs), have emerged as a powerful
approach to modeling the complex relationships between user queries and database schemas in text-to-SQL generation. By
organizing information into graph structures and leveraging GNNs to learn rich structural representations, these methods
enhance the semantic understanding and generalization ability of text-to-SQL models. Specifically, RATSQL (Wang et al.,
2019) employs a graph-based structure to delineate relationships within database schemas and queries, treating the schema as
a graph of tables and columns connected by relational edges. LGESQL (Cao et al., 2021) introduced an edge-centric graph
model derived from conventional node-centric graphs, to capture diverse structural topologies. S2SQL (Hui et al., 2022),
integrates syntactic dependency information into a question-schema interaction graph, focusing on primary relationships to
mitigate overfitting while emphasizing essential graph structures. Graphix-T5 (Li et al., 2023b) explored the integration
of GNN layers into the large language model T5 (Raffel et al., 2020), aiming to leverage both semantic and structural
information from PLMs and GNNs, respectively. RESDSQL (Li et al., 2023a) designed a ranking-enhanced encoder to rank
and filter the schema items for skeleton-aware schema linking and the skeleton parsing.

20

Structure-Guided Large Language Models for Text-to-SQL Generation

E. Future Work
Discussing potential extensions is crucial for the research community. Following your suggestion, we have identified several
promising future research directions from the following there perspectives.

E.1. Technical Extensions

E.1.1. STRUCTURE-AWARE FEW-SHOT EXAMPLE SELECTION

While our framework emphasizes the significance of the decomposition strategy, we recognize that the performance of
LLM-based text-to-SQL can be further enhanced through tailored few-shot example selection. Current approaches to
few-shot example selection primarily rely on keyword matching and semantic similarity between user queries. These
surface-level matching approaches often fail to identify the most effective examples because they consider only query
semantics while ignoring the underlying SQL structural complexity.

One promising solution is to incorporate syntax structure information into the few-shot example selection process. This
structure-aware approach would consider both semantic relevance and SQL structural patterns, enabling better matching of
complex query requirements with appropriate examples.

E.2. Exploring More Challenging Scenarios

E.2.1. TEMPLATE-BASED SYNTHETIC DATA GENERATION FOR TEXT-TO-SQL TRAINING

Adapting a text-to-SQL model to a new database, like a company’s proprietary database, requires developers to manually
create extensive training data. This process requires: (i) Writing natural language questions about the database. (ii) Creating
the corresponding correct SQL queries. (iii) Validating the accuracy of both questions and SQL queries. This manual data
collection process is not only time-consuming but also requires expertise in both SQL and the specific database domain,
making it a significant bottleneck for the practical deployment of text-to-SQL systems.

Generating synthetic training data based on a template-based approach. This method aims to eliminate the need for manual
data collection by systematically generating training examples using predefined syntax templates and database schema
information. The generation process operates in three coordinated stages: template selection based on database schema,
schema integration by populating templates with actual table and column names, and natural language query generation.

E.2.2. INTERACTION WITH DYNAMIC DATABASE

While current text-to-SQL methods, including our model, primarily focus on static databases, real-world databases are
inherently dynamic. To develop a truly comprehensive database management system, it is essential to extend the Text-to-SQL
framework to support full CRUD operations, Create, Read, Update, and Delete, enabling seamless and complete interaction
with databases.

E.3. Broader Applications

The structure-guided approach could be extended to other domains requiring structured output generation.

E.3.1. TEXT-TO-CYPHER

Text-to-SQL converts natural language queries into SQL queries to interact with relational databases, while text-to-Cypher
translates natural language into Cypher queries for graph database operations. Considering that data in graph databases is
stored as nodes (entities) and edges (relationships) in the format of graphs, our SGU-SQL could be seamlessly applied on
Text-to-Cypher.

E.3.2. API PLANNING

API planning aims to generate a sequence of API calls to accomplish a given goal or user request. Each API is essentially a
function with input parameters and return values. Each function can be treated as a table, where input parameters and return
values are equivalent to columns in the table. Based on the data flow, we can build a graph to describe the dependencies
between different APIs, transforming the API planning task into a problem similar to Text-to-SQL, as the dependency graph
is analogous to the schema graph in text-to-SQL.

21

	Introduction
	Problem Statement
	The Framework of SGU-SQL
	Revisiting User Query and Database via Graph
	User Query Understanding and Representation
	Database Understanding and Representation
	Structure Linking with Dual Graph Encoding

	Structure-Decomposed Prompting with Syntax Tree
	 Decomposing Query with Syntax Tree
	Subtask Decomposition
	SQL Generation

	Experiments
	Experiment Setup
	Main Results: Q1
	Ablation Staudy: Q2
	Model Analysis

	Conclusion
	Ablation Study
	The Effect of Structure Learning
	The Effect of Syntax-based Decomposition
	The Effect of Backbone LLMs

	Model Analysis
	Performance on more Challenging Dataset
	Efficiency analysis
	Difficulty analysis Q3
	Error Analysis Q4

	Preliminaries
	Structure Learning for Text-to-SQL
	Graph Construction
	Graph Representation Learning

	Text-to-SQL Generation with LLMs

	Related Work
	Traditional Text-to-SQL Methods
	LLM-based Text-to-SQL Models
	Fine-Tuning LLMs for Text-to-SQL
	In-Context Learning for Text-to-SQL

	Structure Learning for Text-to-SQL

	Future Work
	Technical Extensions
	Structure-aware few-shot example selection

	Exploring More Challenging Scenarios
	Template-Based Synthetic Data Generation for Text-to-SQL Training
	Interaction with dynamic database

	Broader Applications
	Text-to-Cypher
	API planning

