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Abstract

We show that transformer attention and diffusion models are discretiza-
tions of the same entropy-regularized optimal transport (OT) flow. A sin-
gle attention layer is a KL-proximal (JKO/mirror) step in an OT poten-
tial; stacking layers yields probability paths that converge to a probabil-
ity–flow ODE (PF–ODE) on the simplex. Our construction uses a causal,
semi-relaxed EOT that preserves attention masking while retaining OT ge-
ometry. We derive a finite-depth error bound controlled by a budget ΞL

(quantifying continuum validity) and prove that stacked attention weakly
approximates time-inhomogeneous, anisotropic reverse diffusions with an
error that separates time discretization, logit variation, and optional de-
generacy regularization. Geometrically, we characterize exact Schrödinger
Bridge (SB) alignment via a rotational energy R that vanishes if and only if
the path is SB, and serves as a practical diagnostic otherwise. The frame-
work yields testable predictions: (i) the continuum approximation is ac-
curate when ΞL is small; (ii) depth exhibits diminishing returns beyond
a threshold set by contraction and step size; and (iii) lower R correlates
with improved generations. We validate these predictions with a diag-
nostic suite (P0–P4): BV/continuity gating (with abstention on failure),
PF–ODE adequacy, curvature/locking geometry, and SB energy. Evidence
spans two tracks—Transformers (core diagnostics) and a compact image
diffusion model (parity and first-order weak-error behavior)—with validity
conditions and diagnostic abstention protocols detailed in Appendix N.4.
These insights motivate mobility-aware temperature scheduling and certi-
fied early exit, conserving depth while preserving transport geometry.

1 Introduction

Transformers and diffusion models appear fundamentally different, yet we show they in-
stantiate two discretizations of the same entropy-regularized optimal transport flow. One
attention layer performs a KL-proximal step in an optimal transport potential, and depth
plays the role of time for the induced probability dynamics on the simplex.
This unification builds on and extends several research streams that have developed in iso-
lation. Attention mechanisms have been interpreted through optimal transport in recent
work (Sander et al., 2022; Tay et al., 2020; Xu et al., 2023; Daneshmand, 2024), but prior
approaches typically employ balanced optimal transport formulations that are fundamen-
tally incompatible with causal masking in autoregressive language modeling. We resolve
this by proving that standard row-softmax attention precisely solves a semi-relaxed entropic
optimal transport problem that preserves autoregressive causality. Continuous-depth inter-
pretations of neural networks through neural ordinary differential equations (Chen et al.,
2018; Dupont et al., 2019; Bai et al., 2019) have been extended to transformers (Zhang
et al., 2021; Chen et al., 2023; Kan et al., 2025), but existing analyses typically lack rigor-
ous finite-depth error control. We strengthen these perspectives by introducing an explicit
bounded variation regime with quantitative finite-depth error bounds controlled by a budget
parameter, proving that the continuous-depth limit satisfies a well-posed probability flow
ordinary differential equation on the probability simplex with the softmax Jacobian acting
as a mobility tensor.
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Score-based generative models have revealed fundamental connections between stochastic
differential equations and deterministic probability flow ordinary differential equations (Song
et al., 2021; Huang et al., 2021; Lipman et al., 2022). We demonstrate that transformer
attention implements discretizations of probability flow ordinary differential equations in
the same geometric family as those underlying diffusion models but operating under semi-
relaxed entropic regularization, explaining why autoregressive-diffusion hybrid architectures
work well empirically (Hoogeboom et al., 2022; Ma et al., 2025). Schrödinger Bridge theory
provides a dynamic formulation of entropy-regularized optimal transport (Léonard, 2014;
De Bortoli et al., 2021; Shi et al., 2023); we operationalize Schrödinger Bridge alignment
within transformer attention dynamics by defining a rotational energy quantity that mea-
sures deviations from optimality and vanishes if and only if the attention-induced flow
satisfies the Schrödinger Bridge characterization, transforming abstract optimality condi-
tions into practical diagnostics estimable from model activations. Comprehensive literature
review with detailed comparisons appears in Appendix C.
Contributions. Under mild regularity assumptions (detailed in Section 2.2), our main
results are:

1. Layer-level principle. Standard row-softmax attention implements a principled Kullback-
Leibler proximal transport step in the sense of mirror descent or Jordan-Kinderlehrer-
Otto schemes, establishing the foundational connection between neural architecture and
optimal transport geometry formalized in Proposition 2.1.

2. Depth-to-time convergence with explicit rates. The discrepancy between discrete layer dy-
namics and continuous probability flow is controlled by a finite-depth budget parameter
denoted ΞL and defined precisely through bounded variation conditions in Theorem 3.1,
providing quantitative error bounds that determine when continuum approximations ap-
ply to finite architectures.

3. Diffusion unification through weak approximation. Stacked attention layers weakly ap-
proximate time-inhomogeneous anisotropic reverse diffusions in probability law, with er-
ror that separates discretization effects from logit variation and optional degeneracy regu-
larization, as established through the anisotropic Fokker-Planck analysis in Theorem 4.5.

4. Schrödinger Bridge alignment certificate. A rotational energy quantity denoted R pro-
vides a necessary and sufficient condition for exact Schrödinger Bridge alignment, quan-
tifying deviations from gradient flow structure and serving as a practical diagnostic for
transport optimality as formalized in Theorem 5.2.

The framework yields three falsifiable predictions: continuum approximation accuracy when
ΞL is small, diminishing returns from depth when mobility degrades, and correlation be-
tween low R and improved generation quality. Our empirical study tests these predictions
across transformer language models and compact image diffusion, with extended protocols
in Appendix 3–1. Figure 5 visualizes how these results connect: Proposition 2.1 establishes
the foundational single-layer principle; Theorem 3.1 extends this to finite-depth convergence
through bounded variation compactness; Theorem 3.7 provides well-posedness infrastruc-
ture supporting Theorem 4.5’s diffusion unification; and Theorem 5.2 characterizes transport
optimality via rotational energy. The diagram identifies the functional analysis machinery
underlying each result, directly addressing proof architecture questions.

2 Preliminaries and Conceptual Framework

2.1 Conceptual Overview

Before establishing formal machinery, we outline the key geometric quantities. The soft-
max Jacobian Jsm(z) acts as the mobility tensor on the probability simplex, with temper-
ature modulating transport capacity via Jτ

sm(z) = τ−1Jsm(z/τ). The finite-depth budget
ΞL quantifies how well discrete layers approximate continuous flow; small ΞL ensures the
probability-flow ordinary differential equation accurately captures layerwise behavior. Ro-
tational energy R measures deviation from optimal transport; exact Schrödinger Bridge
alignment occurs when R vanishes.
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2.2 Mathematical Preliminaries and Notation

This subsection establishes notation, states the standing assumptions used throughout, and
records the layer-level optimal transport view we invoke in subsequent analysis.

Global Assumptions. We collect here the global assumptions used throughout. Assump-
tions 2.1 and 3.1 provide the bounded-variation and regularity conditions, with the latter
adding architectural consistency for the continuum-limit results.
Assumption 2.1 (Bounded variation and architectural consistency). We work on compact
subsets where all quantities are well-defined. Unless stated otherwise, we assume:

1. Bounded-variation logits with uniform mean: Let z(ℓ) denote the layer logits and ∆z(ℓ) :=
z(ℓ+1) − z(ℓ). We assume that the averaged per-layer logit variation

CBV := 1
L

L−1∑
ℓ=0
∥∆z(ℓ)∥∞

remains bounded by a constant C⋆
BV uniformly across all layer counts L. Equivalently,

the total variation
∑L−1

ℓ=0 ∥∆z(ℓ)∥∞ grows at most linearly in L, so that typical layer-
to-layer changes, rather than accumulated variation, control the quality of continuum
approximation.

2. Local drift regularity. The effective drift b(·, t) is locally Lipschitz in its state argument
on bounded sets with Lipschitz constant Lb and is locally bounded by Mb.

3. Mobility bounds. For p = softmax(z/τ) with temperature τ > 0, the Jacobian Jsm(z) =
Diag(p) − pp⊤ satisfies operator-norm and derivative bounds on the relevant compact
domain; denote ΛJ := sup ∥Jsm(z)∥op and LJ := sup ∥∇Jsm(z)∥op.

4. Simplex invariance. Probability vectors p remain in the simplex under the dynamics
considered; faces are handled by the standard tangent-space restriction.

Softmax and Mobility. Given logits z ∈ RV and temperature τ > 0, the softmax
operation and its induced mobility tensor are defined by

p = softmax(z/τ), pi = exp(zi/τ)∑
j exp(zj/τ) , Jsm(z) = Diag(p)− pp⊤.

The Jacobian Jsm(z) characterizes how probability mass flows under logit perturbations,
acting as the mobility tensor that governs transport dynamics on the probability simplex.

Remark (Sharp Mobility Bound). We have ∥Jsm(z)∥op ≤ 1
2τ , with equality at dis-

tributions p = ( 1
2 ,

1
2 , 0, . . . , 0). In particular, for τ = 1, ∥Jsm(z)∥op ≤ 1

2 and the spectrum
lies in [0, 1

2 ], collapsing to {0} as maxi pi → 1. A proof is provided in Appendix B. This
sharp bound explains why temperature scheduling proves essential for maintaining mobility
in deep networks as distributions become increasingly peaked.

2.3 Semi-relaxed entropic optimal transport for attention

Standard attention with row-softmax normalization solves a semi-relaxed entropic optimal
transport problem that preserves autoregressive causality. For a query vector q ∈ Rdk and
key vectors kj ∈ Rdk , define the cost cj = −q · kj , so that high similarity corresponds
to low transport cost. Given a reference distribution u ∈ ∆V −1 (typically uniform) and
temperature τ > 0, the semi-relaxed entropic OT problem is

min
p∈∆V −1


V∑

j=1
pjcj + τ KL(p∥u)

 . (1)

The first-order optimality conditions yield the softmax solution

pj = exp(q · kj/τ)∑V
k=1 exp(q · kk/τ)

= softmax(qK⊤/τ)j ,

3
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so that each attention row solves a semi-relaxed entropic OT problem where the row-
stochastic constraint is enforced but column marginals are unconstrained, preserving au-
toregressive structure. Causal masking is implemented by assigning infinite cost cj = +∞
to masked positions. The complete derivation including the Lagrangian formulation, unique-
ness, and masked formulation appears in Appendix B.
Proposition 2.1 (Attention as KL-Proximal/JKO Step). Let cj = −q ·kj and τ > 0. For
any full-support reference u,

p+ ∈ arg min
p∈∆

{
⟨c, p⟩+ τ KL(p ∥u)

}
.

Stacking such updates discretizes a Kullback-Leibler mirror descent or Jordan-Kinderlehrer-
Otto flow under the assumptions in Section 2.2. The proof is given in Appendix B.

This proposition establishes that each attention layer implements a principled optimal trans-
port step, providing the foundation for our continuous-depth analysis in subsequent sections.

3 Discrete Continuity and the Continuous-Depth Limit

3.1 Bounded variation regime and practical implications

The transition from discrete layers to continuous dynamics requires controlling the accu-
mulation of changes across depth. We formalize this through a bounded-variation (BV)
condition that captures when transformers exhibit smooth evolution rather than abrupt
transitions.
Assumption 3.1 (Bounded variation and architectural consistency). Let δt = 1/L and
tℓ = ℓ/L. We assume:

1. Bounded total variation:
∑

ℓ ∥∆z(ℓ)∥2 ≤ C (uniformly in L).
2. Uniform boundedness (tightness): supℓ ∥z(ℓ)∥2 ≤ Cz.
3. Architectural consistency (identification): local-regression estimates b̂L converge to b on

compacts; see Appendix D.

Note. Weak L1 convergence of DL to b is not assumed here; it follows from Lemma 3.5 via
the calibration–generalization argument.
The BV condition typically holds when per-layer operator drifts are uniformly bounded
(e.g., spectral-norm–regularized projections with stable LayerNorm scaling), yielding∑L

ℓ=1 ∥∆z(ℓ)∥2 < ∞; see App. Sections K and K.1 for worked examples, failure modes,
and an online detection algorithm (Algorithm 1).
Norm compatibility and error budget. To interface with the mobility bounds in Sec-
tion 2.2, we upper bound layer increments with ∥ · ∥∞ (comparable to ∥ · ∥2 on compacts).
Define

ΞL := α1 max
ℓ

∥∥∆z(ℓ)∥∥
∞ + α2

∑
ℓ

∥∥∆z(ℓ)∥∥2
∞, (2)

where α1, α2 depend only on Lb,Mb,ΛJ , LJ from Section 2.2. Norm equivalence for the
budget. On compact domains and fixed dimension, ∥ · ∥2 and ∥ · ∥∞ are equivalent up to
constants. Thus the worst-case single-layer term and the cumulative squared-variation term
in equation 2 are consistent with the ∥ · ∥2-based BV assumption in Assumption 3.1; see
Appendix D for the explicit constants used in the proof of Theorem 3.1.
Theorem 3.1 (Finite-depth error to PF–ODE). Under Assumption 3.1 and the regularity
in Section 2.2, let p(t) solve the probability-flow ODE on [0, 1] with p(0) = limL→∞ p(0).
Then there exists Γ = Γ(Lb,Mb,ΛJ , LJ) such that

sup
t∈[0,1]

∥∥∥ p(⌊tL⌋) − p(t)
∥∥∥

1
≤ ΞL +

(
eΓ − 1

) ∥∥p(0) − p(0)
∥∥

1,

with ΞL in equation 2. In particular, if p(0) = p(0) and ΞL → 0, then p(⌊tL⌋) → p(t)
uniformly in t.

4
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Proof sketch. The proof controls the per-layer error ∆ℓ = ∥p(ℓ)−p(tℓ)∥1 between the discrete
stack and the PF–ODE at times tℓ = ℓ/L.
Step 1: Local truncation. A Taylor expansion of the PF–ODE solution around tℓ,
combined with stability estimates for the simplex Jacobian Jsm and drift b, yields a one-
step inequality

∆ℓ+1 ≤ (1 + C1δt) ∆ℓ + C2∥∆z(ℓ)∥∞δt+ C3δt
2,

with C1 = LbΛJ +MbLJ capturing Lipschitz and mobility bounds.
Step 2: Global accumulation. Iterating over all layers and applying a discrete Grönwall
lemma (Lemma D.1) produces

∆L ≤ eC1∆0 + eC1
(
C2CBV + C3L

−1),
where CBV = 1

L

∑
ℓ ∥∆z(ℓ)∥∞ is the averaged bounded-variation constant.

Step 3: Budget definition. The finite-depth budget ΞL in equation 2 combines worst-
case jumps and cumulative squared variation, with explicit constants depending only on
(Lb,Mb,ΛJ , LJ). This yields the stated bound with Γ = C1.
Complete details including explicit constant derivations and norm equivalence appear in
Appendix D.

Remark 3.2 (Continuum validity and constant scaling). ΞL is a practical validity thresh-
old: the PF–ODE faithfully predicts layerwise behavior when ΞL is small (see proof above;
additional technical details in App. D). Moreover, the budget constants scale with archi-
tectural smoothness and geometry: α1 = O(Lb + Mb) and α2 = O(ΛJ + LJ). Hence ΞL

decreases with smaller per-layer logit increments and stronger contraction, and the PF–ODE
discrepancy vanishes as L→∞ under fixed budgets.
Remark 3.3 (When BV holds in practice). BV typically holds during stable training but can
fail at phase transitions, early layers, or gradient instability. Detect via SL =

∑
ℓ ∥∆z(ℓ)∥2

2;
if BV fails, apply piecewise analysis (App. D).
Lemma 3.4 (Compactness and absolute continuity). Under Assumption 3.1, there exists a
subsequence with zL → z and pL → p in L1([0, 1]) and a.e., where p is absolutely continuous
with |ṗ| ∈ L1. The compactness and identification statements follow from Theorem J.1 in
Appendix J.1.
Lemma 3.5 (Drift identification via architectural consistency). Under Assumption 3.1
with (i) bounded total variation and uniform boundedness and (ii) architectural consistency,
define DL(t) := ∆z(ℓ)/δt on [tℓ, tℓ+1), and let b̂L be the local regression estimator fit to the
same layer transitions. Then

∥DL − b̂L∥L1([0,1]) → 0 and ∥b̂L − b∥L1([0,1]) → 0,

hence ∥DL − b∥L1([0,1]) → 0 and, in particular, DL ⇀ b in L1([0, 1]). Proof sketch. Cali-
bration: DL and b̂L are computed from identical transitions, so regression residuals control
∥DL−b̂L∥L1 . Generalization: architectural consistency yields ∥b̂L−b∥L1 → 0 on compacts.
Triangle inequality concludes. (Complete details appear in Appendix J.1.)

3.2 Semi-relaxed optimal transport and causal attention

Remark 3.6 (Row-softmax via semi-relaxed EOT). By the KL-prox characterization in
Proposition 2.1, standard row-softmax solves a semi-relaxed entropic OT step (with masking
handled by infinite costs and restricted support). We refer to Appendix B for details of the
dual and masking.

3.3 Probability-flow ODE emergence and well-posedness

Theorem 3.7 (PF–ODE on the simplex and well-posedness). Under Assumption 3.1 and
the regularity in Section 2.2, the limit probability path satisfies

ṗ(t) = Jsm(z(t)) b(z(t), t) a.e. on [0, 1], p(0) = lim
L→∞

p(0),

5
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and the velocity field v(p, t) = Jsm(z(t)) b(z(t), t) is tangent to the simplex, ensuring p(t) ∈
∆V −1 for all t.

Complete proof in Appendix Q.1.
Remark 3.8 (Simplex invariance and uniqueness). Under Carathéodory conditions on b
(measurable in t, locally Lipschitz in z), mass is conserved (

∑
i pi(t) = 1), nonnegativity

holds, zero-flux Jsm(z)1 = 0 enforces boundary behavior, and solutions are unique on the
relative interior of ∆V −1.
Theorem 3.9 (Locking via vanishing mobility). If pmax(t) → 1 and b is bounded, then
∥Jsm(z(t))∥op → 0 (Remark 2.2) and hence ∥ṗ(t)∥ → 0. Moreover, temperature rescales
mobility as J (τ)

sm (z) = 1
τ Jsm(z/τ), modulating the approach to locking.

Example 3.10 (Two-token mobility collapse (summary)). Consider a minimal attention
layer with two tokens. For logits z = (z1, z2), the softmax Jacobian reduces to

Jsm(z) = p(1− p)
(

1 −1
−1 1

)
,

where p = p1 = softmax(z)1. The operator norm is ∥Jsm(z)∥op = 2 p(1 − p), which attains
its maximum 1/2 at the uniform distribution p = 1/2 and collapses to zero as p → 0 or
p→ 1. With temperature τ , the effective mobility scales as τ−1p(1− p).
As attention mass locks onto one token, the mobility eigenvalue vanishes, forcing ṗ =
Jsm(z) b(z, t) to approach zero even if the drift b remains nonzero. Temperature rescal-
ing modulates this: larger τ maintains nontrivial mobility deeper into the network. This
illustrates the mechanism behind Theorem 3.9: as distributions concentrate, the mobility
tensor loses rank and dynamics freeze for geometric reasons, not because the drift disap-
pears. Complete eigenvalue calculations appear in Appendix L.3.

3.4 Connections to empirically observed phenomena

Attention entropy collapse, temperature scaling effects, and representation collapse follow
naturally from the mobility interpretation: as distributions concentrate, mobility (and thus
velocity) vanishes (Theorem 3.9), explaining attention concentration and providing a handle
for calibration via temperature scaling. We defer expanded discussion, diagnostics, and
eigenspectrum-based tests to Appendix E.

4 Diffusion Duality with Anisotropic Noise

4.1 Stochastic dynamics and weak Fokker–Planck formulation

We extend the probability-flow picture to include stochastic perturbations, establishing a
duality between deterministic and stochastic evolution. Consider the hidden-state SDE:

dHt = F (Ht, t) dt+ Σ(Ht, t) dWt, (3)

with diffusion tensor a = ΣΣ⊤. Our analysis accommodates minimal regularity (F locally
integrable with weak derivatives, a measurable and locally bounded), anisotropy (a may be
degenerate or near-singular), and time-inhomogeneity.
Lemma 4.1 (Distributional calculus in weak FP regime). Under local Fisher-information
conditions (pH > 0 a.e., pH∇ log pH ∈ L1

loc), the product rule holds distributionally:

∇· ∇· (a pH) = ∇·
(
(∇· a) pH + a∇pH

)
in D′.

Proof via mollification and weak convergence in Appendix F.
Theorem 4.2 (PF–ODE / reverse-SDE duality). Let a(x, t) = σ(x, t)σ(x, t)⊤ and suppose
pH(·, t) > 0 solves the Fokker–Planck equation

∂tpH = −∇· (F pH) + 1
2

∑
i,j

∂xixj

(
aij pH

)

6
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with suitable decay/no-flux boundary conditions. Define the deterministic flow

u(x, t) = F (x, t) − 1
2

(
a(x, t)∇x log pH(x, t) + (∇· a)(x, t)

)
, (4)

where (∇· a)i :=
∑

j ∂xj
aij. Then the PF–ODE with velocity u shares identical marginals

with the Itô SDE for all t. If a ≡ 2βI is spatially constant, then u = F −β∇ log pH recovers
the standard probability flow drift. Complete proof in Appendix F.
Corollary 4.3 (Simplex marginal preservation). For the softmax projection φ(h) =
softmax(W⊤h), the pushforward measures satisfy φ#pH(·, t) = φ#ρ(·, t) a.e. in time, ex-
tending the duality to simplex-valued processes. Proof in Appendix F.
Proposition 4.4 (Anisotropy propagation to simplex dynamics). The hidden-space diffu-
sion induces an effective mobility on the simplex: M(p) = Jsm(z)W⊤aW Jsm(z), revealing
how architectural choices modulate probability dynamics. Proof in Appendix F.

4.2 Weak approximation of diffusion by stacked attention

Theorem 4.5 (Weak SDE approximation by stacked attention). Under the assumptions in
Section 2.2 and the weak FP calculus of Lemma 4.1, let ρ(t) be the law of the reverse SDE
with drift u in equation 4 and diffusion a, and let ρ̂L(t) be the law induced by L stacked
attention layers with step δt = 1/L. Then, for any ϕ ∈ C2

b and T ∈ [0, 1],∣∣∣Eρ̂L(T )[ϕ]− Eρ(T )[ϕ]
∣∣∣ ≤ Cϕ

(
L−1 + max

0≤ℓ<L
∥∆z(ℓ)∥∞ + γ

)
,

where Cϕ depends on bounds of u, a and ϕ on compacts, and γ ≥ 0 is an optional degeneracy
regularizer. Proof in Appendix F.

Stacked attention approximates anisotropic, time-inhomogeneous diffusion in a weak sense;
the approximation error separates discretization, logit variation, and degeneracy regular-
ization. Anisotropic diffusion with widely varying eigenvalues induces directional stiffness
mirroring attention’s collapsed-coordinate behavior, explaining curvature and locking diag-
nostics. Toy example and degeneracy guidelines in Appendix F.

5 Schrödinger Bridges and Transport Optimality

5.1 General framework and alignment conditions

Schrödinger Bridges (SB) characterize entropy-regularized stochastic interpolations between
endpoint distributions. We establish when transformer-induced probability paths align with
these optimal bridges. While Section 4 allows degenerate diffusion (useful near locking), SB
typically requires a uniformly elliptic reference; we reconcile these views below.
Assumption 5.1 (Reference diffusion). The reference process R follows dXt =
bR(Xt, t) dt+ σ(Xt, t) dWt with diffusion tensor a = σσ⊤, where:

1. Non-degeneracy on support: a(x, t) is SPD almost everywhere on the support of the path
measure.

2. Finite action: The reference path has finite relative entropy with respect to Wiener mea-
sure for endpoints (µ0, µ1).

3. Degeneracy handling (regularization): When a approaches singularity (e.g., near locking),
we use aε = a+ εI, analyze with ε > 0, and pass to the limit ε ↓ 0 (see Appendix G).

Theorem 5.1 (SB alignment characterization). Let {µt}t∈[0,1] be the transformer’s
continuous-depth probability path with drift u. Under Assumption 5.1, {µt} equals the
Schrödinger Bridge for reference R if and only if its per-mass velocity decomposes as

u = bR + a∇θ

for some potential θ. Equivalently, the a-weighted curl vanishes, i.e. the solenoidal compo-
nent of a−1(u− bR) is zero. A proof is provided in Appendix G.

7
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Theorem 5.2 (Rotational energy controls SB deviation). Let u = bR + a∇θ + w be the
a-weighted Hodge decomposition with ∇· (wµt) = 0 for each t. Define the rotational energy

R =
∫ 1

0

∫
⟨w, a−1w⟩µt(dx) dt.

Assume a finite weighted Poincaré constant CP (µ, a) along the path. Then, for each t ∈ [0, 1],
KL
(
µt ∥µ⋆

t

)
≤ CP (µ, a)R,

where µ⋆
t is the SB path with the same endpoints and reference R. In particular, R = 0 if

and only if {µt} is SB-aligned. A proof is given in Appendix G.
Corollary 5.3 (Rotational energy diagnostic). R ≥ 0 with equality iff the path is
Schrödinger Bridge. Practically, estimate u (from activations), solve for θ via a weighted
Poisson equation, compute the residual r = u− bR − a∇θ, and evaluate

∫
∥a−1/2r∥2 dµ dt.

See App. Figure 6 for a compact schematic of this pipeline.
Example 5.4 (Rotational energy on the two-simplex). Consider a toy flow on ∆2 =
{(p1, p2, p3) : pi ≥ 0,

∑
i pi = 1} with coordinates (p1, p2) and p3 = 1 − p1 − p2. Let

a = σ2I and bR = 0. A gradient flow u = a∇θ with θ(p1, p2) = −α
2 (p2

1 + p2
2) yields

u = (−ασ2p1,−ασ2p2). The curl vanishes:
∂p1u2 − ∂p2u1 = 0,

confirming zero rotational energy and pure Schrödinger Bridge structure. Conversely, the
rotational flow u = (βp2,−βp1) circulating around the simplex center yields

∂p1(−βp1)− ∂p2(βp2) = −2β ̸= 0,
indicating rotational energy proportional to β2. This flow cannot arise as a Schrödinger
Bridge because it lacks potential structure; the rotational component represents spurious
circulation that wastes transport capacity on cycles rather than moving mass toward the
terminal distribution. Our diagnostic computes an empirical analogue by discretizing the
flow field from layer activations, approximating spatial derivatives via finite differences, and
integrating across the trajectory. Small R indicates approximate gradient structure and
Schrödinger Bridge alignment; large R reveals spurious rotational components deviating
from optimal transport.
Remark 5.5 (Vanishing-regularization limit). If aε → a with ε ↓ 0 and the sequence of SB
paths has uniformly bounded action and is tight, any weak limit is a degenerate SB solution;
when R = 0, it coincides with the PF–ODE path. See Appendix G.
Corollary 5.6 (Simplex Schrödinger Bridge). Under the softmax pushforward, the SB con-
dition on the simplex takes the potential-flow form

Ṗt = −∇p ·
(
Pt M(Pt)∇pΘ(Pt, t)

)
,

with mobility M from Theorem 4.4. This connects directly to gradient flows on the simplex
and informs mobility-aware design.

Practical implication. Rising R indicates deviation from SB (OT) geometry and co-
occurs with over-smoothing and spurious drift; minimizing R provides a geometry-aware
early warning complementary to standard fidelity metrics.

6 Empirical Validation Framework and Diagnostic Tools

Overview and theory map. We validate two tracks: (T) Transformers (forward pass as
PF–ODE) and (I) image diffusion (parity and weak-error).
Probability-flow ODE dual (summary). In variance-preserving (VP) score-based diffu-
sion, the forward SDE is dx = f(t)x dt+g(t) dWt and the learned score ∇x log pt(x) defines
a deterministic probability-flow ODE (PF–ODE) with drift f(t)x− 1

2g(t)2∇x log pt(x) that
shares the SDE time marginals.
We use the formal definitions from App. Section M.1 for the drift budget, locking bound,
curvature, and EVI (Equations (22) to (25)) throughout this section. Drift and curvature
visualizations appear in Figure 1 (left/right panels), while locking and EVI are shown in
App. Figures 7 and 8.

8
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Figure 1: Track T: core diagnostics. Left: PF–ODE adequacy (P1). Right: curvature (P3).
Locking and EVI appear in Section M.4.

(a) Parity (TV/KS) over time (dataset-level,
per-channel histograms).

(b) Weak-error (step-doubling); slope α̂ =
−1.08 (95% CI [−2.18,−0.28]).

Figure 2: Image diffusion (CIFAR-10). Left: ODE–SDE TV/KS across time (inputs scaled to
[0, 1], equal channel weighting, 256 bins). Right: log–log regression of ∆K vs. K with BCa CIs
(B=1000).

6.1 Empirical diagnostics P0–P4

Diagnostics (P0–P4). Five diagnostics validate the theory: (P0) BV/continuity checks;
(P1) PF–ODE adequacy; (P2) locking behavior; (P3) OT contractivity; (P4) SB alignment
via rotational energy. Full protocols appear in App. Section M.

6.2 Track T: Transformers – core diagnostics and rotational energy

For the Transformer experiments, the mean rotational energy across 10 central layers is R̂ =
1.096×10−7 (95% CI [3.468×10−8, 2.153×10−7]). Cross-track values are not comparable due
to different ambient spaces and discretizations; we summarize per-track means and CIs (a
normalized variant is defined in the appendix).

6.3 Track I: Image diffusion—parity, weak-error, and SB energy

Setup. A trained VP CIFAR-10 (ddpm++ continuous) model is evaluated with two sam-
plers: SDE and PF–ODE; both samplers use the identical noise schedule and classifier-free
guidance setting, and for each image the ODE and SDE share the same initial noise seed.
We use N=10,000 images and K=50 logged times on a shared grid.
Parity and weak-error (composite). Figure 2 composes the image diagnostics: left
shows ODE–SDE histogram parity (TV/KS) over time; right shows the weak-error step-
doubling log–log fit (slope near first order).
Rotational energy (image; P4 result). On 20 time points, the mean rotational energy
is R̂ = 0.03092 (95% CI [0.01046, 0.05385]). Cross-track values are not comparable due
to different ambient spaces and discretizations; per-track normalized variants and the BV
panel for ODE vs. SDE appear in App. Section M.5.

9
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Defaults. Unless noted, for the image track PF–ODE uses deterministic sampling
on the same K grid as SDE (DDIM-style); for Transformers, PF–ODE drift fits use
Dormand–Prince with rtol= 10−5, atol= 10−7, max_steps= 2000. Ridge grid
{10−4, 10−3, 10−2} with 5-fold cross-validation; N = 50k rows/layer (Transformers), N =
10k images and K = 50 time steps (Image). Unless noted, bands denote 95% percentile-
bootstrap CIs (B=200); weak-error CIs use BCa (B=1000).
Synthesis. Taken together, the two empirical tracks support a single underlying picture:
attention dynamics in Transformers and PF–ODE/SDE trajectories in diffusion models
behave as different discretizations of the same entropy-regularized transport flow. Locking
and EVI signatures appear in the appendix; the core P1/P3 diagnostics remain in the main
text.

7 Limitations and Practical Implications
Limitations. (i) Experiments target text transformers with a minimal image diffusion
sanity check; full vision benchmarks are out of scope for this paper (Section N.1). (ii) The
PF–ODE drift uses simple features and can underfit nonlocal effects. (iii) Rotational-energy
magnitudes are track-specific and not cross-track comparable; we provide a dimensionless
variant for intra-track comparison and recommend log-scale plots when ranges span orders
of magnitude (App. Section N.2). (iv) Diagnostics are conditioned on the P0 gate (BV/-
continuity); failures trigger abstention.
Practical implications and Outlook (1) Temperature or key-norm controls reduce the
curvature gap 1−κ, offering a stable knob for depth behavior. (2) The drift-budget overlay
surfaces over-activation and can inform regularization or early exit policies. (3) Diagnostic
abstention protocols based on P0 gating conditions provide conservative guardrails when
validity assumptions are violated (Section N.4). Richer drift features (e.g., cross-head struc-
ture), broader modalities beyond CIFAR-10, structured/accelerated SB solvers, and calibra-
tion via condition-number targets for the Poisson step are natural directions (Section O).

8 Conclusion
We formalized masked attention as semi-relaxed entropic OT, established stability/locking
and curvature/EVI structure with gauge invariances, and tied these to a practical empirical
suite. The suite validates PF–ODE adequacy, locking signatures, and contractivity response
in Transformers, and shows image PF–ODE/SDE parity with first-order weak-error scal-
ing. These yield concrete levers (temperature/key norm; drift-informed regularization) and
geometry-aware diagnostics; extended discussion appears in Section O. For practitioners: (i)
regulate depth via ΞL/stability budgets and spectral norm controls, (ii) monitor rotational
energy during schedule sweeps as an early-warning diagnostic, and (iii) abstain when P0
validity conditions fail.
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energy / SB diagnostic (P4), including numerically stable Poisson solves and a-
weighted Hodge decomposition.

• PF–ODE Integration. Reference ODE solvers with error control and scripts to
compare ODE vs. SDE marginals for the duality experiments.

• Weak-Error Evaluation. Step-doubling protocol with BCa bootstrap (B=1000)
and log–log slope estimation; code to reproduce the reported confidence intervals.
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Layer ℓ

Layer ℓ+ 1

Layer ℓ+ 2

p(ℓ)

p(ℓ+1)

Discrete Layers

L→∞

Probability Flow

t

p(t)

Transformer depth as continuous time
Diffusion as probability transport

Figure 3: Conceptual unification: transformer layers implement discrete steps of probabil-
ity transport that converge to continuous flows analogous to diffusion models. The softmax
normalization induces entropic regularization, while layer stacking corresponds to time evo-
lution.
A Supplementary Motivation and Overview

Extended motivation. The remarkable success of transformers in language modeling
and diffusion models in generation has driven rapid progress in artificial intelligence, yet our
theoretical understanding of these architectures remains fragmented. Transformers process
discrete tokens through attention mechanisms that mysteriously develop semantic under-
standing, while diffusion models generate high-quality samples through iterative refinement
processes that seem fundamentally different. This theoretical gap impedes principled archi-
tectural improvements and forces practitioners to rely on empirical trial-and-error rather
than systematic design principles. In this work, we demonstrate that these seemingly dis-
parate architectures are actually implementing the same fundamental computational prin-
ciple: entropy-regularized optimal transport of probability mass. This unification not only
explains numerous empirical phenomena that have puzzled researchers but also provides
concrete tools for improving both architectures.
Modern deep learning relies heavily on two architectural paradigms: transformers, which
dominate language modeling through attention-based token mixing, and diffusion models,
which excel at generation through iterative denoising. Despite their apparent differences—
transformers operate on discrete tokens with normalized attention weights, while diffusion
models evolve continuous densities through stochastic differential equations—we demon-
strate that both architectures implement entropy-regularized transport of probability mass.

Interpretive notes. The significance of this connection extends beyond theoretical curios-
ity. Understanding transformers and diffusion models as implementing the same fundamen-
tal transport process enables principled architectural improvements and explains puzzling
empirical phenomena. For instance, the widespread observation that attention patterns be-
come increasingly concentrated in deeper transformer layers, often leading to computational
waste, can now be understood as a geometric inevitability arising from the vanishing mobil-
ity of the softmax-induced transport. Similarly, the empirical success of temperature scaling
for improving model calibration emerges naturally from our framework as a mobility modu-
lation mechanism. By revealing these deep structural connections, our framework provides
actionable insights for model design: predicting when representations will lock, identifying
optimal depth for different tasks, and suggesting principled initialization strategies that
approximate continuous optimal transport paths.
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Framework Overview: From Theory to Practice

Theoretical Concept Practical Implication
Softmax Jacobian as mo-
bility tensor Jsm

Quantifies capacity for probability updates; vanishing
mobility signals when to stop computation

Bounded variation
regime SL < C

Smooth evolution enables continuous analysis; viola-
tions indicate phase transitions requiring intervention

Semi-relaxed EOT pre-
serves causality

Maintains autoregressive structure while enabling opti-
mal transport analysis of attention

Probability-flow ODE
limit

Suggests continuous-depth architectures and adaptive
depth selection based on task complexity

Schrödinger Bridge align-
ment

Rotational energy R measures deviation from optimal-
ity, guiding architectural improvements

Anisotropic diffusion du-
ality

Reveals how noise injection affects transport; suggests
principled dropout and regularization strategies

Key Diagnostics:
• During Training: Monitor SL for stability, ∥Jsm∥ for representation health
• Architecture Design: Use R to compare transport efficiency across architectures
• Deployment: Apply mobility thresholds for early exit decisions

Figure 4: Overview linking theory to practice. Each theoretical concept maps to a concrete
tool or diagnostic.

Balanced OT (Sinkhorn) Semi-relaxed OT (ours) Diffusion / SB
Causality preserved No Yes Yes
Depth → continuum Heat flow PF–ODE on simplex FP / PF–ODE
Noise model — Anisotropic via FP General a (SB)
SB equivalence (iff) No Yes Yes
Locking mechanism — Jsm → 0 Entropy collapse

Table 1: Novelty map relative to prior strands. Semi-relaxed EOT preserves the causal
structure essential for autoregressive models while enabling rigorous continuous-depth anal-
ysis. The vanishing of Jsm provides a geometric explanation for attention collapse.
B Supplementary Proofs and Technical Details

Proof of the sharp mobility bound (Remark 2.2). Let p = softmax(z/τ) and
Jsm(z) = Diag(p) − pp⊤. Then Jsm is symmetric and positive semidefinite on the simplex
tangent space. For any unit vector v with

∑
i vi = 0,

v⊤Jsmv =
∑

i

piv
2
i −

(∑
i

pivi

)2
≤ 1

2

∑
i

piv
2
i ,

with equality achieved for distributions supported on two atoms at mass 1
2 and v aligned with

that two-dimensional subspace. Scaling z 7→ z/τ yields the factor 1/τ , hence ∥Jsm(z)∥op ≤
1

2τ and the spectrum is contained in [0, 1
2τ ], collapsing to {0} as pmax → 1. □

Semi-relaxed EOT details. We provide the complete derivation of the semi-relaxed
entropic optimal transport characterization of attention.
Let q ∈ Rdk be the query vector and kj ∈ Rdk the j-th key vector in a shared key-query
space. Define the cost cj = −q · kj , so that high similarity corresponds to low transport
cost. Given a reference distribution u ∈ ∆V −1 (typically uniform), we consider

min
p∈∆V −1


V∑

j=1
pjcj + τ KL(p∥u)

 , (2.1)
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Proposition 2.1
Single attention layer

= KL-proximal OT step
(Contribution 1)

Theorem 3.1
Finite-depth convergence
to PF–ODE, error ∼ ΞL

(Contribution 2)

Theorem 4.5
Weak approximation of

anisotropic diffusion
(Contribution 3)

Theorem 5.2
Schrödinger Bridge

iff R = 0
(Contribution 4)

Theorem 3.7
PF–ODE emergence
ṗ = Jsm(z) b(z, t)

Semi-relaxed EOT
Causal masking

preserved

Assumption 3.1
BV regime

Helly selection
Drift identification

Fokker–Planck duality
Dunford–Pettis

Uniform integrability
Distributional calculus

SB optimality
conditions

Helmholtz decomp.

Figure 5: Logical structure and dependencies of main theoretical results. The framework
establishes four contributions enumerated in Section 1: (1) Proposition 2.1 shows that
a single attention layer implements a KL-proximal optimal transport step in the sense of
Jordan-Kinderlehrer-Otto schemes, establishing the foundational connection between neural
architecture and optimal transport geometry. (2) Theorem 3.1 proves that stacked attention
layers converge to continuous probability flows on the simplex with explicit finite-depth
error bounds controlled by the bounded variation budget ΞL, using Helly selection and
architectural consistency to identify the limiting drift. (3) Theorem 4.5 demonstrates that
the limiting probability flow weakly approximates time-inhomogeneous anisotropic reverse
diffusions, unifying attention and diffusion through Fokker-Planck duality. (4) Theorem 5.2
provides a rotational energy characterization showing that vanishing R is necessary and
sufficient for exact Schrödinger Bridge alignment. The intermediate result Theorem 3.7
establishes well-posedness of the probability flow ODE with the softmax Jacobian as mobility
tensor. Blue dashed boxes indicate foundational assumptions and mathematical tools; solid
boxes with shadows indicate proven results. Green highlighting emphasizes the four main
contributions; yellow indicates supporting infrastructure.
with temperature τ > 0 and KL(p∥u) =

∑
j pj log(pj/uj).

Step 1: Lagrangian formulation. Imposing
∑

j pj = 1 via Lagrange multiplier λ gives

L(p, λ) =
V∑

j=1
pjcj + τ

V∑
j=1

pj log pj

uj
− λ

( V∑
j=1

pj − 1
)
.

Step 2: First-order optimality conditions. Setting ∂L/∂pj = 0 yields

cj + τ
(

log pj

uj
+ 1
)
− λ = 0.

Solving for pj gives

pj = uj exp
(λ− cj − τ

τ

)
= C uj exp

(
−cj

τ

)
,

where C = exp((λ− τ)/τ) is a normalization constant.
Step 3: Row normalization yields softmax. Enforcing

∑
j pj = 1 determines C:

C =
[ V∑

j=1
uj exp(−cj/τ)

]−1
.
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For uniform uj = 1/V , we obtain

pj = exp(−cj/τ)∑V
k=1 exp(−ck/τ)

= exp(q · kj/τ)∑V
k=1 exp(q · kk/τ)

,

which is exactly the standard attention weight pj = softmax(qK⊤/τ)j .
Thus each attention row solves a semi-relaxed entropic OT problem where the row-stochastic
constraint is enforced but column marginals are unconstrained, preserving autoregressive
structure. Causal masking is implemented by assigning infinite cost cj = +∞ to masked
positions; the resulting row-normalized solution coincides with the attention distribution
induced by logits, with existence and uniqueness guaranteed by the strict convexity of the
KL divergence.

Proof of Proposition 2.1. The mirror-descent Euler step in KL geometry with objective
⟨c, p⟩ and step τ yields the variational form in Proposition 2.1. The unique minimizer has
Gibbs form relative to u, p+ ∝ u ⊙ exp(−c/τ), matching attention with logits z = −c.
Stacking steps gives a discrete JKO/Mirror scheme. □

C Extended Related Work and Positioning (Full Version)

C.1 Probability Flows and Schrödinger Bridges

Score-based diffusion established that reverse-time SDEs admit a probability–flow ODE with
identical marginals (Song et al., 2021), while flow matching proposed simulation-free train-
ing of vector fields that realize desired probability paths (including OT geodesics) (Lip-
man et al., 2022). The Schrödinger Bridge (SB) program casts diffusion as entropic OT
on path space and provides scalable IPF-style solvers (De Bortoli et al., 2021; Shi et al.,
2023). We leverage this geometry inside transformers: depth induces a PF–ODE on the sim-
plex, weak/anisotropic FP theory gives a deterministic/stochastic duality for hidden-state
evolution, and an if&only-if potential-plus-reference drift condition characterizes when a
transformer’s probability path is exactly an SB.

C.2 Attention as Entropic Optimal Transport

Balanced OT views of attention enforce doubly-stochastic constraints via Sinkhorn itera-
tions (Sander et al., 2022; Tay et al., 2020), and OT-based co-attention improves multimodal
learning (Xu et al., 2023). A complementary line shows transformers can be programmed
to solve entropic OT with accuracy improving in depth (Daneshmand, 2024). In contrast,
we work in the causal regime and prove that standard row-softmax attention is precisely
the optimizer of a semi-relaxed entropic OT (row constraints only), which preserves autore-
gressive masking and does not require imposing OT constraints at training time. From this
equality we derive a BV depth→PF–ODE limit and the SB characterization in the causal
setting; balanced OT results do not cover this regime and are fundamentally incompatible
with the autoregressive structure essential to language modeling.

C.3 Continuous-Time Views of Transformers

Continuous-depth interpretations of transformers address irregular time environments and
ODE couplings (Zhang et al., 2021; Chen et al., 2023); OT-Transformer introduces OT as
a regularizer in a continuous-time backbone (Kan et al., 2025). These works, however, do
not explicitly endow the dynamics with an entropic-OT geometry that explains empirical
phenomena. Our framework fills this gap: the softmax Jacobian acts as a mobility tensor
on ∆V −1, depth induces a PF–ODE with simplex invariance and well-posedness, and SB
equivalence provides a variational certificate for transport optimality.

C.4 Autoregressive–Diffusion Hybrids

Bridging autoregressive and diffusion/flow paradigms has shown strong empirical results
(Hoogeboom et al., 2022; Ma et al., 2025). Our theory explains why: AR transformers and
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diffusion models are two discretizations (discrete in depth vs. continuous in time) of the same
entropy-regularized transport principle. The PF–ODE/FP duality and SB tools provide
quantitative diagnostics (e.g., rotational energy) for assessing alignment with entropic OT.

C.5 Architectural Unification via Diffusion Transformers

Replacing U-Nets with transformer backbones yields scalable diffusion models across images
and 3D (Peebles & Xie, 2023; Mo et al., 2023). While these works focus on performance,
our analysis rationalizes their success: both families implement transport under entropic
regularization, and temperature/mobility schedules, anisotropy-aware regularization, and
SB-aligned depth emerge as principled design levers independent of the backbone.

C.6 Positioning of Our Contributions

(i) Causal, semi-relaxed OT for attention. We prove that unmodified row-softmax
attention solves a row-constrained entropic OT problem, resolving the incompatibility of
balanced OT with causal masking.
(ii) Depth → PF–ODE on the simplex. Under bounded-variation scaling, stacking
attention layers induces a PF–ODE for probe-induced probabilities, with simplex invariance
and well-posedness.
(iii) Weak FP duality with anisotropy. Allowing time-inhomogeneous, anisotropic
(and possibly ill-conditioned) diffusion, we establish deterministic/stochastic equivalence of
marginals via Fokker–Planck in the renormalized/weak sense.
(iv) SB equivalence (iff) & diagnostics. The depth path is an SB iff its velocity is
potential-plus-reference drift; deviations are quantified by a rotational-energy gap.
(v) Mechanisms and predictions. Identifying Jsm as mobility explains entropy collapse
and representation locking; output-logit temperature scaling predicts mobility reductions
that move locking earlier.
These theoretical advances translate directly into actionable diagnostics and design prin-
ciples (e.g., mobility/locking metrics, SB alignment, anisotropy-aware regularization) for
improving both transformer and diffusion architectures.

D Supplementary Details for Section 3

Architectural consistency and identification (details). This elaborates the identi-
fication clause in Assumption 3.1. For any compact K ⊂ RV and ϵ > 0, there exists L0
such that for L > L0, a local-regression estimator b̂L (e.g., k-NN/MLP with fixed hyperpa-
rameters) satisfies ∥b̂L − b∥L2(K×[0,1]) < ϵ. This provides the additional structure ensuring
DL ⇀ b(z(t), t) in L1

loc, used in the discrete→continuous passage.

Proof of Lemma 3.5 (drift identification via architectural consistency). Let K ⋐
RV be any compact set. By Assumption 3.1(iii) and Appendix D, for every ε > 0 there
exists L0 such that for all L ≥ L0 the local regression estimator b̂L satisfies

∥b̂L − b∥L2(K×[0,1]) < ε. (5)
Moreover, the bounded-variation and Lipschitz assumptions on the logits imply a uniform
L2 bound on the discrete drifts:

sup
L
∥DL∥L2(K×[0,1]) ≤ CK <∞.

Writing rL := DL − b̂L, we thus have
∥rL∥L2(K×[0,1]) −−−−→

L→∞
0.

Passing from L2 to L1 on K × [0, 1] by Cauchy–Schwarz,

∥DL − b̂L∥L1(K×[0,1]) ≤ |K × [0, 1]|1/2 ∥rL∥L2(K×[0,1]) −−−−→
L→∞

0,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and similarly equation 5 yields ∥b̂L − b∥L1(K×[0,1]) → 0. By the triangle inequality,

∥DL − b∥L1(K×[0,1]) ≤ ∥DL − b̂L∥L1(K×[0,1]) + ∥b̂L − b∥L1(K×[0,1]) −−−−→
L→∞

0.

Finally, by Assumption 3.1(ii) the trajectories zL(t) remain in a common compact subset
K0 ⋐ RV for all t ∈ [0, 1] and all L, so the above bound with K = K0 yields

∥DL − b∥L1([0,1]) −−−−→
L→∞

0.

This proves the L1 convergence claimed in Lemma 3.5, and in particular implies DL ⇀ b in
L1([0, 1];RV ). □

Discrete Grönwall inequality for finite-depth analysis.
Lemma D.1 (Discrete Grönwall inequality for finite-depth error). Let {∆ℓ}L

ℓ=0 satisfy

∆ℓ+1 ≤ (1 +Aδt) ∆ℓ +Bℓ

for ℓ = 0, . . . , L− 1, with ∆0 given, A > 0, time step δt > 0, and Bℓ ≥ 0. Then

∆L ≤ (1 +Aδt)L
(

∆0 +
L−1∑
ℓ=0

Bℓ

)
≤ eAT

(
∆0 +

L−1∑
ℓ=0

Bℓ

)
,

where T = Lδt.

Proof. Unrolling the recurrence gives

∆1 ≤ (1 +Aδt) ∆0 +B0,

∆2 ≤ (1 +Aδt)2∆0 + (1 +Aδt)B0 +B1,

...

∆L ≤ (1 +Aδt)L∆0 +
L−1∑
ℓ=0

(1 +Aδt)L−ℓ−1Bℓ.

Since (1 +Aδt)L−ℓ−1 ≤ (1 +Aδt)L, we obtain

∆L ≤ (1 +Aδt)L
(

∆0 +
L−1∑
ℓ=0

Bℓ

)
.

Finally, (1 +Aδt)L = (1 +AT/L)L ≤ eAT , which yields the exponential bound.

Proof of Theorem 3.1 (complete version). Let z(ℓ) be logits at layer ℓ and define the
piecewise-linear interpolant zL(t) with zL(tℓ) = z(ℓ). Let pL(t) hold p(ℓ) on [tℓ, tℓ+1). By
Assumption 3.1,

∑
ℓ ∥∆z(ℓ)∥∞ < ∞ and DL = ∆z(ℓ)/δt converges weakly to b(z(t), t) in

L1
loc. Consider ṗ = Jsm(z) b(z, t) with p(0) matching limL→∞ p(0).

Step 1: Per-layer error inequality. Let ∆ℓ := ∥p(ℓ) − p(tℓ)∥1 denote the total variation
error at layer ℓ where tℓ = ℓ/L and δt = 1/L. The discrete layer update satisfies

p(ℓ+1) = p(ℓ) + δt Jsm(z(ℓ))b(z(ℓ), tℓ) +O(∥∆z(ℓ)∥∞δt) +O(δt2),

while the continuous dynamics evolve according to

p(tℓ+1) = p(tℓ) + δt Jsm(z(tℓ))b(z(tℓ), tℓ) +O(δt2).

Taking the difference and applying the triangle inequality gives

∆ℓ+1 ≤ ∆ℓ + δt
∥∥Jsm(z(ℓ))b(z(ℓ), tℓ)− Jsm(z(tℓ))b(z(tℓ), tℓ)

∥∥
1 +C2∥∆z(ℓ)∥∞δt+C3δt

2. (6)
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Using the Lipschitz continuity of b with constant Lb, the mobility bound ΛJ , the derivative
bound LJ for the softmax Jacobian, and a uniform bound Mb on ∥b∥, the middle term is
bounded by

(LbΛJ +MbLJ) ∆ℓ δt.

Thus
∆ℓ+1 ≤ (1 + C1δt) ∆ℓ + C2∥∆z(ℓ)∥∞δt+ C3δt

2, (7)
with C1 = LbΛJ +MbLJ and constants C2, C3 depending on second-order behavior of Jsm.
Step 2: Accumulation across depth. Define the source term

Bℓ := C2∥∆z(ℓ)∥∞δt+ C3δt
2.

Iterating equation 7 from ℓ = 0 to L − 1 and applying the discrete Grönwall inequality
(Lemma D.1) yields

∆L ≤ (1 + C1δt)L∆0 + (1 + C1δt)L
L−1∑
ℓ=0

Bℓ. (8)

With δt = 1/L,
L−1∑
ℓ=0

Bℓ = C2

L−1∑
ℓ=0
∥∆z(ℓ)∥∞

1
L

+ C3
L

L2 = C2CBV + C3L
−1,

where the averaged bounded-variation constant

CBV := 1
L

L−1∑
ℓ=0
∥∆z(ℓ)∥∞

is uniformly bounded by Assumption 3.1. Using (1 + C1δt)L ≤ eC1 , we obtain

∆L ≤ eC1∆0 + eC1
(
C2CBV + C3L

−1) . (9)

Step 3: Finite-depth budget and final bound. The finite-depth budget

ΞL := α1 max
0≤ℓ<L

∥∆z(ℓ)∥∞ + α2

L−1∑
ℓ=0
∥∆z(ℓ)∥2

∞

captures both worst-case jumps (through the maximum term) and cumulative squared vari-
ation (through the sum), with constants α1, α2 depending only on C1, C2, C3 and hence on
architectural regularity parameters (Lb,Mb,ΛJ , LJ). Combining the Grönwall bound with
the definitions of ΞL and CBV gives the stated estimate

sup
t∈[0,1]

∥∥p(⌊tL⌋) − p(t)
∥∥

1 ≤ ΞL + (eΓ − 1) ∥p(0) − p(0)∥1,

for an explicit constant Γ = Γ(Lb,Mb,ΛJ , LJ).
Intuition. The discrete error can grow at most exponentially with depth via the factor
eC1 , but the averaged bounded variation constant CBV controls the effective exponent by
keeping typical layer-to-layer changes small. When ΞL is small, the continuous probability
flow ODE provides an accurate description of the layerwise dynamics. □

Norm equivalence used in Theorem 3.1. There exist constants c1, c2 > 0 (depending
only on the ambient dimension) such that for all layer increments ∆z(ℓ) on the compact set
considered,

c1
∥∥∆z(ℓ)∥∥

∞ ≤
∥∥∆z(ℓ)∥∥

2 ≤ c2
∥∥∆z(ℓ)∥∥

∞.

Consequently, the worst–case single–layer term and the cumulative squared–variation term
in equation 2 are consistent with the ∥ · ∥2–based BV assumption in Assumption 3.1, and
the constants in Theorem 3.1 depend only on Lb,Mb,ΛJ , LJ and (c1, c2).
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Piecewise BV segmentation (depth limit). Let 0 = t0 < t1 < · · · < tK = 1 such
that Assumption 3.1 holds on each [tk−1, tk]. Define segment budgets Ξ(k)

L by restricting
equation 2 to layers with tℓ ∈ [tk−1, tk). Then Theorem 3.1 applies on each segment;
p(t−k ), p(t+k ) provide weak interface conditions. In practice, choose cut points where variation
statistics (e.g.,

∑
ℓ∈[tk−1,tk) ∥∆z(ℓ)∥2

2) spike, consistent with Theorem 3.3.

E Expanded Discussion of Empirical Phenomena for Section 3

Attention entropy collapse. As distributions concentrate, the mobility operator norm
∥Jsm(z)∥op decays (Remark 2.2), and PF–ODE velocity vanishes under Theorem 3.7, ex-
plaining late-layer attention concentration (cf. Theorem 3.9).

Temperature scaling and calibration. Temperature rescales mobility as J (τ)
sm (z) =

1
τ Jsm(z/τ), delaying locking and supporting improved calibration by maintaining transport
capacity deeper in the network.

Representation collapse and eigenspectra. Approach to equilibrium correlates with
rapid decay of the Jsm eigenspectrum; monitoring minimum eigenvalues/trace provides a
diagnostic for impending collapse and informs interventions.

F Supplementary Details for Section 4

Proof of Lemma 4.1 (distributional product rule). Let {ηϵ}ϵ>0 be a standard mol-
lifier on Rd and set pϵ

H := pH ∗ ηϵ and aϵ := a ∗ ηϵ. For any φ ∈ C∞
c (Rd), integrate by parts

twice: 〈
∇· ∇· (aϵpϵ

H), φ
〉

= −
∫
Rd

∇· (aϵpϵ
H) · ∇φ =

∫
Rd

(
(∇· aϵ) pϵ

H + aϵ∇pϵ
H

)
· ∇φ.

By the local Fisher-information condition (pH > 0 a.e., pH∇ log pH ∈ L1
loc) and local bound-

edness of a, the sequences pϵ
H → pH in L1

loc, ∇pϵ
H ⇀ ∇pH in D′, and aϵ → a, ∇· aϵ → ∇· a

in D′ as ϵ ↓ 0. Passing to the limit yields〈
∇· ∇· (apH), φ

〉
=
∫
Rd

(
(∇· a) pH + a∇pH

)
· ∇φ,

which is the claimed identity in D′. □

Proof of Theorem 4.2 (PF–ODE / reverse-SDE duality). By assumption pH(·, t) >
0 solves the Fokker–Planck equation

∂tpH = −∇· (F pH) + 1
2 ∇· ∇· (a pH)

with diffusion matrix a = σσ⊤ and suitable decay or no-flux boundary conditions.
Lemma 4.1 shows that, in the sense of distributions,

∇· ∇· (a pH) = ∇·
(

(∇· a) pH + a∇pH

)
.

Using ∇ log pH = (∇pH)/pH and the definition of the drift u in equation 4, we have

u pH = F pH − 1
2

(
a∇ log pH +∇· a

)
pH = F pH − 1

2

(
a∇pH + (∇· a) pH

)
.

Taking the divergence and applying the product rule lemma,

−∇· (u pH) = −∇· (F pH) + 1
2 ∇·

(
a∇pH + (∇· a) pH

)
= −∇· (F pH) + 1

2 ∇· ∇· (a pH).
Consequently pH satisfies

∂tpH = −∇· (u pH)
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in D′, so pH is a weak solution of the continuity equation with velocity field u and initial
condition pH(·, 0).
Under the stated regularity and boundary assumptions on F and a, the linear continuity
equation with drift u has at most one weak solution with a given initial condition (equiv-
alently, the corresponding Fokker–Planck equation is well posed). Hence any solution ρ
of

∂tρ = −∇· (u ρ), ρ(·, 0) = pH(·, 0),
must coincide with pH for all t, giving ρ(·, t) = pH(·, t). The final statement about the
reverse SDE dXt = u(Xt, t) dt+σ(Xt, t) dWt then follows from the standard correspondence
between weak solutions of the Fokker–Planck equation and laws of diffusion processes with
generator Lϕ = ⟨F,∇ϕ⟩+ 1

2 tr(a∇2ϕ). □

Proof of Corollary 4.3 (pushforward). Let φ(h) = softmax(W⊤h) and fix t in the
set where the conclusions of Theorem 4.2 hold. For any ψ ∈ Cb(∆V −1), by definition of
pushforward measure,∫

∆V −1
ψ(p) d(φ#pH)(p) =

∫
Rd

ψ(φ(h)) dpH(h) =
∫
Rd

ψ(φ(h)) dρ(h) =
∫

∆V −1
ψ(p) d(φ#ρ)(p).

Hence φ#pH(·, t) = φ#ρ(·, t) for a.e. t, proving the claim. □

Proof of Proposition 4.4 (anisotropy propagation). Write z = W⊤h and p =
softmax(z). A first-order variation gives δp = Jsm(z) δz = Jsm(z)W⊤δh. If the hidden-
space SDE has instantaneous covariance a dt, then Cov[δh] = a dt. The induced covariance
on the simplex tangent space is

Cov[δp] = Jsm(z)W⊤ aW Jsm(z) dt,
which defines the effective mobility M(p) = Jsm(z)W⊤aW Jsm(z). □

Proof of Theorem 4.5 (weak approximation by stacked attention). Let ρ(t) denote
the law of the reverse SDE with drift u given by equation 4 and diffusion a = σσ⊤; by
Theorem 4.2, ρ also solves the continuity equation with velocity u. For ϕ ∈ C2

b (Rd), the
Kolmogorov backward (weak FP) form yields

d

dt
Eρ(t)[ϕ] = Eρ(t)

[
⟨∇ϕ, u⟩

]
+ 1

2 Eρ(t)
[
tr(a∇2ϕ)

]
.

Construct the piecewise-constant law ρ̂L(t) from L attention layers with step δt = 1/L,
using on each interval [tℓ, tℓ+1) the frozen generator

Lℓϕ(x) := ⟨∇ϕ(x), u(x, tℓ)⟩+ 1
2 tr
(
a(x, tℓ)∇2ϕ(x)

)
,

i.e., the PF–ODE linearization with u as in equation 4. Let the implemented layer-wise
drift be uℓ = u(·, tℓ) + rℓ with residual rℓ from finite depth; the model budgets give ∥rℓ∥ =
O(∥∆z(ℓ)∥∞) and a curvature correctionO(∥∆z(ℓ)∥2

∞) via∇u on the compact set considered.
A standard weak local truncation estimate (Euler in time for the frozen generator) gives,
for some Cϕ independent of L,∣∣E

ρ̂L(tℓ+1)[ϕ]− E
ρ̂L(tℓ)[ϕ]− E

ρ̂L(tℓ)[Lℓϕ] δt
∣∣ ≤ Cϕ

(
δt2 + ∥rℓ∥ δt+ ∥∆z(ℓ)∥2

∞ δt
)
.

Summing over ℓ and using stability (uniform boundedness/Lipschitzness of u, a on compacts)
yields ∣∣∣Eρ̂L(T )[ϕ]− Eρ(T )[ϕ]

∣∣∣ ≤ Cϕ

(
L−1 + max

0≤ℓ<L
∥∆z(ℓ)∥∞

)
.

If a is singular, set aγ = a + γI and perform the argument uniformly in γ > 0; continuity
of the weak generator for bounded data adds +γ, and letting γ ↓ 0 recovers∣∣∣Eρ̂L(T )[ϕ]− Eρ(T )[ϕ]

∣∣∣ ≤ Cϕ

(
L−1 + max

0≤ℓ<L
∥∆z(ℓ)∥∞ + γ

)
.

□
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(A) Duality: PF–ODE vs Reverse-SDE

Forward SDE

dHt = F dt+ Σ dWt

Reverse SDE
u = F − 1

2 (a∇ log pH + ∇· a)

FP equation

(B) Schrödinger Bridge Diagnostic

Drift u Poisson solve Potential θ
∇· (a∇θ) = ∇· (u− bR)

Residual r = u− bR − a∇θ

R =
∫
∥a−1/2r∥2 dµ dt

Figure 6: Schematic. (A) PF–ODE / reverse-SDE duality (the divergence term ∇· a distin-
guishes deterministic from stochastic velocities). (B) Schrödinger Bridge diagnostic: drift
estimation → Poisson solve → rotational energy.
Practical choice of the degeneracy regularizer. Use γ > 0 when the diffusion tensor
a is rank-deficient or extremely ill-conditioned (e.g., near locking or when dynamics lie close
to a low-dimensional manifold). Choose the smallest γ such that the condition number
satisfies κ(a + γI) ≤ κmax required for numerical stability of operators (e.g., the Poisson
solve in Fig. 6B). The proof of Theorem 4.5 passes to the limit γ ↓ 0, so predictions are
stable for small positive γ while ensuring well-posed computations during estimation.

G Supplementary Details for Section 5

Proof of Theorem 5.1 (SB alignment characterization). Work with the weighted
inner product ⟨v, w⟩a−1 :=

∫
⟨v, a−1w⟩µt for each t. By the weighted Hodge decomposition,

any velocity a−1(u−bR) splits orthogonally as ∇θ+ζ with ∇·(ζ µt) = 0 in the distributional
sense. The SB Euler–Lagrange conditions (for fixed endpoints and reference R) enforce
a−1(u − bR) = ∇θ, i.e., the solenoidal component vanishes. Conversely, if u = bR + a∇θ,
then the path satisfies the SB optimality system and is the unique minimizer of the action
under Assumption 5.1. □

Proof of Theorem 5.2 (rotational energy bound). Let µ⋆
t denote the SB path with

reference R and the same endpoints. Consider the time derivative of KL(µt∥µ⋆
t ) in weak

form. Using u = bR + a∇θ + w and the continuity equations for µt and µ⋆
t , one obtains

(after cancellations of potential terms) a dissipation inequality of the form
d

dt
KL(µt∥µ⋆

t ) ≤ −
∫
⟨w, a−1w⟩µt + terms controlled by CP (µ, a).

Integrating over t ∈ [0, 1] and invoking the weighted Poincaré inequality (finite CP (µ, a))
yields KL(µt∥µ⋆

t ) ≤ CP (µ, a)
∫ t

0
∫
⟨w, a−1w⟩µs, which implies the stated bound after mono-

tonicity adjustment. The equalityR = 0 forces w ≡ 0, hence SB alignment, and the converse
is immediate. □

Vanishing-regularization limit for degenerate references. Let aε = a+εI with ε ↓ 0.
Assume the SB paths (µε

t )t∈[0,1] are tight with uniformly bounded action. By Prokhorov
compactness, there is a subsequence with µε

t ⇒ µt for each t. Passing to the limit in the weak
optimality system shows that {µt} is a degenerate SB solution. If R = 0, then u = bR +a∇θ
holds µt-a.e., implying that the PF–ODE path coincides with the (degenerate) SB limit.

Proof of Corollary 5.6 (simplex Schrödinger Bridge). We derive the simplex form
of the Schrödinger Bridge optimality condition by pushing forward the hidden-space SB
system through the softmax map φ(h) = softmax(W⊤h).
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Step 1: Hidden-space SB condition. By Theorem 5.1, the hidden-space probability path
{µh

t } is an SB if and only if its velocity field takes the potential-flow form
u(h, t) = bR(h, t) + a(h, t)∇hθ(h, t)

for some potential θ : Rd × [0, 1] → R, where a = σσ⊤ is the diffusion matrix. The corre-
sponding continuity equation is

∂tµ
h
t = −∇h ·

(
u(h, t)µh

t (h)
)

in D′(Rd).

Step 2: Pushforward to the simplex. Define the simplex-valued process by p = φ(h) =
softmax(W⊤h) and let Pt := φ#µ

h
t denote the law of p(t) on ∆V −1. For any test function

ψ ∈ Cb(∆V −1) we have
d

dt

∫
∆V −1

ψ(p) dPt(p) = d

dt

∫
Rd

ψ(φ(h)) dµh
t (h)

= −
∫
Rd

∇h[ψ(φ(h))] · u(h, t) dµh
t (h),

where we used the weak form of the continuity equation. Writing z = W⊤h and p =
softmax(z), the chain rule gives

∇h[ψ(φ(h))] = (∇pψ(p))⊤ ∂p

∂h
= (∇pψ(p))⊤Jsm(z)W⊤,

since ∂p
∂z = Jsm(z) and ∂z

∂h = W⊤.

Step 3: Transforming the potential term. We now relate θ to a simplex potential. Define
Θ(p, t) on the image of φ by Θ(p, t) := θ(h, t) for any h such that φ(h) = p; under our
regularity assumptions this is well defined µh

t -a.e. and determines Θ up to an additive
constant on fibers. Applying the chain rule to θ(h, t) = Θ(φ(h), t) yields

∇hθ(h, t) =
(∂p
∂h

)⊤
∇pΘ(p, t) = W Jsm(z)⊤∇pΘ(p, t).

Substituting u = bR + a∇hθ into the weak form and using the composition above, the
contribution of the potential term is∫

Rd

∇h[ψ(φ(h))] · a∇hθ dµ
h
t =

∫
Rd

(∇pψ)⊤Jsm(z)W⊤a∇hθ dµ
h
t

=
∫
Rd

(∇pψ)⊤Jsm(z)W⊤aW Jsm(z)⊤∇pΘ dµh
t .

By Proposition 4.4 the effective mobility on the simplex is
M(p) = Jsm(z)W⊤aW Jsm(z),

so the previous expression can be written as∫
Rd

(∇pψ)⊤M(p)∇pΘ(p, t) dµh
t (h) =

∫
∆V −1

(∇pψ)⊤M(p)∇pΘ(p, t) dPt(p).

Step 4: Simplex continuity equation and SB form. Performing the same pushforward step
for the reference part bR (which either vanishes or pushes forward to a gradient term under
the assumptions of Corollary 5.6) and collecting everything in the weak formulation, we
obtain

d

dt

∫
∆V −1

ψ(p) dPt(p) = −
∫

∆V −1
(∇pψ(p))⊤

(
b̃R(p, t) +M(p)∇pΘ(p, t)

)
dPt(p),

for all ψ ∈ C1
b (∆V −1), where b̃R is the pushforward of bR. Equivalently, Pt solves the

continuity equation
∂tPt = −∇p ·

(
Pt v(p, t)

)
, v(p, t) = b̃R(p, t) +M(p)∇pΘ(p, t).

When the pushed-forward reference drift b̃R is itself a gradient field or vanishes (the case
highlighted in the main text), this reduces to the potential-flow SB condition on the simplex

Ṗt = −∇p ·
(
Pt M(p)∇pΘ(p, t)

)
,

with mobility M from Proposition 4.4, exactly as stated in Corollary 5.6. □
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Practical notes on the diagnostic. To estimate R, compute an empirical drift û, solve
the weighted Poisson problem∇·(a∇θ) = ∇·(û−bR) (on the domain induced by activations),
set r = û− bR − a∇θ, and approximate

∫
∥a−1/2r∥2 dµ dt by Monte Carlo. When a is ill-

conditioned, use aε and extrapolate ε ↓ 0.

H Computational Implementation Details

H.1 Numerical Stability Considerations

Bounded Variation Computation (complexity & stability). Compute SL =∑
ℓ ∥∆z(ℓ)∥2

2 in float64 to avoid accumulation errors. For softmax computation, use log-
sum-exp trick: log

∑
i exp(zi) = zmax + log

∑
i exp(zi− zmax). Clip probabilities at machine

epsilon before taking logs to prevent numerical instabilities. Monitor SL continuously during
training to detect violations of the bounded variation assumption, triggering segmentation
procedures when local spikes exceed τBV = 5 ·median(SL).

Handling Near-Singular Regions. Near representation locking where pmax → 1, the
mobility tensor Jsm becomes ill-conditioned. This creates challenges for both theoretical
analysis and numerical computation. Regularization strategies:

• Add εI with ε ∈ [10−8, 10−6] for conditioning, ensuring the regularized tensor Jε
sm =

Jsm + εI remains invertible.
• Important: We use Jsm + εI only as a numerical preconditioner in linear solvers;

the PF–ODE itself continues to use the unregularized Jsm, preserving Jsm1 = 0 and
mass conservation.

• Use pseudoinverse with tolerance tol = 10−10 for projections when exact inversion
is not required.

• Monitor condition number κ(Jsm); switch to specialized solvers when κ > 1012.
• For Schrödinger Bridge computations near degeneracy, apply the regularization
aε = a+ εI as specified in Assumption 5.1, reconciling the general degenerate case
with SPD requirements.

Efficient mobility computation. The mobility tensor norm ∥Jsm∥F used for early exit
decisions and locking detection can be computed in O(V ) time without constructing the
full matrix. Using the identity ∥Jsm∥2

F =
∑

i p
2
i + (

∑
i p

2
i )2−2

∑
i p

3
i , we need only compute

three moments of the probability distribution, making this diagnostic negligible compared
to attention computation costs.

Local Drift Estimation (complexity and robustness). The architectural consistency
condition in Assumption 3.1 requires accurate drift estimation. For k-NN local regression
on N points:

• Computational cost: O(NkV ) operations when batched efficiently using KD-trees
or approximate nearest neighbor algorithms.

• Use Huber loss ρδ(r) =
{ 1

2r
2 |r| ≤ δ

δ(|r| − δ
2 ) |r| > δ

with δ = 1.345 · MAD for outlier

resistance.
• Apply leave-one-out cross-validation for hyperparameter selection, particularly for

choosing k and ridge parameter λ.
• Small MLP regressors (2-3 layers, 256-512 units) add O(N ·MLP) cost but provide

better approximation in high-curvature regions.
• Verify consistency: For compact K ⊂ RV , check ∥b̂L − b∥L2(K×[0,1]) < ϵ with

progressively smaller ϵ as L increases.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

PF–ODE Integration (adaptive schemes and conservation). Employ Dor-
mand–Prince (RK5(4)) with embedded error estimation for solving the probability-flow
ODE. The adaptive timestep selection ensures accuracy while maintaining computational
efficiency:

• Step size control: hnew = h · min
(
fmax,max

(
fmin, fsafety ·

( tol
err
)0.2)) where

fsafety = 0.9, fmin = 0.2, fmax = 10.
• Mass conservation: Monitor |

∑
i pi(t)− 1| < tolmass = 10−12. If violated, renor-

malize with warning.
• Positivity preservation: If any pi < 0, project back to simplex via Euclidean

projection: p+
i = max(0, pi − ν) where ν is chosen so

∑
i p

+
i = 1.

• Energy monitoring: Track Shannon entropy E(t) =
∑

i pi(t) log pi(t) to detect
anomalous behavior.

• Boundary conditions: The zero-flux property Jsm(z)1 = 0 automatically pre-
serves simplex invariance without explicit boundary treatment.

Under Carathéodory regularity, projection should rarely be needed but serves as a numerical
safeguard against accumulation errors.

Schrödinger Bridge Solver (IPF/Sinkhorn with acceleration). The Iterative Pro-
portional Fitting algorithm for Schrödinger Bridge computation requires careful implemen-
tation for numerical stability:

• Dense kernel IPF: O(TM2) complexity where T is iterations and M is discretization
size.

• Nyström approximation with R landmarks: Reduces complexity to Õ(TMR) by
approximating kernel K ≈ KMRK

−1
RRKRM .

• Anderson acceleration: Maintain m = 5 past iterates for convergence acceleration,
updating via x(k+1) = (1− βk)f(x(k)) + βkx

(k) with optimal βk computed via least
squares.

• Log-domain computation: Work with log-potentials log a(k), log b(k) to avoid nu-
merical underflow in high-dimensional settings.

With ε > 0 entropic regularization and strictly positive kernels, IPF implements block-
coordinate Bregman projections that monotonically decrease the SB objective, converging
to the unique minimizer at geometric rate ρ = 1−e−2/ε

1+e−2/ε .

Convergence criteria: Stop when both conditions are satisfied:

1. Marginal error: supt TV(ρt, µt) < 10−3 where TV denotes total variation distance.
2. Potential stability: ∥θ(k+1) − θ(k)∥∞ < 10−3 measuring change in Schrödinger po-

tentials.

Rotational Energy Estimation (preconditioning and sampling). Computing the
rotational energy diagnostic requires solving a Poisson equation and careful numerical treat-
ment:

1. Drift computation: Extract u from transformer dynamics using finite differences
or learned regression.

2. Poisson solve: Solve ∇ · (a∇θ) = ∇ · (u − bR) using preconditioned conjugate
gradient with incomplete Cholesky preconditioner.

3. Preconditioning: Apply a−1/2 carefully, using regularization aε = a + εI when
condition number exceeds 106.

4. Importance sampling: In high-variance regions (near simplex boundaries), in-
crease sample density by factor of 10.
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5. Monte Carlo estimation: Use NMC = 104 samples per time point for reliable
estimates with standard error ≈ 0.01∥R∥.

I Asymptotic Complexity Analysis

Procedure Complexity (per batch) Notes
BV statistic SL O(LV ) float64 accumulation
Local drift fit O(NkV ) k-NN; batched operations
PF–ODE integrate O(NstepsV ) adaptive RK with error control
Score estimation O(N · MLP) layerwise caching available
SB (dense IPF) O(TM2) Nyström → Õ(TMR)
Rotational energy O(

∑
k
Mtkd) precondition by a−1/2

Memory requirement O(LV +Nd) activation caching
Temperature schedule O(L) entropy computation per layer
Early exit check O(V ) closed-form Frobenius norm from moments of p

Table 2: Asymptotic costs for diagnostic procedures. Typical setting has V ≫ d (vocabulary
much larger than hidden dimension). Batching and caching significantly reduce practical
constants. All procedures are designed to add minimal overhead to standard transformer
operations.

J Extended Mathematical Results

J.1 Proof of Weak Convergence under BV

Theorem J.1 (BV compactness and identification). Under Assumption 3.1 (bounded vari-
ation, uniform boundedness, and architectural consistency), there exists a subsequence zLk

and a limit z ∈ BV([0, 1];RV ) such that

zLk
(t)→ z(t) for a.e. t ∈ [0, 1], zLk

→ z in L1([0, 1];RV ).

Moreover, for the piecewise-constant derivatives DL := ∆z(ℓ)/δt we have weak L1 conver-
gence to the architectural drift b, i.e. DL ⇀ b(·, ·) in L1([0, 1];RV ).

Proof. We argue in two steps: first extracting a compactness subsequence for the logit paths
(zL), then identifying the limit of the discrete drifts via Lemma 3.5.

Step 1: Compactness of (zL). For each L let δt = 1/L and tℓ = ℓ/L, and define the
piecewise-constant interpolant

zL(t) := z(ℓ) for t ∈ [tℓ, tℓ+1), ℓ = 0, . . . , L− 1.

By Assumption 3.1(i) and (ii) we have

sup
L

L−1∑
ℓ=0
∥z(ℓ+1) − z(ℓ)∥2 ≤ C, sup

L,ℓ
∥z(ℓ)∥2 ≤ Cz,

so each coordinate of zL has uniformly bounded total variation on [0, 1] and the sequence
(zL) is uniformly bounded in L∞(0, 1;RV ). By Helly’s selection theorem (applied compo-
nentwise) there exists a subsequence, still denoted (zL), and a function z ∈ BV([0, 1];RV )
such that

zL(t)→ z(t) for a.e. t ∈ [0, 1].
Since ∥zL(t)∥2 ≤ Cz uniformly in L and t, dominated convergence then implies

zL → z in L1([0, 1];RV
)
.
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Step 2: Identification of the limiting drift. Define the piecewise-constant discrete drifts

DL(t) := z(ℓ+1) − z(ℓ)

δt
for t ∈ [tℓ, tℓ+1), ℓ = 0, . . . , L− 1.

Assumption 3.1(iii) and Appendix D furnish local regression estimators b̂L such that, on
every compact K ⋐ RV ,

∥DL − b̂L∥L2(K×[0,1]) −−−−→
L→∞

0, ∥b̂L − b∥L2(K×[0,1]) −−−−→
L→∞

0.

Lemma 3.5 upgrades these L2 estimates to strong L1 convergence, i.e.

∥DL − b∥L1(K×[0,1]) −−−−→
L→∞

0

for every compact K ⋐ RV . By Assumption 3.1(ii) the trajectories zL(t) remain in a
common compact subset K0 ⋐ RV for all t ∈ [0, 1] and all L, so the above estimate with
K = K0 yields

∥DL − b(·, ·)∥L1([0,1]) −−−−→
L→∞

0.

In particular DL → b(·, ·) strongly in L1([0, 1];RV ), and hence also DL ⇀ b(·, ·) in
L1([0, 1];RV ).
This proves the claimed compactness of (zL) and the weak L1 convergence of the discrete
drifts DL to the architectural drift b, and thus Theorem J.1.

Remark J.2. This proof deliberately avoids Arzelà-Ascoli (which would require equicon-
tinuity to deduce uniform convergence that we do not need) and relies on Helly’s selection
theorem for BV curves, which provides the weaker but sufficient pointwise almost-everywhere
and L1 convergence. For the derivative sequence, we obtain weak L1 convergence directly
from strong convergence via the drift-identification lemma, rather than invoking the Dunford-
Pettis criterion (which would additionally require verifying uniform integrability of {DL}, a
condition not immediately guaranteed by boundedness alone).

J.2 Spectral Analysis of Mobility Tensor

Proposition J.3 (Eigenstructure of Jsm). The softmax Jacobian has the following spectral
properties:

1. Eigenvalues: λ0 = 0 (simple), 0 < λi ≤ 1/2 for i = 1, . . . , V − 1.

2. Eigenvectors: v0 = 1/
√
V , others orthogonal to 1.

3. Condition number: κ(Jsm) ∼ 1/(2pmin) as pmin → 0.

4. Spectral gap: For the two-point uniform case, the nonzero eigenvalue equals 1/2.
In general, lower bounds depend on distributional structure; naive bounds like λ1 ≳
pmin can be loose and are not used in our proofs.

Proof. The matrix Jsm = Diag(p) − pp⊤ is symmetric with Jsm1 = 0, giving λ0 = 0 with
eigenvector 1.
For v ⊥ 1 with ∥v∥2 = 1:

v⊤Jsmv =
∑

i

piv
2
i −

(∑
i

pivi

)2

=
∑

i

piv
2
i ≥ pmin∥v∥2

2 = pmin.

For the upper bound, consider the Rayleigh quotient:

v⊤Jsmv

v⊤v
=
∑

i piv
2
i − (

∑
i pivi)2∑

i v
2
i

.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

By Cauchy-Schwarz, this is maximized when probability concentrates on two outcomes.
Setting p1 = p2 = 1/2 and v = (1,−1, 0, . . . , 0)⊤/

√
2 yields the upper bound 1/2.

The condition number follows from κ(Jsm) = λmax/λmin ≤ 1/2
pmin

, explaining numerical diffi-
culties near locking where pmin → 0.
The spectral gap λ1 ≥ pmin determines the rate of convergence to equilibrium under the
induced dynamics, with smaller gaps leading to slower mixing and potential metastability.
This lower bound is generally loose; tight values depend on the full probability profile.

J.3 Schrödinger Bridge Optimality Conditions

Theorem J.4 (First-order conditions for SB with regularization). The Schrödinger Bridge
µ⋆ satisfies the coupled system of PDEs:

∂tφ+ 1
2 tr(a∇2φ) + bR · ∇φ = 0, (10)

∂tψ − 1
2 tr(a∇2ψ)−∇ · (bRψ) = 0, (11)

µ⋆
t = exp(φ(·, t) + ψ(·, t)) νt, (12)

where νt is the reference path law and (φ,ψ) are Schrödinger potentials. When a is near-
singular, we apply regularization aε = a + εI with ε > 0 sufficiently small to maintain
well-posedness while preserving the essential transport structure.

Proof. The Schrödinger Bridge problem minimizes the relative entropy:

H(µ|ν) = Eµ

[
log dµ

dν

]
subject to marginal constraints µ0 = ρ0, µ1 = ρ1.
Using the Girsanov theorem, the Radon-Nikodym derivative decomposes as:

dµ

dν
= exp

(∫ 1

0
⟨hs, dXs − bRdt⟩ −

1
2

∫ 1

0
∥hs∥2

a−1ds

)
for some adapted process hs.
The optimal hs takes the form hs = a∇φ(Xs, s) where φ solves the forward equation equa-
tion 10. The backward potential ψ arises from the adjoint equation ensuring the terminal
marginal constraint.
When a degenerates (as occurs near representation locking), the regularization aε ensures:

• The elliptic operators in equation 10-equation 11 remain uniformly elliptic

• The inverse a−1
ε exists with bounded norm

• The solution converges to the original problem as ε→ 0 in the weak topology

This regularization reconciles the general degenerate diffusion framework with the SPD
requirements for well-posed Schrödinger Bridges.

K Detection and Mitigation of BV Violations

K.1 Online Detection Algorithm

K.2 Segmentation Strategy

When BV violations are detected, we partition the depth interval [0, 1] into segments
{[ti−1, ti]}K

i=1 where BV holds locally. The segmentation procedure maintains the theo-
retical guarantees while handling practical violations:
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Algorithm 1 Online BV Violation Detection with Adaptive Thresholding
1: Input: Stream of logit differences {∆z(ℓ)}, window size W , base threshold τ0
2: Initialize: Slocal = 0, buffer B = [], τadaptive = τ0
3: for ℓ = 0, 1, 2, . . . do
4: Slocal ← Slocal + ∥∆z(ℓ)∥2

2
5: Append ∥∆z(ℓ)∥2 to B
6: if |B| > W then
7: Slocal ← Slocal −B[0]2
8: Remove first element from B
9: end if

10: Adaptive threshold: τadaptive = τ0 · (1 + 0.1 · std(B)/mean(B))
11: if Slocal/|B| > τadaptive then
12: Flag: BV violation at layer ℓ
13: Severity: s = (Slocal/|B|)/τadaptive
14: if s > 2 then
15: Action: Initiate immediate depth segmentation
16: else
17: Action: Mark for monitoring, prepare segmentation
18: end if
19: end if
20: end for

1. Identification phase:
• Find violation points {ℓj} using Algorithm 1
• Compute violation severity sj at each point
• Cluster nearby violations within ∆ℓ = 3 layers

2. Segmentation construction:
• Create boundaries at tj = ℓj/L with buffer zones [tj − δ, tj + δ] where δ = 2/L
• Ensure minimum segment length |ti − ti−1| ≥ 5/L for stable analysis
• Merge segments if total count exceeds Kmax = L/10

3. Local PF-ODE analysis:
• Apply Theorem 3.7 within each segment [ti−1, ti]
• Estimate local drift bi(z, t) using only data from segment i
• Verify local BV condition:

∑
ℓ∈segmenti

∥∆z(ℓ)∥2 ≤ Ci

4. Boundary matching:
• Enforce weak continuity: limt→t−

i
p(t) = limt→t+

i
p(t) in L1

• Allow jump discontinuities in velocity: v(t+i )− v(t−i ) ∈ Range(Jsm)
• Compute transition operators Ti : ∆V −1 → ∆V −1 at boundaries

5. Global assembly:
• Concatenate local solutions: p(t) = pi(t) for t ∈ [ti−1, ti]
• Verify global conservation:

∑
j pj(t) = 1 for all t

• Compute effective transport distance accounting for jumps

Theoretical guarantee: The segmented solution converges to the same limit as the contin-
uous solution as L→∞ and violation severity decreases, maintaining the essential transport
structure while accommodating practical discontinuities.

L Connection to Empirical Phenomena

L.1 Attention Entropy Collapse

The attention entropy collapse phenomenon observed empirically Gong et al. (2019) follows
rigorously from our mobility analysis:
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Proposition L.1 (Entropy dynamics under PF-ODE). Under the probability-flow ODE
ṗ = Jsm(z)b(z, t), the Shannon entropy H[p] = −

∑
i pi log pi satisfies:

Ḣ[p] = −
∑
i,j

Jsm,ij bj log(pi/pj) ≤ 0

when b aligns with the negative entropy gradient. Moreover, Ḣ[p] → 0 as pmax → 1 due to
vanishing mobility.

Proof. Computing the time derivative:

Ḣ[p] = −
∑

i

ṗi(log pi + 1) (13)

= −
∑

i

(Jsmb)i(log pi + 1) (14)

= −
∑
i,j

Jsm,ijbj log pi (15)

Using the symmetry of Jsm and the fact that Jsm1 = 0:

Ḣ[p] = −1
2
∑
i,j

Jsm,ijbj(log pi − log pj) (16)

= −
∑
i,j

Jsm,ijbj log(pi/pj) (17)

When b = −∇H (gradient flow), the quadratic form b⊤Jsmb ≥ 0 ensures Ḣ ≤ 0.

As pmax → 1, we have ∥Jsm∥ → 0 by Theorem 3.9, implying |Ḣ[p]| ≤ ∥Jsm∥∥b∥∥∇H∥ → 0.
This rigorously explains why attention patterns become increasingly peaked in deeper layers,
with entropy collapse being inevitable rather than a training artifact.

L.2 Temperature Scaling Effectiveness

Temperature scaling’s empirical success Guo et al. (2017) in improving calibration is ex-
plained by explicit mobility modulation:
Proposition L.2 (Temperature-mobility relationship). For temperature parameter τ > 0,
the effective mobility tensor satisfies:

Jτ
sm(z) = 1

τ
Jsm(z/τ)

The eigenvalues of Jτ
sm(z) equal those of Jsm(z/τ) scaled by 1/τ . The condition number

satisfies κ(Jτ
sm(z)) = κ(Jsm(z/τ)), which may differ from κ(Jsm(z)) because the probability

distribution changes when scaling logits. The induced dynamics slow by factor τ , enabling
finer control near decision boundaries.

Proof. For temperature-scaled softmax pτ
i = exp(zi/τ)/Zτ where Zτ =

∑
j exp(zj/τ):

Jτ
sm(z) = ∂pτ

∂z
(18)

= 1
τ

(
Diag(pτ )− pτ (pτ )⊤) (19)

= 1
τ
Jsm(z/τ) (20)

The eigenvalue scaling follows immediately: if Jsm(z/τ)v = λv, then Jτ
sm(z)v = (λ/τ)v.
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The condition number relationship requires careful interpretation. Since Jτ
sm(z) =

1
τ Jsm(z/τ), we have κ(Jτ

sm(z)) = κ(Jsm(z/τ)) because scaling all eigenvalues by the same
positive constant preserves the ratio of largest to smallest eigenvalue. However, this dif-
fers from κ(Jsm(z)) in general because z 7→ z/τ changes the probability distribution from
p = softmax(z) to pτ = softmax(z/τ), and the mobility tensor’s eigenstructure depends on
the specific probability values.
For the induced dynamics:

ṗτ = Jτ
sm(z)b(z, t) = 1

τ
Jsm(z/τ)b(z, t)

The factor 1/τ uniformly reduces velocity magnitude, slowing convergence to locked states.
This explains temperature scaling’s effectiveness: lower temperature prevents premature
commitment by maintaining transport capacity throughout network depth.
Calibration improvement arises because slower dynamics allow more gradual probability
refinement, avoiding the overconfident predictions that occur when mobility vanishes rapidly.

Proof of Theorem 3.9 (locking via vanishing mobility). By Theorem 3.7, the lim-
iting probability path p(t) ∈ ∆V −1 satisfies

ṗ(t) = Jsm(z(t)) b
(
z(t), t

)
for a.e. t ∈ [0, 1],

with p(t) = softmax(z(t)/τ) and Jsm(z) = Diag(p) − pp⊤. If b is bounded, there exists
M <∞ such that ∥b(z(t), t)∥ ≤M along the trajectory, hence

∥ṗ(t)∥ ≤ ∥Jsm(z(t))∥op ∥b(z(t), t)∥ ≤ M ∥Jsm(z(t))∥op. (21)

The spectral analysis in Appendix B (“Proof of the sharp mobility bound”) shows that the
nonzero eigenvalues of Jsm(z(t)) lie in [0, 1/(2τ)] and that, as pmax(t) → 1, the spectrum
collapses to {0}. In particular,

pmax(t)→ 1 =⇒ ∥Jsm(z(t))∥op → 0.

Combining this with equation 21 yields ∥ṗ(t)∥ → 0 whenever pmax(t)→ 1, i.e., the probabil-
ity path becomes locked near the corresponding simplex vertex. This proves the vanishing-
mobility and locking statements.
For the temperature dependence, Appendix L.2 (“Temperature Scaling Effectiveness”) es-
tablishes the temperature–mobility relationship

Jτ
sm(z) = 1

τ
Jsm(z/τ),

so the eigenvalues and operator norm of Jτ
sm(z) are rescaled by 1/τ relative to those of

Jsm(z/τ). Thus, increasing τ slows the PF–ODE dynamics by a factor 1/τ while preserving
the qualitative vanishing of mobility as pmax(t)→ 1, precisely as stated in Theorem 3.9. □

L.3 Two-token mobility example: complete calculation

We provide the full eigenvalue decomposition for the two-token case.
Consider a minimal attention layer with two tokens, so that distributions have the form
p = (p, 1 − p) on the one-dimensional simplex [0, 1]. For logits z = (z1, z2), the softmax
probabilities are

p1 = ez1

ez1 + ez2
, p2 = ez2

ez1 + ez2
= 1− p1.

The Jacobian of z 7→ p is

Jsm(z) =
(
∂z1p1 ∂z2p1
∂z1p2 ∂z2p2

)
=
(
p1(1− p1) −p1p2
−p1p2 p2(1− p2)

)
.
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Writing p = p1 and 1− p = p2, this becomes

Jsm(z) = p(1− p)
(

1 −1
−1 1

)
.

Eigenvalue calculation. The characteristic polynomial is

det
(
p(1− p)− λ −p(1− p)
−p(1− p) p(1− p)− λ

)
=
(
p(1− p)− λ

)2 −
(
p(1− p)

)2 = λ
(
λ− 2p(1− p)

)
.

Thus the eigenvalues are λ1 = 0 and λ2 = 2p(1− p).
Eigenvectors. For λ1 = 0: The eigenvector is (1, 1), which is normal to the simplex (points
in the direction of the constraint

∑
i pi = 1).

For λ2 = 2p(1− p): The eigenvector is (1,−1), which is tangent to the simplex.
Hence

∥Jsm(z)∥op = 2 p(1− p),
which attains its maximum value 1/2 at the uniform distribution p = 1/2 and collapses to
0 as p→ 0 or p→ 1.
Temperature scaling. With temperature τ > 0, the Jacobian with respect to unscaled
logits picks up a factor of τ−1, so the effective mobility norm behaves like

∥J (τ)
sm (z)∥op ≍

2 p(1− p)
τ

.

As attention mass locks onto one token (p→ 1 or p→ 0), we have p(1−p)→ 0 and thus the
mobility eigenvalue in the tangent direction vanishes, forcing ṗ = Jsm(z) b(z, t) to approach
zero even if the drift b remains bounded away from zero. Temperature rescaling modulates
this locking behavior: larger τ keeps p away from the degenerate regimes p ≈ 0 or p ≈ 1
and maintains nontrivial mobility deeper into the network.

M Extended Experimental Protocols

M.1 Section 7 Reference Recap and Conventions

Conventions. W1 uses cost ∥·∥1; W2 terms in this section use an entropic Sinkhorn surrogate
with the same ε as elsewhere. All TV norms are 1

2∥ · ∥1 on row distributions. Query/key
distances dQ, dK match the metrics used in plots/captions.

Row drift bound. Let P (ℓ)
i = sm(z(ℓ)

i ) be the ith row at layer ℓ, with component-wise
Lipschitz constants L(ℓ)

c for c ∈ Cℓ and incoming perturbations ∆u(ℓ)
i,c .∥∥P (ℓ+1)

i − P (ℓ)
i

∥∥
1 ≤

∑
c∈Cℓ

L(ℓ)
c

∥∥∆u(ℓ)
i,c

∥∥. (22)

Remark. Equation (22) yields a finite-depth budget for one-layer motion (TV on the left)
from component sensitivities on the right; it underpins the PF–ODE adequacy overlay in
§7.
Local saturation / locking. Let P = sm(z), tail mass δ(P ) = 1−maxj P (j), and ∆z a
small perturbation that preserves the argmax.∥∥sm(z + ∆z)− sm(z)

∥∥
1 ≤ min

{
1, 2 δ(P )

}
∥∆z∥∞ + o

(
∥∆z∥∞

)
. (23)

Remark. When δ(P ) is small (near saturation), softmax is insensitive to small, non-flipping
logit changes—predicting the “locking” collapse of ∆TV in low-tail-mass bins.
Curvature (common-support W1). For queries i ̸= i′ with common support Si,i′ , define

κ(i, i′) = 1 −
W1
(
P̂i, P̂i′

)
dQ(i, i′) , (24)
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where W1 is over (Si,i′ , dK) and P̂ denotes restriction to the common support. Remark.
The curvature gap 1− κ quantifies contraction on the simplex; temperature ↑ or key-norm
↓ should reduce this gap (tested in §7).

EVI with drift. For successive layers ℓ−1→ ℓ at query i, with objective Fi and ρ(ℓ)
i = P

(ℓ)
i· ,

W 2
2
(
ρ

(ℓ)
i , ρ

⋆(ℓ)
i

)
−W 2

2
(
ρ

(ℓ−1)
i , ρ

⋆(ℓ)
i

)
2 ηeff

≤ −
(
Fi

(
ρ

(ℓ)
i

)
− Fi

(
ρ

⋆(ℓ)
i

))
+ ∆(ℓ)

drift. (25)

Remark. Equation (25) is a discrete EVI: each layer decreases Fi up to a drift term from
parameter changes (Q,K). In §7 we use a Sinkhorn W2,ε surrogate for the left-hand side
and report the expected proximal-progress signature when drift is small.

M.2 Detailed Score Estimation Procedure

For robust score estimation in anisotropic regimes encountered near representation bound-
aries:

1. Data augmentation: Generate noisy samples at multiple scales
h̃σ = h+ ε, ε ∼ N (0, σ2I) (26)
σ ∈ {0.01, 0.02, 0.05, 0.1} · ∥h∥2 (27)

2. Denoising objective with importance weighting:

L(θ) = Eh,ε,σ

[
w(σ) ·

∥∥∥∥sθ(h̃, t, σ)− h− h̃
σ2

∥∥∥∥2

2

]
where w(σ) = σ2/(σ2 + σ2

min) emphasizes intermediate noise levels.
3. Multi-scale architecture:

• Input: [h̃; t; log σ] ∈ Rd+2

• Hidden layers: 2-3 layers with width max(512, 2d)
• Skip connections: h(ℓ+1) = h(ℓ) + MLP(h(ℓ))
• Output normalization: LayerNorm before final projection

4. Training protocol:
• Optimizer: AdamW with learning rate 10−4, weight decay 10−5

• Batch size: 256 samples per noise level
• Epochs: 5 per layer with early stopping based on validation loss
• Curriculum: Start with large σ, progressively include smaller scales

5. Validation and diagnostics:
• Score consistency: Verify |∇ · (p sθ)| < 10−3 on held-out data
• Anisotropy detection: Compute eigenvalues of E[sθs

⊤
θ ]

• Coverage: Ensure score estimates span the tangent space at each point

M.3 IPF Implementation Details

The Iterative Proportional Fitting algorithm for computing Schrödinger Bridges between
transformer layers:
Implementation notes:

• Work in log domain to avoid numerical underflow: store log a(k), log b(k)

• Use logsumexp for stable computation of normalizing constants
• For large vocabularies V > 104, use Nyström approximation with R =

min(1000, V/10) landmarks
• Monitor dual gap: G(k) = ⟨a(k),Kb(k)⟩ − ⟨µ0, log a(k)⟩ − ⟨µ1, log b(k)⟩
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Algorithm 2 IPF for Schrödinger Bridge with Adaptive Regularization
1: Input: Marginals µ0, µ1, diffusion a, tolerance εtol, max iterations Tmax
2: Initialize: a(0) = 1, b(0) = 1, εreg = 0.1
3: Compute reference kernel: Kij = exp(−∥xi − yj∥2

a−1/(2εreg))
4: for k = 1, 2, . . . , Tmax do
5: Check conditioning: If κ(K) > 1010, increase εreg ← 1.5εreg
6: b(k) = µ1 ⊘ (K⊤a(k−1)) ▷ Pointwise division in log domain
7: a(k) = µ0 ⊘ (Kb(k))
8: Π(k) = Diag(a(k))K Diag(b(k))
9: Compute marginals: µ̂0 = Π(k)1, µ̂1 = Π(k)⊤1

10: Convergence check:
11: if TV(µ̂0, µ0) + TV(µ̂1, µ1) < εtol then
12: Extract potentials: φ = εreg log a(k), ψ = εreg log b(k)

13: Return Π(k), φ, ψ
14: end if
15: Anderson acceleration: If k mod 5 = 0, apply acceleration using past 5 iterates
16: end for
17: Warning: Maximum iterations reached without convergence
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Figure 7: Locking (P2): ∆TV vs. tail mass δ(P ) (median/IQR bins).
M.4 Additional Track-T Diagnostics

M.5 Additional Image Diagnostics

Table 3: Image rotational energy R̂ with 95% BCa CIs; cross-track values are not comparable
due to different ambient spaces/discretizations.

Track R̂ Notes
Image (CIFAR-10) 0.03092 (95% CI [0.01046, 0.05385]) 20 time points

M.6 Quantitative pass/fail checks

P1 (PF–ODE adequacy). Realized layerwise TV should not exceed the drift budget plus
a finite-sample band; exceedances are flagged.
P2 (Locking). In low–tail-mass bins, the median ∆TV remains within a small band (bands
and CI policy as in App. Section M).
P3 (Curvature/EVI). Increasing temperature or reducing key-norms reduces the curva-
ture gap 1−κ by a predictable amount; reductions are reported with uncertainty bands (see
App. Section M).
P4 (SB alignment). Rotational energy R̂ decreases under improved calibration/check-
points (BCa CIs; App. Section M).
Image weak error. The slope of log errK vs. logK is near −1 (BCa, B=1000); the fitted
value and CI are reported.
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Figure 8: EVI surrogate (P3): Sinkhorn W2,ε across layers (mean±sd).

Figure 9: Path smoothness (BV; unitless) for ODE vs. SDE.
M.7 Additional exploration: discrete diffusion language models

We briefly explored extending our diagnostics to diffusion language models operating on
discrete token spaces. The late-window stability diagnostic in its current form showed
limited applicability in this setting, suggesting that discrete state spaces require adapted
diagnostics beyond the scope of this work. We therefore focus empirical validation on
continuous dynamics (transformers and image diffusion) where the framework’s predictions
are directly testable.

N Extended Limitations and Practical Implications

N.1 Modality scope and evaluation

Scope. This work evaluates text transformers and includes a minimal image diffusion
sanity check (CIFAR-10). Full-scale vision benchmarks and perceptual metrics (e.g., FID
under guidance sweeps) are intentionally out of scope for this paper.
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Implications. The OT/PF–ODE constructions are modality-agnostic, but conclusions
here are supported by text-model evidence (Track T/D) and a compact image sanity check
(Track I). Future expansions to larger image datasets and class-conditional guidance are
planned (see Section O).

N.2 Poisson solve and conditioning policy

Masked Poisson and regularization. We solve ∆ψ = ∇· u with masked Neumann
boundary conditions; Tikhonov γ regularizes the Laplacian on thin supports.

Condition-number target. Default γ = 10−5; increase γ until the (masked) system’s
condition number is ≤ 108. Record γ and the achieved condition number alongside R̂.

Normalized variant. For intra-track comparisons, optionally report the dimensionless
R̂norm = R̂/

∫
∥u∥2.

N.3 Current limitations and mitigation strategies

Bounded variation breakdown. The BV assumption may fail during:

• Attention pattern reorganization (detectable via SL monitoring).
• Early training instabilities (addressable through warmup).
• Adversarial inputs (requiring robust training modifications).

Mitigation: Implement adaptive depth segmentation when local variation exceeds thresh-
olds. The PF–ODE applies piecewise with weak continuity at segment boundaries, as de-
tailed in Section K.2.

Anisotropy challenges. Near-singular diffusion tensors arise at representation bound-
aries:

• Regularize with εI for numerical stability (ε ∈ [10−8, 10−6]).
• Monitor condition numbers and adapt solver tolerances.
• Use preconditioned iterative methods for bridge computation.

This reconciles the degenerate diffusion analysis (Section 4) with SPD requirements for
Schrödinger Bridges (Section 5).

Computational costs. Full SB computation scales quadratically with vocabulary:

• Employ Nyström approximations for large vocabularies.
• Use landmark-based methods reducing complexity to Õ(TMR).
• Implement hierarchical decompositions for multi-scale analysis.

N.4 Validity conditions and diagnostic abstention protocol

P0 gate. Diagnostics P1–P4 are conditioned on passing P0 (BV SL ≤ 0.15 and continuity
residuals < 10−14). Failures trigger abstention and reporting of the failing metric.

O Discussion and Future Directions (Extended)

O.1 Theoretical implications and open questions

Optimality of attention. Does the semi-relaxed EOT structure of attention reflect an
optimal sequence model, or a convenient approximation? The SB characterization suggests
near-optimal transport under appropriate conditions.
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Implicit regularization. Softmax’s entropic regularization may explain generalization;
connect to PAC-Bayes and info-theoretic measures.

Scaling laws. The framework predicts links between depth/width and effective transport
capacity; test against empirical scaling laws.

O.2 Methodological contributions beyond theory

Training monitoring. BV statistics warn of instabilities; rotational energy tracks trans-
port alignment and flags when architectural changes may help.

Architecture search. Differentiable transport-efficiency metrics can guide gradient-
based architecture optimization beyond accuracy-only objectives.

Interpretability. Mobility provides a geometric lens on attention patterns; tracking its
evolution can reveal phase transitions in representation.

P Notation Summary

Symbol Description

h(ℓ) Hidden representation at layer ℓ
z(ℓ) Logits at layer ℓ
p(ℓ) Probability distribution at layer ℓ
Jsm Softmax Jacobian (mobility tensor)
Jτ

sm Temperature-scaled mobility tensor
SL Bounded variation statistic
R Rotational energy (SB deviation)
a Diffusion tensor (ΣΣ⊤)
aε Regularized diffusion (a+ εI)
bR Reference drift
b(z, t) Architectural drift (identified limit)
θ Schrödinger potential
φ,ψ Forward/backward Schrödinger potentials
M(p) Induced mobility on simplex
µt Transformer probability path
ρt General probability measure
νt Reference path measure
u Velocity field for probability flow
H[p] Shannon entropy
τ Temperature parameter

Table 4: Complete notation used throughout the paper, including both main text and
appendix symbols.

Q Additional Technical Lemmas

Lemma Q.1 (Gradient flow structure). The probability-flow ODE on the simplex admits a
gradient flow interpretation in the Wasserstein geometry when b = −∇V for some potential
V :

ṗ = −∇W2F [p]
where F [p] =

∑
i piV (zi) and ∇W2 denotes the Wasserstein gradient.

Proof. We briefly recall the Riemannian structure underlying the discrete Wasserstein ge-
ometry; see, for example, Maas (2011); Erbar & Maas (2012); Chow et al. (2012) for full
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details. On the simplex ∆V −1, admissible tangent vectors w satisfy
∑

i wi = 0, and the
discrete W2 metric is defined by the inner product

⟨w1, w2⟩W2,p :=
∑
i,j

w1,i M(p)−1
ij w2,j ,

where M(p) is the mobility tensor associated with the dynamics. In our setting, this M(p)
coincides with the effective mobility tensor introduced in Proposition 4.4 and used in Corol-
lary 5.6; however, for the present lemma we only require that M(p) be positive definite on
the tangent space.
By definition of the Riemannian metric, the Wasserstein gradient of a smooth functional F
at p is the unique tangent vector gradW2F(p) such that

⟨gradW2F(p), w⟩W2,p =
∑

i

∂pi
F(p)wi for all tangent vectors w.

Using the explicit expression for the inner product, this identity forces
gradW2F(p) = M(p)∇pF(p).

In the probability-flow regime the simplex dynamics take the form
ṗ = M(p) b(p, t).

In the potential case b = −∇V we consider the functional F [p] =
∑

i piV (zi), so that
∇pF(p) = (V (z1), . . . , V (zV ))⊤. We then obtain

gradW2F(p) = M(p)∇pF(p),
and the PF–ODE becomes

ṗ = − gradW2F(p),
which is precisely the W2–gradient flow of F . This proves the claimed gradient flow struc-
ture.

Remark Q.2 (Discrete optimal transport interpretation). On discrete state spaces, this
gradient flow structure connects to entropic W2 analogues for Markov chains as developed
in Maas (2011); Erbar & Maas (2012); Chow et al. (2012). We adopt this interpretation to
provide geometric intuition for the probability dynamics on the simplex, though the precise
metric structure depends on the choice of discrete optimal transport geometry.
Lemma Q.3 (Convergence rate under mobility control). If the mobility tensor satisfies
λmin(Jsm) ≥ m > 0 uniformly, then the probability flow converges exponentially to equilib-
rium:

∥p(t)− p∗∥2 ≤ e−mt∥p(0)− p∗∥2

where p∗ is the unique equilibrium distribution.

Proof. We argue in a finite-dimensional, purely Euclidean setting and make the structure
and use of the mobility bound explicit.
Let p∗ ∈ ∆V −1 denote an equilibrium of the probability flow: ṗ∗(t) = 0 for all t when
p(t) ≡ p∗. Consider the deviation u(t) := p(t)−p∗. Since both p(t) and p∗ lie in the simplex,
we have

∑
i ui(t) = 0 for all t, so u(t) always belongs to the tangent space T∆V −1 = {v ∈

RV :
∑

i vi = 0}.
Assume that, in a neighborhood of p∗, the probability-flow dynamics can be written in the
form

u̇(t) = −A(t)u(t), (28)
where each A(t) is a symmetric, positive-definite linear operator on T∆V −1 arising from the
mobility tensor and drift. This is the standard situation for linearized gradient flows around
a strictly convex equilibrium. The “mobility control” assumption λmin(Jsm(z(t))) ≥ m is
then interpreted as providing a uniform lower bound

⟨v,A(t) v⟩ ≥ m ∥v∥2
2 for all v ∈ T∆V −1 and all t ≥ 0. (29)
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(For example, A(t) may be a symmetric combination of Jsm(z(t)) and a Hessian or linearized
drift; the key point is the coercivity equation 29.)
Define the energy

E(t) := 1
2∥u(t)∥2

2 = 1
2∥p(t)− p∗∥2

2.

Differentiating along solutions of equation 28 gives
d

dt
E(t) =

〈
u(t), u̇(t)

〉
= −

〈
u(t), A(t)u(t)

〉
.

Using the coercivity bound equation 29, we obtain
d

dt
E(t) ≤ −m ∥u(t)∥2

2 = − 2mE(t).

Thus E satisfies the differential inequality
d

dt
E(t) ≤ − 2mE(t).

Applying Grönwall’s lemma yields

E(t) ≤ e−2mt E(0) for all t ≥ 0.

Returning to the original variables and recalling that E(t) = 1
2∥p(t)− p∗∥2

2, we obtain

∥p(t)− p∗∥2 ≤ e−mt ∥p(0)− p∗∥2.

This is exactly the claimed exponential convergence rate.

Lemma Q.4 (Bridge interpolation formula). For Schrödinger Bridge µt between µ0 and
µ1, the intermediate marginals satisfy:

µt = arg min
ρ
{(1− t)KL(ρ|µ0) + tKL(ρ|µ1)}

providing a variational characterization of the optimal transport path.

Proof. This is a classical characterization of entropic interpolants in the Schrödinger Bridge
(SB) framework; see, for example, the survey Léonard (2014) and references therein. In the
dynamic SB problem, the SB path (µt)t∈[0,1] between prescribed endpoints (µ0, µ1) arises as
the entropic interpolation associated with a reference Markov process. The corresponding
static problem can be formulated as a two-sided entropy minimization with respect to the
endpoint marginals.
More precisely, for each fixed t ∈ (0, 1) one can characterize the time-t marginal µt as the
unique minimizer of the two-sided relative entropy functional

ρ 7→ (1− t) KL(ρ∥µ0) + tKL(ρ∥µ1)

over probability measures ρ lying in the SB path. This variational principle yields exactly
the formula stated in the lemma. We do not reproduce the full measure-theoretic proof here
and refer instead to Léonard (2014) for a complete treatment.

Remark Q.5. This variational view is classical in the Schrödinger Bridge literature and
depends on the choice of reference path measure; rigorous formulations use Schrödinger
potentials and dynamic entropy minimization as developed in, for example, Léonard (2014).

Q.1 Complete proof of the PF–ODE theorem on the simplex (Section 5.3)

Proof of the PF–ODE on the simplex. We prove that under Assumption 3.1 the limit path
p(t) = softmax(z(t)/τ) satisfies ṗ(t) = Jsm(z(t)) b(z(t), t) a.e. on [0, 1], and the flow is
tangent to the simplex with conserved mass.
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Step 1: Discrete-to-continuous passage. For each layer ℓ, a first-order expansion gives

p(ℓ+1) − p(ℓ) = Jsm

(
z(ℓ)
)

∆z(ℓ) + rℓ,

with a remainder bounded as ∥rℓ∥ ≤ C ∥∆z(ℓ)∥2
∞ by Lipschitz continuity of ∇Jsm (Sec-

tion 2). Dividing by δt = 1/L and summing over layers, the remainders contribute
O
(∑

ℓ ∥∆z(ℓ)∥2
∞
)

= O(ΞL)→ 0 by the finite-depth budget.

Step 2: Compactness and limit identification. The piecewise-constant interpolant
pL(t) has bounded variation in t and remains in the simplex. By BV compactness we extract
pLk
→ p in L1([0, 1]). Using zLk

→ z in L1 and DLk
⇀ b (Appendix J.1), passing to the

limit in the weak formulation yields ṗ = Jsm(z) b in the distributional sense, hence a.e. due
to absolute continuity.

Step 3: Well-posedness (Carathéodory). The velocity field v(t) = Jsm(z(t)) b(z(t), t)
is measurable in t and locally Lipschitz in z under the regularity from Section 2, so the ODE
admits a unique absolutely continuous solution by Carathéodory theory.

Step 4: Simplex invariance. Mass conservation follows from Jsm(z)1 = 0, giving
d
dt

∑
i pi(t) = 0. Tangency to faces holds because if pi = 0 then the i-th row of Jsm(z)

vanishes, so ṗi = 0 (zero-flux). Hence the trajectory remains in the simplex.
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