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ABSTRACT

The probabilistic field models the distribution of continuous functions defined
over metric spaces. While these models hold great potential for unifying data
generation across various modalities, including images, videos, and 3D geome-
try, they still struggle with long-context generation beyond simple examples. This
limitation can be attributed to their MLP architecture, which lacks sufficient in-
ductive bias to capture global structures through uniform sampling. To address
this, we propose a new and simple model that incorporates a view-wise sampling
algorithm to focus on local structure learning, along with autoregressive genera-
tion to preserve global geometry. It adapts cross-modality conditions, such as text
prompts for text-to-video generation, camera poses for 3D view generation, and
control actions for game generation. Experimental results across various modali-
ties demonstrate the effectiveness of our model, with its 675M parameter size, and
highlight its potential as a foundational framework for scalable, modality-unified
visual content generation.

1 INTRODUCTION

Generative tasks (Rombach et al., 2022; Ramesh et al., 2022) are overwhelmed by diffusion proba-
bilistic models that hold state-of-the-art results on most modalities like audio, images, videos, and
3D geometry. Take image generation as an example, a typical diffusion model (Ho et al., 2020)
consists of a forward process for sequentially corrupting an image into standard noise, a backward
process for sequentially denoising a noisy image into a clear image, and a score network that learns
to denoise the noisy image.

The forward and backward processes are agnostic to different data modalities; however, the archi-
tectures of the existing score networks are not. The existing score networks are highly customized
towards a single type of modality, which is challenging to adapt to a different modality. For example,
a recently proposed multi-frame video generation network (Ho et al., 2022b;a) adapting single-frame
image generation networks involves significant designs and efforts in modifying the score networks.
Therefore, it is important to develop a unified model that works across various modalities without
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Figure 1: Illustration of the field model’s capability to model visual content. The underlying data
distribution is simplified to 1-D space for demonstration purposes. The model learns the distribution
through attention between coordinate-signal pairs, which is modality-agnostic.
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modality-specific customization, in order to extend the success of diffusion models across a wide
range of scientific and engineering disciplines, like medical imaging (e.g., MRI, CT scans) and
remote sensing (e.g., LiDAR).

Field model (Sitzmann et al., 2020; Tancik et al., 2020; Dupont et al., 2022b; Zhuang et al., 2023)
is a promising unified score network architecture for different modalities. It learns the distribution
over the functional view of data. Specifically, the field f maps the observation from the metric space
M (e.g., coordinate or camera pose) into the signal space Y (e.g., RGB pixel) as f : M 7→ Y .
For instance, an image is represented as f : R2 7→ R3 that maps the spatial coordinates (i.e.,
height and width) into RGB values at the corresponding location, while a video is represented as
f : R3 7→ R3 that maps the spatial and temporal coordinates (i.e., frame, height, and width) into
RGB values. Recently, diffusion models are leveraged to characterize the field distributions over the
functional view of data (Zhuang et al., 2023) for field generation. Given a set of coordinate-signal
pairs {(mi,yi)}, the field f is regarded as the score network for the backward process, which turns
a noisy signal into a clear signal yi in a sequential process with mi being fixed all the time. The
visual content is then composed of the clear signal generated on a grid in the metric space.

Nevertheless, diffusion-based field models for generation still lag behind the modality-specific ap-
proaches (Dhariwal & Nichol, 2021; Ho et al., 2022b; He et al., 2022) for learning from dynamic
data in high resolution (Bain et al., 2021; Yu et al., 2023a). For example, a 240p video lasting 5
seconds is comprised of up to 10 million coordinate-signal pairs. Due to the memory bottleneck
in existing GPU-accelerated computing systems, recent field models (Zhuang et al., 2023) are lim-
ited to observe merely a small portion of these pairs (e.g., 1%) that are uniformly sampled during
training. This limitation significantly hampers the field models in approximating distributions from
such sparse observations (Quinonero-Candela & Rasmussen, 2005). Consequently, diffusion-based
field models often struggle to capture the fine-grained local structure of the data, leading to, e.g.,
unsatisfactory blurry results.

While it is possible to change the pair sampling algorithm to sample densely from local areas instead
of uniformly, the global geometry is weakened. To alleviate this issue, it is desirable to introduce
some complementary guidance on the global geometry in addition to local sampling.

In this paper, we propose a new diffusion field transformers, called DiFT. In contrast to previous
methods, DiFT preserves both the local structure and the global geometry of the fields during learn-
ing by employing a new view-wise sampling algorithm in the coordinate space, and incorporates
additional inductive biases from the text descriptions and autoregressive generation. By combining
these advancements with our simplified transformer architecture, we demonstrate that modeling ca-
pability of our model surpasses previous methods, achieving improved generated results under the
same memory constraints. We empirically validate its superiority against previous domain-agnostic
methods across three different tasks, including text-to-video generation, 3D novel-view generation,
and game generation. Various experiments show that our method achieves compelling performance
even when compared to the state-of-the-art domain-specific methods, underlining its potential as a
scalable and unified visual content generation model across various modalities. In order to further
clarify our pipeline and implementation details, and maximize the reproducibility, our code is also
released at https://transdif-web.pages.dev.

Our contributions are summarized as follows:

• We propose a new transformer-based diffusion field model for long-context modeling, which
comprises of a view-wise sampling algorithm and autoregressive generation for local structure
and global geometry model respectively.

• We demonstrate the effectiveness and efficiency of a simple 675M model on unified modalities
generation including video, 3D, and game, which largely closes the performance gap with
modality-specific models.

• We show the potential of action game generation using diffusion models, and we release the
benchmarks including both training and testing data for replication and comparisons.

2 RELATED WORK

Generation Models. In recent years, generative models have shown impressive performance in
visual content generation. The major families are generative adversarial networks (Goodfellow et al.,
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2020; Mao et al., 2017; Karras et al., 2019; Brock et al., 2019), variational autoencoders (Kingma
& Welling, 2014; Vahdat & Kautz, 2020), auto-aggressive networks (Chen et al., 2020; Esser et al.,
2021), and diffusion models (Ho et al., 2020; Song et al., 2021). Recent diffusion models have
obtained significant advancement with stronger network architectures (Dhariwal & Nichol, 2021),
additional text conditions (Ramesh et al., 2022), and pretrained latent space (He et al., 2022). Our
method built upon these successes and targets at scaling domain-agnostic models.

Field Models. Field models like SIREN Sitzmann et al. (2020) excel at effectively handling di-
verse data types, such as images, videos, 3D shapes, and audio, without requiring extensive cus-
tomization. Compared with the modality-specific models, field models enable scalability by allow-
ing advancements in one domain (e.g., images) to directly enhance others (e.g., 3D modeling and
video synthesis), streamlining research and development. In order to model complex field distribu-
tions, representative methods like Functa (Dupont et al., 2022b) and GEM (Du et al., 2021) adopt
a two-stage modeling paradigm: first parameterizing fields, then learning distributions over the pa-
rameterized latent space. However, the learning efficiency of the two-stage methods hinders scaling
the models, as their first stage incurs substantial computational costs to compress fields into latent
codes. Building on recent exploration Zhuang et al. (2023) into the use of diffusion models, which
are more powerful for directly modeling complex data distributions without additional parametriza-
tion, we propose to model field distributions using explicit coordinate-signal pairs. Nevertheless,
field models struggle with very large or highly diverse datasets, such as high-resolution videos. This
is due to the complexity of preserving both local structures and global geometry. In contrast, our
method leverages the benefits of a single-stage modeling approach, improving accuracy in preserv-
ing both local structures and global geometry.

Long-context Modeling. Our method also differs from the recently proposed domain-specific
works for high-resolution, dynamic data, which models specific modalities in a dedicated latent
space, including Spatial Functa (Bauer et al., 2023) and PVDM (Yu et al., 2023c). These methods
typically compress the high-dimensional data into a low-dimensional latent space. However, the
compression is usually specific to a center modality and lacks the flexibility in dealing with different
modalities. For instances, PVDM compresses videos into three latent codes that represent spatial
and temporal dimensions separately. However, such a compressor cannot be adopted into the other
similar modalities like 3D scenes. In contrast, our method owns the unification flexibility and the
achieved advancement can be easily transferred into different modalities.

3 METHOD

Definition. Conceptually, the diffusion-based field models sample from field distributions by re-
versing a gradual noising process. As shown in Fig. 1, in contrast to the data formulation of the
conventional diffusion models (Ho et al., 2020) applied to the complete data like a whole image,
diffusion-based field models apply the noising process to the sparse observation of the field, which
is a kind of parametrized functional representation of data consisting of coordinate-signal pairs, i.e.,
f : M 7→ Y . Specifically, the sampling process begins with a coordinate-signal pair (mi,y(i,T )),
where the coordinate comes from a field and the signal is a standard noise, and less-noisy sig-
nals y(i,T−1),y(i,T−2), . . . , are progressively generated until reaching the final clear signal y(i,0),
with mi being constant. Diffusion Probabilistic Field (DPF) (Zhuang et al., 2023) is one of the
recent representative diffusion-based field models. It parameterizes the denoising process with a
transformer-based network ϵθ(·), which takes noisy coordinate-signal pairs as input and predicts the
noise component ϵ of y(i,t). The less-noisy signal y(i,t−1) is then sampled from the noise component
ϵ using a denoising process (Ho et al., 2020).

In practice, when handling low-resolution data consisting of N coordinate-signal pairs with DPF, the
scoring network ϵθ(·) takes all pairs {(mi,y(i,T ))} as input at once. For high-resolution data with
a large number of coordinate-signal pairs that greatly exceed the modern GPU capacity, (Zhuang
et al., 2023) uniformly sample a subset of pairs from the data as input. They subsequently condition
the diffusion model on the other non-overlapping subset, referred to as context pairs. Specifically,
the sampled pairs interact with the query pairs through cross-attention blocks. (Zhuang et al., 2023)
show that the ratio between the context pairs and the sampling pairs is strongly related to the quality
of the generated fields, and the quality decreases as the context pair ratio decreases. Due to the
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Figure 2: (a) Ideally, all pairs within a field (green points) should be used for training, but this
is impractical due to memory limitations. (b) Previous methods uniformly sample a sparse set of
pairs (orange points) to represent the field to mitigate memory limitations. (c) Compared to uni-
form sampling, our local sampling extracts high-fidelity pairs (blue points), better covering the local
structure. The text prompt and past frames serve as an approximation to complement the global
geometry. (d) Visualization of our sampling pipeline. Note that the input coordinates include the
diffusion timesteps of each input frames.

practical memory bottleneck, DPF can only support a maximum 64× 64 resolution, let alone being
extended to long context such as multi-frame video generation.

3.1 DIFFUSION FIELD TRANSFORMER

In order to scale diffusion-based field models for high-resolution, dynamic data generation, we build
upon the recent DPF model (Zhuang et al., 2023) and address its limitations in preserving the local
structure of fields, as it can hardly be captured when the uniformly sampled coordinate-signal pairs
are too sparse. Specially, our method not only can preserve the local structure, but also introduce
additional inductive biases for capturing the global geometry, such as text descriptions and past
frames in autoregressive generation.

In order to preserve the local structure of fields, we propose a new view-wise sampling algorithm
that samples local coordinate-signal pairs for better representing the local structure of fields. For
instance, the algorithm samples the coordinate-signal pairs belonging to a single or several (n ⩾ 1;
n denotes the number of views) views for video data, where a view corresponds to a single frame.
It samples pairs belonging to a single or several rendered images for 3D viewpoints, where a view
corresponds to an image rendered at a specific camera pose. A view of an image is the image itself.

This approach restricts the number of interactions among pairs to be modeled and reduces the learn-
ing difficulty on high-resolution, dynamic data. Nevertheless, even a single high-resolution view ,
e.g., in merely 128×128 resolution) can still consist of 10K pairs, which in practice will very easily
reach the memory bottleneck if we leverage a large portion of them at one time, and hence hinder
scaling the model for generating high-resolution dynamic data.

To address this issue, our method begins with increasing the signal resolution of coordinate-signal
pairs and hence reducing memory usage in the score network. Specifically, we replace the signal
space with a compressed latent space, and employ a more efficient network architecture that only
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Figure 3: Autoregressive next-frame prediction. Our model takes past frames selected from a sliding
window and next action coordinates, such as actions like jump or move, as input. It then generates
the next frame, reflecting both the action and the long context of the past frames.

contains decoders. This improvement in efficiency allows the modeling of interactions among pairs
representing higher-resolution data while keeping the memory usage constrained. Based on this,
one can then model the interactions of pairs within a single or several views of high-resolution data.
The overall diagram of the proposed sampling method can be found in Fig. 2.

View-wise Sampling. Based on the high-resolution signal and decoder-only network architecture,
our method represents field distributions by using view-consistent coordinate-signal pairs, i.e., col-
lections of pairs that belong to a single or several (n ⩾ 1) views of the data, such as one or several
frames in a video, and one or several viewpoints of a 3D geometry. In particular, take the spatial
and temporal coordinates of a video in H × W resolution lasting for T frames as an example, for
all coordinates {m1,m2, . . . ,mi, . . . ,mH×W×T }, we randomly sample a consecutive sequence of
length H × W that correspond to a single frame, i.e., {m1,m2, . . . ,mi, . . . ,mH×W }. For data
consisting of a large amount of views (e.g. T >> 16), we randomly sample n views (sequences of
length H × W ), resulting in an H × W × n sequence set. Accordingly, different from the trans-
formers in previous works (Zhuang et al., 2023) that model interaction among all pairs across all
views, ours only models the interaction among pairs that belongs to the same view, which reduces
the complexity of field model by limiting the number of interactions to be learned.

3.2 LONG-CONTEXT CONDITIONING

To complement our effort in preserving local structures that may weaken global geometry learn-
ing, since the network only models the interaction of coordinate-signal pairs in the same view, we
propose to supplement the learning with a long-context conditioning of the field, avoiding issues in
cross-view consistency like worse spatial-temporal consistency between frames in video generation.

In particular, we propose to condition diffusion models on long-context such as text-prompt and
past frames related to the fields. Text-prompt can represent data in compact but highly expressive
features (Devlin et al., 2019; Brown et al., 2020; Raffel et al., 2020), and serve as a low-rank approx-
imation of data (Radford et al., 2021). Past frames are especially useful in autoregressive generation,
such as in game data. By conditioning diffusion models on long-context, we demonstrate that our
method can capture the global geometry for generating long videos and game sequences.

Text-prompt for Cross-view Condition Consistency. In order to model the dependency variation
between views belonging to the same field, i.e., the global geometry of the field, we condition the
diffusion model on the text embeddings of the field description or equivalent embeddings (i.e., the
language embedding of a single view in the CLIP latent space (Radford et al., 2021)). Our approach
leverages the adaptive layer normalization layers in GANs (Brock et al., 2019; Karras et al., 2019),
and adapts them by modeling the statistics from the text embeddings of shape Z × D. For pairs
that make up a single view, we condition on their represented tokens Z ×D, (Z tokens of size D),
by modulating them with the scale and shift parameters regressed from the text embeddings. For
pairs (T ×Z)×D that make up multiple views, we condition on the view-level pairs by modulating
feature in Z × D for each of the T views with the same scale and shift parameters. Specifically,
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each transformer blocks of our score network learns to predict statistic features βc and γc from the
text embeddings per channel. These statistic features then modulate the transformer features Fc as:
adLNorm(Fc|βc, γc) = Norm(Fc) · βc + βc.

Past frames for Autoregressive Generation. Generating long videos and games can be formu-
lated as autoregressive generation, where each frame depends only on past frames and current ac-
tions. In Figure. 3, we illustrate the input and output of our model, where it conditions on the past T
frames and generates the next T +1 frame. Additional inputs include coordinates consisting of spa-
tiotemporal coordinates and one-hot encoded actions, such as jump and move, from the last frame.
Due to memory constraints, the input past frames are limited to a fixed number of n past frames,
acting as a sliding window for long-context modeling. The generation of the next n frames on the
diffusion field can be simplified as

p
(
y1,y2 . . . ,yn−1,y(n,t−1)

)
=

n∏
i=1

p
(
y(n,t−1) | y1,y2, . . . ,yn−1

)
, (1)

where p(·) represents the modeled signal probability conditioned on the past frames. Additional
conditions also include coordinate inputs (m1,m2, . . . ,mn) and the diffusion timestep t. Empiri-
cally, we use the last 16 frames as the context length for game generation, and the last 8 frames as
the context length for text-to-video generation.

The proposed autoregressive generation not only preserves global geometry of the data but also
significantly improves efficiency in long-context generation. Typical autoregressive transformer
models like GPT (Radford et al., 2019) depend on the number of generated tokens, as each new
token is conditioned on all previously generated tokens. In contrast to GPT, our method achieves
linear complexity with respect to the number of generated frames, similar to the parallel generation
efficiency. Each new frame depends only on a fixed number of the most recently generated frames,
where conditioning frames are updated in the sliding window. Our game generation maximizes
this efficiency, enabling the generation of games with an infinite number of frames while ensuring
consistent latency per frame.

4 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our method on multiple modalities, including 2D image data on
a spatial metric space R2, 3D video data on a spatial-temporal metric space R3, and 3D viewpoint
data on a camera pose and intrinsic parameter metric space R6, game data on a action and spatial-
temporal metric space R4, while the score network implementation remains identical across different
modalities, except for the embedding size.

Experimental Details. In the interest of maintaining simplicity, we adhere to the methodology
outlined by Dhariwal et al. (Dhariwal & Nichol, 2021) and utilize a 256-dimensional frequency
embedding to encapsulate input denoising timesteps. This embedding is then refined through a
two-layer Multilayer Perceptron (MLP) with Swish (SiLU) activation functions. Our model aligns
with the size configuration of DiT-XL (Peebles & Xie, 2023), which includes retaining the number
of transformer blocks (i.e. 28), the hidden dimension size of each transformer block (i.e., 1152),
and the number of attention heads (i.e., 16). Our model derives text embeddings employing T5-
XXL (Raffel et al., 2020), culminating in a fixed length token sequence (i.e., 256) which matches
the length of the noisy tokens. To further process each text embedding token, our model compresses
them via a single layer MLP, which has a hidden dimension size identical to that of the transformer
block. Our model uses classifier-free guidance in the backward process with a fixed scale of 8.5. To
keep consistency with DiT-XL (Peebles & Xie, 2023), we only applied guidance to the first three
channels of each denoised token.

Generative Metrics. In video generation, we use FVD (Unterthiner et al., 2018) to evaluate the
video spatial-temporal coherency, FID (Heusel et al., 2017) to evaluate the frame quality, and CLIP-
SIM (Radford et al., 2021) to evaluate relevance between the generated video and input text. As all
metrics are sensitive to data scale during testing, we randomly select 2,048 videos from the test data
and generate results as the “real” and “fake” part in our metric experiments. For FID, we uniformly
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Model
CIFAR10 64×64 CelebV-Text 256×256×128 ShapeNet-Cars 128×128×251
FID (↓) IS (↑) FVD (↓) FID (↓) CLIPSIM (↑) FID (↓) LPIPS (↓) PSNR (↑) SSIM (↑)

Functa (Dupont et al., 2022a) 31.56 8.12 ✗ ✗ ✗ 80.30 0.183 N/A N/A
GEM (Du et al., 2021) 23.83 8.36 ✗ ✗ ✗ ✗ ✗ ✗ ✗

DPF (Zhuang et al., 2023) 15.10 8.43 ✗ ✗ ✗ 43.83 0.158 18.6 0.81
DiT (Peebles & Xie, 2023) 7.53 8.97 ✗ ✗ ✗ ✗ ✗ ✗

TFGAN (Balaji et al., 2019) ✗ ✗ 571.34 784.93 0.154 ✗ ✗ ✗ ✗
MMVID (Han et al., 2022b) ✗ ✗ 109.25 82.55 0.174 ✗ ✗ ✗ ✗

MMVID-interp (Han et al., 2022b) ✗ ✗ 80.81 70.88 0.176 ✗ ✗ ✗ ✗
VDM (Ho et al., 2022b) ✗ ✗ 81.44 90.28 0.162 ✗ ✗ ✗ ✗

CogVideo (Hong et al., 2023) ✗ ✗ 99.28 54.05 0.186 ✗ ✗ ✗ ✗
Latte (Ma et al., 2024) ✗ ✗ 67.97 39.69 0.201 ✗ ✗ ✗ ✗

EG3D-PTI (Chan et al., 2022) ✗ ✗ ✗ ✗ ✗ 20.82 0.146 19.0 0.85
ViewFormer (Kulhánek et al., 2022) ✗ ✗ ✗ ✗ ✗ 27.23 0.150 19.0 0.83

pixelNeRF (Yu et al., 2021) ✗ ✗ ✗ ✗ ✗ 65.83 0.146 23.2 0.90
Zero-1-to-3 (Liu et al., 2023) ✗ ✗ ✗ ✗ ✗ 17.901 0.093 23.1 0.80

DiFT (Ours) 7.29 9.31 42.03 24.33 0.220 24.36 0.118 23.9 0.90

Table 1: Sample quality comparison with state-of-the-art field models and representative modality-
specific models for each task. “✗” denotes that the method cannot be applied to the modality due to
its design or impractical computational costs.

(a) DPF Zhuang et al. (2023) (b) DiFT (ours)

Figure 4: Qualitative comparisons of domain-agnostic methods and ours on CIFAR-10. Our results
show better visual quality with more details than the others, while being domain-agnostic as well.

sample 4 frames from each video and use a total of 8,192 images. For CLIPSIM, we calculate the
average score across all frames. We use the “openai/clip-vit-large-patch14” model for extracting
features in CLIPSIM calculation.

Images. For image generation, we use the standard benchmark dataset, i.e., CIFAR10
64×64 (Krizhevsky et al., 2009) as a sanity test, in order to compare with other domain-agnostic
and domain-specific methods. For the low-resolution CIFAR10 dataset, we compare our method
with the previous domain-agnostic methods including DPF (Zhuang et al., 2023) and GEM (Du
et al., 2021). We report Fréchet Inception Distance (FID) Heusel et al. (2017) and Inception Score
(IS) (Salimans et al., 2016) or quantitative comparisons.

The experimental results can be found in Tab. 1. Specifically, DiFT outperforms all domain-agnostic
models in the FID and IS metrics. The qualitative comparisons in Fig. 4 further demonstrate our
method’s superiority in images. Note that our method does not use text descriptions for ensuring
a fair comparison. It simply learns to predict all coordinate-signal pairs of a single image during
training without using additional text descriptions or embeddings.

Videos. To show our model’s capacity for more complex data, i.e., high-resolution, dynamic video,
we conduct experiments on the recent text-to-video benchmark: CelebV-Text 256×256×128 (Yu
et al., 2023b) (128 frames). As additional spatial and temporal coherence is enforced compared
to images, video generation is relatively underexplored by domain-agnostic methods. We compare
our method with the representative domain-specific methods including TFGAN (Balaji et al., 2019),
MMVID (Han et al., 2022a), CogVideo (Hong et al., 2023), VDM (Ho et al., 2022b), and Latte (Ma
et al., 2024). We report Fréchet Video Distance (FVD) (Unterthiner et al., 2018), FID, and CLIP-
SIM (Wu et al., 2021), i.e., the cosine similarity between the CLIP embeddings (Radford et al.,
2021) of the generated images and the corresponding texts. Note, the recent text-to-video models
(like NUAW (Wu et al., 2022), Magicvideo (Zhou et al., 2022), Make-a-video (Singer et al., 2022),
VLDM (Blattmann et al., 2023), etc.) are not included in our comparisons. This is solely because
all of them neither provide implementation details, nor runnable code and pretrained checkpoints.
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(a) VDM Ho et al. (2022b) (b) CogVideo Hong et al. (2023) (c) DiFT (Ours)

Figure 5: Qualitative comparisons between domain-specific text-to-video models and ours. Com-
pared to VDM Ho et al. (2022b), our results are more continuous. Compared to CogVideo Hong
et al. (2023), our results feature more realistic textures. Please see https://transdif-web.
pages.dev for the input prompt and video results.

(a) pixelNeRF Yu et al. (2021) (b) Functa Dupont et al. (2022b) (c) DiFT (Ours)

(d) DiFT (our high-resolution results)

Figure 6: Qualitative comparisons between a representative 3D novel view generation method and
ours. Our results demonstrate competitive quality without explicitly using 3D modeling. Addition-
ally, our method preserves 3D consistency in higher-resolution generation (i.e., directly interpolating
input coordinates), despite not being explicitly trained on high-resolution data.

Our method achieves the comparable performance in both the video quality (FVD) and signal frame
quality (FID) in Tab. 1, compared with the recent domain-specific text-to-video models. Moreover,
our model learns more semantics as suggested by the CLIPSIM scores. The results show that our
model, as a domain-agnostic method, can achieve a performance on par with domain-specific meth-
ods in modeling long-context. The qualitative comparisons in Fig. 5 further support our model in
text-to-video generation compared with the recent state-of-the-art methods.

3D novel views. We also evaluate our method on 3D novel view generation with the ShapeNet
dataset (Chang et al., 2015). Specifically, we use the “car” class of ShapeNet which involves 3514
different cars. Each car object has 50 random viewpoints, where each viewpoint is in 128 × 128 res-
olution. Unlike previous domain-agnostic methods (Du et al., 2021; Zhuang et al., 2023) that model
3D geometry over voxel grids at 643 resolution, we model over rendered camera views based on
their corresponding camera poses and intrinsic parameters, similar to recent domain-specific meth-
ods (Sitzmann et al., 2019; Yu et al., 2021). This approach allows us to extract more view-wise
coordinate-signal pairs while voxel grids only have 6 views. We report our results in comparison
with the state-of-the-art view-synthesis algorithms including pixelNeRF (Yu et al., 2021), view-
Former (Kulhánek et al., 2022), EG3D-PTI (Chan et al., 2022), and Zero-1-to-3 Liu et al. (2023).
Note that our model performs one-shot novel view synthesis by conditioning on the text embed-
ding of a random view. Compared to recent methods specifically designed for 3D modalities, our
approach achieves higher fidelity metrics, such as PSNR and SSIM, while producing comparable
scores in LPIPS. Although methods like EG3D-PTI and Zero-1-to-3, which directly fine-tune pre-
trained 2D image generation models like StyleGAN and Stable-Diffusion, achieve better FID scores,
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run+jump run+jump run+jump run+jump run+jump run+jump

run run run run+jump run run

Figure 7: Visualization of our generated game (1/8 sampling rate at 50 frames), showcasing how
our method generalizes to different actions within the same context. Each frame’s action is labeled
in the top-left corner. Please see https://transdif-web.pages.dev for videos.

PSNR (dB) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

DPF (Zhuang et al., 2023) 24.00 21.97 20.87 20.66 ✗ ✗ ✗ ✗ ✗ ✗
DiFT (Ours) 44.30 43.96 43.87 44.16 42.92 42.20 42.42 42.51 42.07 42.22

Table 2: We demonstrate the long-context modeling capability of our model by showing its next-
frame generation accuracy on game data, where a total of 100 frames are evaluated. ✗ denotes
out-of-memory results when the model cannot handle such a long context.

this metric prioritizes 2D visual quality. However, it does not strictly reflect 3D consistency, which
limits its relevance for 3D evaluation.

Games. Game generation is an under-explored area and lacks data and benchmarks. We demon-
strate the game generation capability of our method by showing the accuracy of predicted frames
compared with the frame of the real game when using the same action. Specially, we model the
World 1-1 of Super Mario Bros (NES version) with a sliding window size of 16, and we test it with
new actions for next-frame generation. Fig. 7 shows the visual results generated from two differ-
ent actions starting from the same scene. Tab. 2 demonstrates our long-context modeling capability
compared with the DPF, where ours performance loss is minor compared with DPF.

4.1 ABLATIONS AND DISCUSSIONS

In this section, we demonstrate the effectiveness of each of our proposed components and analyze
their contributions to the quality of the final result, as well as the computation cost. The quantitative
text-to-video generation results under various settings are shown in Table 3.

Effect of text condition. To verify the effectiveness of the text condition for capturing the global
geometry of the data, we use two additional settings. (1) The performance of our model when the
text condition is removed is shown in the first row of Tab. 3. The worse FVD means that the text
condition play a crucial role in preserving the global geometry, specifically the spatial-temporal
coherence in videos. (2) When the text condition is added, but not the cross-view consistent noise,
the results can be found in the second row of Tab. 3. The FVD is slightly improved compared to
the previous setting, but the FID is weakened due to underfitting against cross-view inconsistent
noises. In contrast to our default setting, these results demonstrate the effectiveness of the view-
consistent noise. Furthermore, we note that more detailed text descriptions can significantly improve
the generated video quality.

Effect of number of views. We investigate the model performance change with varying number
of views (n) for representing fields, as shown in the 2nd and 3rd rows of Tab. 3. Compared to the
default setting of n = 8, reducing n to 1 leads to non-continuous frames and abrupt identity changes,
as indicated by the low FVD. When n is increased to 4, the continuity between frames is improved,
but still worse than n = 8 for the dynamics between frames. Thus, we can conclude that a larger
number of views leads to a higher performance, along with a higher computation cost.
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Text Cross-view
consistent noise Resolution Training

Views n FVD (↓) FID (↓) CLIPSIM (↑) MACs Mems

✗ N/A 16.0 8 608.27 34.10 - 113.31G 15.34Gb
✓ ✗ 16.0 8 401.64 75.81 0.198 117.06G 15.34Gb
✓ ✓ 1.0 8 115.20 40.34 0.187 7.314T 22.99Gb
✓ ✓ 16.0 1 320.02 21.27 0.194 117.06G 15.34Gb
✓ ✓ 16.0 4 89.83 23.69 0.194 117.06G 15.34Gb
✓ ✓ 16.0 8 42.03 24.33 0.220 117.06G 15.34Gb

Table 3: Ablation analysis of the text-to-video results of our proposed method under different set-
tings. All computation costs (MACs) and GPU memory usage (Mems) are estimated for generating
a single view, regardless of the resolution, to ensure a fair comparison. The mark in the text column
indicates whether a text prompt is used. The number in the resolution column denotes the usage of
a latent encoder, where a resolution equal to 1 means the model is directly trained in pixel space.

Comparison with Context Query Pairs. Even though context query pairs introduced by
DPF (Zhuang et al., 2023) has been justified to achieve better performance than using latent
space (which needs reconstruction training) in small models and low-resolution modalities, it is
shown (Zhuang et al., 2023) to be impossible to largely reduce the memory footprint (by sampling
less context pairs) while preserving its original modeling capability and performance. To scale up
our model, we replace the context query pairs with latent space in our method. It can significantly
reduce memory usage (e.g. using less than 2% pairs while maintaining a competitive performance)
so that handling a larger model size becomes possible with high-resolution, long views. Based on
these, the benefit of scaling using the latent space outweighs the potential performance loss led
by the latent space, as backed by Tab. 1, where our method outperforms DPF in both high- and
low-resolution modalities.

Comparison with Modality Unified Models. Our method shares the motivation of modality-
unified models like SIREN and Functa for handling diverse data modalities but differs in complexity
and scope. SIREN uses sinusoidal activations in MLPs to represent continuous signals, excelling
in modeling structured data and solving mathematical problems like PDEs with high fidelity but is
limited to simpler datasets due to its MLP architecture. In contrast, our diffusion transformer frame-
work handles more diverse and complex data, integrating view-wise sampling for local structure
and autoregressive generation for global consistency. Additionally, text and past frame conditioning
enable DiFT to scale effectively to complex multi-modal tasks, making it more versatile for dynamic
and high-dimensional datasets compared to SIREN’s structured focus.

5 LIMITATIONS.

(1) Our method only applies to visual modalities interpretable by views. For modalities such as
temperature manifold Hersbach et al. (2019) where there is no “views” of such field, our method
does not apply. As long as the data in the new domain (e.g., 3D dynamic scene and MRI) can be
interpreted by views, our method can reuse the same latent autoencoder Rombach et al. (2022) with-
out switching to domain-specific autoencoders. (2) Limited by resources and data, our method can
only maximizes the learning capability of a 675M transformer model. Nevertheless, the comparison
with model of billions parameters like VDM, further highlight our simplicity and efficiency.

6 CONCLUSION

We have introduced a new transformer-based diffusion field model that addresses the limitations of
current probabilistic field models in capturing global structures and long-context dependencies. By
utilizing a view-wise sampling algorithm for local structure learning and incorporating autoregres-
sive generation to preserve global geometry, our approach overcomes the shortcomings of MLP-
based architectures. The proposed model can generate high-fidelity data across multiple modalities,
including text-to-video, 3D view generation, and game control while maintaining scalability and
unifying diverse modalities.
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synthesis pre-training for neural visual world creation. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVI. Springer,
2022.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
one or few images. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021, 2021.

Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, and Wayne Wu. Celebv-text:
A large-scale facial text-video dataset. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, 2023a.

Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, and Wayne Wu. Celebv-text:
A large-scale facial text-video dataset. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, 2023b.

Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin. Video probabilistic diffusion models in
projected latent space. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, 2023c.

Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:
Efficient video generation with latent diffusion models. ArXiv preprint, 2022.

Peiye Zhuang, Samira Abnar, Jiatao Gu, Alex Schwing, Joshua M. Susskind, and Miguel Ángel
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