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ABSTRACT

We show that transformer attention and diffusion models are discretiza-
tions of the same entropy-regularized optimal transport (OT) flow. A sin-
gle attention layer is a KL-proximal (JKO/mirror) step in an OT poten-
tial; stacking layers yields probability paths that converge to a probabil-
ity-flow ODE (PF-ODE) on the simplex. Our construction uses a causal,
semi-relaxed EOT that preserves attention masking while retaining OT ge-
ometry. We derive a finite-depth error bound controlled by a budget =,
(quantifying continuum validity) and prove that stacked attention weakly
approximates time-inhomogeneous, anisotropic reverse diffusions with an
error that separates time discretization, logit variation, and optional de-
generacy regularization. Geometrically, we characterize exact Schrodinger
Bridge (SB) alignment via a rotational energy R that vanishes if and only
if the path is SB, and serves as a practical diagnostic otherwise. The
framework yields testable predictions: (i) the continuum approximation
is accurate when Zp, is small; (ii) depth exhibits diminishing returns be-
yond a threshold set by contraction and step size; and (iii) lower R cor-
relates with improved generations. We validate these predictions with a
diagnostic suite (P0-P4): BV/continuity gating (with abstention on fail-
ure), PF-ODE adequacy, curvature/locking geometry, and SB energy. Evi-
dence spans three tracks—Transformers (core diagnostics), diffusion LLMs
(dLLM; late-window stability certificate), and a compact image diffusion
model (parity and first-order weak-error behavior). These insights motivate
mobility-aware temperature scheduling and certified early exit, conserving
depth while preserving transport geometry.

INTRODUCTION

Transformers and diffusion models appear fundamentally different, yet we show they in-
stantiate two discretizations of the same entropy-regularized optimal transport flow. One
attention layer performs a KL-proximal step in an optimal transport potential, and depth
plays the role of time for the induced probability dynamics on the simplex.

Contributions. Under mild regularity assumptions (detailed in Section, our main results
are:

1.

2.

Layer-level principle. Attention implements a principled KL-proximal transport step
(mirror/JKO view); see Proposition

Depth-to-time with rates. The discrepancy between layerwise paths and the probability-
flow ODE is controlled by a finite-depth budget =, ; see Theorem

Diffusion wunification. Stacked attention weakly approximates time-inhomogeneous,
anisotropic reverse diffusions with an error that separates discretization, logit variation,
and optional degeneracy regularization; see Theorem [6.6]

SB alignment certificate. A rotational-energy quantity R characterizes when the flow
is exactly Schrodinger Bridge—aligned and provides a practical diagnostic otherwise; see
Theorem

Predictions and implications. Our theory yields falsifiable predictions and design levers:
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e Continuum validity. The PF-ODE approximation is accurate when the finite-depth bud-
get =, is small; this provides a testable condition for continuum validity.

e Depth budgeting. Depth exhibits diminishing returns once Z; exceeds a quantitative
threshold determined by contraction and step size; we use this to justify (not guarantee)
early exit certificates.

e Transport optimality. Lower rotational energy R is consistent with Schrodinger Bridge
alignment and correlates with improved generation quality; we monitor R as an opera-
tional diagnostic rather than a stand-alone guarantee.

Further context. Extended motivation and a conceptual schematic are provided in Ap-
pendix [A] see also Fig. 3] Fig. [d] and Table 2] for a high-level overview and novelty map.

These predictions inform mobility-aware temperature scheduling and certified early exit
strategies; complete diagnostic protocols and proofs appear in the appendix.

Positioning and scope. Our empirical study is designed to test diagnostic predictions
of the theory—PF-ODE adequacy, finite-depth budgets, and SB alignment—rather than
to optimize benchmark scores. We therefore emphasize geometry-aware diagnostics and
stability certificates, with a compact vision sanity check; large-scale performance tuning is
out of scope for this paper (details and limitations in the appendix).

2 PRELIMINARIES AND MATHEMATICAL FRAMEWORK

This section fixes notation, states the standing assumptions used throughout, and records
the layer-level optimal-transport view we will invoke later.

Global Assumptions. We work on compact subsets where all quantities are well-defined.
Unless stated otherwise, we assume:

1. Bounded-variation logits. Let z(©) be layer logits and Az(®) = z(¢+1) — 20 We have
1820, < oo.

2. Local drift reqularity. The effective drift b(-,¢) is locally Lipschitz in its state argument
on bounded sets with Lipschitz constant L; and is locally bounded by M.

3. Mobility bounds. For p = softmax(z/7) with temperature 7 > 0, the Jacobian Jgn(z) =
Diag(p) — pp' satisfies operator-norm and derivative bounds on the relevant compact
domain; denote Ay := sup ||Jsm (%) |lop and Ly := sup ||V Jsm (%) ||op-

4. Simplex invariance. Probability vectors p remain in the simplex under the dynamics
considered; faces are handled by the standard tangent-space restriction.

Softmax and mobility. Given logits z € RV and temperature 7 > 0,
exp(z;/T)
>_;exp(z/7)

Define the softmax Jacobian (mobility tensor on the simplex)

p = softmax(z/7), D =

Jsm(2) = Diag(p) — ppT~

Remark (sharp mobility bound). We have ||Jgn(2)[lop < 5=, With equality at distri-
butions p = (%, %,0, ...,0). In particular, for 7 =1, ||Jom(2)|lop < % and the spectrum lies
in [0, 1], collapsing to {0} as max; p; — 1. A proof is provided in Appendix
Semi-relaxed Entropic Optimal Transport (EOT) and causality. We adopt a semi-
relaxed entropic OT formulation that preserves autoregressive causality (row constraints and
masking) while retaining OT geometry. Technical details are deferred to Appendix
Proposition 2.1 (Attention as KL-prox/JKO step). Let ¢; = —q-k; and T > 0. For any
full-support reference u,

pT € argmin {(c,p} +7KL(p|| u)}
pPEA

Stacking such updates discretizes a KL-mirror/JKO flow under the assumptions in Section.
The proof is given in Appendiz [B
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For intuition before the formal development, see the conceptual overview in Section [4]

3 RELATED WORK AND POSITIONING

Semi-relaxed entropic OT versus balanced OT. Our use of a semi-relaxed, row-constrained
entropic optimal transport formulation preserves causal masking essential for autoregressive
models, in contrast to balanced OT and Sinkhorn-style approaches that enforce doubly
stochastic couplings and do not respect causal structure (see e.g. (Sander et all 2022; Tay
et al.l [2020; Xu et al.l |2023; |Daneshmand) |2024))). This positions attention as transport
under causal constraints rather than as mere normalization.

JKO/mirror descent and gradient flows. The KL-prox characterization of an attention layer
aligns with proximal/mirror perspectives on gradient flows in probability; in our setting
this connects discrete layer updates to probability-flow ODEs in the continuum limit (see
Appendix |C| for detailed pointers).

Diffusion models and Schrodinger Bridges. The probability-flow ODE / reverse-SDE duality
and the Schrédinger Bridge view of entropic transport (Song et al., [2021} Lipman et al.,
2022; |[De Bortoli et al, [2021; |[Shi et al.l [2023) provide the backdrop for our rotational-
energy criterion, which operationalizes SB alignment within attention-induced flows. The
full version of this section appears in Appendix [C} with subsections [C.IHC.6]

4 CONCEPTUAL OVERVIEW

The softmax Jacobian Jy,(2) acts as the mobility tensor on the probability simplex, with
temperature modulating transport capacity via JI (2) = 7 1Jun(z/7). Higher temper-
atures maintain mobility deeper in the network. The finite-depth budget Z; quantifies
how well discrete layers approximate continuous flow by combining time discretization and
per-layer logit variation. Small = ensures the probability-flow ODE accurately captures
layerwise behavior, with additional depth yielding diminishing returns. Rotational energy
R measures deviation from optimal transport by separating gradient-driven flow from spu-
rious rotational components. Exact Schrodinger Bridge alignment occurs when R vanishes;
empirically, lower values correlate with improved generation.

5 DISCRETE CONTINUITY AND THE CONTINUOUS-DEPTH LIMIT

5.1 BOUNDED VARIATION REGIME AND PRACTICAL IMPLICATIONS

The transition from discrete layers to continuous dynamics requires controlling the accu-
mulation of changes across depth. We formalize this through a bounded-variation (BV)
condition that captures when transformers exhibit smooth evolution rather than abrupt
transitions.

Assumption 5.1 (Bounded variation with weak convergence). Let 6t = 1/L and t, = ¢/ L.
We assume:

1. Bounded total variation: Y, ||Az 9|2 < C (uniformly in L).

2. Uniform boundedness (tightness): sup, |29 |2 < C..

3. Weak first-order consistency: Dy := Az /5t on [ty tey1) satisfies Dy, — b(z(t),t) in
Li, ([0, 1;RY). .

4. Architectural consistency (identification): local-regression estimates by, converge to b on
compacts; see Appendiz[D

The BV condition typically holds when per-layer operator drifts are uniformly bounded
(e.g., spectral-norm-regularized projections with stable LayerNorm scaling), yielding
ZeL=1 Az < oo; see App. Sections [K| and for worked examples, failure modes,
and an online detection algorithm (Algorithm .
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Norm compatibility and error budget. To interface with the mobility bounds in Sec-
tion 2| we upper bound layer increments with || - ||« (comparable to || - ||z on compacts).
Define , -
SR INCINESS 3 INCT S 0
¢

where a1, as depend only on Ly, My, Ay, Ly from Section [2 Norm equivalence for the
budget. On compact domains and fixed dimension, || - ||z and || - || are equivalent up to
constants. Thus the worst-case single-layer term and the cumulative squared-variation term
in equatio are consistent with the | - ||2-based BV assumption in Assumption see
Appendix [Dffor the explicit constants used in the proof of Theorem [5.1}

Theorem 5.1 (Finite-depth error to PF-ODE). Under Assumption and the regqularity
in Section@ let p(t) solve the probability-flow ODE on [0, 1] with p(0) = lim,_,. p®). Then
there exists T' = T'(Ly, My, Ay, Ly) such that

sup Hp(“L“—p(t)H < Ep + (" =1) [0 = p(0)]],,
t€[0,1] 1

with 21, in equation , In particular, if p© = p(0) and Zp — 0, then p(ltED) — p(t)
uniformly in t.

Remark 5.2 (Continuum validity and constant scaling). Zj, is a practical validity thresh-
old: the PF-ODE faithfully predicts layerwise behavior when =y, is small (proof in App. @
Moreover, the budget constants scale with architectural smoothness and geometry: a; =
O(Ly + Myp) and ae = O(Ay + Ly). Hence Ej, decreases with smaller per-layer logit incre-
ments and stronger contraction, and the PF-ODE discrepancy vanishes as L — oo under
fixed budgets.

Remark 5.3 (When BV holds in practice). BV typically holds during stable training but can
fail at (i) phase transitions, (i) early layers with large embedding changes, or (iii) regions
of gradient instability. Detect via Sp, = >, || Az ||3; if BV fails, segment depth and apply
the analysis piecewise with weak interface continuity (App. @

Lemma 5.4 (Compactness and absolute continuity). Under Assumption there exists a
subsequence with zr, — z and pr, — p in L1([0,1]) and a.e., where p is absolutely continuous
with |p| € L*. The convergence follows from the compactness result in Section .

5.2 SEMI-RELAXED OPTIMAL TRANSPORT AND CAUSAL ATTENTION

Remark 5.5 (Row-softmax via semi-relaxed EOT). By the KL-prox characterization in
Propositz’on standard row-softmazx solves a semi-relaxed entropic OT step (with masking
handled by infinite costs and restricted support). We refer to Appendix@for details of the
dual and masking.

5.3 PROBABILITY-FLOW ODE EMERGENCE AND WELL-POSEDNESS

Theorem 5.6 (PF-ODE on the simplex and well-posedness). Under Assumption[5.1] (with
architectural consistency), the limit probability path satisfies

p(t) = Jam(2(1)) b(2(2),t) a.e. on [0,1], p(0) = Jim p@,

and the velocity field v(p,t) = Jsm(2(t)) b(2(t),t) is tangent to the simplex, ensuring p(t) €
AV~ for all t.

Remark 5.7 (Simplex invariance and uniqueness). Under Carathéodory conditions on b
(measurable in t, locally Lipschitz in z), mass is conserved (Y, p;i(t) = 1), nonnegativity
holds, zero-fluz Jsm(2)1 = 0 enforces boundary behavior, and solutions are unique on the
relative interior of AV 1.

Theorem 5.8 (Locking via vanishing mobility). If pmax(t) — 1 and b is bounded, then
[l Tsm (z(E)|lop — O (Remark@ and hence ||p(t)]| — 0. Moreover, temperature rescales

mobility as JS(;)(Z) = L Jim(2/7), modulating the approach to locking.

T
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5.4 CONNECTIONS TO EMPIRICALLY OBSERVED PHENOMENA

Attention entropy collapse, temperature scaling effects, and representation collapse follow
naturally from the mobility interpretation: as distributions concentrate, mobility (and thus
velocity) vanishes (Theorem, explaining attention concentration and providing a handle
for calibration via temperature scaling. We defer expanded discussion, diagnostics, and
eigenspectrum-based tests to Appendix [E]

6 DIFFUSION DUALITY WITH ANISOTROPIC NOISE

6.1 STOCHASTIC DYNAMICS AND WEAK FOKKER—PLANCK FORMULATION

We extend the probability-flow picture to include stochastic perturbations, establishing a
duality between deterministic and stochastic evolution. Consider the hidden-state SDE:

dHy = F(Hy, t) dt + X(Hy, t) dWy, (2)
with diffusion tensor ¢ = X T. Our analysis accommodates:
e Minimal regularity: F' locally integrable with weak derivatives, a measurable and locally
bounded.

o Anisotropy: a may be degenerate or near-singular (common near locking).
o Time-inhomogeneity: both drift and diffusion may vary with depth/time.

Lemma 6.1 (Distributional calculus in weak FP regime). Under local Fisher-information
conditions (pg > 0 a.e., pyVlogpy € Li ), the product rule holds distributionally:

V-V-(apg) =V-((V-a)pg +aVpy) inD"

Justification. The lemma enables anisotropic diffusion analysis without classical differentia-
bility; a proof via mollification and weak convergence appears in Appendix [F]

Theorem 6.2 (PF-ODE / reverse-SDE duality). Let a(x,t) = o(x,t)o(z,t)" and suppose
pu (-, t) > 0 solves the Fokker—Planck equation

Owpn = —=V-(Fpr) + %Zazimj(aiij)
)
with suitable decay/no-fluz boundary conditions. Define the deterministic flow
u(e,t) = Fo,t) — §(a(z,t) Valogpa(a,t) + (V-a)(,1)), (3)
where (V- a); := Zj Oz;ai;. Then the continuity equation

Op = =V-(up),  p(-,0)=pu(-0),
has the unique solution p(-,t) = pu(-,t) for allt. Hence, the PF-ODE with velocity u shares
identical marginals with the Ito SDE dX; = F(Xy,t)dt + o(Xy,t) dW;.

Remark 6.3. If a(x,t) = 281 is spatially constant, then (V-a) =0 and 6quati0n@ reduces
tou=F — Vlogpy, the standard probability flow drift.

Corollary 6.4 (Simplex marginal preservation). For the softmazx projection @(h) =
softmax(W T h), the pushforward measures satisfy
©upu(-,t) = pup(-,t) a.e. in time.

This extends the duality to simplex-valued processes used in the transformer analysis. A
proof sketch is provided in Appendiz [F]

Proposition 6.5 (Anisotropy propagation to simplex dynamics). The hidden-space diffu-
ston induces an effective mobility on the simplex:
M(p) = Jom(2) WTaW Jom(2),

revealing how architectural choices (embedding dimension, projection matrices) modulate
probability dynamics. A proof is given in Appendiz [F].



Under review as a conference paper at ICLR 2025

6.2 WEAK APPROXIMATION OF DIFFUSION BY STACKED ATTENTION

Theorem 6.6 (Weak SDE approximation by stacked attention). Under the assumptions in
Section @ and the weak FP calculus of Lemma let p(t) be the law of the reverse SDE
with drift u in equation @ and diffusion a, and let pr(t) be the law induced by L stacked
attention layers with step 6t = 1/L. Then, for any ¢ € C¢ and T € [0,1],

E;, )[4~ Epnld]] < Co(L7 + max 10201 +7).

where Cy depends on bounds of u,a and ¢ on compacts, and v > 0 is an optional degeneracy
reqularizer used when a is singular. Proof is deferred to Appendiz[F|

Stacked attention approximates anisotropic, time-inhomogeneous diffusion in a weak sense;
the approximation error separates discretization (L~!), logit variation (max ||Az|s), and
degeneracy regularization (). In practice, set v > 0 only when a is singular or severely
ill-conditioned (e.g., near locking); choose v just large enough to enforce a target condition
number for a 4+ I and note that predictions are stable as v | 0 (see Appendix [F)).

Toy example (why anisotropy matters). Let a(z,t) = diag(o?(t),03(t)) with 01 < 0.
Thenu = F— %(av log prr+V-a) contracts along e; and drifts along ez, mirroring attention’s
stiffness in collapsed coordinates and explaining P1-P3 curvature/locking behavior.

7 SCHRODINGER BRIDGES AND TRANSPORT OPTIMALITY

7.1 GENERAL FRAMEWORK AND ALIGNMENT CONDITIONS

Schrodinger Bridges (SB) characterize entropy-regularized stochastic interpolations between
endpoint distributions. We establish when transformer-induced probability paths align with
these optimal bridges. While Section@ allows degenerate diffusion (useful near locking), SB
typically requires a uniformly elliptic reference; we reconcile these views below.

Assumption 7.1 (Reference diffusion). The reference process R follows dX; =
br(X¢,t) dt + o(X¢,t) AW, with diffusion tensor a = oo !, where:

1. Non-degeneracy on support: a(x,t) is SPD almost everywhere on the support of the path
measure.

2. Finite action: The reference path has finite relative entropy with respect to Wiener mea-
sure for endpoints (uo, p1).

3. Degeneracy handling (reqularization): When a approaches singularity (e.g., near locking),
we use az = a + eI, analyze with € > 0, and pass to the limit € | 0 (see Appendiz @
Theorem 7.1 (SB alignment characterization). Let {ius}ic01] be the transformer’s
continuous-depth probability path with drift w. Under Assumption {pt} equals the

Schrodinger Bridge for reference R if and only if its per-mass velocity decomposes as

u = br + aVé

for some potential 0. Equivalently, the a-weighted curl vanishes, i.e. the solenoidal compo-
nent of a=!(u — br) is zero. A proof is provided in Appendiz @

Theorem 7.2 (Rotational energy controls SB deviation). Let u = br + aV8 + w be the
a-weighted Hodge decomposition with V- (w ) = 0 for each t. Define the rotational energy

1
R = / /(w,a_1w> we(de) dt.
0
Assume a finite weighted Poincaré constant Cp(u, a) along the path. Then, for eacht € [0, 1],

KL(Mt || :U’:) < CP(:U’, G,) Ra

where i} is the SB path with the same endpoints and reference R. In particular, R = 0 if
and only if {u:} is SB-aligned. A proof is given in Appendiz @
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Figure 1: Track T: core diagnostics. Left: PF-ODE adequacy (P1). Right: curvature (P3).
Locking and EVI appear in Section [M.4]

Corollary 7.3 (Rotational energy diagnostic). R > 0 with equality iff the path is
Schrodinger Bridge. Practically, estimate u (from activations), solve for 6 via a weighted
Poisson equation, compute the residual r = u —bg — aV0, and evaluate [ |la='/2r(|? dpu dt.
See App. Figure[3 for a compact schematic of this pipeline.

Remark 7.4 (Vanishing-regularization limit). If a. — a with € | 0 and the sequence of SB
paths has uniformly bounded action and is tight, any weak limit is a degenerate SB solution;
when R =0, it coincides with the PF~ODE path. See Appendiz |G,

Corollary 7.5 (Simplex Schrodinger Bridge). Under the softmazx pushforward, the SB con-
dition on the simplex takes the potential-flow form

Py = =V, (P, M(P) V,0(P,1)),

with mobility M from Theorem[6.5. This connects directly to gradient flows on the simplex
and informs mobility-aware design.

Practical implication. Rising R indicates deviation from SB (OT) geometry and co-
occurs with over-smoothing and spurious drift; minimizing R provides a geometry-aware
early warning complementary to standard fidelity metrics.

8 EMPIRICAL VALIDATION FRAMEWORK AND DIAGNOSTIC TOOLS

Overview and theory map. We validate three tracks: (T) Transformers (forward pass
as PF-ODE), (D) diffusion LLMs (dLLM; diffusion-driven sequence models on the same
discrete objects as Track T), and (I) image diffusion (parity and weak-error).

Probability-flow ODE dual (summary). In variance-preserving (VP) score-based diffu-
sion, the forward SDE is dx = f(t) x dt + g(t) dW; and the learned score V, log p;(z) defines
a deterministic probability-flow ODE (PF-ODE) with drift f(t) z — $9(¢)*V, log p;(z) that
shares the SDE time marginals.

We use the formal definitions from App. Sectlon [M1] for the drift budget, locking bound,
curvature, and EVI (Equations (19)) to ) throughout this section. Drift and curvature
v1suahzatlons appear in Figure (1] (left /rlght panels) while locking and EVI are shown in
App. Figures [0l and [7} with further discussion in App. Section

8.1 EMPIRICAL DIAGNOSTICS P0-P4

Diagnostics (P0—P4). We validate the theory with a suite of five diagnostics: (P0) BV/-
continuity sanity checks; (P1) PF-ODE adequacy via predicted vs. empirical marginals; (P2)
locking behavior under low tail mass; (P3) OT geometry via contractivity (curvature/EVI);
and (P4) Schrodinger Bridge alignment via rotational energy. Full protocols, thresholds,
and solver/regularization policies appear in App. Section
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8.2 TRACK T: TRANSFORMERS — CORE DIAGNOSTICS AND ROTATIONAL ENERGY

For the Transformer experiments, the mean rotational energy across 10 central layers is R =
1.096x10~7 (95% CI [3.468 x10~8, 2.153x1077]). Cross-track values are not comparable due
to different ambient spaces and discretizations; we summarize per-track means and Cls (a
normalized variant is defined in the appendix).

8.3 TRACK D: DIFFUSION LLMS (DLLM)—LATE-WINDOW STABILITY

Protocol details and complementary evidence appear in App. Section [M]

Positioning. The certificate is not a geodesic-style alignment test; it guarantees label sta-
bility on the same discrete objects as Track T. Pinsker’s windowed TV bound and a top-2
decision margin act as discrete analogs of small transport displacement and a stable bound-
ary, serving as a guardrail alongside P1-P4.

Matched-support renormalization. For the visible set Sy,

~(0) py
P = 5 (€S (4)
> kes, Pi

Windowed divergence and TV budget.
Dy =Y KLFp"Y), TV < /Dw/2. (5)

Lew

No-flip guard and strict coverage. Let m®) be the top-2 margin and My, (W) =
mingeyy m®. A row strictly passes if TVyy < mmin(W) and no flips occur across W.
Coverage is reported for W € {12, 8}.

Table 1: dLLM late-window coverage. Strict uses a highly conservative guardrail (e.g.,
§=10"%, 9=3) and can be zero by design; Calib uses a practical v2 setting (e.g., 7=0.50,
§=1075, 2=2). Values are percentages.

Model Strict @ W=12 (%) Calib @ W=12 (%) Strict @ W=8 (%) Calib @ W=8 (%)
countdown 0.00 0.00 0.00 0.00
gsm8k 0.00 4.69 0.00 0.00
math 0.00 1.56 0.00 0.00
sudoku 0.00 6.25 0.00 0.00

Interpretation. In Table [1} the strict setting is intentionally conservative (very small 0,
larger €2), so zero coverage is expected; the calibrated setting reflects a practical guardrail
and is nonzero for several datasets.

8.4 TRACK I: IMAGE DIFFUSION—PARITY, WEAK-ERROR, AND SB ENERGY

Setup. A trained VP CIFAR-10 (ddpm++ continuous) model is evaluated with two sam-
plers: SDE and PF-ODE; both samplers use the identical noise schedule and classifier-free
guidance setting, and for each image the ODE and SDE share the same initial noise seed.
We use N=10,000 images and K=50 logged times on a shared grid.

Parity and weak-error (composite). Figure [2| composes the image diagnostics: left
shows ODE-SDE histogram parity (TV/KS) over time; right shows the weak-error step-
doubling log-log fit (slope near first order).

Rotational energy (image; P4 result). On 20 time points, the mean rotational energy

is R = 0.03092 (95% CI [0.01046, 0.05385]). Cross-track values are not comparable due
to different ambient spaces and discretizations; per-track normalized variants and the BV
panel for ODE vs. SDE appear in App. Section
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Figure 2: Image diffusion (CIFAR-10). Left: ODE-SDE TV/KS across time (inputs scaled to
[0,1], equal channel weighting, 256 bins). Right: log—log regression of Ax vs. K with BCa Cls
(B=1000).

Defaults. Unless noted, for the image track PF-ODE uses deterministic sampling
on the same K grid as SDE (DDIM-style); for Transformers, PF-ODE drift fits use
Dormand-Prince with rtol= 107°, atol= 1077, max_steps= 2000. Ridge grid
{1074,1073,1072} with 5-fold cross-validation; N = 50k rows/layer (Transformers), N =
10k images and K = 50 time steps (Image). Unless noted, bands denote 95% percentile-
bootstrap Cls (B=200); weak-error CIs use BCa (B=1000).

Synthesis. Taken together, the three empirical tracks support a single underlying picture:
attention dynamics in Transformers and PF-ODE/SDE trajectories in diffusion models
behave as different discretizations of the same entropy-regularized transport flow. Locking
and EVI signatures are shown in the appendix; the core P1/P3 diagnostics and the dLLM
certificate remain in the main text for page budget.

9 LIMITATIONS AND PRACTICAL IMPLICATIONS

Limitations. (i) Experiments target tezt models with a minimal image sanity check; full
vision benchmarks are out of scope (Section [N.I] m ii) The PF-ODE drift uses surnple fea-
tures and can underfit nonlocal effects (Section ﬁ (iii) Rotational-energy magnitudes
are track-specific and not cross-track comparable we provide a dimensionless variant for
intra-track comparison and recommend log-scale plots when ranges span orders of magni-
tude (App. Section [N.2). (iv) Diagnostics are conditioned on the PO gate (BV /continuity);
failures trigger abstention.

Practical implications and Outlook (1) Temperature or key-norm controls reduce the
curvature gap 1 — k, offering a stable knob for depth behavior. (2) The drift-budget overlay
surfaces over-activation and can inform regularization or early exit policies. (3) The strict
late-window certificate provides a deploy-time guard for dLLM (Section . Richer drift
features (e.g., cross-head structure), broader modalities beyond CIFAR-10, structured/ac-
celerated SB solvers, and calibration via condition-number targets for the Poisson step are
natural directions (Section [O)).

10 CONCLUSION

We formalized masked attention as semi-relaxed entropic OT, established stability /locking
and curvature/EVI structure with gauge invariances, and tied these to a practical empirical
suite. The suite validates PF—ODE adequacy, locking signatures, and contractivity re-
sponse in Transformers, provides a strict dLLM stability certificate, and shows image PF—
ODE/SDE parity with first-order weak-error scaling. These yield concrete levers (tempera-
ture/key norm; drift-informed regularization) and a deploy-time guard; extended discussion
and task lists appear in Section [O] For practitioners: (i) regulate depth via Zp,/stability
budgets and spectral norm controls, (ii) use the dLLM certificate as a conservative absten-
tion guard when P0-P3 fail, and (iii) monitor rotational energy during schedule sweeps as
an early-warning diagnostic.
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Figure 3: Conceptual unification: transformer layers implement discrete steps of probabil-
ity transport that converge to continuous flows analogous to diffusion models. The softmax
normalization induces entropic regularization, while layer stacking corresponds to time evo-
lution.

A SUPPLEMENTARY MOTIVATION AND OVERVIEW

Extended motivation. The remarkable success of transformers in language modeling
and diffusion models in generation has driven rapid progress in artificial intelligence, yet our
theoretical understanding of these architectures remains fragmented. Transformers process
discrete tokens through attention mechanisms that mysteriously develop semantic under-
standing, while diffusion models generate high-quality samples through iterative refinement
processes that seem fundamentally different. This theoretical gap impedes principled archi-
tectural improvements and forces practitioners to rely on empirical trial-and-error rather
than systematic design principles. In this work, we demonstrate that these seemingly dis-
parate architectures are actually implementing the same fundamental computational prin-
ciple: entropy-regularized optimal transport of probability mass. This unification not only
explains numerous empirical phenomena that have puzzled researchers but also provides
concrete tools for improving both architectures.

Modern deep learning relies heavily on two architectural paradigms: transformers, which
dominate language modeling through attention-based token mixing, and diffusion models,
which excel at generation through iterative denoising. Despite their apparent differences—
transformers operate on discrete tokens with normalized attention weights, while diffusion
models evolve continuous densities through stochastic differential equations—we demon-
strate that both architectures implement entropy-regularized transport of probability mass.

Interpretive notes. The significance of this connection extends beyond theoretical curios-
ity. Understanding transformers and diffusion models as implementing the same fundamen-
tal transport process enables principled architectural improvements and explains puzzling
empirical phenomena. For instance, the widespread observation that attention patterns be-
come increasingly concentrated in deeper transformer layers, often leading to computational
waste, can now be understood as a geometric inevitability arising from the vanishing mobil-
ity of the softmax-induced transport. Similarly, the empirical success of temperature scaling
for improving model calibration emerges naturally from our framework as a mobility modu-
lation mechanism. By revealing these deep structural connections, our framework provides
actionable insights for model design: predicting when representations will lock, identifying
optimal depth for different tasks, and suggesting principled initialization strategies that
approximate continuous optimal transport paths.
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Framework Overview: From Theory to Practice

Theoretical Concept

Practical Implication

Softmax Jacobian as mo-
bility tensor Jg,
Bounded

regime Sp, < C
Semi-relaxed EOT pre-
serves causality

variation

Quantifies capacity for probability updates; vanishing
mobility signals when to stop computation

Smooth evolution enables continuous analysis; viola-
tions indicate phase transitions requiring intervention

Maintains autoregressive structure while enabling opti-
mal transport analysis of attention

Probability-flow ODE | Suggests continuous-depth architectures and adaptive
limit depth selection based on task complexity

Schrodinger Bridge align- | Rotational energy R measures deviation from optimal-
ment ity, guiding architectural improvements

Anisotropic diffusion du- | Reveals how noise injection affects transport; suggests
ality principled dropout and regularization strategies

Key Diagnostics:
o During Training: Monitor Sy, for stability, ||Jsm|| for representation health

o Architecture Design: Use R to compare transport efficiency across architectures

e Deployment: Apply mobility thresholds for early exit decisions

Figure 4: Overview linking theory to practice. Each theoretical concept maps to a concrete
tool or diagnostic.

Balanced OT (Sinkhorn) Semi-relaxed OT (ours)  Diffusion / SB

Causality preserved No Yes Yes
Depth — continuum Heat flow PF-ODE on simplex FP / PF-ODE
Noise model — Anisotropic via FP General a (SB)
SB equivalence (iff) No Yes Yes
Locking mechanism — Jsm — 0 Entropy collapse

Table 2: Novelty map relative to prior strands. Semi-relaxed EOT preserves the causal
structure essential for autoregressive models while enabling rigorous continuous-depth anal-
ysis. The vanishing of Jg,, provides a geometric explanation for attention collapse.

B  SUPPLEMENTARY PROOFS AND TECHNICAL DETAILS

Proof of the sharp mobility bound (Remark[2)). Let p = softmax(z/7) and Jyn(2) =
Diag(p) — pp'. Then Jy, is symmetric and positive semidefinite on the simplex tangent
space. For any unit vector v with ). v; =0,

2
v v = Y pivy — (Zpivi) < 3 pivd,
i % i

with equality achieved for distributions supported on two atoms at mass % and v aligned with
that two-dimensional subspace. Scaling z — z/7 yields the factor 1/7, hence ||Jsm(2)lop <
% and the spectrum is contained in [0, %], collapsing to {0} as pmax — 1. O
Semi-relaxed EOT details. We formalize the row-constrained, masked entropic trans-
port objective used for attention with temperature 7 and record existence and uniqueness
of the Gibbs form p = softmax(z/7) under full support. Causal masking appears as support
constraints on feasible couplings; the resulting row-normalized solution coincides with the
attention distribution induced by logits.

Proof of Proposition|2.1} The mirror-descent Euler step in KL geometry with objective
(c,p) and step T yields the variational form in Proposition The unique minimizer has
Gibbs form relative to u, p™ o u ® exp(—c/7T), matching attention with logits 2 = —ec.
Stacking steps gives a discrete JKO/Mirror scheme. |
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C EXTENDED RELATED WORK AND POSITIONING (FULL VERSION)

C.1 PROBABILITY FLOWS AND SCHRODINGER BRIDGES

Score-based diffusion established that reverse-time SDEs admit a probability—flow ODE with
identical marginals (Song et al 2021}, while flow matching proposed simulation-free train-
ing of vector fields that realize desired probability paths (including OT geodesics) (Lip-
man et al [2022)). The Schrodinger Bridge (SB) program casts diffusion as entropic OT
on path space and provides scalable IPF-style solvers (De Bortoli et al.l [2021; [Shi et al.,
2023). We leverage this geometry inside transformers: depth induces a PF-ODE on the sim-
plex, weak/anisotropic FP theory gives a deterministic/stochastic duality for hidden-state
evolution, and an iféfonly-if potential-plus-reference drift condition characterizes when a
transformer’s probability path is exactly an SB.

C.2 ATTENTION AS ENTROPIC OPTIMAL TRANSPORT

Balanced OT views of attention enforce doubly-stochastic constraints via Sinkhorn itera-
tions (Sander et al., [2022; |Tay et al.,2020), and OT-based co-attention improves multimodal
learning (Xu et al.; 2023). A complementary line shows transformers can be programmed
to solve entropic OT with accuracy improving in depth (Daneshmand) [2024)). In contrast,
we work in the causal regime and prove that standard row-softmax attention is precisely
the optimizer of a semi-relaxzed entropic OT (row constraints only), which preserves autore-
gressive masking and does not require imposing OT constraints at training time. From this
equality we derive a BV depth—PF-ODE limit and the SB characterization in the causal
setting; balanced OT results do not cover this regime and are fundamentally incompatible
with the autoregressive structure essential to language modeling.

C.3 CONTINUOUS-TIME VIEWS OF TRANSFORMERS

Continuous-depth interpretations of transformers address irregular time environments and
ODE couplings (Zhang et al., 2021} |Chen et al., [2023); OT-Transformer introduces OT as
a regularizer in a continuous-time backbone (Kan et al.l 2025). These works, however, do
not explicitly endow the dynamics with an entropic-OT geometry that explains empirical
phenomena. Our framework fills this gap: the softmax Jacobian acts as a mobility tensor
on AV~1 depth induces a PF-ODE with simplex invariance and well-posedness, and SB
equivalence provides a variational certificate for transport optimality.

C.4 AUTOREGRESSIVE-DIFFUSION HYBRIDS

Bridging autoregressive and diffusion/flow paradigms has shown strong empirical results
(Hoogeboom et al.l 2022} Ma et al., [2025). Our theory explains why: AR transformers and
diffusion models are two discretizations (discrete in depth vs. continuous in time) of the same
entropy-regularized transport principle. The PF-ODE/FP duality and SB tools provide
quantitative diagnostics (e.g., rotational energy) for assessing alignment with entropic OT.

C.5 ARCHITECTURAL UNIFICATION VIA DIFFUSION TRANSFORMERS

Replacing U-Nets with transformer backbones yields scalable diffusion models across images
and 3D (Peebles & Xiel 2023} Mo et all [2023]). While these works focus on performance,
our analysis rationalizes their success: both families implement transport under entropic
regularization, and temperature/mobility schedules, anisotropy-aware regularization, and
SB-aligned depth emerge as principled design levers independent of the backbone.

C.6 POSITIONING OF OUR CONTRIBUTIONS
(i) Causal, semi-relaxed OT for attention. We prove that unmodified row-softmax

attention solves a row-constrained entropic OT problem, resolving the incompatibility of
balanced OT with causal masking.
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(ii) Depth — PF—ODE on the simplex. Under bounded-variation scaling, stacking
attention layers induces a PF-ODE for probe-induced probabilities, with simplex invariance
and well-posedness.

(iii) Weak FP duality with anisotropy. Allowing time-inhomogeneous, anisotropic
(and possibly ill-conditioned) diffusion, we establish deterministic/stochastic equivalence of
marginals via Fokker—Planck in the renormalized /weak sense.

(iv) SB equivalence (iff) & diagnostics. The depth path is an SB iff its velocity is
potential-plus-reference drift; deviations are quantified by a rotational-energy gap.

(v) Mechanisms and predictions. Identifying Jg, as mobility explains entropy collapse
and representation locking; output-logit temperature scaling predicts mobility reductions
that move locking earlier.

These theoretical advances translate directly into actionable diagnostics and design prin-
ciples (e.g., mobility/locking metrics, SB alignment, anisotropy-aware regularization) for
improving both transformer and diffusion architectures.

D SUPPLEMENTARY DETAILS FOR SECTION [0

Architectural consistency and identification (details). This elaborates the identi-
fication clause in Assumption For any compact K C RY and € > 0, there exists Ly
such that for L > Ly, a local-regression estimator by, (e.g., k-NN/MLP with fixed hyperpa-
rameters) satisfies ||b; — bllz2(x x[0,1]) < € This provides the additional structure ensuring
Dr — b(z(t),t) in L, used in the discrete—continuous passage.

loc

Proof of Theorem Let z(® be logits at layer ¢ and define the piecewise-linear
interpolant zy (t) with zz(t;) = 2. Let pr(t) hold p) on [ts,t,11). By Assumption
S 1A20) o < oo and Dy = Az /5t converges weakly to b(z(t),t) in L . Consider
P = Jam(2) b(2,t) with p(0) matching limy,_,, p(©).

Local truncation. On [tg, tey1), a first-order expansion of Jgy,(z) around 2® and bounded-
ness of b give a one-step error O(||Az()||); curvature contributes O(||Az9(|2.) via VJym
(bounded by L; on compacts).

Accumulation and stability. The PF vector field p — Jsm(2) b(z,t) is locally Lipschitz with
constant depending on Ly, My, Ay, Lj. Gronwall yields

sup lpe(t) = (Ol < a1 max [|Az0]|we + a2 Y 1AZO)Z, + (7 = D[P ~ p(0)]|1,
telo, 14

matching the bound with Z;, in equation [I] O

Norm equivalence used in Theorem There exist constants ¢1,ce > 0 (depending
only on the ambient dimension) such that for all layer increments Az® on the compact set
considered,

al|Az0) < [|az9, < el A9
Consequently, the worst—case single—layer term and the cumulative squared—variation term
in equation [1| are consistent with the || - ||o-based BV assumption in Assumption and
the constants in Theorem depend ounly on Ly, My, Ay, Ly and (¢, c2).

Piecewise BV segmentation (depth limit). Let 0 = ¢y < t; < -+ < tx = 1 such
that Assumption ﬂ holds on each [ty—1,tx]. Define segment budgets qu) by restricting
equation [I| to layers with ¢, € [tx—1,%x). Then Theorem applies on each segment;
p(t; ), p(t)) provide weak interface conditions. In practice, choose cut points where variation
statistics (.8, D pepr 1.0 |Az(9)|3) spike, consistent with Theorem
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E EXPANDED DISCUSSION OF EMPIRICAL PHENOMENA FOR SECTION

Attention entropy collapse. As distributions concentrate, the mobility operator norm
(| Jom (2)[lop decays (Remark [2), and PF-ODE velocity vanishes under Theorem [5.6} explain-
ing late-layer attention concentration (cf. Theorem .

Temperature scaling and calibration. Temperature rescales mobility as Jﬁ(,;)(z) =
%Jsm(z /7), delaying locking and supporting improved calibration by maintaining transport
capacity deeper in the network.

Representation collapse and eigenspectra. Approach to equilibrium correlates with
rapid decay of the Jg, eigenspectrum; monitoring minimum eigenvalues/trace provides a
diagnostic for impending collapse and informs interventions.

F SUPPLEMENTARY DETAILS FOR SECTION [6]

Proof of Lemma (distributional product rule). Let {n.}.>o be a standard mol-
lifier on R? and set Dy = pH *n and a® := ax1n.. For any ¢ € C°(R%), integrate by parts
twice:

(V- V- (aply) ¢) = — | V- (apyy) - Vo = /

y y ((V a®) py + aSfoq) -V

By the local Fisher-information condition (pg > 0 a.e., pyVlogpg € Li. ) and local bound-

edness of a, the sequences p$; — py in L., Vpy — Vpy in D', and a© — a, V-a° = V-a
in D’ as € | 0. Passing to the limit yields

<V' V- (GPH)7<P> = /d ((V- a) pu +anH) -V,
R
which is the claimed identity in D’. O

Proof of Corollary (pushforward). Let ¢(h) = softmax(W Th) and fix ¢ in the
set where the conclusions of Theorem hold. For any ¢ € Cy(AV~1), by definition of
pushforward measure,

/Avilw(p)d(w#m;)(p) = [, o) dpr(h) = Rdw(w(h))dp(h)Z/Avflw(p)d(w#p)(p)-

Hence pupr(-,t) = pxp(-,t) for a.e. t, proving the claim. a

Proof of Proposition (anisotropy propagation). Write z = W'h and p =
softmax(z). A first-order variation gives 6p = Jun(2) 62 = Jom(2) W T Sh. If the hidden-
space SDE has instantaneous covariance a dt, then Cov[dh] = adt. The induced covariance
on the simplex tangent space is

Cov[op] = Jam(2) W T a W Jom(2) dt,
which defines the effective mobility M (p) = Jon(2) W Ta W Jam(2). O

Proof of Theorem [6.6] (weak approximation by stacked attention). Let p(t) denote
the law of the reverse SDE with drift u given by equation |3| and diffusion a = oo '; by
Theorem p also solves the continuity equation with velocity u. For ¢ € Cg(]Rd), the
Kolmogorov backward (weak FP) form yields
d
Z Eo[@] = Ep[(Ve, w)] + 3 Ep[tr(a V29)].

Construct the piecewise-constant law pr(t) from L attention layers with step 6t = 1/L,
using on each interval [tg,tg41) the frozen generator

Lop(z) = (Vo(z), u(z, te)) + 5 tr{a(z, t,) V2é()),
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(A) Duality: PF-ODE vs Reverse-SDE  (B) Schrodinger Bridge Diagnostic

Forward SDE
- 5

(aVQ) = . (u —bg)
| Drift « |—>[ Poisson solve |—>| Potential 0 |

dH; = Fdt + X dW; FP equation

—— |Residua1r:ubefaV9|
Reverse SDE

u=F — (aVlogpu + V- a)

R = [|la=?r|? dudt

Figure 5: Schematic. (A) PF-ODE / reverse-SDE duality (the divergence term V- a distin-
guishes deterministic from stochastic velocities). (B) Schrodinger Bridge diagnostic: drift
estimation — Poisson solve — rotational energy.

i.e., the PF-ODE linearization with u as in equation [3] Let the implemented layer-wise
drift be up = u(-,t¢) + r¢ with residual r, from finite depth; the model budgets give ||r¢|| =

O(|| A2« ) and a curvature correction O(|| Az ||2,) via Vu on the compact set considered.

A standard weak local truncation estimate (Euler in time for the frozen generator) gives,
for some Cy independent of L,

(6]~ s )] -

Summing over ¢ and using stability (uniform boundedness/Lipschitzness of u, a on compacts)
yields

|]E;7\L (tet1) PL(tIZ)

[£2618t] < Co (882 + el 6t + | A2O|12, 5t

‘ pL(T) p(T)[Qﬂ’ < C¢<L*1+0r£2a<XLHAZ(€)||OO).

If a is singular, set a, = a + v/ and perform the argument uniformly in v > 0; continuity
of the weak generator for bounded data adds ++, and letting v | 0 recovers

Bl — Bunlel]| < Co (271 + pmax 1820]c +9).
U

Practical choice of the degeneracy regularizer. Use v > 0 when the diffusion tensor
a is rank-deficient or extremely ill-conditioned (e.g., near locking or when dynamics lie close
to a low-dimensional manifold). Choose the smallest v such that the condition number
satisfies x(a + 7] ) < Kmax required for numerical stability of operators (e.g., the Poisson
solve in Fig. |5 ) The proof of Theorem 6.6] - passes to the limit v | 0, so predictions are
stable for small positive v while ensuring well-posed computations durlng estimation.

G SUPPLEMENTARY DETAILS FOR SECTION

Proof of Theorem (7.1 - (SB allgnment characterization). Work with the weighted
inner product (v, w),-1 := [(v,a” L) py for each t. By the weighted Hodge decomposition,
any velocity a~1(u—bg) splits orthogonally as VO +( with V- (¢ y) = 0 in the distributional
sense. The SB Euler-Lagrange conditions (for fixed endpoints and reference R) enforce
a~Y(u — br) = Vb, i.e., the solenoidal component vanishes. Conversely, if u = br + aV0,
then the path satisfies the SB optimality system and is the unique minimizer of the action
under Assumption [7.1] O

Proof of Theorem (rotational energy bound). Let u} denote the SB path with
reference R and the same endpoints. Consider the time derivative of KL(u:||p;) in weak
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form. Using u = br + aV0 + w and the continuity equations for p; and pj, one obtains
(after cancellations of potential terms) a dissipation inequality of the form

d
@KL(M”M:) < - /(w,a*1w> ue + terms controlled by Cp(u,a).

Integrating over ¢ € [0,1] and invoking the weighted Poincaré inequality (finite Cp(u,a))

yields KL(pe||p5) < Cp(p,a fof w,a”'w) s, which implies the stated bound after mono-
tonicity adjustment. The equality R = 0 forces w = 0, hence SB alignment, and the converse
is immediate. ]

Vanishing-regularization limit for degenerate references. Let a. = a+¢l withe | 0.
Assume the SB paths (uf)se[o,1) are tight with uniformly bounded action. By Prokhorov
compactness, there is a subsequence with pi = g for each ¢. Passing to the limit in the weak
optimality system shows that {u;} is a degenerate SB solution. If R = 0, then u = bgr+aV¥0
holds u-a.e., implying that the PE-ODE path coincides with the (degenerate) SB limit.

Simplex SB details (pushforward form). Let p = softmax(W 'h) and recall the ef-
fective mobility M (p) = Jom(2) W Ta W Jau(z) from Theorem Pushing forward the SB
optimality system via the softmax map yields P, = pr~(Pt M(P,) V,0(F, t)) This is the
natural simplex analogue of potential-flow SB with state-dependent mobility.

Practical notes on the diagnostic. To estimate R, compute an empirical drift u, solve
the weighted Poisson problem V-(aV0) = V-(u—bpr) (on the domain induced by activations),
set r = U — bg — aV#, and approximate [ la=/?r||> du dt by Monte Carlo. When a is ill-
conditioned, use a. and extrapolate € | 0.

H COMPUTATIONAL IMPLEMENTATION DETAILS

H.1 NUMERICAL STABILITY CONSIDERATIONS

Bounded Variation Computation (complexity & stability). Compute S; =
>/ 1A29)2 in £loat64 to avoid accumulation errors. For softmax computation, use log-
sum-exp trick: log ), exp(2;) = zZmax +10g Y, €xp(2; — Zmax). Clip probabilities at machine
epsilon before taking logs to prevent numerical instabilities. Monitor Sy, continuously during
training to detect violations of the bounded variation assumption, triggering segmentation
procedures when local spikes exceed gy = 5 - median(.Sy,).

Handling Near-Singular Regions. Near representation locking where pmax — 1, the
mobility tensor Jg, becomes ill-conditioned. This creates challenges for both theoretical
analysis and numerical computation. Regularization strategies:

o Add el with e € [1078,1079] for conditioning, ensuring the regularized tensor J5,, =
Jsm + €I remains invertible.

e Important: We use Jg,, + €I only as a numerical preconditioner in linear solvers;
the PF-ODE itself continues to use the unregularized Jy,, preserving Jg,1 = 0 and
mass conservation.

« Use pseudoinverse with tolerance tol = 10710 for projections when exact inversion
is not required.

« Monitor condition number x(Jsy); switch to specialized solvers when s > 1012.

e For Schrodinger Bridge computations near degeneracy, apply the regularization
a. = a + el as specified in Assumption reconciling the general degenerate case
with SPD requirements.

Efficient mobility computation. The mobility tensor norm ||Jsy||F used for early exit

decisions and locking detection can be computed in O(V) time without constructing the
full matrix. Using the identity ||Jsm||% = >, pF + (>, p)?* =2, p?, we need only compute
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three moments of the probability distribution, making this diagnostic negligible compared
to attention computation costs.

Local Drift Estimation (complexity and robustness). The architectural consistency
condition in Assumption [5.1| requires accurate drift estimation. For k-NN local regression
on N points:

o Computational cost: O(NkV) operations when batched efficiently using KD-trees
or approximate nearest neighbor algorithms.
1p2 [r] <4

o Use Huber loss ps(r) = {2

with § = 1.345 - MAD for outlier
5(Irl=3%) Irl>0

resistance.

o Apply leave-one-out cross-validation for hyperparameter selection, particularly for
choosing k and ridge parameter .

o Small MLP regressors (2-3 layers, 256-512 units) add O(N - MLP) cost but provide
better approximation in high-curvature regions.

o Verify consistency: For compact K C RV, check ||Z;L = bllz2(kx[0,1])) < € with
progressively smaller € as L increases.

PF-ODE Integration (adaptive schemes and conservation). Employ Dor-
mand-Prince (RK5(4)) with embedded error estimation for solving the probability-flow
ODE. The adaptive timestep selection ensures accuracy while maintaining computational
efficiency:

° Step size control: hnew = h - min (fmaxamax (fminvfsafety : (%)0.2)) where
fsafety =0.9, fmin =0.2, fmax = 10.

« Mass conservation: Monitor | Y, p;(t) — 1| < tolmass = 10712, If violated, renor-
malize with warning.

o Positivity preservation: If any p; < 0, project back to simplex via Euclidean
projection: p} = max(0, p; — v) where v is chosen so Y, p;” = 1.

« Energy monitoring: Track Shannon entropy E(t) = >, p;(t)logp;(t) to detect
anomalous behavior.

o Boundary conditions: The zero-flux property Jun(z)1 = 0 automatically pre-
serves simplex invariance without explicit boundary treatment.

Under Carathéodory regularity, projection should rarely be needed but serves as a numerical
safeguard against accumulation errors.

Schrédinger Bridge Solver (IPF /Sinkhorn with acceleration). The Iterative Pro-
portional Fitting algorithm for Schrédinger Bridge computation requires careful implemen-
tation for numerical stability:

o Dense kernel IPF: O(T M?) complexity where T is iterations and M is discretization
size.

e Nystrom approximation with R landmarks: Reduces complexity to @(TM R) by
approximating kernel K ~ Ky rK E}:;K RM -

e Anderson acceleration: Maintain m = 5 past iterates for convergence acceleration,
updating via z**t1) = (1 — B;) f(x®) + Brz*) with optimal 8), computed via least
squares.

« Log-domain computation: Work with log-potentials log a®),log b*) to avoid nu-
merical underflow in high-dimensional settings.

With € > 0 entropic regularization and strictly positive kernels, IPF implements block-

coordinate Bregman projections that monotonically decrease the SB objective, converging
6—2/5

to the unique minimizer at geometric rate p = ﬁ
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Convergence criteria: Stop when both conditions are satisfied:

1. Marginal error: sup, TV (py, 1z) < 1073 where TV denotes total variation distance.

2. Potential stability: |[§*+1) —9®) | < 10~3 measuring change in Schrédinger po-
tentials.

Rotational Energy Estimation (preconditioning and sampling). Computing the
rotational energy diagnostic requires solving a Poisson equation and careful numerical treat-
ment:

1. Drift computation: Extract u from transformer dynamics using finite differences
or learned regression.

2. Poisson solve: Solve V - (aVl) = V - (u — bg) using preconditioned conjugate
gradient with incomplete Cholesky preconditioner.

—1/2

3. Preconditioning: Apply a carefully, using regularization a. = a + €I when

condition number exceeds 106.

4. Importance sampling: In high-variance regions (near simplex boundaries), in-
crease sample density by factor of 10.

5. Monte Carlo estimation: Use Nyic = 10* samples per time point for reliable
estimates with standard error ~ 0.01||R]|.

I AsyMPTOTIC COMPLEXITY ANALYSIS

Procedure Complexity (per batch) Notes

BV statistic St O(LV) float64 accumulation

Local drift fit O(NEKV) k-NN; batched operations

PF-ODE integrate O(NstepsV) adaptive RK with error control

Score estimation O(N - MLP) layerwise caching available

SB (dense IPF) O(TM?) Nystréom — O(TMR)

Rotational energy O, My, d) precondition by o~ /2

Memory requirement O(LV 4+ Nd) activation caching

Temperature schedule O(L) entropy computation per layer

Early exit check o) closed-form Frobenius norm from moments of p

Table 3: Asymptotic costs for diagnostic procedures. Typical setting has V' > d (vocabulary
much larger than hidden dimension). Batching and caching significantly reduce practical
constants. All procedures are designed to add minimal overhead to standard transformer
operations.

J EXTENDED MATHEMATICAL RESULTS

J.1 PROOF OF WEAK CONVERGENCE UNDER BV

Theorem J.1 (Detailed BV convergence with identification). Under Assumption in-
cluding the architectural consistency condition, the polygonal interpolants zy, converge to an
absolutely continuous limit with explicit rate, and the limiting derivative is identified as the
architectural drift b(z(t),t).

Proof. The bounded variation condition Y, [|A2(? || < C implies that {z}3, forms an
equicontinuous family in the BV norm. By the Arzela—Ascoli theorem extended to BV
spaces, there exists a subsequence {zr, } converging uniformly to some z € BV([0, 1];RY).

For the rate, the modulus of continuity satisfies:
Wy, (8) := sup |lzr(t) — zr(s)||]2 < Cs1/(1+a)

[t—s|<d
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for some a > 0 depending on the distribution of jumps. This gives Holder continuity with
explicit exponent.

The weak convergence of derivatives follows from the Banach—Alaoglu theorem: {D} is
bounded in L*([0, 1];RY), hence relatively compact in the weak topology.

Identification via architectural consistency: The key step is identifying the weak
limit as b(zg)ﬂf). By the architectural consistency assumption, for any test function ¢ €
C([0,1];RY) and compact K C RV:

1 1
/()(DL(t)b(Z(t),t)7¢(t)>dt' /0 (br(zL (b)) = b(=(1), 1), o(1)) dt (6)

< ||13L — b||L2(Kx[0,1])H¢||L2 + boundary terms (7)

As L — oo, the architectural consistency ensures ||lA7 L —bllz2(k x[0,1)) — 0, while the boundary

terms vanish due to the compact support of ¢. This establishes Dy — b(z(t),t) weakly in
Ll

loc*
The absolute continuity of the limit follows from the fundamental theorem for BV functions:

z(t) = 2(0) + f(f b(z(s), s)ds, confirming that z is absolutely continuous with derivative
b(z(t),t) almost everywhere. O

J.2 SPECTRAL ANALYSIS OF MOBILITY TENSOR

Proposition J.2 (Eigenstructure of Jgy). The softmaz Jacobian has the following spectral
properties:

1. Figenvalues: g =0 (simple), 0 < X\; < 1/4 fori=1,...,V —1.
2. Bigenvectors: vo = 1/\/V, others orthogonal to 1.
3. Condition number: K(Jsm) ~ 1/(4Pmin) @S Pmin — 0.

4. Spectral gap: Ay — Ao = A1 > Pmin, determining convergence rates.

Proof. The matrix Jg, = Diag(p) — pp' is symmetric with Js,1 = 0, giving Ao = 0 with
eigenvector 1.

For v L 1 with |||z = 1:

2
v Jamv =Y piv} — (me—) = piv] = pminllv]3 = Pmin-
A i %

For the upper bound, consider the Rayleigh quotient:

v Jomv _ Zipﬂ}% - (Ez pivi)Q
vlo iviQ .

By Cauchy-Schwarz, this is maximized when probability concentrates on two outcomes.
Setting p; = p2 = 1/2 and v = (1,—1,0,...,0) " /\/2 yields the upper bound 1/4.

1/4

The condition number follows from k(Jsm) = Amax/Amin < -

culties near locking where pyin, — 0.

, explaining numerical diffi-

The spectral gap A1 > pmin determines the rate of convergence to equilibrium under the
induced dynamics, with smaller gaps leading to slower mixing and potential metastability.
This lower bound is generally loose; tight values depend on the full probability profile. [
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J.3 SCHRODINGER BRIDGE OPTIMALITY CONDITIONS

Theorem J.3 (First-order conditions for SB with regularization). The Schrédinger Bridge
W satisfies the coupled system of PDFEs:

O+ 3tr(a V@) + br - Vo =0, (8)

A — 5 tr(a V) = V - (brep) =0, (9)

pi = exp(e(-t) + (1) e, (10)

where vy is the reference path law and (p,) are Schrédinger potentials. When a is near-
singular, we apply regularization a. = a + €I with € > 0 sufficiently small to maintain

well-posedness while preserving the essential transport structure.

Proof. The Schrodinger Bridge problem minimizes the relative entropy:

dp
H(lv) = T, [log dy}

subject to marginal constraints pg = pg, g1 = p1-

Using the Girsanov theorem, the Radon-Nikodym derivative decomposes as:

dp ! 1t 9
- = S Xs_ I sllg—1
oW exp (/O (hay dXs — brdt) 2/0 sl ds

for some adapted process h.

The optimal h, takes the form hy = aV(Xs,s) where ¢ solves the forward equation
equation[§ The backward potential ¢ arises from the adjoint equation ensuring the terminal
marginal constraint.

When a degenerates (as occurs near representation locking), the regularization a. ensures:

o The elliptic operators in equation [Brequation [J] remain uniformly elliptic

1

o The inverse a_ - exists with bounded norm

e The solution converges to the original problem as € — 0 in the weak topology

This regularization reconciles the general degenerate diffusion framework with the SPD
requirements for well-posed Schrédinger Bridges. O

K DETECTION AND MITIGATION OF BV VIOLATIONS

K.1 ONLINE DETECTION ALGORITHM
K.2 SEGMENTATION STRATEGY

When BV violations are detected, we partition the depth interval [0,1] into segments
{[ti—1,t:]}£, where BV holds locally. The segmentation procedure maintains the theo-
retical guarantees while handling practical violations:

1. Identification phase:
« Find violation points {/;} using Algorithm
« Compute violation severity s; at each point
o Cluster nearby violations within A¢ = 3 layers

2. Segmentation construction:

 Create boundaries at ¢t; = ¢;/L with buffer zones [t; — §,t; + 6] where § = 2/L
o Ensure minimum segment length |¢; — ¢;_1| > 5/L for stable analysis
o Merge segments if total count exceeds Kpax = L/10
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Algorithm 1 Online BV Violation Detection with Adaptive Thresholding

1: Input: Stream of logit differences {Az()}, window size W, base threshold g
2: Initialize: Sigcal = 0, buffer B = [, Tadaptive = To
3: for /=0,1,2,... do
4: Slocal ¢ Slocal + HAZ([) ||%
5: Append ||Az®)|5 to B
6: if |B| > W then
7 Slocal — Slocal - B[O]2
8: Remove first element from B
9: end if
10: Adaptive threshold: Tadaptive = 70 - (1 + 0.1 - std(B)/mean(B))
11: if Slocal/|B| > Tadaptive then
12: Flag: BV violation at layer ¢
13: Severity: s = (Siocal/|B|)/Tadaptive
14: if s > 2 then
15: Action: Initiate immediate depth segmentation
16: else
17: Action: Mark for monitoring, prepare segmentation
18: end if
19: end if
20: end for

3. Local PF-ODE analysis:
e Apply Theorem within each segment [t;_1, ;]
 Estimate local drift b;(z,t) using only data from segment i
e Verify local BV condition: 3=, ooment, 1Az, < C;
4. Boundary matching:
» Enforce weak continuity: lim,_,,— p(t) = lim,_;+ p(t) in Lt
« Allow jump discontinuities in velocity: v(t]) — v(¢; ) € Range(Jsm)
« Compute transition operators 7; : AV~! — AV =1 at boundaries
5. Global assembly:

o Concatenate local solutions: p(t) = p;(t) for t € [t;—1,t]
» Verify global conservation: 3, p;(t) =1 for all ¢
o Compute effective transport distance accounting for jumps

Theoretical guarantee: The segmented solution converges to the same limit as the contin-
uous solution as L — oo and violation severity decreases, maintaining the essential transport
structure while accommodating practical discontinuities.

L CONNECTION TO EMPIRICAL PHENOMENA

L.1 ATTENTION ENTROPY COLLAPSE

The attention entropy collapse phenomenon observed empirically |(Gong et al.[ (2019) follows
rigorously from our mobility analysis:

Proposition L.1 (Entropy dynamics under PF-ODE). Under the probability-flow ODE
P = Jom(2)b(z,t), the Shannon entropy H[p| = — . p;logp; satisfies:

H[p] = = Jom,ii bj log(pi/p;) <0

i,J

when b aligns with the negative entropy gradient. Moreover, H[p] — 0 as pmax — 1 due to
vanishing mobility.
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Proof. Computing the time derivative:

Hip] = _Zpi(bgpi +1) (11)

== (Jamb)i(logp; + 1) (12)
= — Z Jsm,ijbj logpi (13)
0,J

Using the symmetry of Jg, and the fact that Js,1 = 0:

. 1
Hip] = 3 Z Jsm,ijbj(log p; —log pj) (14)
0]
=— Z Jsm,ijb; 1og(pi/pj) (15)
1,7

When b = —VH (gradient flow), the quadratic form b Jy,b > 0 ensures H < 0.
AS pmax — 1, we have ||Jgm|| — 0 by Theorem implying |H[p]| < || Jswl|||0]||[VH]| — 0.
This rigorously explains why attention patterns become increasingly peaked in deeper layers,

with entropy collapse being inevitable rather than a training artifact. O

L.2 TEMPERATURE SCALING EFFECTIVENESS

Temperature scaling’s empirical success (Guo et al.| (2017)) in improving calibration is ex-
plained by explicit mobility modulation:

Proposition L.2 (Temperature-mobility relationship). For temperature parameter T > 0,
the effective mobility tensor satisfies:

Tn(2) = - Jan(2/7)

The eigenvalues of JI.(z) equal those of Jsm(z/T) scaled by 1/7. The condition number
satisfies k(J7,(2)) = &(Jsm(2/7)), which may differ from k(Jsm(2)) because the probability
distribution changes when scaling logits. The induced dynamics slow by factor T, enabling
finer control near decision boundaries.

Proof. For temperature-scaled softmax p] = exp(2;/7)/Z7 where Z7 =}, exp(z;/7):

T2 = 2 (16)
= % (Diag(p™) —p"(p7) ") (17)
:%%@m (18)

The eigenvalue scaling follows immediately: if Jsm(2/7)v = Av, then J7 (2)v = (\/7)v.

The condition number relationship requires careful interpretation. Since J7 . (z) =
L Jem(2/7), we have k(J7,(2)) = K(Jam(2/7)) because scaling all eigenvalues by the same
positive constant preserves the ratio of largest to smallest eigenvalue. However, this dif-
fers from £(Jsm(%)) in general because z — z/7 changes the probability distribution from
p = softmax(z) to p” = softmax(z/7), and the mobility tensor’s eigenstructure depends on
the specific probability values.

For the induced dynamics:

5 = T2z 1) = ~Jan (/700 )
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The factor 1/7 uniformly reduces velocity magnitude, slowing convergence to locked states.
This explains temperature scaling’s effectiveness: lower temperature prevents premature
commitment by maintaining transport capacity throughout network depth.

Calibration improvement arises because slower dynamics allow more gradual probability

refinement, avoiding the overconfident predictions that occur when mobility vanishes rapidly.
O

M EXTENDED EXPERIMENTAL PROTOCOLS

M.1 SECTION 7 REFERENCE RECAP AND CONVENTIONS

Conventions. W1 uses cost ||-||1; W2 terms in this section use an entropic Sinkhorn surrogate
with the same ¢ as elsewhere. All TV norms are 1| - |1 on row distributions. Query/key
distances dg, dx match the metrics used in plots/captions.

Row drift bound. Let Pi(e) = sm(zlm) be the ith row at layer ¢, with component-wise

Lipschitz constants LY for ¢ € C; and incoming perturbations Auyc)

||Pi(e+1) _ Pi(e)H1 < Z ng) ||Au(’“’)\|. (19)

i,c

ceCy

Remark. Equation yields a finite-depth budget for one-layer motion (TV on the left)
from component sensitivities on the right; it underpins the PF-ODE adequacy overlay in

§7.

Local saturation / locking. Let P = sm(z), tail mass 6(P) = 1 —max; P(j), and Az a
small perturbation that preserves the argmax.

[sm(z + Az) —sm(z)||, < min{l, 20(P)} |Az]lc + o[|A2]|s0)- (20)

Remark. When §(P) is small (near saturation), softmax is insensitive to small, non-flipping
logit changes—predicting the “locking” collapse of ATV in low-tail-mass bins.

Curvature (common-support W;). For queries i # ¢ with common support S; ;/, define

. L[l(.ﬁ“_ﬁl/)
i)y =1 - ———~2 2~ 21
k(i,1") doli i) (21)

where W7 is over (S;,/,dx) and P denotes restriction to the common support. Remark.
The curvature gap 1 — k quantifies contraction on the simplex; temperature 1 or key-norm
1 should reduce this gap (tested in §7).

EVI with drift. For successive layers /—1 — ¢ at query ¢, with objective F; and pge) = Pi(_e),

W3, pr ) — w3V, pr )
2 Nest

< - (R(") - F(e) + a0 2

Remark. Equation (22) is a discrete EVI: each layer decreases F; up to a drift term from
parameter changes (@, K). In §7 we use a Sinkhorn W5 . surrogate for the left-hand side
and report the expected proximal-progress signature when drift is small.

M.2 DETAILED SCORE ESTIMATION PROCEDURE

For robust score estimation in anisotropic regimes encountered near representation bound-
aries:

1. Data augmentation: Generate noisy samples at multiple scales

he =h+e, &~N(0,0I) (23)
o € {0.01,0.02,0.05,0.1} - || 2 (24)
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2. Denoising objective with importance weighting:

- h—h
sg(h,t, o) — 5

g

L(0) =Ejc0 lw(a) .

2
2‘|
where w(o) = 02/(0? + 02,;,,) emphasizes intermediate noise levels.

min

3. Multi-scale architecture:

o Input: [h;t;logo] € RIH2

o Hidden layers: 2-3 layers with width max(512, 2d)

« Skip connections: h(*+1) = p(Y) 4+ MLP(h(9))

e Output normalization: LayerNorm before final projection
4. Training protocol:

« Optimizer: AdamW with learning rate 10~%, weight decay 10>

e Batch size: 256 samples per noise level

e Epochs: 5 per layer with early stopping based on validation loss

o Curriculum: Start with large o, progressively include smaller scales
5. Validation and diagnostics:

o Score consistency: Verify |V - (psg)| < 1073 on held-out data

e Anisotropy detection: Compute eigenvalues of E[Ses;—]

e Coverage: Ensure score estimates span the tangent space at each point

M.3 IPF IMPLEMENTATION DETAILS

The Iterative Proportional Fitting algorithm for computing Schréodinger Bridges between
transformer layers:

Algorithm 2 IPF for Schrodinger Bridge with Adaptive Regularization

1: Input: Marginals pg, pq, diffusion a, tolerance ey, max iterations Tiax
2: Inmitialize: (¥ =1, (0 =1, Ereg = 0.1

3: Compute reference kernel: K;; = exp(—||z; — ;%1 /(2¢reg))

4: for k=1,2,...,Thax do

5: Check conditioning: If x(K) > 10'°, increase Ereg  1.5Ereg
6: bR =y @ (K Tak=1) > Pointwise division in log domain
7. a® = py o (KbR)
8: ") = Diag(a®) K Diag(b®)
9: Compute marginals: fip = 1% 1, g, = T®T1
10: Convergence check:
11: if TV(fo, o) + TV(fi1, 1) < 11 then
12: Extract potentials: ¢ = €,¢, log a®) o = Ereg lOg b(k)
13: Return II%) | o, 9
14: end if
15: Anderson acceleration: If kK mod 5 = 0, apply acceleration using past 5 iterates
16: end for

17: Warning: Maximum iterations reached without convergence

Implementation notes:

« Work in log domain to avoid numerical underflow: store loga®), log b(*)
e Use logsumexp for stable computation of normalizing constants

o For large vocabularies V' > 10% wuse Nystrom approximation with R =
min (1000, V/10) landmarks

« Monitor dual gap: G*) = (a®), Kb®)) — (119,1og a™) — (1, log b))
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Figure 6: Locking (P2): ATV vs. tail mass §(P) (median/IQR bins).

Layer

Sinkhorn W5 between consecutive layers

Figure 7: EVI surrogate (P3): Sinkhorn W5 . across layers (mean4sd).

M.4 ADDITIONAL TRACK-T DIAGNOSTICS

M.5 ADDITIONAL IMAGE DIAGNOSTICS
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0.00 -
ODE (PF) SDE

Figure 8: Path smoothness (BV; unitless) for ODE vs. SDE.
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Table 4: Image rotational energy R with 95% BCa CIs; cross-track values are not comparable
due to different ambient spaces/discretizations.

~

Track R Notes
Image (CIFAR-10) 0.03092 (95% CI [0.01046, 0.05385]) 20 time points

M.6 QUANTITATIVE PASS/FAIL CHECKS

P1 (PF-ODE adequacy). Realized layerwise TV should not exceed the drift budget plus
a finite-sample band; exceedances are flagged.

P2 (Locking). In low—tail-mass bins, the median ATV remains within a small band (bands
and CI policy as in App. Section .

P3 (Curvature/EVI). Increasing temperature or reducing key-norms reduces the curva-
ture gap 1 — k by a predictable amount; reductions are reported with uncertainty bands (see
App. Section .

P4 (SB alignment). Rotational energy R decreases under improved calibration/check-
points (BCa CIs; App. Section .

Image weak error. The slope of logerrg vs. log K is near —1 (BCa, B=1000); the fitted
value and CI are reported.
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N EXTENDED LIMITATIONS AND PRACTICAL IMPLICATIONS

N.1 MODALITY SCOPE AND EVALUATION

Scope. This work evaluates text models (Transformers and dLLM) and includes a mini-
mal image diffusion sanity check (CIFAR-10). Full-scale vision benchmarks and perceptual
metrics (e.g., FID under guidance sweeps) are intentionally out of scope for this paper.

Implications. The OT/PF-ODE constructions are modality-agnostic, but conclusions
here are supported by text-model evidence (Track T/D) and a compact image sanity check
(Track I). Future expansions to larger image datasets and class-conditional guidance are
planned (see Section @

N.2 POISSON SOLVE AND CONDITIONING POLICY

Masked Poisson and regularization. We solve Ay = V-« with masked Neumann
boundary conditions; Tikhonov v regularizes the Laplacian on thin supports.

Condition-number target. Default v = 107%; increase v until the (masked) system’s
condition number is < 10%. Record ~ and the achieved condition number alongside R.

Normalized variant. For intra-track comparisons, optionally report the dimensionless
Rnorm = R/f Hu”2

N.3 CURRENT LIMITATIONS AND MITIGATION STRATEGIES

Bounded variation breakdown. The BV assumption may fail during:

o Attention pattern reorganization (detectable via S7, monitoring).
« Early training instabilities (addressable through warmup).
o Adversarial inputs (requiring robust training modifications).
Mitigation: Implement adaptive depth segmentation when local variation exceeds thresh-

olds. The PF-ODE applies piecewise with weak continuity at segment boundaries, as de-
tailed in Section

Anisotropy challenges. Near-singular diffusion tensors arise at representation bound-
aries:

o Regularize with eI for numerical stability (¢ € [1078,107°]).
e Monitor condition numbers and adapt solver tolerances.

o Use preconditioned iterative methods for bridge computation.

This reconciles the degenerate diffusion analysis (Section @ with SPD requirements for
Schrédinger Bridges (Section [7)).

Computational costs. Full SB computation scales quadratically with vocabulary:

e Employ Nystrom approximations for large vocabularies.
+ Use landmark-based methods reducing complexity to O(TMR).

e Implement hierarchical decompositions for multi-scale analysis.

N.4 EXTENSIONS TO OTHER ARCHITECTURES
Vision transformers. Patch embeddings induce different simplex geometries, with spa-

tial structure suggesting modified transport costs. The mobility tensor interpretation applies
directly, potentially explaining observed differences in training dynamics.
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State-space models. Linear recurrences can be viewed as discretized PDEs. Our BV
framework suggests conditions for continuous-time limits, potentially unifying transformers
and structured state-space models.

Graph neural networks. Message passing implements local transport on graph-
structured domains. The entropic regularization perspective suggests principled aggregation
functions beyond simple averaging.

N.5 PRACTICAL DESIGN IMPLICATIONS

Adaptive temperature scheduling with entropy monitoring. The mobility—tensor
view makes temperature a direct control on transport dynamics. Instead of a fixed 7, we use
an entropy—aware schedule driven by the evolving representation entropy. Let p(¢) denote the
normalized representation distribution (Track T: token predictive softmax; Track D: latent
categorical proxy from tempered logits; Track I: per-channel histogram). With H[p] :=

— >, pilogp;, define t
) = exp(—a /0 Hip(s)] ds), (25)

and apply the induced mobility modulation J7, (2) = 77 Jgu(2/7) (see Section [L.2)).

Discrete implementation. For layers t, = ¢/L with step 6t = 1/L, maintain an EMA of
entropy

Hy = (1-B)H[p(ty)] + BHi—1, B=09,
and update
Tor1 = Clip(Tg exp(—a flg 9t), Trmin, Tmax>, (26)

with a € [1072,1071] and bounds 7Timin < 7¢ < Tmax for numerical stability. This policy
maintains higher mobility early and reduces it as representations stabilize, often shifting
the locking point earlier relative to fixed-7 baselines.

Depth-aware initialization through transport path approximation. Approximate
discretized entropic-OT paths between empirical input/output distributions via Sinkhorn
at the model’s temperature, and initialize layer ¢ to advance along ¢t = ¢/L — (¢ + 1)/L.
This warm-starts training near a plausible transport path, accelerating convergence.

Mobility-aware early exit strategies. Use ||Jsm|| as a principled early-exit criterion.
Compute efficiently via || Jsn||% = >, p7 + (X, pF)? =2, p? (moments only), and compare
to task-specific thresholds eyt (e.g., 1073 for precision, 1072 for low-latency). This measures
capacity for further refinement rather than prediction uncertainty.

Bounded-variation regularization during training. Add Ly = Apv - max(0, Sy, —

Charger) With Sp, = 3", [|Az9||2 to discourage abrupt inter-layer jumps. Schedule Agy from
near zero upward as training stabilizes.

N.6 DEPLOYMENT NOTES AND ABSTAIN POLICY

PO gate. Diagnostics P1-P4 are conditioned on passing PO (BV Sy < 0.15 and continuity
residuals < 10714). Failures trigger abstention and reporting of the failing metric.

dLLM guardrail. The late-window strict certificate combines a windowed TV budget
with a no-flip margin; use it as a deploy-time stability gate in production dLLM pipelines.
For practical roll-out, pair the strict setting with a calibrated policy (e.g., 7=0.5 and mod-
erate 9,€)) to achieve interpretable, non-zero coverage; monitor drift-budget exceedances,

curvature gap 1 — k, and R alongside coverage over time.
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O DiscussioN AND FUTURE DIRECTIONS (EXTENDED)

O.1 RICHER DRIFT FEATURES AND CROSS-HEAD STRUCTURE

Beyond simple features. Beyond the light feature map used in §7
([z, 22, LayerNorm(z), t, t?]), extend b(z,t) with (i) pooled cross-head features; (ii)
bilinears 2™ @ z("); (iii) local context statistics (row entropy, tail mass 6(P), curvature
gap 1 — k); (iv) short-range temporal residuals. Expect lower one-step error and tighter P1
overlays.

Model selection and stability. Use nested CV (ridge/elastic-net vs. small MLP
head), spectral normalization/Jacobian clipping, and keep solver tolerances fixed. Report
predicted-vs-realized TV calibration and held-out KS/MMD as in §7.

0.2 STRUCTURED/ACCELERATED SB SOLVERS

Structure and efficiency. Use common-support grids (visible set + low-rank neigh-
borhood) and entropic warm starts (reuse duals across layers) to exploit BV smoothness.
Consider multi-scale IPF, block-wise batching, and low-rank kernels; evaluate with the same

P4 readout (mean R with BCa CIs) to ensure unbiased alignment.

0.3 PRACTICAL DEPLOYMENT PATHWAYS

Operational guidance. Adopt the two-gate policy above; monitor (i) drift-budget ex-
ceedances (rate/magnitude); (ii) curvature gap 1 — x under temperature/key-norm controls;

(iii) rotational energy R (and normalized variant); (iv) calibrated dLLM coverage. Escalate
on spikes or regressions; record v used in the Poisson step and coverage thresholds in release
manifests.

0.4 THEORETICAL IMPLICATIONS AND OPEN QUESTIONS
Optimality of attention. Does the semi-relaxed EOT structure of attention reflect an

optimal sequence model, or a convenient approximation? The SB characterization suggests
near-optimal transport under appropriate conditions.

Implicit regularization. Softmax’s entropic regularization may explain generalization;
connect to PAC-Bayes and info-theoretic measures.

Scaling laws. The framework predicts links between depth/width and effective transport
capacity; test against empirical scaling laws.

0.5 METHODOLOGICAL CONTRIBUTIONS BEYOND THEORY

Training monitoring. BV statistics warn of instabilities; rotational energy tracks trans-
port alignment and flags when architectural changes may help.

Architecture search. Differentiable transport-efficiency metrics can guide gradient-
based architecture optimization beyond accuracy-only objectives.

Interpretability. Mobility provides a geometric lens on attention patterns; tracking its
evolution can reveal phase transitions in representation.

0.6 EXPERIMENTAL ROADMAP

1. Scaling validation: BV scaling across 100M—100B models.
2. Training dynamics: Mobility evolution throughout pretraining; identify phases.
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3. Interventions: Mobility-aware training modifications; measure convergence/gen-
eralization impact.

4. Cross-modal: Apply diagnostics to vision-language models to test transport uni-
versality.

P SOFTWARE IMPLEMENTATION GUIDELINES

P.1 RECOMMENDED LIBRARIES AND T'OOLS

The following libraries provide efficient implementations of the required algorithms:

e Core computation:

— PyTorch 2.0+ or JAX 0.4+ for autodiff and GPU acceleration
— Einops for tensor manipulation with clear dimension semantics
— torch.compile or jax.jit for optimized execution

e ODE integration:

— torchdiffeq for PyTorch with adaptive solvers
— diffrax for JAX with extensive solver options
— Custom Dormand-Prince implementation for fine control

e Optimal transport:

— POT (Python Optimal Transport) 0.9+ for Sinkhorn/IPF
— 0TT-JAX for GPU-accelerated transport computations
— Custom log-domain IPF for numerical stability

e« Numerical stability:

— numpy . float64 for BV accumulation
— torch.cuda.amp for mixed precision with careful exclusions
— Custom stabilized softmax with temperature scaling

e Monitoring and visualization:

— wandb or tensorboard for experiment tracking
— matplotlib with custom colormaps for transport visualization
— plotly for interactive 3D simplex projections

P.2 REPRODUCIBILITY CHECKLIST

To ensure complete reproducibility of our framework:
Environment specification:
o Random seed fixing: Set seeds for Python, NumPy, PyTorch/JAX, and CUDA
e Deterministic operations: Enable torch.use_deterministic_algorithms(True)

e Hardware specification: Document GPU model, CUDA version, driver version

o Software versions: Pin all dependencies in requirements.txt or environment.yml
Model specification:

e Architecture: Exact layer count, hidden dimensions, attention heads
o Initialization: Method (Xavier, He, etc.) and random seed
o Normalization: Type (LayerNorm, RMSNorm) and epsilon values

o Activation functions: Including any custom modifications

Data specification:
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o Dataset: Version, split definitions, preprocessing steps
e Tokenization: Tokenizer version and vocabulary
e Batching: Batch size, sequence length, padding strategy

e Augmentation: Any data augmentation or noise injection
Training specification:

o Optimizer: Type, learning rate, weight decay, momentum/betas
e Schedule: Learning rate schedule, warmup steps
e Regularization: Dropout rates, weight constraints

o Convergence: Stopping criteria, patience parameters
Diagnostic specification:

e BV monitoring: Window size W, threshold 7
e Drift estimation: Number of neighbors k, ridge parameter A
e Score learning: Network architecture, noise levels o

o Bridge computation: Entropic regularization ¢, tolerance levels

Q NOTATION SUMMARY

Symbol  Description

h® Hidden representation at layer ¢
2 Logits at layer ¢

p“) Probability distribution at layer ¢
Jsm Softmax Jacobian (mobility tensor)
Jom Temperature-scaled mobility tensor
St Bounded variation statistic

R Rotational energy (SB deviation)

a Diffusion tensor (£X7)

Qe Regularized diffusion (a + 1)

br Reference drift

b(z,t) Architectural drift (identified limit)
0 Schrédinger potential

p, Forward /backward Schrodinger potentials
M (p) Induced mobility on simplex

Lt Transformer probability path

Pt General probability measure

vt Reference path measure

U Velocity field for probability flow
Hlp] Shannon entropy

T Temperature parameter

Table 5: Complete notation used throughout the paper, including both main text and
appendix symbols.

R ADDITIONAL TECHNICAL LEMMAS

Lemma R.1 (Gradient flow structure). The probability-flow ODE on the simplex admits a
gradient flow interpretation in the Wasserstein geometry when b = —VV for some potential
V:

p= _vwz}-[p]

where Flp] =Y . piV(2) and Vy, denotes the Wasserstein gradient.
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Remark R.2 (Discrete optimal transport interpretation). On discrete state spaces, this
gradient flow structure connects to entropic Wy analogues for Markov chains as developed
in|Maas (2011); |Erbar & Maas (2012); |Chow et al| (2012). We adopt this interpretation to
provide geometric intuition for the probability dynamics on the simplex, though the precise
metric structure depends on the choice of discrete optimal transport geometry.

Lemma R.3 (Convergence rate under mobility control). If the mobility tensor satisfies
Amin(Jsm) = m > 0 uniformly, then the probability flow converges exponentially to equilib-
rum:

Ip(t) = psll2 < €™™[Ip(0) — ps |l
where py is the unique equilibrium distribution.
Lemma R.4 (Bridge interpolation formula). For Schrédinger Bridge p; between pg and
w1, the intermediate marginals satisfy:
pe = argmin {(1 — £)KL(p|uo) + t KL(p|p1)}

providing a variational characterization of the optimal transport path.

Remark R.5. This variational view is heuristic and depends on the chosen reference path
measure; Tigorous formulations use Schrédinger potentials and dynamic entropy minimiza-
tion as developed in the Schrodinger Bridge literature.
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