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ABSTRACT

We show that transformer attention and diffusion models are discretiza-
tions of the same entropy-regularized optimal transport (OT) flow. A sin-
gle attention layer is a KL-proximal (JKO/mirror) step in an OT poten-
tial; stacking layers yields probability paths that converge to a probabil-
ity—flow ODE (PF-ODE) on the simplex. Our construction uses a causal,
semi-relaxed EOT that preserves attention masking while retaining OT ge-
ometry. We derive a finite-depth error bound controlled by a budget =,
(quantifying continuum validity) and prove that stacked attention weakly
approximates time-inhomogeneous, anisotropic reverse diffusions with an
error that separates time discretization, logit variation, and optional de-
generacy regularization. Geometrically, we characterize exact Schrodinger
Bridge (SB) alignment via a rotational energy R that vanishes if and only if
the path is SB, and serves as a practical diagnostic otherwise. The frame-
work yields testable predictions: (i) the continuum approximation is ac-
curate when Zj, is small; (ii) depth exhibits diminishing returns beyond
a threshold set by contraction and step size; and (iii) lower R correlates
with improved generations. We validate these predictions with a diag-
nostic suite (P0-P4): BV /continuity gating (with abstention on failure),
PF-ODE adequacy, curvature/locking geometry, and SB energy. Evidence
spans two tracks—Transformers (core diagnostics) and a compact image
diffusion model (parity and first-order weak-error behavior)—with validity
conditions and diagnostic abstention protocols detailed in Appendix
These insights motivate mobility-aware temperature scheduling and certi-
fied early exit, conserving depth while preserving transport geometry.

1 INTRODUCTION

Transformers and diffusion models appear fundamentally different, yet we show they in-
stantiate two discretizations of the same entropy-regularized optimal transport flow. One
attention layer performs a KL-proximal step in an optimal transport potential, and depth
plays the role of time for the induced probability dynamics on the simplex.

This unification builds on and extends several research streams that have developed in iso-
lation. Attention mechanisms have been interpreted through optimal transport in recent
work (Sander et al., [2022; Tay et al., 2020; Xu et al., [2023; |Daneshmand) 2024), but prior
approaches typically employ balanced optimal transport formulations that are fundamen-
tally incompatible with causal masking in autoregressive language modeling. We resolve
this by proving that standard row-softmax attention precisely solves a semi-relaxed entropic
optimal transport problem that preserves autoregressive causality. Continuous-depth inter-
pretations of neural networks through neural ordinary differential equations (Chen et al.
2018; Dupont et al., |2019; Bai et al., [2019) have been extended to transformers (Zhang
et al.} 2021} |Chen et all |2023; [Kan et al.| 2025]), but existing analyses typically lack rigor-
ous finite-depth error control. We strengthen these perspectives by introducing an explicit
bounded variation regime with quantitative finite-depth error bounds controlled by a budget
parameter, proving that the continuous-depth limit satisfies a well-posed probability flow
ordinary differential equation on the probability simplex with the softmax Jacobian acting
as a mobility tensor.
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Score-based generative models have revealed fundamental connections between stochastic
differential equations and deterministic probability flow ordinary differential equations (Song
et al 2021; [Huang et al., 2021; |Lipman et al., [2022)). We demonstrate that transformer
attention implements discretizations of probability flow ordinary differential equations in
the same geometric family as those underlying diffusion models but operating under semi-
relaxed entropic regularization, explaining why autoregressive-diffusion hybrid architectures
work well empirically (Hoogeboom et al.,|2022; Ma et al.l [2025)). Schrodinger Bridge theory
provides a dynamic formulation of entropy-regularized optimal transport (Léonard, [2014;
De Bortoli et al., 2021; [Shi et all [2023)); we operationalize Schrodinger Bridge alignment
within transformer attention dynamics by defining a rotational energy quantity that mea-
sures deviations from optimality and vanishes if and only if the attention-induced flow
satisfies the Schrodinger Bridge characterization, transforming abstract optimality condi-
tions into practical diagnostics estimable from model activations. Comprehensive literature
review with detailed comparisons appears in Appendix [C}

Contributions. Under mild regularity assumptions (detailed in Section [2.2)), our main
results are:

1. Layer-level principle. Standard row-softmax attention implements a principled Kullback-
Leibler proximal transport step in the sense of mirror descent or Jordan-Kinderlehrer-
Otto schemes, establishing the foundational connection between neural architecture and
optimal transport geometry formalized in Proposition [2.1

2. Depth-to-time convergence with explicit rates. The discrepancy between discrete layer dy-
namics and continuous probability flow is controlled by a finite-depth budget parameter
denoted Zj, and defined precisely through bounded variation conditions in Theorem [3.1
providing quantitative error bounds that determine when continuum approximations ap-
ply to finite architectures.

3. Diffusion unification through weak approximation. Stacked attention layers weakly ap-
proximate time-inhomogeneous anisotropic reverse diffusions in probability law, with er-
ror that separates discretization effects from logit variation and optional degeneracy regu-
larization, as established through the anisotropic Fokker-Planck analysis in Theorem

4. Schriodinger Bridge alignment certificate. A rotational energy quantity denoted R pro-
vides a necessary and sufficient condition for exact Schrédinger Bridge alignment, quan-
tifying deviations from gradient flow structure and serving as a practical diagnostic for
transport optimality as formalized in Theorem [5.2]

The framework yields three falsifiable predictions: continuum approximation accuracy when
=y, is small, diminishing returns from depth when mobility degrades, and correlation be-
tween low R and improved generation quality. Our empirical study tests these predictions
across transformer language models and compact image diffusion, with extended protocols
in Appendix Figure [f visualizes how these results connect: Proposition [2.1] establishes
the foundational single-layer principle; Theorem [3.I] extends this to finite-depth convergence
through bounded variation compactness; Theorem [3.7] provides well-posedness infrastruc-
ture supporting Theorem [L.5s diffusion unification; and Theorem [5.2]characterizes transport
optimality via rotational energy. The diagram identifies the functional analysis machinery
underlying each result, directly addressing proof architecture questions.

2 PRELIMINARIES AND CONCEPTUAL FRAMEWORK

2.1 CONCEPTUAL OVERVIEW

Before establishing formal machinery, we outline the key geometric quantities. The soft-
max Jacobian Jsy(2) acts as the mobility tensor on the probability simplex, with temper-
ature modulating transport capacity via JI (2) = 77 1Jgn(2/7). The finite-depth budget
=21 quantifies how well discrete layers approximate continuous flow; small Z; ensures the
probability-flow ordinary differential equation accurately captures layerwise behavior. Ro-
tational energy R measures deviation from optimal transport; exact Schrédinger Bridge
alignment occurs when R vanishes.
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2.2  MATHEMATICAL PRELIMINARIES AND NOTATION

This subsection establishes notation, states the standing assumptions used throughout, and
records the layer-level optimal transport view we invoke in subsequent analysis.

Global Assumptions. We collect here the global assumptions used throughout. Assump-
tions [2:1] and provide the bounded-variation and regularity conditions, with the latter
adding architectural consistency for the continuum-limit results.

Assumption 2.1 (Bounded variation and architectural consistency). We work on compact
subsets where all quantities are well-defined. Unless stated otherwise, we assume:

1. Bounded-variation logits with uniform mean: Let z) denote the layer logits and Az :=
2D — 2O We assume that the averaged per-layer logit variation

1 L-1
Cov = 218

remains bounded by a constant Cfy, uniformly across all layer counts L. Equivalently,

the total variation Zsz_ol |A20)|| o grows at most linearly in L, so that typical layer-
to-layer changes, rather than accumulated variation, control the quality of continuum
approximation.

2. Local drift reqularity. The effective drift b(-,t) is locally Lipschitz in its state argument
on bounded sets with Lipschitz constant Ly, and is locally bounded by M.

3. Mobility bounds. For p = softmax(z/7) with temperature 7 > 0, the Jacobian Jgm(z) =
Diag(p) — pp' satisfies operator-norm and derivative bounds on the relevant compact
domain; denote Ay :=sup ||Jsm(2)|lop and Ly :=sup ||VJIsm(2)|lop-

4. Simplex invariance. Probability vectors p remain in the simplex under the dynamics
considered; faces are handled by the standard tangent-space restriction.

Softmax and Mobility. Given logits z € RV and temperature 7 > 0, the softmax
operation and its induced mobility tensor are defined by

exp(z;/T .
p = softmax(z/7), D = _oxP(E/T) Jom (2) = Diag(p) —pp .

225 exp(z/7)’

The Jacobian Juy(z) characterizes how probability mass flows under logit perturbations,
acting as the mobility tensor that governs transport dynamics on the probability simplex.

Remark (Sharp Mobility Bound). We have | Jun(2)[op < 5=, with equality at dis-
tributions p = (%, %, 0,...,0). In particular, for 7 = 1, ||Joem(2)|lop < % and the spectrum
lies in [0, ], collapsing to {0} as max; p; — 1. A proof is provided in Appendix [B| This
sharp bound explains why temperature scheduling proves essential for maintaining mobility
in deep networks as distributions become increasingly peaked.

2.3 SEMI-RELAXED ENTROPIC OPTIMAL TRANSPORT FOR ATTENTION

Standard attention with row-softmax normalization solves a semi-relaxed entropic optimal
transport problem that preserves autoregressive causality. For a query vector ¢ € R% and
key vectors k; € R? ., define the cost ¢j = —q - kj, so that high similarity corresponds

to low transport cost. Given a reference distribution u € AV ~! (typically uniform) and
temperature 7 > 0, the semi-relaxed entropic OT problem is

14
min ¢ " pje; + 7KL(pllu) ¢ - (1)
j=1

pEAV -1

The first-order optimality conditions yield the softmax solution
_ explg-ky/7)
Dkt €xP(g b/ 7)

Dj = softmax(¢K " /T);,
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so that each attention row solves a semi-relaxed entropic OT problem where the row-
stochastic constraint is enforced but column marginals are unconstrained, preserving au-
toregressive structure. Causal masking is implemented by assigning infinite cost ¢; = 400
to masked positions. The complete derivation including the Lagrangian formulation, unique-
ness, and masked formulation appears in Appendix

Proposition 2.1 (Attention as KL-Proximal/JKO Step). Let ¢; = —q-k; and 7 > 0. For
any full-support reference u,

+ .
pr e argzr}gg{@,m +TKL(pIIU)}~

Stacking such updates discretizes a Kullback-Leibler mirror descent or Jordan-Kinderlehrer-
Otto flow under the assumptions in Section[2.2. The proof is given in Appendiz|[B

This proposition establishes that each attention layer implements a principled optimal trans-
port step, providing the foundation for our continuous-depth analysis in subsequent sections.

3 DISCRETE CONTINUITY AND THE CONTINUOUS-DEPTH LIMIT

3.1 BOUNDED VARIATION REGIME AND PRACTICAL IMPLICATIONS

The transition from discrete layers to continuous dynamics requires controlling the accu-
mulation of changes across depth. We formalize this through a bounded-variation (BV)
condition that captures when transformers exhibit smooth evolution rather than abrupt
transitions.

Assumption 3.1 (Bounded variation and architectural consistency). Let 6t = 1/L and
te ={/L. We assume:

1. Bounded total variation: Y, ||Az¥||y < C (uniformly in L).
2. Uniform boundedness (tightness): sup, |29 ]2 < C..

3. Architectural consistency (identification): local-regression estimates by, converge to b on
compacts; see Appendiz[D

Note. Weak L* convergence of Dy, to b is not assumed here; it follows from Lemma (3.5 via
the calibration—generalization argument.

The BV condition typically holds when per-layer operator drifts are uniformly bounded
(e. g‘, spectral-norm-regularized projections with stable LayerNorm scaling), yielding

Ze 1Azl < oo; see App. Sections ! and - for worked examples, failure modes,
and an online detectlon algorithm (Algorit

Norm compatibility and error budget. To interface with the mobility bounds in Sec-
tion we upper bound layer increments with || - || (comparable to || - || on compacts).
Define

(1]

o= o mpe 420+ e 3 a0 )

where a1, as depend only on Ly, My, Ay, Ly from Section Norm equivalence for the
budget. On compact domains and fixed dimension, || - ||z and || - || are equivalent up to
constants. Thus the worst-case single-layer term and the cumulative squared-variation term
in equatio are consistent with the || - ||o-based BV assumption in Assumption see
Appendix [Dffor the explicit constants used in the proof of Theorem [3.1}

Theorem 3.1 (Flmte depth error to PF-ODE). Under Assumption and the reqularity

in Sectzonm let p(t) solve the probability-flow ODE on [0,1] with p(0) = limy_, p(®.
Then there exists I’ = F(Lb, My, Ay, Ly) such that

sw |51 =50, < =0+ (=)o ~pO
tefo,1] 1

with 25, in equation @ In particular, if p© = p(0) and Z;, — 0, then p(ltED) — p(t)
uniformly in t.
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Proof sketch. The proof controls the per-layer error Ay = ||p'© —p(t,)||1 between the discrete
stack and the PF-ODE at times t, = ¢/ L.

Step 1: Local truncation. A Taylor expansion of the PF-ODE solution around ty,
combined with stability estimates for the simplex Jacobian Jg, and drift b, yields a one-
step inequality

Appr < (14 C10t) Ap+ Co||Az0) || o0t + C36t2,
with C7 = LyAy + ML capturing Lipschitz and mobility bounds.

Step 2: Global accumulation. Iterating over all layers and applying a discrete Gronwall
lemma (Lemma [D.1)) produces

Ap < €D Ag+e% (C2Cpy + C3L7Y),
where Cpy = 1 3, [|Az29 || is the averaged bounded-variation constant.

Step 3: Budget definition. The finite-depth budget Z; in equation [2| combines worst-
case jumps and cumulative squared variation, with explicit constants depending only on
(Lp, My, Ay, Ly). This yields the stated bound with T' = C4.

Complete details including explicit constant derivations and norm equivalence appear in
Appendix [D} O

Remark 3.2 (Continuum validity and constant scaling). Zp is a practical validity thresh-
old: the PF-ODE faithfully predicts layerwise behavior when Zy, is small (see proof above;
additional technical details in App. @ Moreover, the budget constants scale with archi-
tectural smoothness and geometry: ay = O(Ly + My) and as = O(Ay; + Ly). Hence Zp,
decreases with smaller per-layer logit increments and stronger contraction, and the PF-ODE
discrepancy vanishes as L — oo under fized budgets.

Remark 3.3 (When BV holds in practice). BV typically holds during stable training but can
fail at phase transitions, early layers, or gradient instability. Detect via S;, =", [|A29|3;
if BV fails, apply piecewise analysis (App. @)

Lemma 3.4 (Compactness and absolute continuity). Under Assumption there exists a
subsequence with zy, — z and pr, — p in L1([0,1]) and a.e., where p is absolutely continuous
with |p| € L'. The compactness and identification statements follow from Theorem n
Appendiz [J1]

Lemma 3.5 (Drift identification via architectural consistency). Under Assumption
with (i) bounded total variation and uniform boundedness and (ii) architectural consistency,

define Dp(t) := AzO /6t on [ty tepy), and let by, be the local regression estimator fit to the
same layer transitions. Then

||DL — I;L”Ll([O,l]) —0 and ||ZA)L — b”Ll([O,l]) — O,

hence |Dr — bl|L1(o,1)) — 0 and, in particular, Dy — b in L'([0,1]). Proof sketch. Cali-
bration: Dy, and EL are computed from identical transitions, so regression residuals control

|DL—br||1:. Generalization: architectural consistency yields ||by,—b|| 1 — 0 on compacts.
Triangle inequality concludes. (Complete details appear in Appendiz|J.1})

3.2 SEMI-RELAXED OPTIMAL TRANSPORT AND CAUSAL ATTENTION

Remark 3.6 (Row-softmax via semi-relaxed EOT). By the KL-prox characterization in
Proposition standard row-softmaz solves a semi-relazed entropic OT step (with masking
handled by infinite costs and restricted support). We refer to Appendi:c@for details of the
dual and masking.

3.3 PROBABILITY-FLOW ODE EMERGENCE AND WELL-POSEDNESS

Theorem 3.7 (PF-ODE on the simplex and well-posedness). Under Assumption and
the regularity in Section[2.3, the limit probability path satisfies

P = Jan(=(0) b=(0),) @ on [0,1],  p(0) = lim p),
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and the velocity field v(p,t) = Jsm(2(t)) b(=(t),t) s tangent to the simplex, ensuring p(t) €
AV for all t.

Complete proof in Appendiz[Q.1}

Remark 3.8 (Simplex invariance and uniqueness). Under Carathéodory conditions on b
(measurable in t, locally Lipschitz in z), mass is conserved (Y ,pi(t) = 1), nonnegativity
holds, zero-fluz Jsm(2)1 = 0 enforces boundary behavior, and solutions are unique on the
relative interior of AV,

Theorem 3.9 (Locking via vanishing mobility). If pmax(t) — 1 and b is bounded, then
[ Jsm(z())[lop — O (Remark [2.9) and hence |[p(t)| — 0. Moreover, temperature rescales

mobility as I (2) = LJam(2/7), modulating the approach to locking.
Example 3.10 (Two-token mobility collapse (summary)). Consider a minimal attention
layer with two tokens. For logits z = (21, z2), the softmaz Jacobian reduces to

Jn()=p1-0) (1 7).

where p = p; = softmax(z)1. The operator norm is ||Jsm(2)|lop = 2p(1 — p), which attains
its maximum 1/2 at the uniform distribution p = 1/2 and collapses to zero as p — 0 or
p — 1. With temperature T, the effective mobility scales as 7~ p(1 — p).

As attention mass locks onto one token, the mobility eigenvalue vanishes, forcing p =
Jsm(2) b(z,t) to approach zero even if the drift b remains nonzero. Temperature rescal-
ing modulates this: larger T maintains nontrivial mobility deeper into the network. This
illustrates the mechanism behind Theorem [3.9: as distributions concentrate, the mobility
tensor loses rank and dynamics freeze for geometric reasons, not because the drift disap-
pears. Complete eigenvalue calculations appear in Appendiz|[L.3

3.4 CONNECTIONS TO EMPIRICALLY OBSERVED PHENOMENA

Attention entropy collapse, temperature scaling effects, and representation collapse follow
naturally from the mobility interpretation: as distributions concentrate, mobility (and thus
velocity) vanishes (Theorem, explaining attention concentration and providing a handle
for calibration via temperature scaling. We defer expanded discussion, diagnostics, and
eigenspectrum-based tests to Appendix [E]

4  DIFFUSION DUALITY WITH ANISOTROPIC NOISE

4.1 STOCHASTIC DYNAMICS AND WEAK FOKKER—PLANCK FORMULATION

We extend the probability-flow picture to include stochastic perturbations, establishing a
duality between deterministic and stochastic evolution. Consider the hidden-state SDE:

dH, = F(H,,t) dt + S(Hy, t) dW;, (3)

with diffusion tensor @ = £ . Our analysis accommodates minimal regularity (F locally
integrable with weak derivatives, a measurable and locally bounded), anisotropy (a may be
degenerate or near-singular), and time-inhomogeneity.

Lemma 4.1 (Distributional calculus in weak FP regime). Under local Fisher-information
conditions (pg > 0 a.e., pyVlogpy € Li ), the product rule holds distributionally:

loc
V-V-(apy)=V-((V-a)pg +aVpy) inD
Proof via mollification and weak convergence in Appendiz[F]

Theorem 4.2 (PF-ODE / reverse-SDE duality). Let a(x,t) = o(x,t)o(z,t)" and suppose
pu (-, t) > 0 solves the Fokker—Planck equation

Opr = —V-(Fpu) + 3 0uu(aijpu)

(2]
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with suitable decay/no-fluz boundary conditions. Define the deterministic flow
u(,t) = Fo,t) — §(a(z,1) Valogpa(a,t) + (V-a)(,1)), (4)

where (V- a); := Zj Oz;a5. Then the PF-ODE with velocity u shares identical marginals
with the Ité SDE for allt. If a = 281 is spatially constant, then w = F — 3V log py recovers
the standard probability flow drift. Complete proof in Appendiz[F]

Corollary 4.3 (Simplex marginal preservation). For the softmazx projection @(h) =
softmax(W Th), the pushforward measures satisfy oupu(-,t) = @up(-,t) a.e. in time, ex-
tending the duality to simplez-valued processes. Proof in Appendiz [F]

Proposition 4.4 (Anisotropy propagation to simplex dynamics). The hidden-space diffu-
sion induces an effective mobility on the simplex: M(p) = Jom(2) WTa W Jon(2), revealing
how architectural choices modulate probability dynamics. Proof in Appendiz[F]

4.2 WEAK APPROXIMATION OF DIFFUSION BY STACKED ATTENTION

Theorem 4.5 (Weak SDE approximation by stacked attention). Under the assumptions in
Sectz’on and the weak FP calculus of Lemma let p(t) be the law of the reverse SDE
with drift w in equation [{] and diffusion a, and let pr(t) be the law induced by L stacked
attention layers with step 6t = 1/L. Then, for any ¢ € C¢ and T € [0,1],

‘EFL@) (6] = Ep(r) W‘ < Cy (L_l + Jmex, 1829 o + 7)7

where Cy depends on bounds of u,a and ¢ on compacts, and vy > 0 is an optional degeneracy
reqularizer. Proof in Appendiz [F]

Stacked attention approximates anisotropic, time-inhomogeneous diffusion in a weak sense;
the approximation error separates discretization, logit variation, and degeneracy regular-
ization. Anisotropic diffusion with widely varying eigenvalues induces directional stiffness
mirroring attention’s collapsed-coordinate behavior, explaining curvature and locking diag-
nostics. Toy example and degeneracy guidelines in Appendix [F]

5 SCHRODINGER BRIDGES AND TRANSPORT OPTIMALITY

5.1 GENERAL FRAMEWORK AND ALIGNMENT CONDITIONS

Schrodinger Bridges (SB) characterize entropy-regularized stochastic interpolations between
endpoint distributions. We establish when transformer-induced probability paths align with
these optimal bridges. While Section allows degenerate diffusion (useful near locking), SB
typically requires a uniformly elliptic reference; we reconcile these views below.

Assumption 5.1 (Reference diffusion). The reference process R follows dX; =
br(X¢,t) dt + o (X¢,t) AWy with diffusion tensor a = oo, where:

1. Non-degeneracy on support: a(z,t) is SPD almost everywhere on the support of the path
measure.

2. Finite action: The reference path has finite relative entropy with respect to Wiener mea-
sure for endpoints (1o, t1)-

3. Degeneracy handling (regularization): When a approaches singularity (e.g., near locking),
we use a; = a + €I, analyze with € > 0, and pass to the limit € | 0 (see Appendiz @)

Theorem 5.1 (SB alignment characterization). Let {iut}icp0,1] be the transformer’s

continuous-depth probability path with drift u. Under Assumption {ut} equals the
Schridinger Bridge for reference R if and only if its per-mass velocity decomposes as

u = br + aVé

for some potential 0. Equivalently, the a-weighted curl vanishes, i.e. the solenoidal compo-
nent of a=(u — br) is zero. A proof is provided in Appendix @
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Theorem 5.2 (Rotational energy controls SB deviation). Let w = br + aV0 + w be the
a-weighted Hodge decomposition with V- (w uz) = 0 for each t. Define the rotational energy

//wa Lw) pug (da) dt.

Assume a finite weighted Poincaré constant Cp(u, a) along the path. Then, for eacht € [0, 1],

KL | gf) < Cplua)R,
where py is the SB path with the same endpoints and reference R. In particular, R = 0 if
and only if {u:} is SB-aligned. A proof is given in Appendix@
Corollary 5.3 (Rotational energy diagnostic). R > 0 with equality iff the path is
Schrodinger Bridge. Practically, estimate u (from activations), solve for 6 via a weighted
Poisson equation, compute the residual r = u — bg — aV, and evaluate [ ||a=/?r|? du dt.
See App. Figure[f] for a compact schematic of this pipeline.

Example 5.4 (Rotational energy on the two-simplex). Consider a toy flow on A? =
{(p1,p2,p3) + i > 0,57, pi = 1} with coordinates (p1,p2) and p3 = 1 — p1 — p2. Let
a = 0%l and br = 0. A gradient flow v = aVe with 0(p1,p2) = —%(p% + p2) yields
u = (—ac?p1, —ao?py). The curl vanishes:

8p1uQ — 8p2u1 = 0,
confirming zero rotational energy and pure Schrodinger Bridge structure. Conwversely, the
rotational flow w = (Bp2, —Bp1) circulating around the simplex center yields

apl(_ﬁpl) - apz (5292) = _2ﬁ 7é 0,

indicating rotational energy proportional to $%. This flow cannot arise as a Schrodinger
Bridge because it lacks potential structure; the rotational component represents spurious
circulation that wastes transport capacity on cycles rather than moving mass toward the
terminal distribution. Our diagnostic computes an empirical analogue by discretizing the
flow field from layer activations, approximating spatial derivatives via finite differences, and
integrating across the trajectory. Small R indicates approximate gradient structure and
Schrodinger Bridge alignment; large R reveals spurious rotational components deviating
from optimal transport.

Remark 5.5 (Vanishing-regularization limit). If a. — a with € | 0 and the sequence of SB
paths has uniformly bounded action and is tight, any weak limit is a degenerate SB solution;
when R = 0, it coincides with the PE-ODE path. See Appendiz[G

Corollary 5.6 (Simplex Schrodinger Bridge). Under the softmazx pushforward, the SB con-
dition on the simplex takes the potential-flow form

Py = —V,- (P, M(P,) V,0(P,,1)),

with mobility M from Theorem[{.4l This connects directly to gradient flows on the simplex
and informs mobility-aware design.

Practical implication. Rising R indicates deviation from SB (OT) geometry and co-
occurs with over-smoothing and spurious drift; minimizing R provides a geometry-aware
early warning complementary to standard fidelity metrics.

6 EMPIRICAL VALIDATION FRAMEWORK AND DIAGNOSTIC TOOLS

Overview and theory map. We validate two tracks: (7T) Transformers (forward pass as
PF-ODE) and (1) image diffusion (parity and weak-error).

Probability-flow ODE dual (summary). In variance-preserving (VP) score-based diffu-
sion, the forward SDE is dx = f(¢) x dt + g(t) dW; and the learned score V. log pi(z) defines
a deterministic probability-flow ODE (PF-ODE) with drift f(t)z — $g(¢)*V, log p;(z) that
shares the SDE time marginals.

We use the formal definitions from App. Sectlon [MT] for the drift budget, locking bound,
curvature, and EVI (Equations (22]) to ) throughout this section. Drift and curvature
Vlsuahzatlons appear in Figure (1] (left /rlght panels), while locking and EVI are shown in
App. Figures[7] and [§]
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Figure 1: Track T: core diagnostics. Left: PF-ODE adequacy (P1). Right: curvature (P3).
Locking and EVI appear in Section [M.4]
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Figure 2: Image diffusion (CIFAR-10). Left: ODE-SDE TV/KS across time (inputs scaled to
[0,1], equal channel weighting, 256 bins). Right: log—log regression of Ax vs. K with BCa Cls
(B=1000).

6.1 EMPIRICAL DIAGNOSTICS P0-P4

Diagnostics (P0-P4). Five diagnostics validate the theory: (P0) BV /continuity checks;
(P1) PF-ODE adequacy; (P2) locking behavior; (P3) OT contractivity; (P4) SB alignment
via rotational energy. Full protocols appear in App. Section [M]

6.2 TRACK T: TRANSFORMERS — CORE DIAGNOSTICS AND ROTATIONAL ENERGY

For the Transformer experiments, the mean rotational energy across 10 central layers is R =
1.096x10~7 (95% CI [3.468 x 10~8, 2.153x1077]). Cross-track values are not comparable due
to different ambient spaces and discretizations; we summarize per-track means and Cls (a
normalized variant is defined in the appendix).

6.3 TRACK I: IMAGE DIFFUSION—PARITY, WEAK-ERROR, AND SB ENERGY

Setup. A trained VP CIFAR-10 (ddpm-++ continuous) model is evaluated with two sam-
plers: SDE and PF-ODE; both samplers use the identical noise schedule and classifier-free
guidance setting, and for each image the ODE and SDE share the same initial noise seed.
We use N=10,000 images and K=50 logged times on a shared grid.

Parity and weak-error (composite). Figure 2| composes the image diagnostics: left
shows ODE-SDE histogram parity (TV/KS) over time; right shows the weak-error step-
doubling log-log fit (slope near first order).

Rotational energy (image; P4 result). On 20 time points, the mean rotational energy
is R = 0.03092 (95% CI [0.01046, 0.05385]). Cross-track values are not comparable due
to different ambient spaces and discretizations; per-track normalized variants and the BV
panel for ODE vs. SDE appear in App. Section [M.5]



Under review as a conference paper at ICLR 2025

Defaults. Unless noted, for the image track PF-ODE uses deterministic sampling
on the same K grid as SDE (DDIM-style); for Transformers, PF-ODE drift fits use
Dormand-Prince with rtol= 107°, atol= 1077, max_steps= 2000. Ridge grid
{107%,1073,1072} with 5-fold cross-validation; N = 50k rows/layer (Transformers), N =
10k images and K = 50 time steps (Image). Unless noted, bands denote 95% percentile-
bootstrap Cls (B=200); weak-error CIs use BCa (B=1000).

Synthesis. Taken together, the two empirical tracks support a single underlying picture:
attention dynamics in Transformers and PF-ODE/SDE trajectories in diffusion models
behave as different discretizations of the same entropy-regularized transport flow. Locking
and EVT signatures appear in the appendix; the core P1/P3 diagnostics remain in the main
text.

7 LIMITATIONS AND PRACTICAL IMPLICATIONS

Limitations. (i) Experiments target text transformers with a minimal image diffusion
sanity check; full vision benchmarks are out of scope for this paper (Section . (ii) The
PF-ODE drift uses simple features and can underfit nonlocal effects. (iii) Rotational-energy
magnitudes are track-specific and not cross-track comparable; we provide a dimensionless
variant for intra-track comparison and recommend log-scale plots when ranges span orders
of magnitude (App. Section [N.2). (iv) Diagnostics are conditioned on the P0 gate (BV/-
continuity); failures trigger abstention.

Practical implications and Outlook (1) Temperature or key-norm controls reduce the
curvature gap 1 — k, offering a stable knob for depth behavior. (2) The drift-budget overlay
surfaces over-activation and can inform regularization or early exit policies. (3) Diagnostic
abstention protocols based on PO gating conditions provide conservative guardrails when
validity assumptions are violated (Section. Richer drift features (e.g., cross-head struc-
ture), broader modalities beyond CIFAR-10, structured/accelerated SB solvers, and calibra-
tion via condition-number targets for the Poisson step are natural directions (Section @[)

8 CONCLUSION

We formalized masked attention as semi-relaxed entropic OT, established stability/locking
and curvature/EVI structure with gauge invariances, and tied these to a practical empirical
suite. The suite validates PF-ODE adequacy, locking signatures, and contractivity response
in Transformers, and shows image PF-ODE/SDE parity with first-order weak-error scal-
ing. These yield concrete levers (temperature/key norm; drift-informed regularization) and
geometry-aware diagnostics; extended discussion appears in Section@ For practitioners: (i)
regulate depth via Zp, /stability budgets and spectral norm controls, (ii) monitor rotational
energy during schedule sweeps as an early-warning diagnostic, and (iii) abstain when PO
validity conditions fail.
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are limited to misinterpretation or over-generalization of the diagnostics outside their va-
lidity regime (e.g., when bounded variation fails or under heavy sparsity/MoE routing).
To mitigate this, we clearly document assumptions, abstain when diagnostic preconditions
fail, and report limitations (mixture-of-experts, highly sparse attention, and early training
phases). We see no domain-specific legal, privacy, or safety issues introduced by this study.

Reproducibility Statement. We aim for complete reproducibility. The appendix spec-
ifies: (i) data sources, splits, and licenses; (ii) model checkpoints and versions; (iii) all
hyperparameters; (iv) exact diagnostic protocols; (v) hardware and runtime details. Upon
acceptance, we will release a repository containing:

« Diagnostics (P0—-P4). Implementations for BV /continuity checks (P0), PF-ODE
adequacy and drift fitting (P1), locking and curvature/EVI (P2-P3), and rotational
energy / SB diagnostic (P4), including numerically stable Poisson solves and a-
weighted Hodge decomposition.

e PF-ODE Integration. Reference ODE solvers with error control and scripts to
compare ODE vs. SDE marginals for the duality experiments.

o Weak-Error Evaluation. Step-doubling protocol with BCa bootstrap (B=1000)
and log—log slope estimation; code to reproduce the reported confidence intervals.

o Image Parity (Track I). TV/KS histogram parity evaluation on CIFAR-10 with
N=10,000 images and K=50 time points, including seeds and preprocessing.

e Entropy-Based Temperature Scheduling. Continuous and discrete schedules
(EMA, clipping bounds) with ablation hooks.

e Configuration + Seeds. YAML configs for each experiment, fixed random seeds,
and deterministic flags where supported by the backend.

We provide scripts to fetch datasets and (where licenses permit) checkpoints, plus a manifest
of software versions (CUDA /driver, PyTorch/JAX, Python), GPU type, and expected wall-
clock ranges. Plots are generated from saved CSV logs to ensure exact figure reproduction.
The repository will include a one-command orchestration to reproduce paper artifacts end-
to-end.
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Figure 3: Conceptual unification: transformer layers implement discrete steps of probabil-
ity transport that converge to continuous flows analogous to diffusion models. The softmax
normalization induces entropic regularization, while layer stacking corresponds to time evo-
lution.

A SUPPLEMENTARY MOTIVATION AND OVERVIEW

Extended motivation. The remarkable success of transformers in language modeling
and diffusion models in generation has driven rapid progress in artificial intelligence, yet our
theoretical understanding of these architectures remains fragmented. Transformers process
discrete tokens through attention mechanisms that mysteriously develop semantic under-
standing, while diffusion models generate high-quality samples through iterative refinement
processes that seem fundamentally different. This theoretical gap impedes principled archi-
tectural improvements and forces practitioners to rely on empirical trial-and-error rather
than systematic design principles. In this work, we demonstrate that these seemingly dis-
parate architectures are actually implementing the same fundamental computational prin-
ciple: entropy-regularized optimal transport of probability mass. This unification not only
explains numerous empirical phenomena that have puzzled researchers but also provides
concrete tools for improving both architectures.

Modern deep learning relies heavily on two architectural paradigms: transformers, which
dominate language modeling through attention-based token mixing, and diffusion models,
which excel at generation through iterative denoising. Despite their apparent differences—
transformers operate on discrete tokens with normalized attention weights, while diffusion
models evolve continuous densities through stochastic differential equations—we demon-
strate that both architectures implement entropy-regularized transport of probability mass.

Interpretive notes. The significance of this connection extends beyond theoretical curios-
ity. Understanding transformers and diffusion models as implementing the same fundamen-
tal transport process enables principled architectural improvements and explains puzzling
empirical phenomena. For instance, the widespread observation that attention patterns be-
come increasingly concentrated in deeper transformer layers, often leading to computational
waste, can now be understood as a geometric inevitability arising from the vanishing mobil-
ity of the softmax-induced transport. Similarly, the empirical success of temperature scaling
for improving model calibration emerges naturally from our framework as a mobility modu-
lation mechanism. By revealing these deep structural connections, our framework provides
actionable insights for model design: predicting when representations will lock, identifying
optimal depth for different tasks, and suggesting principled initialization strategies that
approximate continuous optimal transport paths.
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Framework Overview: From Theory to Practice

Theoretical Concept

Practical Implication

Softmax Jacobian as mo-
bility tensor Jg,
Bounded

regime Sp, < C
Semi-relaxed EOT pre-
serves causality

variation

Probability-flow ODE
limit
Schrédinger Bridge align-
ment
Anisotropic diffusion du-
ality

Quantifies capacity for probability updates; vanishing
mobility signals when to stop computation

Smooth evolution enables continuous analysis; viola-
tions indicate phase transitions requiring intervention
Maintains autoregressive structure while enabling opti-
mal transport analysis of attention

Suggests continuous-depth architectures and adaptive
depth selection based on task complexity

Rotational energy R measures deviation from optimal-
ity, guiding architectural improvements

Reveals how noise injection affects transport; suggests
principled dropout and regularization strategies

Key Diagnostics:
o During Training: Monitor Sy, for stability, ||Jsm|| for representation health

o Architecture Design: Use R to compare transport efficiency across architectures

e Deployment: Apply mobility thresholds for early exit decisions

Figure 4: Overview linking theory to practice. Each theoretical concept maps to a concrete
tool or diagnostic.

Balanced OT (Sinkhorn) Semi-relaxed OT (ours)  Diffusion / SB

Causality preserved No Yes Yes
Depth — continuum Heat flow PF-ODE on simplex FP / PF-ODE
Noise model — Anisotropic via FP General a (SB)
SB equivalence (iff) No Yes Yes
Locking mechanism — Jsm — 0 Entropy collapse

Table 1: Novelty map relative to prior strands. Semi-relaxed EOT preserves the causal
structure essential for autoregressive models while enabling rigorous continuous-depth anal-
ysis. The vanishing of Jg,, provides a geometric explanation for attention collapse.

B SUPPLEMENTARY PROOFS AND TECHNICAL DETAILS

Proof of the sharp mobility bound (Remark [2.2)). Let p = softmax(z/7) and
Jom(2) = Diag(p) — pp". Then Jyp, is symmetric and positive semidefinite on the simplex
tangent space. For any unit vector v with ). v; =0,

vy = Y pvi - (pri)Z < 3> pii,

with equality achieved for distributions supported on two atoms at mass % and v aligned with
that two-dimensional subspace. Scaling z +— z/7 yields the factor 1/7, hence ||Jsm (2)]lop <
% and the spectrum is contained in [0, i], collapsing to {0} as pmax — 1. O
Semi-relaxed EOT details. We provide the complete derivation of the semi-relaxed
entropic optimal transport characterization of attention.

Let ¢ € R%* be the query vector and k; € R% the j-th key vector in a shared key-query
space. Define the cost ¢; = —¢q - kj, so that high similarity corresponds to low transport

cost. Given a reference distribution u € AV ~! (typically uniform), we consider

%

> pici +TKL(p|lu) ¢, (2.1)
j=1

min
pEAV -1
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Proposition [2.1 Theorem [3.1] Theorem [4.5]
Single attention layer Finite-depth convergence Weak approximation of
= KL-proximal OT step to PF-ODE, error ~ =, anisotropic diffusion
(Contribution 1) (Contribution 2) (Contribution 3)

Theorem [5.2]

Schrédinger Bridge
ff R =0
(Contribution 4)

\
: Semi-relaxed EOT Theorem B.7] | Fokker-Planck duality
. Causal masking | PF-ODE emergence : Dunford—Pettis

: preserved 1 D = Jum(2)b(z,1) ! Uniform integrability
”””””””” ’ , Distributional calculus

Assumption [3:]

BV regime
Helly selection
Drift identification
Figure 5: Logical structure and dependencies of main theoretical results. The framework
establishes four contributions enumerated in Section (1) Proposition shows that
a single attention layer implements a KL-proximal optimal transport step in the sense of
Jordan-Kinderlehrer-Otto schemes, establishing the foundational connection between neural
architecture and optimal transport geometry. (2) Theoremproves that stacked attention
layers converge to continuous probability flows on the simplex with explicit finite-depth
error bounds controlled by the bounded variation budget =, using Helly selection and
architectural consistency to identify the limiting drift. (3) Theorem demonstrates that
the limiting probability flow weakly approximates time-inhomogeneous anisotropic reverse
diffusions, unifying attention and diffusion through Fokker-Planck duality. (4) Theorem
provides a rotational energy characterization showing that vanishing R is necessary and
sufficient for exact Schrodinger Bridge alignment. The intermediate result Theorem [3.7]
establishes well-posedness of the probability flow ODE with the softmax Jacobian as mobility
tensor. Blue dashed boxes indicate foundational assumptions and mathematical tools; solid
boxes with shadows indicate proven results. Green highlighting emphasizes the four main
contributions; yellow indicates supporting infrastructure.

with temperature 7 > 0 and KL(p|[u) = >, p; log(p;/u;).

Step 1: Lagrangian formulation. Imposing ;pj =1via Lagrange multiplier A gives
4 4 D v
L(p,A) =) _pjcj +7)_pjlog' > = A(ij - 1)~
j=1 j=1 J J=1

Step 2: First-order optimality conditions. Setting 0L£/0p; = 0 yields
cj +T(log&+1> —A=0.
U
Solving for p; gives
A—cj—T ¢j
— Z_ 9 ) =Cu (,J)7

pj = U; exp( - ) uj exp(—

where C' = exp((A — 7)/7) is a normalization constant.

Step 3: Row normalization yields softmax. Enforcing ;=1 determines C:

14 -1
C= {Z U eXp(—cj/T)] .

Jj=1
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For uniform u; = 1/V, we obtain
by — VeXP(_Cj/T) _ Vexp(q kilT)
21 exp(—c/T) 3o exp(q- ki/T)
which is exactly the standard attention weight p; = softmax(qK ' /7);.

Thus each attention row solves a semi-relaxed entropic OT problem where the row-stochastic
constraint is enforced but column marginals are unconstrained, preserving autoregressive
structure. Causal masking is implemented by assigning infinite cost ¢; = 400 to masked
positions; the resulting row-normalized solution coincides with the attention distribution
induced by logits, with existence and uniqueness guaranteed by the strict convexity of the
KL divergence.

Proof of Proposition|2.1} The mirror-descent Euler step in KL geometry with objective
(c,p) and step 7 yields the variational form in Proposition The unique minimizer has
Gibbs form relative to u, p™ o u ® exp(—c/7), matching attention with logits z = —c.
Stacking steps gives a discrete JKO/Mirror scheme. O

C EXTENDED RELATED WORK AND POSITIONING (FULL VERSION)

C.1 PROBABILITY FLOWS AND SCHRODINGER BRIDGES

Score-based diffusion established that reverse-time SDEs admit a probability—flow ODE with
identical marginals (Song et al 2021)), while flow matching proposed simulation-free train-
ing of vector fields that realize desired probability paths (including OT geodesics) (Lip-
man et al) [2022)). The Schrodinger Bridge (SB) program casts diffusion as entropic OT
on path space and provides scalable IPF-style solvers (De Bortoli et al.l [2021; [Shi et al.,
2023). We leverage this geometry inside transformers: depth induces a PF-ODE on the sim-
plex, weak/anisotropic FP theory gives a deterministic/stochastic duality for hidden-state
evolution, and an iféfonly-if potential-plus-reference drift condition characterizes when a
transformer’s probability path is exactly an SB.

C.2 ATTENTION AS ENTROPIC OPTIMAL TRANSPORT

Balanced OT views of attention enforce doubly-stochastic constraints via Sinkhorn itera-
tions (Sander et al., [2022; |Tay et al.,2020), and OT-based co-attention improves multimodal
learning (Xu et al., 2023). A complementary line shows transformers can be programmed
to solve entropic OT with accuracy improving in depth (Daneshmand, 2024)). In contrast,
we work in the causal regime and prove that standard row-softmax attention is precisely
the optimizer of a semi-relaxzed entropic OT (row constraints only), which preserves autore-
gressive masking and does not require imposing OT constraints at training time. From this
equality we derive a BV depth—PF-ODE limit and the SB characterization in the causal
setting; balanced OT results do not cover this regime and are fundamentally incompatible
with the autoregressive structure essential to language modeling.

C.3 CONTINUOUS-TIME VIEWS OF TRANSFORMERS

Continuous-depth interpretations of transformers address irregular time environments and
ODE couplings (Zhang et al., |2021; |Chen et al. [2023)); OT-Transformer introduces OT as
a regularizer in a continuous-time backbone (Kan et al.l 2025). These works, however, do
not ezplicitly endow the dynamics with an entropic-OT geometry that explains empirical
phenomena. Our framework fills this gap: the softmax Jacobian acts as a mobility tensor
on AV~1 depth induces a PF-ODE with simplex invariance and well-posedness, and SB
equivalence provides a variational certificate for transport optimality.

C.4 AUTOREGRESSIVE-DIFFUSION HYBRIDS

Bridging autoregressive and diffusion/flow paradigms has shown strong empirical results
(Hoogeboom et al., 2022 [Ma et al., 2025). Our theory explains why: AR transformers and
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diffusion models are two discretizations (discrete in depth vs. continuous in time) of the same
entropy-regularized transport principle. The PF-ODE/FP duality and SB tools provide
quantitative diagnostics (e.g., rotational energy) for assessing alignment with entropic OT.

C.5 ARCHITECTURAL UNIFICATION VIA DIFFUSION TRANSFORMERS

Replacing U-Nets with transformer backbones yields scalable diffusion models across images
and 3D (Peebles & Xiel 2023} Mo et all [2023]). While these works focus on performance,
our analysis rationalizes their success: both families implement transport under entropic
regularization, and temperature/mobility schedules, anisotropy-aware regularization, and
SB-aligned depth emerge as principled design levers independent of the backbone.

C.6 POSITIONING OF OUR CONTRIBUTIONS

(i) Causal, semi-relaxed OT for attention. We prove that unmodified row-softmax
attention solves a row-constrained entropic OT problem, resolving the incompatibility of
balanced OT with causal masking.

(ii) Depth — PF-ODE on the simplex. Under bounded-variation scaling, stacking
attention layers induces a PF-ODE for probe-induced probabilities, with simplex invariance
and well-posedness.

(iii) Weak FP duality with anisotropy. Allowing time-inhomogeneous, anisotropic
(and possibly ill-conditioned) diffusion, we establish deterministic/stochastic equivalence of
marginals via Fokker—Planck in the renormalized /weak sense.

(iv) SB equivalence (iff) & diagnostics. The depth path is an SB iff its velocity is
potential-plus-reference drift; deviations are quantified by a rotational-energy gap.

(v) Mechanisms and predictions. Identifying Jy, as mobility explains entropy collapse
and representation locking; output-logit temperature scaling predicts mobility reductions
that move locking earlier.

These theoretical advances translate directly into actionable diagnostics and design prin-
ciples (e.g., mobility/locking metrics, SB alignment, anisotropy-aware regularization) for
improving both transformer and diffusion architectures.

D SUPPLEMENTARY DETAILS FOR SECTION [3]

Architectural consistency and identification (details). This elaborates the identi-
fication clause in Assumption For any compact K C RV and e > 0, there exists Ly
such that for L > Ly, a local-regression estimator br, (e.g., k-NN/MLP with fixed hyperpa-
rameters) satisfies ||b; — bl 22k x[0,1]) < €. This provides the additional structure ensuring

Dy, — b(2(t),t) in Li ., used in the discrete—continuous passage.

Proof of Lemma (drift identification via architectural consistency). Let K &
RY be any compact set. By Assumption iii) and Appendix @ for every € > 0 there

exists Ly such that for all L > Lj the local regression estimator by, satisfies

b, = bllz2 (ko)) < € (5)

Moreover, the bounded-variation and Lipschitz assumptions on the logits imply a uniform
L? bound on the discrete drifts:

S%p||DL||L2(Kx[O,1]) < Ck < .

Writing rp, := Dy, — EL, we thus have

7Lz (x x0,1)) o 0.

— 00

Passing from L? to L! on K x [0, 1] by Cauchy—Schwarz,

1D = brlleiexpony < 1K x [0, 1172 Irelr2crex o)) =0
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and similarly equation |5 yields [|by — bl 1 (K x[0,1]) — 0. By the triangle inequality,

IDL = bl (zexjoy < DL —brllzrrxpoy + 1oL — bl xxpo,1)) =0
Finally, by Assumption [3.1|(ii) the trajectories zp(¢) remain in a common compact subset
Ky € RY for all t € [0,1] and all L, so the above bound with K = K yields

DL — b”Ll([o,l]) m 0.

This proves the L' convergence claimed in Lemma and in particular implies Dy, — b in
LY([0,1];RY). O

Discrete Gronwall inequality for finite-depth analysis.

Lemma D.1 (Discrete Gronwall inequality for finite-depth error). Let {A,}L_, satisfy
App1 < (14 Adt) Ay + By

for£=0,...,L —1, with Ay given, A > 0, time step 6t > 0, and By > 0. Then

L—-1 L—-1
AL <(1+ Aat)L(Ao +3 Bg) < eAT(AO +3° 35)7
£=0 £=0
where T = Lot.

Proof. Unrolling the recurrence gives
Ay < (14 A8t) Ag + By,
Ay < (1+ A6t)*Ag + (1 + Adt)By + By,

L—1
Ap < (14 A5t Mg+ (14 A5t)" 7By
£=0

Since (1 + Adt)E=¢=1 < (1 + Adt)*, we obtain
L—1
Ay < (1+ Ast) (AO +3 Bg>.
=0
Finally, (14 Adt)E = (1 + AT/L)F < eAT, which yields the exponential bound. O

Proof of Theorem (complete version). Let 2 be logits at layer £ and define the
piecewise-linear interpolant zy (t) with zy(t;) = 29, Let py(t) hold p on [te, tey1). By
Assumption S 1Az < 0o and Dr, = Az /5t converges weakly to b(z(t),t) in
L} .. Consider p = Jyn(2)b(z,t) with p(0) matching limy,_,., p(®.

Step 1: Per-layer error inequality. Let A, := ||p*) — p(t;)||1 denote the total variation
error at layer ¢ where ty, = ¢/L and 6t = 1/L. The discrete layer update satisfies

P = pO 46t Jon (2029 1) + O(|| A20| 0 6) + O(682),
while the continuous dynamics evolve according to
Pltes1) = p(te) + 0t Jam(2(te))b(2(te) te) + O(6t%).
Taking the difference and applying the triangle inequality gives
Agg1 < Ag+ 0t [ Jam (2)b(219, t0) — Jom (2(£0))b(2(te), to) ||, + Col| Az 06t + C56t%. (6)

|1
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Using the Lipschitz continuity of b with constant L, the mobility bound A ;, the derivative
bound L for the softmax Jacobian, and a uniform bound M, on ||b]|, the middle term is
bounded by

(LoAy + MypL y) Ay ot.

Thus
App1 < (14 C10t) Ap 4 Co|| Az0)|| o0t + C36t2, (7)

with C7 = LyAj + MyL; and constants Co, C3 depending on second-order behavior of Jg,.
Step 2: Accumulation across depth. Define the source term

By = Cy|| A2 o6t 4 C30t2.
Iterating equation [7] from ¢ = 0 to L — 1 and applying the discrete Gronwall inequality

(Lemma [D.1)) yields

L-1
Ap < (14Ci6t) Mg + (14 C10t)" ) By (8)
£=0
With 6t = 1/L,
L-1 L-1 1 I
By = Az 0= = = Lt
; ¢ CZZZ:;” 2 HooL—I—CgLQ CoCpy + C3L77,

where the averaged bounded-variation constant

1 L-1
— E : (£)
CBV = 7 v ||AZ Hoo

is uniformly bounded by Assumption Using (1 + C10t)F < €1, we obtain
Ap < e Ag+ et (CoCpy + C3L7) . (9)

Step 3: Finite-depth budget and final bound. The finite-depth budget

L—1
—_ l4 4
= i= o OrélIZa<XL ||AZ( )Hoo + a2 KZ% HAZ( )Hio

captures both worst-case jumps (through the maximum term) and cumulative squared vari-
ation (through the sum), with constants «y, as depending only on Cy, Cs, C3 and hence on
architectural regularity parameters (Ly, My, Ay, L;). Combining the Gréonwall bound with
the definitions of Z;, and Cgy gives the stated estimate

sup [P = p0)], < 2+ =) 10 O]
telo,

for an explicit constant T' = T'(Ly,, My, Ay, Ly).

Intuition. The discrete error can grow at most exponentially with depth via the factor
e®1, but the averaged bounded variation constant Cgy controls the effective exponent by
keeping typical layer-to-layer changes small. When =, is small, the continuous probability
flow ODE provides an accurate description of the layerwise dynamics. O

Norm equivalence used in Theorem There exist constants ¢1,ce > 0 (depending

only on the ambient dimension) such that for all layer increments Az® on the compact set
considered,
¢ ¢ ¢
al|Az0) < [|az0, < el A2C| .

Consequently, the worst—case single—layer term and the cumulative squared—variation term
in equation [2| are consistent with the || - ||o-based BV assumption in Assumption and
the constants in Theorem depend ounly on Ly, My, Ay, Ly and (¢, c2).
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Piecewise BV segmentation (depth limit). Let 0 =ty < t; < -+ < tx = 1 such

that Assumption m holds on each [tx—_1,tx]. Define segment budgets E(Lk) by restricting
equation [2 to layers with ¢, € [ty—1,tx). Then Theorem applies on each segment;
p(ty ), p(t;) provide weak interface conditions. In practice, choose cut points where variation
statistics (€8, D pepr, 1.0 |Az(9)|3) spike, consistent with Theorem

E EXPANDED DISCUSSION OF EMPIRICAL PHENOMENA FOR SECTION [3]

Attention entropy collapse. As distributions concentrate, the mobility operator norm
| Jsm (2)||lop decays (Remark [2.2), and PF-ODE velocity vanishes under Theorem ex-
plaining late-layer attention concentration (cf. Theorem [3.9)).

Temperature scaling and calibration. Temperature rescales mobility as Jﬁ(,;)(z) =
%Jsm(z /7), delaying locking and supporting improved calibration by maintaining transport
capacity deeper in the network.

Representation collapse and eigenspectra. Approach to equilibrium correlates with
rapid decay of the Jg, eigenspectrum; monitoring minimum eigenvalues/trace provides a
diagnostic for impending collapse and informs interventions.

F SUPPLEMENTARY DETAILS FOR SECTION [

Proof of Lemma (distributional product rule). Let {5.}.~o be a standard mol-
lifier on R? and set p%; := py * 1 and a¢ := a .. For any ¢ € C>°(RY), integrate by parts
twice:

(V-V-(apy).p)=— [ V-(aPy) Vo= /

((V- a®) py + aCfoq) -Vo.
Rd Rd

By the local Fisher-information condition (py > 0 a.e., pyVlogpy € Li ) and local bound-

edness of a, the sequences p$; — py in L ., Vpy — Vpy in D/, and a® — a, V-a® = V-a
in D’ as € | 0. Passing to the limit yields

(V-V-(apu)e) = [ ((V-a)pu +aVpu) - Ve
R
which is the claimed identity in D’'. O

Proof of Theorem (PF—ODE / reverse-SDE duality). By assumption pg(-,t) >
0 solves the Fokker—Planck equation

Owu = —=V-(Fpu) + 5V-V-(apn)

with diffusion matrix @ = oo! and suitable decay or no-flux boundary conditions.

Lemma [T shows that, in the sense of distributions,
V-V-(apn) = V- ((V-a)pu +aVon ).
Using Vlogpy = (Vpr)/pr and the definition of the drift « in equation {4 we have
upg = Fpg — %(aVIngH + V- a)pH =Fpy — %(anH + (V- a)pH).
Taking the divergence and applying the product rule lemma,
V- (upn) = =V (Fpa) + 3 V- (a Vou + (V- a) pi )
=-V-(Fpu)+ V-V (apn).

Consequently py satisfies
opu = —V- (upn)
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in D', so py is a weak solution of the continuity equation with velocity field « and initial
condition pg (-, 0).

Under the stated regularity and boundary assumptions on F' and a, the linear continuity
equation with drift v has at most one weak solution with a given initial condition (equiv-
alently, the corresponding Fokker-Planck equation is well posed). Hence any solution p

of

8tP: —V(up), p(70) :pH(70)7
must coincide with py for all ¢, giving p(-,t) = pg(-,t). The final statement about the
reverse SDE dX; = w(Xy,t) dt+0 (X, t) dW; then follows from the standard correspondence
between weak solutions of the Fokker—Planck equation and laws of diffusion processes with
generator L¢ = (F,V¢) + 1tr(a V29). O

Proof of Corollary (pushforward). Let ¢(h) = softmax(W "h) and fix ¢ in the
set where the conclusions of Theorem hold. For any ¢ € C,(AV~1), by definition of
pushforward measure,

/ b(p) d(spm) () = / ((R)) dprr(h) = / lp(h)) dp(h) = / b(p) d(20) (D).
AV-1 R4 R4 AV -1

Hence pupp(-,t) = pup(-,t) for a.e. t, proving the claim. O

Proof of Proposition (anisotropy propagation). Write z = W 'h and p =
softmax(z). A first-order variation gives 6p = Jun(2) 62 = Jom(2) W TSh. If the hidden-
space SDE has instantaneous covariance a dt, then Cov[dh] = adt. The induced covariance
on the simplex tangent space is

Cov[dp] = Jam(2) WT aW Jom(2) dt,
which defines the effective mobility M (p) = Jom (2) W Ta W Jom(2). O

Proof of Theorem [4.5| (weak approximation by stacked attention). Let p(t) denote
the law of the reverse SDE with drift u given by equation [4| and diffusion @ = oo '; by
Theorem p also solves the continuity equation with velocity u. For ¢ € Cf(]Rd), the
Kolmogorov backward (weak FP) form yields

d
Z Eo[@] = Ep[(Ve, w)] + 3 Ep[tr(a V29)].

Construct the piecewise-constant law pr(¢) from L attention layers with step 6t = 1/L,
using on each interval [ty,t¢41) the frozen generator

Lop(x) = (Vo(x), ulz, te)) + 3 tr{a(z, te) V2o (),

i.e., the PF-ODE linearization with u as in equation Let the implemented layer-wise
drift be up = u(-,t¢) + r¢ with residual r, from finite depth; the model budgets give ||r¢|| =

O(|| A2« ) and a curvature correction O(]| Az ||2,) via Vu on the compact set considered.

A standard weak local truncation estimate (Euler in time for the frozen generator) gives,
for some Cy independent of L,

B iold) = B, 0 6] — B (o [€06] 61] < C¢(5t2+\|m||6t+ 1A-0]2 6t).

Summing over ¢ and using stability (uniform boundedness/Lipschitzness of u, a on compacts)
yields

‘E@(T) [¢] — Ep(r) [ﬁf’]’ < Cy (Lfl + [max, HAZ(Z)IIOO).

If a is singular, set a, = a + v/ and perform the argument uniformly in v > 0; continuity
of the weak generator for bounded data adds +7, and letting v | 0 recovers

E;, 9]~ Exn[9]] < Co(L7 + max 820 +7).
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(A) Duality: PF-ODE vs Reverse-SDE  (B) Schrodinger Bridge Diagnostic

Forward SDE
- 5

(aVQ) = . (u —bg)
| Drift « |—>[ Poisson solve |—>| Potential 0 |

dH; = Fdt + X dW; FP equation

— |Residua1r:ubefaV9|
Reverse SDE

u=F — (aVlogpu + V- a)

R = [|la=?r|? dudt

Figure 6: Schematic. (A) PF-ODE / reverse-SDE duality (the divergence term V- a distin-
guishes deterministic from stochastic velocities). (B) Schrodinger Bridge diagnostic: drift
estimation — Poisson solve — rotational energy.

Practical choice of the degeneracy regularizer. Use v > 0 when the diffusion tensor
a is rank-deficient or extremely ill-conditioned (e.g., near locking or when dynamics lie close
to a low-dimensional manifold). Choose the smallest v such that the condition number
satisfies k(a 4+ vI) < Kmax required for numerical stability of operators (e.g., the Poisson
solve in Fig. ) The proof of Theorem passes to the limit v | 0, so predictions are
stable for small positive v while ensuring well-posed computations during estimation.

G  SUPPLEMENTARY DETAILS FOR SECTION [§

Proof of Theorem [5.1] - (SB alignment characterization). Work with the weighted
inner product (v, w),-1 := [(v,a ~lw) py for each t. By the weighted Hodge decomposition,
any velocity a=1(u—bg) splits orthogonally as VO +¢ with V- (¢ y) = 0 in the distributional
sense. The SB Euler-Lagrange conditions (for fixed endpoints and reference R) enforce
a"Y(u — bg) = V0, i.e., the solenoidal component vanishes. Conversely, if u = br + aV0,

then the path satisfies the SB optimality system and is the unique minimizer of the action
under Assumption O

Proof of Theorem (rotational energy bound). Let u} denote the SB path with
reference R and the same endpoints. Consider the time derivative of KL(u||p;) in weak
form. Using u = br + aV0 + w and the continuity equations for u; and py, one obtains
(after cancellations of potential terms) a dissipation inequality of the form

d
@KL(M”N:) < - /(w,a*1w> ue + terms controlled by Cp(u,a).

Integrating over ¢ € [0, 1] and invoking the weighted Poincaré inequality (finite Cp(u,a))

yields KL(pe||p5) < Cp(p,a fof w,a”'w) s, which implies the stated bound after mono-
tonicity adjustment. The equality R = 0 forces w = 0, hence SB alignment, and the converse
is immediate. ]

Vanishing-regularization limit for degenerate references. Let a. = a+¢l withe | 0.
Assume the SB paths (uf)se[o,1) are tight with uniformly bounded action. By Prokhorov
compactness, there is a subsequence with ui = p; for each t. Passing to the limit in the weak
optimality system shows that {u:} is a degenerate SB solution. If R = 0, then u = bg+aV¥
holds p¢-a.e., implying that the PF-ODE path coincides with the (degenerate) SB limit.

Proof of Corollary (simplex Schrédinger Bridge). We derive the simplex form
of the Schrodinger Bridge optimality condition by pushing forward the hidden-space SB
system through the softmax map ¢(h) = softmax(W Th).
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Step 1: Hidden-space SB condition. By Theorem the hidden-space probability path
{ul} is an SB if and only if its velocity field takes the potential-low form
u(h,t) = br(h,t) +a(h,t) V,0(h,t)
for some potential #: R? x [0,1] — R, where a = oo " is the diffusion matrix. The corre-
sponding continuity equation is
dppi = =V (u(hyt) uf (b)) in D'(RY).

Step 2: Pushforward to the simplex. Define the simplex-valued process by p = ¢(h) =
softmax(W Th) and let P, := ¢ xul denote the law of p(t) on AV~1. For any test function
¥ € Cp(AV~1) we have

G vware =5 [ vem)ade

=/ Vi[e(p(h))] - u(h, t) dpy (),

where we used the weak form of the continuity equation. Writing 2 = W Th and p =
softmax(z), the chain rule gives

Vald(p(h)] = (Vpy(p))

. Jp __ dz __ T
since 52 = Jym(z) and 57 =W .

TP

oh = (qul)(p))—rjsm(z) WT,

Step 3: Transforming the potential term. We now relate € to a simplex potential. Define
O(p,t) on the image of ¢ by O(p,t) := 0(h,t) for any h such that ¢(h) = p; under our
regularity assumptions this is well defined py-a.e. and determines © up to an additive
constant on fibers. Applying the chain rule to 8(h,t) = ©(p(h),t) yields

Ip

Vil(h,t) = (%)Tvp@(p,t) = W Jun(2)TV,0(p, 1).

Substituting v = bgr + aV0 into the weak form and using the composition above, the
contribution of the potential term is

[ Valote) - aViodu = [ (70) T W a Vit dul
Rd Rd

_ /R (V) () W QW T () 9,0 dil

By Proposition [£.4] the effective mobility on the simplex is
M) = Jsm(2) WTaW Jou(2),
so the previous expression can be written as

LT M@ V000 = [ (9,0 M) V,00.0) P,

Step 4: Simplex continuity equation and SB form. Performing the same pushforward step
for the reference part bg (which either vanishes or pushes forward to a gradient term under
the assumptions of Corollary [5.6) and collecting everything in the weak formulation, we
obtain

G e == [ @) (balp ) + M) V,00.0) aPo)

for all ¥ € CH(AV™1), where bp is the pushforward of bg. Equivalently, P, solves the
continuity equation
P, = =V, (Pou(pt)),  v(pt) = br(p,t)+ M(p) V,0(p,1).

When the pushed-forward reference drift ER is itself a gradient field or vanishes (the case
highlighted in the main text), this reduces to the potential-flow SB condition on the simplex

Pt = - vp' (Pt M(p) vp@(pa t))v
with mobility M from Proposition [1.4] exactly as stated in Corollary [5.6] O
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Practical notes on the diagnostic. To estimate R, compute an empirical drift u, solve
the weighted Poisson problem V-(aV) = V-(u—bgr) (on the domain induced by activations),
set r = 4 — bg — aV#, and approximate [ |[a='/2r||? du dt by Monte Carlo. When a is ill-
conditioned, use a. and extrapolate ¢ | 0.

H COMPUTATIONAL IMPLEMENTATION DETAILS

H.1 NUMERICAL STABILITY CONSIDERATIONS

Bounded Variation Computation (complexity & stability). Compute S; =
> 1A29]2 in £loat64 to avoid accumulation errors. For softmax computation, use log-
sum-exp trick: log ), exp(2;) = zZmax +10g Y, €xp(2; — Zmax). Clip probabilities at machine
epsilon before taking logs to prevent numerical instabilities. Monitor S, continuously during
training to detect violations of the bounded variation assumption, triggering segmentation
procedures when local spikes exceed gy = 5 - median(Sy).

Handling Near-Singular Regions. Near representation locking where pnax — 1, the
mobility tensor Jg, becomes ill-conditioned. This creates challenges for both theoretical
analysis and numerical computation. Regularization strategies:

o Add el with e € [1078,1079] for conditioning, ensuring the regularized tensor J5, =
Jsm + €I remains invertible.

e Important: We use Jy, + €I only as a numerical preconditioner in linear solvers;
the PF-ODE itself continues to use the unregularized J,, preserving Jg,1 = 0 and
mass conservation.

« Use pseudoinverse with tolerance tol = 10710 for projections when exact inversion
is not required.

« Monitor condition number #(Jyy); switch to specialized solvers when x > 1012,

e For Schrodinger Bridge computations near degeneracy, apply the regularization
ae = a + el as specified in Assumption [5.1] reconciling the general degenerate case
with SPD requirements.

Efficient mobility computation. The mobility tensor norm ||Jsm||r used for early exit
decisions and locking detection can be computed in O(V) time without constructing the
full matrix. Using the identity ||Jsm||% = >, pF + (>, ) —2 >, p?, we need only compute
three moments of the probability distribution, making this diagnostic negligible compared
to attention computation costs.

Local Drift Estimation (complexity and robustness). The architectural consistency
condition in Assumption [3.1| requires accurate drift estimation. For k-NN local regression
on N points:

o Computational cost: O(NkV) operations when batched efficiently using KD-trees
or approximate nearest neighbor algorithms.
%T2 |r| <6

a(rl=5) Irl>d

o Use Huber loss ps(r) = { with § = 1.345 - MAD for outlier

resistance.

o Apply leave-one-out cross-validation for hyperparameter selection, particularly for
choosing k and ridge parameter .

o Small MLP regressors (2-3 layers, 256-512 units) add O(N - MLP) cost but provide
better approximation in high-curvature regions.

o Verify consistency: For compact K C RV, check ||13L = bllz2(kx[0,1])) < € with
progressively smaller € as L increases.
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PF-ODE Integration (adaptive schemes and conservation). Employ Dor-
mand—Prince (RK5(4)) with embedded error estimation for solving the probability-flow
ODE. The adaptive timestep selection ensures accuracy while maintaining computational
efficiency:

® Step size control: hnew = h - min (fmaxamax (fminvfsafety : (%)0'2)) where
fsafety =0.9, fmin =0.2, fmax = 10.

« Mass conservation: Monitor | Y, p;(t) — 1| < tolmass = 1072, If violated, renor-
malize with warning.

o Positivity preservation: If any p; < 0, project back to simplex via Euclidean
projection: p; = max(0, p; — v) where v is chosen so >, p/” = 1.

« Energy monitoring: Track Shannon entropy E(t) = Y, p;(t)logp;(t) to detect
anomalous behavior.

o Boundary conditions: The zero-flux property Jsn(z)1 = 0 automatically pre-
serves simplex invariance without explicit boundary treatment.

Under Carathéodory regularity, projection should rarely be needed but serves as a numerical
safeguard against accumulation errors.

Schrédinger Bridge Solver (IPF/Sinkhorn with acceleration). The Iterative Pro-
portional Fitting algorithm for Schrédinger Bridge computation requires careful implemen-
tation for numerical stability:

o Dense kernel IPF: O(T M?) complexity where T is iterations and M is discretization
size.

o Nystrom approximation with R landmarks: Reduces complexity to @(TM R) by
approximating kernel K ~ Ky rK zgzlzK RM -

e Anderson acceleration: Maintain m = 5 past iterates for convergence acceleration,
updating via z**t1) = (1 — ;) f(2®) + Bz*) with optimal 8j, computed via least
squares.

 Log-domain computation: Work with log-potentials log a®),log b®) to avoid nu-
merical underflow in high-dimensional settings.

With € > 0 entropic regularization and strictly positive kernels, IPF implements block-
coordinate Bregman projections that monotonically decrease the SB objective, converging

. L . o2/
to the unique minimizer at geometric rate p = 1=¢_—

Convergence criteria: Stop when both conditions are satisfied:

1. Marginal error: sup, TV (py, pt¢) < 1072 where TV denotes total variation distance.

2. Potential stability: |[§*+1) —9®) | < 1073 measuring change in Schrédinger po-
tentials.

Rotational Energy Estimation (preconditioning and sampling). Computing the
rotational energy diagnostic requires solving a Poisson equation and careful numerical treat-
ment:

1. Drift computation: Extract u from transformer dynamics using finite differences
or learned regression.

2. Poisson solve: Solve V - (aV0) = V - (u — bg) using preconditioned conjugate
gradient with incomplete Cholesky preconditioner.

1/2

3. Preconditioning: Apply a~ /¢ carefully, using regularization a. = a + I when

condition number exceeds 10°.

4. Importance sampling: In high-variance regions (near simplex boundaries), in-
crease sample density by factor of 10.
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5. Monte Carlo estimation: Use Ny = 10* samples per time point for reliable
estimates with standard error ~ 0.01||R]|.

I AsymMPTOTIC COMPLEXITY ANALYSIS

Procedure Complexity (per batch) Notes

BV statistic St O(LV) float64 accumulation

Local drift fit O(NEV) k-NN; batched operations

PF-ODE integrate O(NstepsV) adaptive RK with error control

Score estimation O(N - MLP) layerwise caching available

SB (dense IPF) O(TM?) Nystrém — O(TMR)

Rotational energy O3, My, d) precondition by a~!/2

Memory requirement O(LV + Nd) activation caching

Temperature schedule O(L) entropy computation per layer

Barly exit check o) closed-form Frobenius norm from moments of p

Table 2: Asymptotic costs for diagnostic procedures. Typical setting has V' > d (vocabulary
much larger than hidden dimension). Batching and caching significantly reduce practical
constants. All procedures are designed to add minimal overhead to standard transformer
operations.

J EXTENDED MATHEMATICAL RESULTS

J.1 PRroofF oF WEAK CONVERGENCE UNDER BV

Theorem J.1 (BV compactness and identification). Under Assumption (bounded vari-
ation, uniform boundedness, and architectural consistency), there exists a subsequence zr,
and a limit z € BV([0,1};RY) such that

2L, (t) = 2(t)  for a.e. t €[0,1], zr, — 2z in LY([0,1;RY).
Moreover, for the piecewise-constant derivatives Dy := AZ(Z)/(% we have weak L' conver-

gence to the architectural drift b, i.e. Dy, — b(-,-) in L*([0,1];RY).

Proof. We argue in two steps: first extracting a compactness subsequence for the logit paths
(z1), then identifying the limit of the discrete drifts via Lemma

Step 1: Compactness of (z1). For each L let 0t = 1/L and ¢, = ¢/L, and define the
piecewise-constant interpolant

2p(t) =20 for t € [ty tey1), {=0,...,L -1
By Assumption B.1[i) and (ii) we have

L—-1
sup > 20 — 2O, < 0, sup |29 < C,
L =0 L.t

so each coordinate of zz has uniformly bounded total variation on [0, 1] and the sequence
(21) is uniformly bounded in L>(0,1;R"). By Helly’s selection theorem (applied compo-
nentwise) there exists a subsequence, still denoted (zz,), and a function z € BV([0, 1];RY)
such that

2p(t) — z(t) for a.e. t € [0,1].

Since ||z (t)||2 < C, uniformly in L and ¢, dominated convergence then implies

zr, =z in L'([0,1;RY).
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Step 2: Identification of the limiting drift. Define the piecewise-constant discrete drifts
L+ _ (0

Dy(t)i= " forteltoten).  £=0....L-1

Assumption (iii) and Appendix |E| furnish local regression estimators by such that, on
every compact K € RV,

1L = brllzexony 5200 llbr = bllezrexony 7520

Lemma upgrades these L? estimates to strong L' convergence, i.e.

1Dz = bl L1k x[0,1]) ——0

for every compact K € RY. By Assumption ii) the trajectories zp(¢) remain in a
common compact subset Ky € RY for all ¢t € [0,1] and all L, so the above estimate with
K = K yields
1D = b( ) 2oy 7 0
—o0

In particular Dy — b(-,-) strongly in L'([0,1];RY), and hence also D — b(-,-) in
LY([0,1;RY).

This proves the claimed compactness of (z1) and the weak L! convergence of the discrete
drifts D, to the architectural drift b, and thus Theorem O

Remark J.2. This proof deliberately avoids Arzeld-Ascoli (which would require equicon-
tinuity to deduce uniform convergence that we do not need) and relies on Helly’s selection
theorem for BV curves, which provides the weaker but sufficient pointwise almost-everywhere
and L' convergence. For the derivative sequence, we obtain weak L' convergence directly
from strong convergence via the drift-identification lemma, rather than invoking the Dunford-
Pettis criterion (which would additionally require verifying uniform integrability of {DL}, a
condition not immediately guaranteed by boundedness alone).

J.2 SPECTRAL ANALYSIS OF MOBILITY TENSOR

Proposition J.3 (Eigenstructure of Jgy ). The softmaz Jacobian has the following spectral
properties:

1. Figenvalues: A\g =0 (simple), 0 < X\; < 1/2 fori=1,...,V —1.
2. Eigenvectors: vg = 1/\/V, others orthogonal to 1.

3. Condition number: k(Jsm) ~ 1/(2pmin) a8 Pmin — 0.

4

. Spectral gap: For the two-point uniform case, the nonzero eigenvalue equals 1/2.
In general, lower bounds depend on distributional structure; naive bounds like A\ 2
Pmin can be loose and are not used in our proofs.

Proof. The matrix Jg,, = Diag(p) — pp' is symmetric with Js,,1 = 0, giving A\g = 0 with
eigenvector 1.

For v L 1 with |||z = 1:

2
v Jamv =Y piv] — <Zpivi> = piv] = pminllv]3 = Pmin-
A i %

For the upper bound, consider the Rayleigh quotient:

'UTJsmU o Zz pﬂ% - (Zz pivi)2
5 .

T
vv ;Ui
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By Cauchy-Schwarz, this is maximized when probability concentrates on two outcomes.
Setting py = p2 = 1/2 and v = (1,—1,0,...,0)" /4/2 yields the upper bound 1/2.
1/2

i explaining numerical diffi-

The condition number follows from k(Jsm) = Amax/Amin <
culties near locking where pyin — 0.

P
in

The spectral gap A1 > pmin determines the rate of convergence to equilibrium under the
induced dynamics, with smaller gaps leading to slower mixing and potential metastability.
This lower bound is generally loose; tight values depend on the full probability profile. [

J.3 SCHRODINGER BRIDGE OPTIMALITY CONDITIONS

Theorem J.4 (First-order conditions for SB with regularization). The Schrédinger Bridge
w* satisfies the coupled system of PDEs:

D+ 3 tr(a V) + br - Vo =0, (10)
O — 3 tr(a V) = V - (breyp) = 0, (11)
M: = exp(cp(~,t) + Qp(,t)) Vi, (12)

where vy is the reference path law and (p, ) are Schrédinger potentials. When a is near-
singular, we apply regularization a. = a + €l with € > 0 sufficiently small to maintain
well-posedness while preserving the essential transport structure.

Proof. The Schrédinger Bridge problem minimizes the relative entropy:
dp
=E, log—
H(ul) = B, log 5

subject to marginal constraints pg = po, g1 = p1.

Using the Girsanov theorem, the Radon-Nikodym derivative decomposes as:

du ! 1t 9
-5 = 89 s -3 sllg—1
1y = &XP (/0 (hs,dXs — brdt) 2/0 |hs]|i-1ds

for some adapted process h.

The optimal hg takes the form hs = aVp(X,, s) where ¢ solves the forward equation equa-
tion The backward potential ¢ arises from the adjoint equation ensuring the terminal
marginal constraint.

When a degenerates (as occurs near representation locking), the regularization a. ensures:

o The elliptic operators in equation [I0}equation [I1] remain uniformly elliptic

-1

- exists with bounded norm

e The inverse a

e The solution converges to the original problem as € — 0 in the weak topology

This regularization reconciles the general degenerate diffusion framework with the SPD
requirements for well-posed Schrédinger Bridges. O

K DETECTION AND MITIGATION OF BV VIOLATIONS

K.1 ONLINE DETECTION ALGORITHM
K.2 SEGMENTATION STRATEGY
When BV violations are detected, we partition the depth interval [0,1] into segments

{[ti—1,t:]}£, where BV holds locally. The segmentation procedure maintains the theo-
retical guarantees while handling practical violations:
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Algorithm 1 Online BV Violation Detection with Adaptive Thresholding

1: Input: Stream of logit differences {Az()}, window size W, base threshold g
2: Initialize: Sigcal = 0, buffer B = [, Tadaptive = To

3: for /=0,1,2,... do

4: Slocal ¢ Slocal + HAZ([) ||%

5: Append ||Az®)|5 to B

6: if |B| > W then

7 Slocal — Slocal - B[O]2

8: Remove first element from B

9: end if
10: Adaptive threshold: Tadaptive = 70 - (1 + 0.1 - std(B)/mean(B))
11: if Slocal/|B| > Tadaptive then
12: Flag: BV violation at layer ¢
13: Severity: s = (Siocal/|B|)/Tadaptive
14: if s > 2 then
15: Action: Initiate immediate depth segmentation

16: else

17: Action: Mark for monitoring, prepare segmentation

18: end if

19: end if
20: end for

1. Identification phase:
« Find violation points {/;} using Algorithm
« Compute violation severity s; at each point
e Cluster nearby violations within A¢ = 3 layers

2. Segmentation construction:
o Create boundaries at ¢t; = ¢;/L with buffer zones [t; — 0,t; + ] where § = 2/L
o Ensure minimum segment length |t; —t;_1| > 5/L for stable analysis
o Merge segments if total count exceeds Kp,ax = L/10

3. Local PF-ODE analysis:

o Apply Theorem [3.7| within each segment [t;_1, ;]
o Estimate local drift b;(z,t) using only data from segment i
e Verify local BV condition: 3=,cooment, 1Az, < C;
4. Boundary matching:
» Enforce weak continuity: limt_n; p(t) = limt_)tj p(t) in L!
o Allow jump discontinuities in velocity: v(t]) — v(t; ) € Range(Jsm)
« Compute transition operators T; : AV~1 — AV~1 at boundaries
5. Global assembly:

o Concatenate local solutions: p(t) = p;(¢) for t € [t;—1, ;]
» Verify global conservation: 3, p;(t) = 1 for all ¢
o Compute effective transport distance accounting for jumps

Theoretical guarantee: The segmented solution converges to the same limit as the contin-

uous solution as L — oo and violation severity decreases, maintaining the essential transport
structure while accommodating practical discontinuities.

L. CONNECTION TO EMPIRICAL PHENOMENA

L.1 ATTENTION ENTROPY COLLAPSE

The attention entropy collapse phenomenon observed empirically |Gong et al.| (2019) follows
rigorously from our mobility analysis:
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Proposition L.1 (Entropy dynamics under PF-ODE). Under the probability-flow ODE

P = Jom(2)b(2,t), the Shannon entropy H[p| = — ", p;log p; satisfies:
H[p] = = Jamij bj log(pi/p;) <0
]

when b aligns with the negative entropy gradient. Moreover, H[p] — 0 as pmax — 1 due to
vanishing mobility.

Proof. Computing the time derivative:

Hlp] = — Zﬁi(logpi +1) (13)
- Z Jsm,ijbj log p; (15)

Using the symmetry of Jg, and the fact that Js,1 = 0:

. 1
Hip] = 3 Z Jsm,ijbj(log p; —log pj) (16)
Z’j
==Y Jomibs log(pi/p;) (17)
1,7

When b= —VH (gradient flow), the quadratic form b"Jg,b > 0 ensures H<O0.
AS Prmax — 1, we have [|Jym| — 0 by Theorem [3.9) implying [H[p]| < || Jom]|[|B][||[ VH] — 0.
This rigorously explains why attention patterns become increasingly peaked in deeper layers,

with entropy collapse being inevitable rather than a training artifact. O

L.2 TEMPERATURE SCALING EFFECTIVENESS

Temperature scaling’s empirical success |Guo et al| (2017) in improving calibration is ex-
plained by explicit mobility modulation:

Proposition L.2 (Temperature-mobility relationship). For temperature parameter T > 0,
the effective mobility tensor satisfies:

1
Jim(2) = = Jsm (2/7)
The eigenvalues of JI..(z) equal those of Jsm(z/T) scaled by 1/7. The condition number
satisfies k(J7,(2)) = &(Jsm(2/7)), which may differ from k(Jsm(2)) because the probability

distribution changes when scaling logits. The induced dynamics slow by factor T, enabling
finer control near decision boundaries.

Proof. For temperature-scaled softmax p] = exp(z;/7)/Z7 where Z7 =}, exp(z;/7):

) =2 (18)
= % (Diag(p") —p"(p7) ") (19)
= L um(z/7) (20)

The eigenvalue scaling follows immediately: if Jgn(2/7)v = Av, then J7 (2)v = (A/7)v.

Sm
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The condition number relationship requires careful interpretation. Since JJ (z) =
L Jem(2/7), we have k(J7,(2)) = K(Jam(2/7)) because scaling all eigenvalues by the same
positive constant preserves the ratio of largest to smallest eigenvalue. However, this dif-
fers from k(Jgm(2)) in general because z — z/7 changes the probability distribution from
p = softmax(z) to p” = softmax(z/7), and the mobility tensor’s eigenstructure depends on
the specific probability values.

For the induced dynamics:
1
p" = Jan(2)b(z, 1) = = Jsm(2/7)b(2, 1)
T

The factor 1/7 uniformly reduces velocity magnitude, slowing convergence to locked states.
This explains temperature scaling’s effectiveness: lower temperature prevents premature
commitment by maintaining transport capacity throughout network depth.

Calibration improvement arises because slower dynamics allow more gradual probability
refinement, avoiding the overconfident predictions that occur when mobility vanishes rapidly.
O

Proof of Theorem (locking via vanishing mobility). By Theorem the lim-
iting probability path p(t) € AV ! satisfies

p(t) = Jam(2(1))b(2(t),t) for a.e. t €[0,1],

with p(t) = softmax(z(t)/7) and Jyu(2) = Diag(p) — pp'. If b is bounded, there exists
M < oo such that ||b(z(t),t)|| < M along the trajectory, hence

BN < N[ Tsm (20 llop [10(z(8), O < M |[Jsm (2(E)) [l op- (21)

The spectral analysis in Appendix [B| (“Proof of the sharp mobility bound”) shows that the
nonzero eigenvalues of Jop, (2(¢)) lie in [0,1/(27)] and that, as pmax(t) — 1, the spectrum
collapses to {0}. In particular,

Pmax(t) =1 = [|[Jsm(2(t))]lop — O.

Combining this with equation [21]yields ||p(t)|| — 0 whenever ppax(t) — 1, i.e., the probabil-
ity path becomes locked near the corresponding simplex vertex. This proves the vanishing-
mobility and locking statements.

For the temperature dependence, Appendix (“Temperature Scaling Effectiveness”) es-
tablishes the temperature-mobility relationship

Toalz) =+ Jan(2/7),

so the eigenvalues and operator norm of JJ (z) are rescaled by 1/7 relative to those of
Jsm(z/7). Thus, increasing 7 slows the PF-ODE dynamics by a factor 1/7 while preserving
the qualitative vanishing of mobility as pmax(t) — 1, precisely as stated in Theorem O

L.3 TWwWO-TOKEN MOBILITY EXAMPLE: COMPLETE CALCULATION

We provide the full eigenvalue decomposition for the two-token case.

Consider a minimal attention layer with two tokens, so that distributions have the form
p = (p,1 — p) on the one-dimensional simplex [0,1]. For logits z = (z1,22), the softmax

probabilities are
e e*?
= — = — = 1 — .
D1 o1 +6227 D2 o1 e%2 D1

The Jacobian of z +— p is

Jsm(2) = <6Z1p1 azﬂ)l) _ <P1(1 -p1)  —pip2 ) .

0:p2 0,2 —pip2 p2(l —p2)
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Writing p = p; and 1 — p = po, this becomes
1 -1
Jsm(z) = p(1 —p) (_1 1 ) )
Eigenvalue calculation. The characteristic polynomial is
p(l—=p)—A —p(l—p) ) 2 2
det =(p(1—p)—XA)" — (p(1 - =AA—=2p(1 —p)).
( Cplep) p-p) )= @A=P) =27 = (p(1=p))" = AN = 2p(1 ~p))
Thus the eigenvalues are A\; = 0 and Ay = 2p(1 — p).

Eigenvectors. For A; = 0: The eigenvector is (1,1), which is normal to the simplex (points
in the direction of the constraint ), p; = 1).

For A2 = 2p(1 — p): The eigenvector is (1,—1), which is tangent to the simplex.

Hence

[Jsm (2)llop = 2p(1 = p),
which attains its maximum value 1/2 at the uniform distribution p = 1/2 and collapses to
Oasp—+0orp—1.

Temperature scaling. With temperature 7 > 0, the Jacobian with respect to unscaled
logits picks up a factor of 77!, so the effective mobility norm behaves like

T 2p ]-_p
TG lep = Z2L=)

As attention mass locks onto one token (p — 1 or p — 0), we have p(1 —p) — 0 and thus the
mobility eigenvalue in the tangent direction vanishes, forcing p = Jun(2) b(2,t) to approach
zero even if the drift b remains bounded away from zero. Temperature rescaling modulates
this locking behavior: larger 7 keeps p away from the degenerate regimes p = 0 or p ~ 1
and maintains nontrivial mobility deeper into the network.

M EXTENDED EXPERIMENTAL PROTOCOLS

M.1 SECTION 7 REFERENCE RECAP AND CONVENTIONS

Conventions. W1 uses cost ||-||1; Wa terms in this section use an entropic Sinkhorn surrogate

with the same ¢ as elsewhere. All TV norms are 1| - |1 on row distributions. Query/key

distances dg, dx match the metrics used in plots/captions.
Row drift bound. Let Pl-(e) = sm(zge)) be the ith row at layer ¢, with component-wise

Lipschitz constants Lg) for ¢ € Cy and incoming perturbations Augec)

1P = PO < 30 L0 A (22)

ceCy
Remark. Equation yields a finite-depth budget for one-layer motion (TV on the left)
from component sensitivities on the right; it underpins the PF-ODE adequacy overlay in

§7.

Local saturation / locking. Let P = sm(z), tail mass 6(P) = 1 — max; P(j), and Az a
small perturbation that preserves the argmax.

sm(z + Az) —sm(z)||, < min{l, 20(P)} |Az]lc + o[ A2]|s0). (23)

Remark. When §(P) is small (near saturation), softmax is insensitive to small, non-flipping
logit changes—predicting the “locking” collapse of ATV in low-tail-mass bins.

Curvature (common-support W;). For queries ¢ # i with common support S; ;/, define

- Wi(Pi, Pr)
=1 - 24
k(i,1") doli i) (24)
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where Wi is over (S;,/,dx) and P denotes restriction to the common support. Remark.
The curvature gap 1 — k quantifies contraction on the simplex; temperature 1 or key-norm
1 should reduce this gap (tested in §7).

EVI with drift. For successive layers /—1 — /£ at query ¢, with objective F; and pge) = Pi(,e),

WA, 1) ~ W, i)
2 Tleft

<~ (B() - Ei") + Al (@9)

Remark. Equation (25) is a discrete EVI: each layer decreases F; up to a drift term from
parameter changes ((), K). In §7 we use a Sinkhorn Wj . surrogate for the left-hand side
and report the expected proximal-progress signature when drift is small.

M.2 DETAILED SCORE ESTIMATION PROCEDURE

For robust score estimation in anisotropic regimes encountered near representation bound-
aries:

1. Data augmentation: Generate noisy samples at multiple scales

hU:h+€7 eNN(OaO'ZI) (26)
o € {0.01,0.02,0.05,0.1} - || (27)

]

) emphasizes intermediate noise levels.

2. Denoising objective with importance weighting:

. h—h
SQ(hat7U)_ 2

g

E(a) = ]Eh,a,a lw(g) '

2

where w(o) = 0?/(c? + 02,
3. Multi-scale architecture:

o Input: [h;t;logo] € R4H2

o Hidden layers: 2-3 layers with width max(512, 2d)

« Skip connections: A+ = p) 4 MLP(R(®)

e Output normalization: LayerNorm before final projection
4. Training protocol:

o Optimizer: AdamW with learning rate 10~4, weight decay 10~°

o Batch size: 256 samples per noise level

e Epochs: 5 per layer with early stopping based on validation loss

o Curriculum: Start with large o, progressively include smaller scales

5. Validation and diagnostics:

o Score consistency: Verify |V - (psg)| < 1072 on held-out data
o Anisotropy detection: Compute eigenvalues of E[sys, |
e Coverage: Ensure score estimates span the tangent space at each point

M.3 IPF IMPLEMENTATION DETAILS

The Iterative Proportional Fitting algorithm for computing Schrédinger Bridges between
transformer layers:

Implementation notes:

« Work in log domain to avoid numerical underflow: store loga®), log b(*)
o Use logsumexp for stable computation of normalizing constants

o For large vocabularies V > 10% wuse Nystrém approximation with R =
min (1000, V/10) landmarks

« Monitor dual gap: G*) = (a®), Kb®)) — (119,1og a™) — (1, log bF))
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Algorithm 2 IPF for Schréodinger Bridge with Adaptive Regularization

1: Input: Marginals pg, i1, diffusion a, tolerance €., max iterations Tyax
2: Initialize: a(®) =1, 5 =1, .0, = 0.1

3: Compute reference kernel: K;; = exp(—||lz; — y;||>-1/(2ereg))

4: for k=1,2,...,Thax do

5: Check conditioning: If x(K) > 1010 increase Ereg + 1.96reg

6: b®) =y @ (K Tak=1) > Pointwise division in log domain
7: a® = po @ (Kbk)

8: ") = Diag(a™) K Diag(b®)

9: Compute marginals: fig = I*)1, g, = T®T1

10: Convergence check:

11: if TV (iig, po) + TV (i1, p1) < €01 then

12: Extract potentials: ¢ = £, log a®), 4p = Ereg lOg (k)

13: Return 1% o, ¢

14: end if

15: Anderson acceleration: If £ mod 5 = 0, apply acceleration using past 5 iterates
16: end for

17: Warning: Maximum iterations reached without convergence

L L

TV change

LU i

—
=]
=]

Tail mass 6(P)

Figure 7: Locking (P2): ATV vs. tail mass §(P) (median/IQR bins).

M.4 ADDITIONAL TRACK-T DIAGNOSTICS

M.5 ADDITIONAL IMAGE DIAGNOSTICS

Table 3: Image rotational energy R with 95% BCa CIs; cross-track values are not comparable
due to different ambient spaces/discretizations.

~

Track R Notes
Image (CIFAR-10) 0.03092 (95% CI [0.01046, 0.05385]) 20 time points

M.6 QUANTITATIVE PASS/FAIL CHECKS

P1 (PF-ODE adequacy). Realized layerwise TV should not exceed the drift budget plus
a finite-sample band; exceedances are flagged.

P2 (Locking). In low—tail-mass bins, the median ATV remains within a small band (bands
and CI policy as in App. Section .

P3 (Curvature/EVI). Increasing temperature or reducing key-norms reduces the curva-
ture gap 1 — k by a predictable amount; reductions are reported with uncertainty bands (see
App. Section .

P4 (SB alignment). Rotational energy R decreases under improved calibration/check-
points (BCa ClIs; App. Section .

Image weak error. The slope of logerrg vs. log K is near —1 (BCa, B=1000); the fitted
value and CI are reported.
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Layer

Sinkhorn W5 between consecutive layers

Figure 8: EVI surrogate (P3): Sinkhorn W5 . across layers (mean4sd).
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Figure 9: Path smoothness (BV; unitless) for ODE vs. SDE.

M.7 ADDITIONAL EXPLORATION: DISCRETE DIFFUSION LANGUAGE MODELS

We briefly explored extending our diagnostics to diffusion language models operating on
discrete token spaces. The late-window stability diagnostic in its current form showed
limited applicability in this setting, suggesting that discrete state spaces require adapted
diagnostics beyond the scope of this work. We therefore focus empirical validation on
continuous dynamics (transformers and image diffusion) where the framework’s predictions
are directly testable.

N EXTENDED LIMITATIONS AND PRACTICAL IMPLICATIONS

N.1 MODALITY SCOPE AND EVALUATION

Scope. This work evaluates text transformers and includes a minimal image diffusion
sanity check (CIFAR-10). Full-scale vision benchmarks and perceptual metrics (e.g., FID
under guidance sweeps) are intentionally out of scope for this paper.
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Implications. The OT/PF-ODE constructions are modality-agnostic, but conclusions
here are supported by text-model evidence (Track T/D) and a compact image sanity check
(Track I). Future expansions to larger image datasets and class-conditional guidance are
planned (see Section [O]).

N.2 POISSON SOLVE AND CONDITIONING POLICY

Masked Poisson and regularization. We solve Ay = V-« with masked Neumann
boundary conditions; Tikhonov v regularizes the Laplacian on thin supports.

Condition-number target. Default v = 107%; increase v until the (masked) system’s
condition number is < 10%. Record « and the achieved condition number alongside R.

Normalized variant. For intra-track comparisons, optionally report the dimensionless

Ruorm = R/ [ [|ul>.

N.3 CURRENT LIMITATIONS AND MITIGATION STRATEGIES
Bounded variation breakdown. The BV assumption may fail during;:

o Attention pattern reorganization (detectable via Sy, monitoring).
o Early training instabilities (addressable through warmup).
o Adversarial inputs (requiring robust training modifications).
Mitigation: Implement adaptive depth segmentation when local variation exceeds thresh-

olds. The PF-ODE applies piecewise with weak continuity at segment boundaries, as de-
tailed in Section [K21

Anisotropy challenges. Near-singular diffusion tensors arise at representation bound-
aries:

¢ Regularize with eI for numerical stability (e € [1078,1079]).
e Monitor condition numbers and adapt solver tolerances.

o Use preconditioned iterative methods for bridge computation.

This reconciles the degenerate diffusion analysis (Section [4]) with SPD requirements for
Schrodinger Bridges (Section .

Computational costs. Full SB computation scales quadratically with vocabulary:

e Employ Nystrom approximations for large vocabularies.
+ Use landmark-based methods reducing complexity to O(TMR).
e Implement hierarchical decompositions for multi-scale analysis.

N.4 VALIDITY CONDITIONS AND DIAGNOSTIC ABSTENTION PROTOCOL

PO gate. Diagnostics P1-P4 are conditioned on passing PO (BV S < 0.15 and continuity
residuals < 1071%). Failures trigger abstention and reporting of the failing metric.

O DiscussiON AND FUTURE DIRECTIONS (EXTENDED)

0.1 THEORETICAL IMPLICATIONS AND OPEN QUESTIONS
Optimality of attention. Does the semi-relaxed EOT structure of attention reflect an

optimal sequence model, or a convenient approximation? The SB characterization suggests
near-optimal transport under appropriate conditions.
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Implicit regularization. Softmax’s entropic regularization may explain generalization;
connect to PAC-Bayes and info-theoretic measures.

Scaling laws. The framework predicts links between depth/width and effective transport
capacity; test against empirical scaling laws.

0.2 METHODOLOGICAL CONTRIBUTIONS BEYOND THEORY

Training monitoring. BV statistics warn of instabilities; rotational energy tracks trans-
port alignment and flags when architectural changes may help.

Architecture search. Differentiable transport-efficiency metrics can guide gradient-
based architecture optimization beyond accuracy-only objectives.

Interpretability. Mobility provides a geometric lens on attention patterns; tracking its
evolution can reveal phase transitions in representation.

P NOTATION SUMMARY

Symbol  Description

h® Hidden representation at layer ¢
P Logits at layer ¢

p® Probability distribution at layer ¢
Jsm Softmax Jacobian (mobility tensor)
Jom Temperature-scaled mobility tensor
SL Bounded variation statistic

R Rotational energy (SB deviation)

a Diffusion tensor (£X7)

Qe Regularized diffusion (a + 1)

br Reference drift

b(z,t) Architectural drift (identified limit)
0 Schrédinger potential

©, P Forward /backward Schrodinger potentials
M (p) Induced mobility on simplex

Lt Transformer probability path

Pt General probability measure

Ut Reference path measure

U Velocity field for probability flow
Hlp] Shannon entropy

T Temperature parameter

Table 4: Complete notation used throughout the paper, including both main text and
appendix symbols.

Q ADDITIONAL TECHNICAL LEMMAS

Lemma Q.1 (Gradient flow structure). The probability-flow ODE on the simplex admits a
gradient flow interpretation in the Wasserstein geometry when b = —VV for some potential
V:

p= _vwz]:[p]

where Flp] =Y, piV(2i) and V, denotes the Wasserstein gradient.

Proof. We briefly recall the Riemannian structure underlying the discrete Wasserstein ge-
ometry; see, for example, [Maas| (2011); Erbar & Maas (2012)); |(Chow et al.| (2012) for full
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details. On the simplex AY~! admissible tangent vectors w satisfy Y, w; = 0, and the
discrete Ws metric is defined by the inner product

<w1,w2 Wa,p * E wlz w2g,

where M (p) is the mobility tensor associated with the dynamics. In our setting, this M (p)
coincides with the effective mobility tensor introduced in Proposition [£.4) and used in Corol-
lary [5.6 -; however, for the present lemma we only require that M (p) be positive definite on
the tangent space.

By definition of the Riemannian metric, the Wasserstein gradient of a smooth functional F
at p is the unique tangent vector grady, F(p) such that

(gradyy, F(p), w)w,,p = Z Op, F(p)w; for all tangent vectors w.

Using the explicit expression for the inner product, this identity forces

grady, F(p) = M(p) VpF(p).

In the probability-flow regime the simplex dynamics take the form
p = M(p)b(p,t).

In the potential case b = —VV we consider the functional Flp| = >, p;V (%), so that
Vo F(p) = (V(21),...,V(2v))". We then obtain

grady, F(p) = M(p) V. F(p),
and the PF-ODE becomes
D= - grade}-(p)7
which is precisely the Wao—gradient flow of F. This proves the claimed gradient flow struc-
ture. O

Remark Q.2 (Discrete optimal transport interpretation). On discrete state spaces, this
gradient flow structure connects to entropic Wy analogues for Markov chains as developed
in|Maas| (2011);|Erbar & Maas| (2012);|Chow et al| (2012). We adopt this interpretation to
provide geometric intuition for the probability dynamics on the simplex, though the precise
metric structure depends on the choice of discrete optimal transport geometry.

Lemma Q.3 (Convergence rate under mobility control). If the mobility tensor satisfies
Amin(Jsm) = m > 0 uniformly, then the probability flow converges exponentially to equilib-
rium:

Ip(®) = pell2 < €™ [p(0) = p- 2

where p, is the unique equilibrium distribution.

Proof. We argue in a finite-dimensional, purely Euclidean setting and make the structure
and use of the mobility bound explicit.

Let p, € AV~! denote an equilibrium of the probability flow: p.(t) = 0 for all + when
p(t) = p«. Consider the deviation u(t) := p(t) —p.. Since both p(t) and p, lie in the simplex,
we have Y, u;(t) = 0 for all ¢, so u(t) always belongs to the tangent space TAYV 1 = {v €

]RV : Zivi = O}

Assume that, in a neighborhood of p., the probability-flow dynamics can be written in the

form

ut) = —A(t) u(t), (28)
where each A(t) is a symmetric, positive-definite linear operator on TAY 1 arising from the
mobility tensor and drift. This is the standard situation for linearized gradient flows around
a strictly convex equilibrium. The “mobility control” assumption Apin(Jsm(2(2))) > m is
then interpreted as providing a uniform lower bound

(v, A(t)v) > m|v||? forallve TAY"!andallt>0. (29)
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(For example, A(t) may be a symmetric combination of Jsy, (2(f)) and a Hessian or linearized
drift; the key point is the coercivity equation )

Define the energy
2 2
E(t) = glu®)lz = 3lpt) - p.ll3-
Differentiating along solutions of equation [2§) gives

d .
ZB(t) = (u(t), (1)) = — (u(t), A®) u(t)).
Using the coercivity bound equation we obtain
d
ZE®) < —mu@®ls = —2mB(?).
Thus F satisfies the differential inequality

%E(t) < —omE(1).

Applying Gréonwall’s lemma yields
E(t) < e 2™ E(0) forallt>0.

Returning to the original variables and recalling that E(t) = %||p(t) — p.||3, we obtain

Ip(t) = pullz < €™ [p(0) — pull2.
This is exactly the claimed exponential convergence rate. O

Lemma Q.4 (Bridge interpolation formula). For Schrédinger Bridge p; between pg and
11, the intermediate marginals satisfy:

pu = argmin {(1 ~ KL(plpo) + KL ()}

providing a variational characterization of the optimal transport path.

Proof. This is a classical characterization of entropic interpolants in the Schrédinger Bridge
(SB) framework; see, for example, the survey Léonard, (2014)) and references therein. In the
dynamic SB problem, the SB path (1).c[0,1] between prescribed endpoints (uo, 1) arises as
the entropic interpolation associated with a reference Markov process. The corresponding
static problem can be formulated as a two-sided entropy minimization with respect to the
endpoint marginals.

More precisely, for each fixed ¢ € (0,1) one can characterize the time-t marginal u; as the
unique minimizer of the two-sided relative entropy functional

p = (1—1t)KL(pllpo) + tKL(p|lu1)

over probability measures p lying in the SB path. This variational principle yields exactly
the formula stated in the lemma. We do not reproduce the full measure-theoretic proof here
and refer instead to [Léonard (2014)) for a complete treatment. O

Remark Q.5. This variational view is classical in the Schrodinger Bridge literature and
depends on the choice of reference path measure; rigorous formulations use Schrodinger
potentials and dynamic entropy minimization as developed in, for example,|Léonard (2014).

Q.1 COMPLETE PROOF OF THE PF-ODE THEOREM ON THE SIMPLEX (SECTION 5.3)
Proof of the PF-ODE on the simplex. We prove that under Assumption the limit path

p(t) = softmax(z(t)/7) satisfies p(t) = Jsm(2(f)) b(2(t),) a.e. on [0,1], and the flow is
tangent to the simplex with conserved mass.
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Step 1: Discrete-to-continuous passage. For each layer /, a first-order expansion gives
P _ @ — g (Zm) ORI

with a remainder bounded as [|re|| < C||Az()||2, by Lipschitz continuity of V.Jy, (Sec-
tion 2). Dividing by 6t = 1/L and summing over layers, the remainders contribute

O3, 11A29]|%)) = O(EL) — 0 by the finite-depth budget.

Step 2: Compactness and limit identification. The piecewise-constant interpolant
pr(t) has bounded variation in ¢ and remains in the simplex. By BV compactness we extract
pr, — p in L*([0,1]). Using 27, — z in L' and Dy, — b (Appendix |J.1), passing to the
limit in the weak formulation yields p = Jm(2) b in the distributional sense, hence a.e. due
to absolute continuity.

Step 3: Well-posedness (Carathéodory). The velocity field v(t) = Jsm(2(t)) b(2(t),t)
is measurable in ¢ and locally Lipschitz in z under the regularity from Section 2, so the ODE
admits a unique absolutely continuous solution by Carathéodory theory.

Step 4: Simplex invariance. Mass conservation follows from Jg,(z)1 = 0, giving
% > ;pi(t) = 0. Tangency to faces holds because if p; = 0 then the i-th row of Jun(2)
vanishes, so p; = 0 (zero-flux). Hence the trajectory remains in the simplex. O
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