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Abstract
We consider the problem of learning to exploit
learning algorithms through repeated interactions
in games. Specifically, we focus on the case of
repeated two player, finite-action games, in which
an optimizer aims to steer a no-regret learner to a
Stackelberg equilibrium without knowledge of its
payoffs. We first show that this is impossible if the
optimizer only knows that the learner is using an
algorithm from the general class of no-regret algo-
rithms. This suggests that the optimizer requires
more information about the learner’s objectives or
algorithm to successfully exploit them. Building
on this intuition, we reduce the problem for the
optimizer to that of recovering the learner’s pay-
off structure. We demonstrate the effectiveness of
this approach if the learner’s algorithm is drawn
from a smaller class by analyzing two examples:
one where the learner uses an ascent algorithm,
and another where the learner uses stochastic mir-
ror ascent with known regularizer and step sizes.

1. Introduction
Learning algorithms and AI agents are increasingly being
deployed into environments where they interact with other
learning agents—be they people or other algorithms. This is
already a reality in wide-ranging application areas such as ad
auctions, self-driving, automated trading, and cybersecurity.
In each of these problem areas, the presence of other agents
with potentially misaligned objectives renders the problem
game-theoretic in nature. Algorithms deployed in such
environments are therefore faced with a generalization of the
classic exploration-exploitation trade-off in online learning:
On one hand, they must take actions to learn the underlying
structure of the game (i.e., its payoff and potentially its
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opponents’ objectives), and on the other, they must reason
strategically about the game-theoretic implications of its
actions to maximize utility. Thus, the problem becomes
trading off between exploration and competition.

To address this problem, the dominant approach to learning
in games has been formulating it as an adversarial online
learning problem. In this framing, to handle opponents
with unknown objectives and learning rules, each player
assumes they are faced with an arbitrary (and potentially
adversarial) sequence of payoffs and seeks to find an algo-
rithm that maximizes their own utility. Given this setup,
a natural class of algorithms to choose from is the class
of no-regret algorithms, which guarantees asymptotically
optimal performance compared to the best fixed action in
hindsight (Cesa-Bianchi & Lugosi, 2006). If all players use
no-regret algorithms, it is well known that the average action
of the players over the entire time horizon converges to a
(coarse) correlated equilibrium (Foster & Vohra, 1998; Hart
& Mas-Colell, 2000). However, since the opponents are
also learners rather than adversaries, adopting a no-regret
algorithm may not be optimal.

In this paper, we seek to understand how one player
should deviate from choosing a no-regret learning algo-
rithm in games. We focus on a simplified abstraction of this
problem—the repeated two player games with finite actions,
in which each player only knows their own utility function
(i.e., their payoff matrix), but not their opponent’s.

This problem has been well studied in recent years—though
primarily in the case where the payoff matrix, and thus the
objective of the opponent player, is known. Under such
assumptions, it was shown in (Deng et al., 2019) that if
one player (the optimizer) deviates from using a no-regret
algorithm, it can (under mild assumptions about the game
instance) guarantee an asymptotic average payoff that is
arbitrarily close to the Stackelberg value of the game by
steering the no-regret player (the learner) to the Stackel-
berg equilibrium of the underlying matrix game. This is
the highest attainable value if the optimizer plays one fixed
mixed strategy. Further studies have focused on analyzing
the steerability of smaller classes of algorithms, such as
no-swap-regret (Brown et al., 2023) or mean-based algo-
rithms (Arunachaleswaran et al., 2024), providing more
insights into steering no-regret learners. Crucially, all
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these works assume knowledge of the learner’s objectives—
knowledge that the optimizer itself may not even have.

In real-world applications, instead of knowing the entire
game (i.e., knowledge of both payoff matrices), it is often
the case that each player only knows their own payoff matrix.
Despite this, few works have studied the setting where the
payoff structure of the learner is initially unknown (or only
partially known) to the optimizer. Thus, in this work we
focus on answering this question:

Without full knowledge of the game, can an optimizer learn
to steer a no-regret learner to an (approximate) Stackelberg

equlilibrium?

As we will show, a crucial question that emerges from study-
ing this problem is the learnability of the learner’s objective
through repeated interaction. Giving rise to the second main
question that we answer:

What information does the optimizer need in order to
achieve this goal?

1.1. Our Contributions

We answer both questions in the setting of a repeated two
player bimatrix game over a fixed (but assumed large) time
horizon T . Our results can be summarized as follows:

• We provide a negative answer to the first question.
More specifically, we show that when the learner’s pay-
off matrix is unknown, no matter what algorithm the op-
timizer uses, there exists a no-regret algorithm for the
learner that prevents the optimizer from achieving its
approximate Stackelberg value. This happens because
the optimizer cannot accurately learn the learner’s pay-
off. This result suggests that we cannot hope to design
an algorithm that asymptotically achieves the same
performance as the Stackelberg equilibrium against
all no-regret algorithms and all payoff matrices of the
learner. This highlights a fundamental difference from
the case where the learner’s payoff is known—where
the asymptotic Stackelberg value is attainable—due to
the lack of information.

• Given the impossibility result above, we shift our fo-
cus to what information is needed to steer the learner.
We show that in order to achieve asymptotic Stackel-
berg value, instead of exactly recovering the learner’s
payoff structure, it suffices for the optimizer to first
obtain a reasonably accurate estimation of the payoff
matrix (or equivalently, the best-response structure)
through some learning method and then incorporate
the idea of pessimism to steer the learner to the Stack-
elberg equilibrium by leveraging its no-regret nature.
We show that as long as the estimation process takes

no more than o(T ) steps, the optimizer is able to steer
the learner to the Stackelberg equilibrium and conse-
quently (asymptotically) achieve its Stackelberg value
by using an explore-then-commit style algorithm.

• Building on the previous result, we show by two con-
crete examples that, when some information about the
learner’s update rule is known, it is possible to learn
the learner’s payoff structure and thus to steer them to
the Stackelberg equilibrium. One example assumes the
learner only has two pure strategies and is using any
ascent algorithm where its payoff increases at each step
and the other assumes that the learner is using stochas-
tic mirror ascent with known step sizes and regularizer.
We note that most existing no-regret algorithms share
similar dynamics with these two cases.

2. Related Works
Before presenting our results, we discuss relevant related
works.

Steering no-regret learners. The problem of steering a
no-regret learner in a repeated game has been the focus of
several recent works, though often under strong assump-
tions on what information is available to the optimizer. As-
suming known learner payoffs, Braverman et al. (2018)
first introduced the problem of steering a learner in an auc-
tion setting. Subsequently, Deng et al. (2019) showed that
the optimizer can guarantee at least the Stackelberg value
against the learner in bimatrix games and Assos et al. (2024)
studied the problem of utility maximization under the ad-
ditional assumptions on the learner’s algorithm. Brown
et al. (2023) also focused on smaller classes of no-regret
algorithms such as no-swap-regret, anytime no-regret and
no-adaptive-regret algorithms. While sharing a similar goal
with our work, all of these works use the known learner
payoff to design steering algorithms, which is not available
in our setting. Without the knowledge of learner payoff,
Brânzei et al. (2024) showed the steerability of the learner
in a cake-cutting model, which can be viewed as a 2D spe-
cial case of our problem. Lin & Chen (2024) proposed a
principal-agent framework and studied the optimal average
utility that can be obtained by the optimizer assuming ei-
ther a no-regret or a no-swap-regret algorithm under known
learner payoff. There is also a broader line of works regard-
ing more general properties of interacting with no-regret
learners, including (Zhang et al., 2024) that considered the
steering problem through direct payments to the learner and
(Arunachaleswaran et al., 2024) that studied the problem of
pareto-optimality in the space of learning algorithms.

Learning in Stackelberg games. The problem of steering
is closely related to the problem of learning to play a Stack-
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elberg equilibrium through repeated interactions. Thus, a
particularly related line of work involves learning in un-
known repeated Stackelberg games, where the decisions
are made sequentially in each round. This problem has
been well-studied in its own right but often under simplify-
ing assumptions on the games or the responses of the fol-
lower (the learner in our framing of the problem). Letchford
et al. (2009) and Peng et al. (2019) proposed algorithms for
learning through interaction with a myopic best-responding
agent, and Haghtalab et al. (2022) extended this framework
to non-myopic agents with discounted utilities over time—
a different setup from the one we consider. Other works
have analyzed similar problems under different assumptions
on the underlying game. In the control literature, Lauffer
et al. (2023) studied the problem of learning in dynamic
Stackelberg games and showed that one could learn the
Stackelberg equilibrium. Maheshwari et al. (2024) stud-
ied a similar problem of learning Stackelberg equilibria in
the context of continuous games; Goktas et al. (2022) stud-
ied the behavior of no-regret learning in a smaller class
of zero-sum Stackelberg games, and the problem of steer-
ing learning agents has also emerged in the literature on
strategic classification (Zrnic et al., 2021). In each of these
problems, the additional structure introduced into the games
simplifies the task of learning the Stackelberg equilibrium
through e.g., convexity or smoothness of the underlying
optimization problem. Unfortunately, in bimatrix games,
the Stackelberg optimization problem is both highly non-
convex and discontinuous, vastly complicating the task of
learning Stackelberg equilibria. Learning in Stackelberg
games has also been studied in various application areas
including security (Blum et al., 2014; Balcan et al., 2015),
calibration (Haghtalab et al., 2023) and learning with side
information (Harris et al., 2024). Most results proposed in
these works assume the follower uses (nearly) myopic best
response dynamics, which does not fit into our setting.

Other related works. Several other relevant works do not
directly fit into either ‘steering’ or ‘learning’. Conitzer &
Sandholm (2006) first proposed an efficient algorithm of
computing Stackelberg equilibria when the game is known
through solving and combining several small linear pro-
grams, motivating our steering approach based on payoff
matrix recovery. Gan et al. (2023) studied the notion of
robust Stackelberg equilibrium allowing the follower to
respond with any δ-optimal response. Despite being formu-
lated differently, this shares the same high-level idea with
our approach of inducing pessimism to steer learners. Col-
lina et al. (2024) considered the setting of finitely repeated
Stackelberg games where the leader commitments and fol-
lower actions are adaptive to the gameplay history and pro-
posed an efficient algorithm for approximating Stackelberg
equilibria in the space of adaptive game playing algorithms.
There are also works from an empirical perspective that con-

siders (and leverages) the learning behavior of other agents
to achieve higher payoff and more stable learning process
(Foerster et al., 2018; Lu et al., 2022).

3. Notations and Preliminaries
Throughout this paper, we use ∆m to denote the probability
simplex in Rm. We use [m] to denote the set {1, 2, . . . ,m},
and {xt}Tt=1 to denote the set {x1, x2, . . . , xT }. We use
ei to denote the i-th one-hot vector, whose j-th element is
1{i = j}. We use ∥ · ∥1, ∥ · ∥∞ to denote the L1 and L∞
norm of a matrix/vector, and ∥ · ∥max to denote the max
norm of a matrix, which is given by the maximum absolute
value among all entries. We use 0n and 1n to denote the
all-zero and all-one vectors in Rn respectively. For two
vectors a, b ∈ Rn, a ≤ b indicates ai ≤ bi,∀i ∈ [n]. For
a matrix M , Mi,: (and abbreviation Mi) denotes the i-th
row of M and M:,j denotes the j-th column of a matrix.
As an extension, we use MI,: (and abbreviation MI) and
M:,J to denote the matrix obtained by combining the rows
in an index set I (columns in an index set J ) respectively,
and MI,J similarly denote the matrix obtained by choosing
rows in I and columns in J . For an index set I, let Ii
denote the i-th element in I.

3.1. Problem Setup

We consider a repeated general-sum bimatrix game G with
two players, referred to as P1 (the optimizer) and P2 (the
learner). There are T rounds of repeated interaction, in
each round t, P1 and P2 play mixed actions xt ∈ ∆m and
yt ∈ ∆n simultaneously. We use A,B ∈ Rm×n to denote
the payoff matrices of P1 and P2 respectively, thus their
utility in round t could be written as xT

t Ayt and xT
t Byt.

Within the interaction process, players use algorithms to
decide the action they play. An algorithm takes the interac-
tion sequence {xτ , yτ}t−1

τ=1 as input, and outputs the actions
xt (for P1) or yt (for P2). We allow the algorithm of each
player to be randomized, and the goal of each player is to
obtain a higher expected total utility across all time steps,
which can be written as:

U(P1) = E
[∑T

t=1 x
T
t Ayt

]
;U(P2) = E

[∑T
t=1 x

T
t Byt

]
.

3.2. Regret and No-regret Algorithms

Given a fixed sequence of actions {xt}Tt=1 played by P1, a
natural metric of the performance of P2 is the regret, which
compares to the best action in hindsight. We define three
forms of regret, one regret associated with a trajectory, one
incurred by an algorithm, and one incurred in a game.

Definition 3.1. Given an interaction history {xt, yt}Tt=1,
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the learner regret of P2 on the trajectory is defined as:

Reg2({xt, yt}Tt=1) := max
y∈∆n

T∑
t=1

xT
t By−

T∑
t=1

xT
t Byt. (1)

Given a sequence of optimizer actions {xt}Tt=1, the learner
regret of P2 under the learner algorithm A2 is defined as:

Reg2(A2, {xt}Tt=1) := max
y∈∆n

T∑
t=1

xT
t By−EA2

[
T∑

t=1

xT
t Byt

]
.

Given the optimizer algorithm A1 and the learner algorithm
A2, the learner regret of P2 is the expected learner regret
under A1,A2:

Reg2(A1,A2) := E{xt,yt}T
t=1∼A1,A2

Reg2({xt, yt}Tt=1).

The learner would like to choose an algorithm that achieves
a low regret on different possible optimizer trajectories
{xt}Tt=1, while being flexible to prevent the optimizer from
efficiently learning its payoff matrix. Faced with such trade-
off, the learner may set a regret budget f , and aim to act
against possible optimizer exploration strategies while keep-
ing its regret under this budget. To better characterize these
circumstances, we make the following definition of fine-
grained no-regret algorithms:

Definition 3.2. Given some function f : N→ R such that
f(T ) = o(T ) and an optimizer action sequence {xt}Tt=1,
an interaction sequence {xt, yt}Tt=1 is f -no-regret for the
learner (with constant C) if

Reg2({xt, yt}Tt=1) ≤ C · f(T ) (2)

for some constant C, a learner algorithm A2 is f -no-regret
(with constant C) on {xt}Tt=1 if

Reg2(A2, {xt}Tt=1) ≤ C · f(T ) (3)

for some constant C as T → ∞. An algorithm is f -no-
regret if it is f -no-regret on all possible optimizer action
sequences. An algorithm is no-regret if it is f -no-regret for
some f(T ) = o(T ).

3.3. Stackelberg Equilibrium and Stackelberg Regret

Consider a simple optimizer strategy that plays a fixed action
x at each time step, if the learner wants to be no-regret on
the resulting trajectory, its action sequence {yt}Tt=1 will
converge to a best response to x, defined as:

Definition 3.3. For an action x of P1, the best response of
P2 given its payoff matrix B is the set of actions maximizing
its payoff:

BR(B, x) := {y ∈ ∆n : xTBy ≥ xTBy′,∀y′ ∈ ∆n}.

If the optimizer simply commits to a fixed action and the
learner best-responds, the choice that maximizes its utility
should yield a Stackelberg equilibrium:

Definition 3.4. An action pair (x∗, y∗) is a Stackelberg
equilibrium if it is a solution to the following optimization
problem:

maximize xTAy

subject to y ∈ BR(B, x), x ∈ ∆m.
(4)

The Stackelberg value for P1 is defined as the optimal value
of (4), denoted by V (A,B).

Notice that in general, the set BR(B, x) can contain more
than one element. This would yield potentially different
Stackelberg values among the best-response set. We use
the rule of optimistic tie-breaking to adopt the one with the
highest optimizer payoff among all best responses to define
the Stackelberg equilibrium. However, we do not impose
the assumption that the learner will also use optimistic tie-
breaking when deciding between indifferent actions.

Since the Stackelberg value is the highest possible average-
reward it can get through fixing action among all time steps,
we use Stackelberg regret to measure its performance:

Definition 3.5. Given an interaction history {xt, yt}Tt=1,
the Stackelberg regret of P1 is:

StackReg1({xt, yt}Tt=1) := T · V (A,B)−
T∑

t=1

xT
t Ayt

Given the optimizer algorithm A1 and the learner algorithm
A2, the Stackelberg regret of P1 is the expected Stackelberg
regret under A1,A2:

StackReg1(A1,A2)

:= E{xt,yt}T
t=1∼A1,A2

StackReg1({xt, yt}Tt=1)
(5)

In the following sections we build upon these preliminaries
to study the problem of steering the learner to the Stackel-
berg equilibrium. For brevity and ease of exposition, we
defer all proofs to the Appendices.

4. Impossibility of Learning to Steer Agents
Who Use General No-regret Algorithms

When the learner payoff matrix B is known to the optimizer,
Deng et al. (2019) proved that under mild assumptions, there
exists an optimizer algorithm A1 that guarantees a Stack-
elberg regret of at most StackReg(A1,A2) ≤ ϵT + o(T )
for an arbitrarily small constant ϵ. However, if the optimizer
doesn’t have full knowledge of B, extracting Stackelberg
value becomes harder. It is natural to wonder if we do not
impose any extra assumptions (other than being no-regret)
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on P2, is it still possible for P1 to learn the payoff structure
of P2 through the interaction process and thereby extract
the Stackelberg value for all possible game instances? The
following result shows that this is impossible in general:

Theorem 4.1. There exists a pair of game instances
G1 = (A,B1) and G2 = (A,B2) with the same opti-
mizer payoff matrix A, such that for all optimizer algo-
rithms A1, there exists a no-regret algorithm A2 for the
learner satisfying: StackReg1(A1,A2) = o(T ) on G1

and StackReg1(A1,A2) = cT for some constant c on G2.

The proof of Theorem 4.1 is deferred to Appendix A.

Theorem 4.1 suggests that even if the optimizer knows that
the learner payoff is one of the two different candidates B1

or B2, whatever algorithm A1 they try to come up with,
there exists a no-regret algorithm A2 for the learner that
can induce an Θ(T ) Stackelberg regret to the optimizer in
one of the two game instances. The proof of Theorem 4.1
relies on first designing a game instance such that G1 and
G2 has different Stackelberg equilibrium, and use a simple
algorithm A′

2 against which the optimizer is not able to
distinguish whether the realized learner payoff matrix is B1

or B2, before finally modifying it to be no-regret. The idea
of constructing a pair of game instances that have different
equilibrium but the same payoff function for one player is
also used in the proof of Theorem 3 in (Bajaj et al., 2024),
in which they showed that in a repeated two-player game
where the opponent strategy is not known, no algorithm can
achieve a bounded competitive ratio against itself (used by
the opponent) for all such game instances.

This suggests that we cannot hope to design a no-
Stackelberg-regret algorithm for the optimizer that works
simultaneously well on all game instances without any addi-
tional assumption on the learner besides it being no-regret.
Interestingly, Theorem 6 in (Brown et al., 2023) suggests
that the optimizer is able to learn and steer a no-adaptive-
regret learner, indicating the fundamental difference of learn-
ing to steer learners with different algorithm classes.

5. Steering through Facets and Payoff Matrix
Recovery

Given Theorem 4.1, a natural question that emerges is what
information the optimizer needs to acquire to be able steer
no-regret learners to Stackelberg equilibrium. In this sec-
tion we present two alternative sufficient conditions under
which the optimizer can steer the learner to the Stackelberg
equilibrium and achieve o(T ) Stackelberg regret by simply
fixing one action at different time steps. The first sufficient
condition is the approximate pessimistic recovery of facets—
the best response regions for each pure learner strategy, and
the second sufficient condition is an approximation of the
learner’s payoff matrix, up to an equivalence class.

5.1. Facets and Equivalence Classes of Payoff Matrices

From the optimizer’s perspective, the matrix B does not di-
rectly show up on its payoff. The only way that B influences
the Stackelberg equilibrium and the value is through the in-
duced best response set BR(B, x). Therefore, intuitively
all the information that the optimizer needs to characterize
the response dynamics is encoded in the best response for
each x ∈ ∆m. We characterize each point x in the opti-
mizer’s simplex ∆m by which best response it could induce,
as indicated in the following definition:

Definition 5.1. For any possible payoff matrix B of the
learner, the facet Ei ⊆ ∆m corresponding to the i-th learner
action ei is defined as the set of optimizer actions x ∈ ∆m

such that ei is a best response to x:

Ei := {x ∈ ∆m : ei ∈ BR(B, x)}. (6)

We sometimes use Ei(B) to explicitly indicate that Ei is
induced by B.

Intuitively, the boundary of a facet specifies the critical
hyperplane in the space of mixed strategies ∆m of the op-
timizer, where the learner is indifferent between two (or
more) pure strategies. In general, a Stackelberg equilibrium
strategy x∗ stays at an extreme point of one facet, and there-
fore, in order to extract Stackelberg from the learner, the
optimizer must be able to (or potentially implicitly) recon-
struct the facet boundaries around the equilibrium point. We
illustrate the definition of facets by the following example:

Example 5.2. Let m = n = 3 and consider the learner
payoff matrix B = I , with the optimizer action x =
(x1, x2, x3)

T , the facets E1, E2 and E3 are visualized in
Figure 1:

x1

x 2

E1
E2
E3

Figure 1. The facets E1, E2 and E3 for payoff matrix B = I .

While similar definitions are made in (Letchford et al., 2009;
Peng et al., 2019; Lattimore & Szepesvári, 2019), we use
the word facet because each Ei induced by any matrix B
is indeed a polytope that is a subset of ∆m and their union
∪i∈[n]Ei = ∆m.
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Following (Conitzer & Sandholm, 2006), once we have
identified the facets for all i ∈ [n], we can compute the
Stackelberg equilibrium in the following way: First solve
the linear program:

max
x∈Ei(B)

Vi(A,B) = xTA:,i (7)

for each i ∈ [n]. Since P2 plays a pure strategy at equilib-
rium, the Stackelberg value is then given by:

V (A,B) = max
i∈[n]

Vi(A,B) (8)

with the corresponding solution (x∗, i∗) being the Stackel-
berg equilibrium.

At a Stackelberg equilibrium the learner is usually indif-
ferent between multiple pure strategies, which means that
switching from the equilibrium pure strategy y∗ to another
indifferent pure strategy y′ does not incur additional regret
to the learner, while potentially vastly degrading the opti-
mizer’s payoff. Therefore, instead of simply selecting the
equilibrium point, the optimizer must choose a pessimistic
equilibrium point that sacrifices some utility from Stackel-
berg value to guarantee the learner responds with y∗. We
define pessimistic facets as:
Definition 5.3. Given a facet Ei ⊆ ∆m, a pessimistic facet
E−

i is a subset of Ei. We say E−
i is d-pessimistic if it

is non-empty and dH(Ei, E
−
i ) ≤ d, where dH(·, ·) is the

Hausdorff distance with respect to the L1 norm.

If the optimizer plays a ‘safe’ version of Stackelberg equi-
librium by modifying (7) to:

max
x∈E−

i

V −
i (A,B) = xTA:,i (9)

and obtains a pessimistic value with respect to (8) as:

V −(A,B) = max
i∈[n]

V −
i (A,B), (10)

the obtained value V −(A,B) will be close to V (A,B) if d
is small, stated formally as follows:
Proposition 5.4. Consider the optimization problem (9). If
the facet E−

i is d-pessimistic, the pessimistic Stackelberg
value V −

i (A,B) satisfies

Vi(A,B)− d∥A:,i∥∞ ≤ V −
i (A,B) ≤ Vi(A,B), (11)

and therefore if E−
i is d-pessimistic for all i ∈ [n],

V (A,B)− d∥A∥max ≤ V −(A,B) ≤ V (A,B). (12)

The proof is deferred to Appendix B.1. As shown in Propo-
sition 5.4, as long as the optimizer knows a complete set of
d-pessimistic facets for each i ∈ [n], it is able to compute
an approximate Stackelberg equilibrium up to an error at the
scale of d. We now extend this result to its ability to extract
Stackelberg value against no-regret learners:

Theorem 5.5. If P1 has a set of d1-pessimistic facets
E−

i ,∀i ∈ [n] such that ∀i ̸= j, infx∈E−
i ,x′∈Ej

∥x−x′∥1 ≥
d2, as long as P2 is using an f -no-regret algorithm A2, P1

can guarantee a Stackelberg regret of

StackReg1(A1,A2) = O( f(T )
d2

+ d1T ) (13)

by sticking to the corresponding x− obtained from (9) and
(10). Here we keep d1 and d2 inside the O(·) notation to
allow their choice to be dependent on T .

A refined version of Theorem 5.5 that expands the big O(·)
notation as well as its proof can be found in Appendix B.2.
Here we can see if we take d1 = d2 =

√
f(T )/T , we

obtain an optimizer Stackelberg regret of O
(√

Tf(T )
)

,
which is o(T ).

In Theorem 5.5 we require a condition of
infx∈E−

i ,x′∈Ej
∥x − x′∥1 ≥ d2, ensuring the pes-

simistic facets are disjoint (and at least d2 distance away)
from other facets, and once the optimizer selects a point
within E−

i , the learner has a unique best response i−, and
deviating from i− incurs a regret proportional to d2 at each
step.

While a proper estimation of pessimistic facets suffices to
steer the learner, under some specific cases, it may be easier
for the optimizer to reconstruct the learner’s payoff matrices,
and it suffices to restrict our attention to those matrices
which could induce different best response sets, leading to
the following definition of equivalent payoff matrix classes:
Definition 5.6. For any two m× n matrices B and B′, if
there exists some c ∈ R+, µ ∈ Rm such that

B = cB′ + µ1Tn , (14)

we say that B and B′ are equivalent.

It’s not hard to see that if two matrices B and B′ are equiva-
lent, the induced best response set BR(B, x) = BR(B′, x)
for all x ∈ ∆m. Indeed, we show in Appendix B.3 that for
all equivalent matrix pairs (B1, B2), if a learner algorithm is
f -no-regret on one, there exists a corresponding algorithm
that is f -no-regret on the other, which indicates that the
optimizer is in general not able to distinguish between these
two matrices without knowing A2. Therefore, restricting
our attention from payoff matrices to equivalence classes
won’t affect the optimizer’s ability to steer learners.

To describe an equivalence class B, observe that for all
matrices B in B, the matrix B◦i ∈ Rm×(n−1) defined by
(B◦i ):,k = (B:,k − B:,i)/maxj1,j2 ∥B:,j1 − B:,j2∥∞ for
some k ̸= i in each column will be the same for any fixed in-
dex i ∈ [m] with the convention that 0/0 = 0, so we can use
B◦i to represent the entire equivalence class. Based on this,
we can also define the difference between two equivalence
classes:
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Definition 5.7. For two equivalence classes B1 and B2, their
difference on index i is defined as di(B1,B2) := B◦1,i−B◦

2,i.

5.2. Steering with Payoff Class Estimation

If P1 has an estimation B that perfectly recovers the under-
lying payoff matrix class of B, we could rewrite (7) as:

max
x∈∆m

Vi(A,B) = xTA:,i s.t.: (B◦i )Tx ≤ 0n−1 (15)

for each i ∈ [n]. Again, each linear program solves for the
best action when ei is the best response to action x played by
P1. Consequently (8) becomes V (A,B) = maxi Vi(A,B)
and the Stackelberg equilibrium point would be the corre-
sponding solution.

With an estimation B̂ that has some error within margin d,
we can define an optimistic version of (15):

max
x∈∆m

V +
i (A, B̂) = xTA:,i s.t: (B̂◦i )Tx ≤ d1, (16)

and a set of pessimistic version:

max
x∈∆m

V −
i (A, B̂) = xTA:,i s.t: (B̂◦i )Tx ≤ −d1. (17)

The optimistic (cf. pessimistic) problem relaxes (cf. tight-
ens) the condition by a margin d. Notice that the feasible
set of each optimization problem characterized by (15), (16)
and (17) are also variants of the aforementioned concept of
facets, we overload the notation:
Definition 5.8. Given a payoff matrix class B, the facet Ei

corresponding to the i-th action ei of P2 is defined as:

Ei(B) :=
{
x ∈ ∆m : (B◦i )Tx ≤ 0n−1

}
. (18)

Similarly, given an estimation of payoff matrix class B̂ and
an error margin d, the optimistic facet E+

i and the pes-
simistic facet E−

i corresponding to the i-th action ei of P2

is defined respectively as:

E+
i (B̂, d) :=

{
x ∈ ∆m : (B̂◦i )Tx ≤ d1n−1

}
; (19)

E−
i (B̂, d) :=

{
x ∈ ∆m : (B̂◦i )Tx ≤ −d1n−1

}
. (20)

The definition of pessimistic facets in Definition 5.8 en-
forces strict dominance of the corresponding action by at
least some margin d. We show in Proposition 5.9 that when
the error margin d is larger than the scale of the difference
in equivalence classes, the optimistic (cf. pessimistic) prob-
lems are indeed relaxations (cf. tightenings) of (15).
Proposition 5.9. If the error margin d satisfies

d ≥ ∥di(B, B̂)∥max, (21)

then: E−
i (B̂, d) ⊆ Ei(B) ⊆ E+

i (B̂, d). Further, since (15),
(16) and (17) maximize the same objective, if E−

i (B̂, d) is
non-empty then: V −

i (A, B̂) ≤ Vi(A,B) ≤ V +
i (A, B̂).

We provide the following example:

Example 5.10. Following Example 5.2, consider B̂ =[
1.05 0.05 0
−0.05 1.05 0
0.05 0 0.95

]
. For facet E1 and the corresponding B, B̂,

we have that ∥d1(B, B̂)∥max = 0.1. We show E−
1 (B̂, d)

and the boundaries of E1(B), E1(B̂) as follows in Figure 2:

x1

x 2

E1(B)
E1(B)
E1 (B, d)

Figure 2. We can see that although E1(B̂) ⊈ E1(B), by construc-
tion we have E−

1 (B̂, d) ⊆ E1(B).

Proposition 5.9 suggests that given an estimation B̂ and a
proper margin d, if P1 plays according to the solution to
(17) (assuming E−

i (B̂, d) is not empty), the corresponding
learner best response in the underlying game would be ei.
However, a pessimistic facet may not be feasible when the
original facet is feasible. If E−

i (B̂, d) is empty, we cannot
deduce that Ei(B) is also empty. Instead, to certify the
emptiness of Ei(B), we need E+

i (B̂, d) to be empty as well.
We use the following version of the definition given by (Gan
et al., 2023) to capture the emptiness of E+

i and E−
i .

Definition 5.11 ((Gan et al., 2023), Definition 3). Given a
payoff matrix class B of P2, define the inducibility gap Ci

with respect to the i-th action ei of P2 to be:

Ci := minx∈∆m maxj x
T (B◦i ):,j . (22)

We can see from Definition 5.11 that Ci ≤ 0 if and only if
(15) is feasible. We show in Appendix C.2 that if Ci > 0,
(15) is infeasible and there exists a gap where it can be
relaxed while still being infeasible. If Ci = 0, however,
Definition 5.11 indicates that ∀x,maxj x

TB◦i (ej − ei) ≥ 0,
and ∃x ∈ ∆m, j ∈ [n] such that xTBi(ej − ei) = 0.
Under this case, the facet Ei(B) has zero volume and as
long as the estimation B̂ is not precise, the facet E−

i (B̂, d)
could always be empty. Also, even if the optimizer knows
the real underlying B, since ei is weakly dominated, the
learner is not steerable if ei happens to be the Stackelberg
equilibrium since the learner is indifferent between ei and ej .
To avoid this special case (which occurs with probability 0
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for uniformly randomly generated B matrices (Von Stengel
& Zamir, 2010)), we make the following assumption, as
is standard (see e.g., (Gan et al., 2023; Deng et al., 2019;
Brown et al., 2023)):
Assumption 5.12. The learner payoff matrix class B satis-
fies Ci ̸= 0 for all i ∈ [n].
Remark 5.13. Our construction of game instances when
proving Theorem 4.1 both satisfy this assumption. That is
saying, if the optimizer knows B1 and B2, it is able to steer
the learner to Stackelberg equilibrium, indicating that the
impossibility lies in ’learning’ instead of ’steering’.

With Assumption 5.12 we are ready to show that if the esti-
mation B̂ is accurate enough, all the facets are identifiable:
Proposition 5.14. Given an estimation B̂ satisfying (21):

1. Ei(B) = ∅ and d ≤ Ci

4 , then E+
i (B̂, d) = ∅;

2. Ei(B) ̸= ∅ and d ≤ −Ci

2 , then E−
i (B̂, d) ̸= ∅.

Proposition 5.14 shows that under Assumption 5.12, when
the estimation error is small enough, either both E+

i and
E−

i are empty, or none of them is empty. Therefore, given
B̂ that is accurate enough, the optimizer will finally be able
to decide whether Ei(B) is empty or not.

Since Proposition 5.9 suggests V −
i (A, B̂) ≤ Vi(A,B) ≤

V +
i (A, B̂), if the optimizer chooses the solution to (17), its

suboptimality can be bounded by V +
i (A, B̂) − V −

i (A, B̂).
To bound this difference term, we make the following defi-
nition to capture the sensitivity of this problem:
Definition 5.15. Given a matrixM ∈ R(n−1)×m, define
the sensitivity constant Sen(M) as:

Sen(M) := minϵ ̸=0 maxP,Q

∥∥∥∥∥
[
M
ϵ1Tm

]−1

P,Q

∥∥∥∥∥
∞

, (23)

where the maximization is over all P and Q that satisfies

P ⊆ [n],Q ⊆ [m], |P| = |Q|,
[
M
ϵ1Tm

]
P,Q

invertible.

In Definition 5.15, we take the maximum over all invertible
square submatrices, if we takeM = (B̂◦i )T , we can inter-
pret P as choosing active constraints within the columns of
B̂◦i and Q can be interpreted as choosing nonzero entries of
x. Based on Definition 5.15, we obtain Lemma 5.16:
Lemma 5.16. Suppose both the optimistic and pessimistic
problems are feasible, then the difference between the op-
timal solution V +

i (A, B̂) to (16) and the optimal solution
V −
i (A, B̂) to (17) can be upper bounded by:

V +
i (A, B̂)− V −

i (A, B̂) ≤ 4d∥A:,i∥∞Sen((B◦i )T ),

as long as ∥di(B, B̂)∥∞ ≤ d ≤ 1
2Sen((B◦

i )
T )

.

Lemma 5.16 suggests that once P1 has a small estimation
error of the payoff matrix class B of P2, the value and the
corresponding action obtained by solving (17) will guar-
antee a bounded suboptimality proportional to the error
scale. Based on this, if P1 has an estimation B̂t that is
accurate enough, P1 can commit to a fixed strategy given
by the solution to the pessimistic optimization problem and
could obtain a sublinear Stackelberg regret in the long run
as T →∞. We state this result as follows:
Theorem 5.17. Under Assumption 5.12, if P1 has an estima-
tor B̂ of B such that ∥di(B, B̂)∥∞ ≤ ϵ = O(g(T )/T ),∀i
for some g(T ) = o(T ), then if P2 is using a f -no-regret
algorithm A2, there exists an algorithm A1 satisfying:

StackReg1(A1,A2) = O(
√

Tf(T ) + g(T )). (24)

Similarly, the refined version of Theorem 5.17 with explicit
Stackelberg regret bound and its proof can be found in
Appendix C.5.

5.3. Lower Bound on Stackelberg Regret

To illustrate the tightness of our result, we provide the lower
bound on the Stackelberg regret of the optimizer in Ap-
pendix D, which shows that our rate

√
Tf(T ) is essentially

optimal against f -no-regret learners.

6. Learning to Steer Classes of Learners
We have shown in Section 5 that if P1 can recover the set
of pessimistic facets or approximate payoff matrix class, it
would be able to steer the learner to a Stackelberg equilib-
rium. Therefore it is natural for the optimizer to adopt an
explore-then-commit style algorithm that first learns either
the facets or the approximate payoff matrix, and then com-
mits to a pessimistic Stackelberg equilibrium. In this section
we show in two concrete examples that when some infor-
mation about the update rule of the learner’s algorithm is
known, P2 leaks information about its payoff which allows
P1 to learn the desired payoff structure and thus steer the
learner to Stackelberg equilibrium.

We provide numerical experiments to illustrate the effective-
ness of the algorithms in Appendix F.

6.1. Learning to Steer Ascending Learners with n = 2

In this section we assume that the learner is using an ascent
algorithm, where the learner’s action greedily improves its
payoff based on the last round’s optimizer action:
Definition 6.1. A learner algorithm A2 is an ascent algo-
rithm if xT

t Byt − xT
t Byt+1 ≤ 0 for all t, and xT

t Byt −
xT
t Byt+1 = 0 if and only if yt ∈ BR(B, xt).

For simplicity we restrict our attention to the case where
m = n = 2, where we can see that the direction that
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yt+1 moves from yt directly reflects the best response to xt.
Based on this observation, we propose Algorithm 1 as shown
in Appendix E.1. The idea behind the algorithm is that the
optimizer first performs a binary serach across its simplex
[0, 1] and then apply pessimism to get an estimated E−

1

and E−
2 before finally committing to the solution obtained

through (9) and (10). We show in the following theorem
that the algorithm obtains a sublinear Stackelberg regret:
Theorem 6.2. Suppose m = n = 2 and the payoff matrix
B does not contain identical columns. For some chosen
parameter d, if either one facet is empty, or each facet has
diameter at least d and P2 uses an ascent algorithmA2 that
is f -no-regret, Algorithm 1 with accuracy margin d achieves
a Stackelberg regret of at most O( f(T )

d + dT − log d) as
long as d = Ω(exp(−f(T ))).

A more detailed version of Theorem 6.2 with its
proof can be found in Appendix E.1. As an ex-
ample, here if f(T ) = Tα and we take d =√

f(T )/T , we achieve a bound on the optimizer

Stackelberg regret of O
(√

Tf(T )− log
√
f(T )/T

)
=

O
(
T

1+α
2 + 1−α

2 log T
)
= O

(
T

1+α
2

)
.

For the more general case where n = 2 and m is an arbitrary
constant, we can use a similar approach that does m(m−
1)/2 binary searches on all pairs of (ei, ej), i ̸= j to find a
set of approximate indifferent points on each segment {x ∈
∆m : xi + xj = 1} and then use them to reconstruct the
facets E−

1 and E−
2 , the reconstruction is possible under mild

assumptions since the real facets E1 and E2 are separated by
the hyperplane xT (Be1 −Be2) = 0. We leave it as a open
problem whether similar approach will work for n > 2 case.
There is an alternative view of Algorithm 1 based on payoff
matrix reconstruction, see discussion also in Appendix E.1.

6.2. Learning to Steer Mirror Ascent Learners

We now present an estimation algorithm that estimates the
payoff matrix class B of P2 given that P2 is using stochastic
mirror ascent with known regularizer. More specifically, we
assume that the follower is using the following update rule:

yt+1 = arg min
y∈∆n

{
ηtD(y∥yt)− (xT

t B + ξTt )y
}

(25)

where ξt ∈ Rn is some noise that is either innate in the
problem or injected by P2 to prevent from information leak-
age. We assume that ηt and the Bregman divergence reg-
ularizer D(·∥·) are both known to P1 and the regularizer
satisfies ∇yD(yt+1∥yt) → ∞ if there exists i ∈ [n] such
that yt+1,i → 0.

At each time step t, through the update rule (which the
optimzer knows by knowing the regularizer and step size),
the relationship between yt+1 and yt only depends on the
term xT

t B + ξTt , therefore if the optimizer selects xt = ei,

it can get some information of the i-th row Bi of B. By
uniformly exploring all such rows, it is able to fully recover
the entire matrix class B. Interestingly, since the update rule
includes projection onto the simplex ∆n, the information of
one dimension is lost, so the optimizer cannot fully recover
the exact matrix B, but luckily the projection preserve all
information needed to recover B up to the equivalence class,
which suffices to steer the learner to Stackelberg. Based on
the intuition above, we propose Algorithm 4 as shown in
Appendix E.2 with the following regret bound.
Theorem 6.3. If the learner payoff matrix B statisfies the
assumptions needed in Theorem 5.17, P2 follows update
rule (25), and each entry ξt,i is i.i.d. R-sub-Gaussian,
then with probability at least 1− δ, P1 using Algorithm 4
with k = (T/g(T ))

2
2R2 log(2mn/δ), incurs Stackelberg

regret of at most StackReg1(A1,A2) = O(
√
Tf(T ) +

g(T ) +
(

T
g(T )

)2
).

The detailed version of Theorem 6.3 and its proof can
be found in Appendix E.2. Here since for all no-regret
algorithms A2 we have f(T ) = Ω(

√
T ), if we take

g(T ) =
√
Tf(T ),

(
T

g(T )

)2
= o(g(T )) and we have

StackReg1(A1,A2) = O(
√

Tf(T )).

7. Conclusion
We studied the problem of learning to steer no-regret learn-
ers to Stackelberg equilibrium through repeated interactions.
While we showed this to be impossible against a general
no-regret learner, we provided sufficient conditions under
which the learner can be exploited and designed algorithms
that learns to steer the learner under further assumptions on
their algorithm. Our work provides several future directions
for learning in strategic environments, including but not
limited to finding a more precise characterization on learn-
able and steerable learner algorithm classes, and learning in
environments where neither payoff matrices are known.
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that interacts with people.

For instance, in self-driving fleets, vehicles must not only
learn how to navigate but also anticipate the diverse, evolv-
ing behaviors of other drivers, either human or algorithms.
A better understanding of how to “steer” or align these vehi-
cles’ learning processes could reduce collisions, congestion,
and erratic maneuvers. Similarly, in automated trading plat-
forms where billions of dollars change hands every day,
being able to steer and exploit rival strategies—especially
when the rival’s objectives are unknown, can prevent desta-
bilizing market manipulations or cascading losses. Beyond
commercial applications, cybersecurity systems stand to
benefit as well: more nuanced models of adversarial be-
havior under uncertain objectives can better protect critical
infrastructure from sophisticated attacks.

Ultimately, our findings encourage organizations and pol-
icymakers to invest in adaptive mechanisms that account
for varying degrees of information accessibility. By doing
so, we can foster more stable, cooperative, and beneficial
outcomes in multi-agent settings, ensuring that AI systems
operating under unknown strategic environments are both
robust and societally accountable.
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A. Proof of Theorem 4.1
Consider the game instances G1 = (A,B1) and G2 = (A,B2) where:

A =

[
0 0
1 ϵ

]
, B1 =

[
0 ϵ
0 1

]
, B2 =

[
1 0
0 1

]
. (26)

with ϵ ∈ (0, 1/2) being a small positive constant. Fix an optimizer algorithm A1 and suppose it is no-Stackelberg-regret
on G1. We first show that there exists a learner algorithm A2 (that may not be a no-regret algorithm itself) that achieves
Reg2(A1,A2) = o(T ) on both G1 and G2, and then modify this A2 to make it a no-regret algorithm itself. In this proof
section we use Stackreg1(·, ·;Gi) and Reg2(·, ·;Gi) to denote the corresponding regret notions evaluated on Gi.

For the first step, we show that a simple algorithm A2 that takes y = (0, 1)T satisfies the conditions above for both G1 and
G2. Notice that the unique Stackelberg equilibrium for G1 is:

x∗
1 = (0, 1)T , y∗1 = (0, 1)T (27)

with the corresponding Stackelberg value V (A,B1) = ϵ. In order to achieve a sublinear Stackelberg regret, the selections
xt by A1 must satisfy

StackReg1(A1,A2;G1) = E{xt}T
t=1∼A1

[
Tϵ−

T∑
t=1

xT
t Ayt

∣∣∣∣∣yt = y∗1 ,∀t

]
= o(T ), (28)

which simplifies to:

E

[
T∑

t=1

(
[
0 1

]
− xT

t )

[
0
ϵ

]]
= o(T ). (29)

That is, the average of {xt}Tt=1 must be asymptotically close to (0, 1)T in expectation. Also notice that y∗1 is a strictly
dominant strategy for the learner, we have Reg2(A1,A2;G1) = 0.

Now consider G2, the unique Stackelberg equilibrium for G2 is:

x∗
2 = (

1

2
,
1

2
)T , y∗2 = (1, 0)T , (30)

yielding a Stackelberg value of V (A,B2) = 1/2. Since A1 only takes the {yt}Tt=1 sequence as input, it must behave
identically as in G1, with expected average {xt}Tt=1 asymptotically close to (0, 1)T as well. That is,

StackReg1(A1,A2;G2)

=E{xt}T
t=1∼A1

[
1

2
T −

T∑
t=1

xT
t Ayt

∣∣∣∣∣yt = y∗1 ,∀t

]

=
1

2
T − E{xt}T

t=1∼A1

[
T∑

t=1

xT
t Ayt

∣∣∣∣∣yt = y∗1 ,∀t

]

=
1

2
T − (ϵT − o(T ))

=(
1

2
− ϵ)T + o(T ).

(31)

Therefore, as long as A1 is no-Stackelberg-regret on G1 against A2, it incurs linear Stackelberg regret on G2 against the

12
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same A2. Also, since (29) still holds under G2, we have the following upper bound on the learner regret:

Reg2(A1,A2;G2)

=T − E{xt}T
t=1∼A1

[
T∑

t=1

xT
t B2yt

∣∣∣∣∣yt = y∗1 ,∀t

]

=T − E{xt}T
t=1∼A1

[
T∑

t=1

(xt −
[
0 1

]
)TB2yt

∣∣∣∣∣yt = y∗1 ,∀t

]
− E{xt}T

t=1∼A1

[
T∑

t=1

[
0 1

]T
B2yt

∣∣∣∣∣yt = y∗1 ,∀t

]

=T + E{xt}T
t=1∼A1

[
T∑

t=1

(
[
0 1

]
− xt)

TB2yt

∣∣∣∣∣yt = y∗1 ,∀t

]
− T

=E{xt}T
t=1∼A1

[
T∑

t=1

(
[
0 1

]
− xt)

TB2yt

∣∣∣∣∣yt = y∗1 ,∀t

]

=E

[
T∑

t=1

(
[
0 1

]
− xt)

T

[
0
1

]]

=
1

ϵ
E

[
T∑

t=1

(
[
0 1

]
− xT

t )

[
0
ϵ

]]
=o(T ),

(32)

which completes the first part of the proof.

We now modifyA2 into a no-regret algorithm. Notice that althoughA2 constructed above obtains sublinear regret againstA1

on both G1 and G2, it is not no-regret on G2 since it may incur linear regret on some {xt}Tt=1 sequence, e.g. xt = (1, 0)T ,∀t.
SinceA1 is fixed, we can use a function g(T ) = o(T ) to characterize its Stackelberg regret, namely we select g(T ) such that

StackReg1(A1,A2;G1) = E{xt}T
t=1∼A1

[
Tϵ−

T∑
t=1

xT
t Ayt

∣∣∣∣∣yt = y∗1 ,∀t

]
= O(g(T )). (33)

Our idea is to let the learner keep track of the cumulated regret upon the current time step t to identify whether the trajectory
{xτ}tτ=1 is generated by A1 or not. Consider the modified algorithm Ã2 as follows:

1. When the interaction process starts, stick to (0, 1)T ;

2. At each time step t, calculate the running Stackelberg regret SR({xτ , yτ}t−1
τ=1) := (t− 1)ϵ−

∑t−1
τ=1 x

T
τ Ayτ ;

3. If SR({xτ , yτ}t−1
τ=1) ≥

√
Tg(T ), switch and stick to online mirror ascent, otherwise keep playing (0, 1)T .

Notice that here we can use the knowledge of g(T ), which serves as the Stackelberg regret bound of A1 because we only
aim to prove the existence of such algorithm as Ã2. To complete the proof of Theorem 4.1, notice that on game instance
G1 no matter what trajectory {xτ}t−1

τ=1 it faces, since (0, 1)T is a dominant learner action, Ã2 will play (0, 1)T for all time
steps, and therefore have 0 Stackelberg regret. It suffices to prove that on the game instance G2, Ã2 is no-regret and Ã2 still
incurs Θ(T ) Stackelberg regret to the optimizer against A1. To simplify calculation we use notations x = (x1, x2)

T and
y = (y1, y2)

T here.

To show that Ã2 is no-regret, notice that before switching to mirror ascent, the learner regret has the following form:

Reg2({xt, yt}tτ=1;G2) = max{
t∑

τ=1

xτ,1,

t∑
τ=1

xτ,2} −
t∑

τ=1

xτ,2 = max{
t∑

τ=1

(1− 2xτ,2), 0}. (34)

Also, Ã2 sticks to (0, 1)T , and therefore,

SR({xτ , yτ}t−1
τ=1) = (t− 1)ϵ− ϵ

t−1∑
τ=1

xτ,2. (35)

13
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Let Ts denote the time step at which Ã2 switches, or Ts = T if the algorithm doesn’t switch until the end, we have:

Reg2({xt, yt}Ts
t=1;G2)

=max{Ts − 2

Ts∑
t=1

xt,2, 0}

=max{(Ts − 1)− 2(Ts − 1− SR({xt, yt}Ts−1
t=1 )

ϵ
), 0}+O(1)

=max{2SR({xt, yt}Ts−1
t=1 )

ϵ
− Ts + 1, 0}+O(1)

≤2SR({xt, yt}Ts−1
t=1 )

ϵ
+O(1)

=O(
√
Tg(T ))

=o(T ),

(36)

and therefore,

Reg2({xt, yt}Tt=1;G2)

= max
y∈∆n

T∑
t=1

xT
t By −

T∑
t=1

xT
t Byt

≤ max
y∈∆n

Ts∑
t=1

xT
t By −

Ts∑
t=1

xT
t Byt + max

y∈∆n

T∑
t=Ts+1

xT
t By −

T∑
t=Ts+1

xT
t Byt

=Reg2({xt, yt}Ts
t=1;G2) +Reg2({xt, yt}Tt=Ts+1;G2)

=o(T ) +O(
√
T )

=o(T ).

(37)

Since this holds for arbitrary {xt}Tt=1 sequence, we deduce that Ã2 is a no-regret algorithm.

To show that Ã2 incurs Θ(T ) Stackelberg regret to the optimizer against A1, consider the event

E = {SR({xτ , y
∗
1}tτ=1;G1) ≥

√
Tg(T ), for some t ∈ [T ]}

= {SR({xτ , y
∗
1}Tτ=1;G1) ≥

√
Tg(T )}

(38)

that captures the case where the Stackelberg regret of A1 exceeds
√

Tg(T ) under G1 given the learner fixes y∗1 , since A1 is
no-Stackelberg-regret on G1, the probability of E should be small:

Pr(E) ≤
E
[
SR({xτ , yτ}Tτ=1;G1)

]√
Tg(T )

= O(

√
g(T )

T
). (39)

Conditioned on E doesn’t happen, Ã2 will not switch to online mirror descent, the Stackelberg regret under G2 satisfies:

E{xt,yt}T
t=1∼A1,Ã2

[StackReg1({xt, yt}Tt=1;G2)|Ē ]

=
1

2
T − E{xt}T

t=1∼A1

[
T∑

t=1

xtA

[
0
1

]]

=
1

2
T − (ϵT − E{xt}T

t=1∼A1

[
SR({xt, (0, 1)

T }Tt=1)
]
)

=(
1

2
− ϵ)T +O(

√
Tg(T )).

(40)

14
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Since A1 should respond identically on G2 we can write the Stackelberg regret of A1 as:

StackReg1(A1, Ã2;G2)

=E{xt,yt}T
t=1∼A1,Ã2

StackReg1({xt, yt}Tt=1;G2)

=E{xt,yt}T
t=1∼A1,Ã2

[StackReg1({xt, yt}Tt=1;G2)|E ] Pr(E) + E{xt,yt}T
t=1∼A1,Ã2

[StackReg1({xt, yt}Tt=1;G2)|Ē ](1− Pr(E))

=O(T ·
√

g(T )

T
) + E{xt,yt}T

t=1∼A1,Ã2
[StackReg1({xt, yt}Tt=1;G2)|Ē ](1− Pr(E))

(i)
≥O(T ·

√
g(T )

T
) +

(
(
1

2
− ϵ)T +O(

√
Tg(T ))

)
(1−

√
g(T )

T
)

≥cT
(41)

for some constant c, where we have used (40) in (i). As a result, Ã2 incurs Θ(T ) Stackelberg regret against A1, which
completes the proof of Theorem 4.1.
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B. Proofs for Section 5.1
B.1. Proof of Proposition 5.4

Fix some i. Since d-pessimism implies E−
i and Ei are non-empty, let x−

i denote the optimal solution to (9) and x∗ be the
optimal solution to (7), since E−

i ⊆ Ei we have:

V −
i (A,B) = (x−

i )
TA:,i ≤ (x∗)TA:,i = Vi(A,B). (42)

Also, dH(Ei, E
−
i ) ≤ d implies there exists x̂ ∈ E−

i satisfying ∥x̂− x∗∥1 ≤ d, and thus:

V −
i (A,B) =(x−

i )
TA:,i

≥x̂TA:,i

=(x∗ + x̂− x∗)TA:,i

≥(x∗)Tai − d∥A:,i∥∞
=Vi(A,B)− d∥A:,i∥∞,

(43)

where the first inequality holds due to the optimality of x−
i as a solution to (9) and in the second inequality we use Hölder’s

inequality that gives |aT b| ≤ ∥a∥1∥b∥∞, which completes the proof.

B.2. Refined Statement and Proof of Theorem 5.5

We first provide a refined statement of Theorem 5.5 that expands the big O(·) notation in the original statement.

Theorem B.1. If P1 has a set of d1-pessimistic facets E−
i ,∀i ∈ [n] such that ∀i ̸= j, infx∈E−

i ,x′∈Ej
∥x− x′∥1 ≥ d2, as

long as P2 is using an f -no-regret algorithm A2 with constant C, P1 can guarantee a Stackelberg regret of

StackReg1(A1,A2) =

(
Td1 +

2Cf(T )

ϵd2

)
∥A∥max (44)

by sticking to the corresponding x− obtained from (9) and (10). Here ϵ is a constant that depends only on the learner’s
payoff matrix B.

Proof. Let x−
i denote the optimal solution to (9) and i− = argmaxi V

−
i (A,B) be the index of the best response under x−

so that x− = x−
i− . Since the pessimistic facet E−

i− satisfies infx∈E−
i−

,y∈Ej
∥x− x′∥1 ≥ d2 for all j ̸= i−, ei− is a unique

best response to x−, we have

(x−)TBei− − (x−)TBej ≥ ϵd2,∀j ∈ [n], j ̸= i (45)
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for some constant ϵ. Since the learner regret has the following expression:

Reg2({x−, yt}Tt=1)

=(x−)TB

T∑
t=1

(ei− − yt)

=(x−)TB

T∑
t=1

(ei− −
∑
j∈[n]

yt,jej)

=(x−)TB

T∑
t=1

(1− yt,i−)ei− −
∑

j∈[n],j ̸=i−

yt,jej


=(x−)TB

T∑
t=1

 ∑
j∈[n],j ̸=i−

yt,jei− −
∑

j∈[n],j ̸=i−

yt,jej


=

∑
j∈[n],j ̸=i−

T∑
t=1

yt,j
(
(x−)TBei− − (x−)TBej

)
≥

∑
j∈[n],j ̸=i−

T∑
t=1

yt,jϵd2,

(46)

where we have used the fact that 1− yt,i =
∑

j∈[n],j ̸=i yt,j for all yt ∈ ∆n in the fourth equation. Since A2 used by the
learner is f -no-regret, assume the regret constant is C, we have:

∥
T∑

t=1

(ei− − yt)∥1

=∥
T∑

t=1

(ei− −
∑
j∈[n]

yt,jej)∥1

=

T∑
t=1

(1− yt,i−) +
∑

j∈[n],j ̸=i−

yt,j


=2

T∑
t=1

 ∑
j∈[n],j ̸=i−

yt,j


≤2Reg2({x−, yt}Tt=1)

ϵd2

≤2Cf(T )

ϵd2
,

(47)

where the second equality follows from yt,i ∈ [0, 1],∀yt ∈ ∆n, i ∈ [n] and the third equality follows from the same

17



Learning to Steer Learners in Games

argument as above. Let i∗ denote argmaxi Vi(A,B), the Stackelberg regret of P1 satisfies:

StackReg1(A1,A2) =T · V (A,B)−
T∑

t=1

(x−)TAyt

=T · V (A,B)−
T∑

t=1

(x−)TAei− +

T∑
t=1

(x−)TA(ei− − yt)

=T ·
(
V (A,B)− V −

i−(A,B)
)
+

T∑
t=1

(x−)TA(ei− − yt)

(i)
≤T ·

(
V (A,B)− V −

i−(A,B)
)
+ ∥ATx−∥∞∥

T∑
t=1

(ei− − yt)∥1

(ii)
≤T ·

(
V (A,B)− V −

i∗ (A,B)
)
+ ∥ATx−∥∞∥

T∑
t=1

(ei∗ − yt)∥1

=T ·
(
Vi∗(A,B)− V −

i∗ (A,B)
)
+ ∥ATx−∥∞∥

T∑
t=1

(ei∗ − yt)∥1

(iii)
≤Td1∥A∥max + ∥ATx−∥∞∥

T∑
t=1

(ei∗ − yt)∥1

(iv)
≤Td1∥A∥max + ∥A∥max∥

T∑
t=1

(ei∗ − yt)∥1

(v)
≤Td1∥A∥max + 2∥A∥max

Cf(T )

ϵd2
,

(48)

where we have used Hölder’s inequality in (i), the maximizing argument of (10) in (ii), Proposition 5.4 in (iii), Hölder’s
inequality in (iv) and (47) in (v). This completes the proof of Theorem 5.5.

B.3. Regret Invariance Properties of Equivalent Payoff Matrices

We now state and prove Proposition B.2, which shows that the same trajectory yields the same asymptotic learner regret for
all learner payoff matrices within the same equivalence class.

Proposition B.2. Consider an interaction history {xt, yt}Tt=1 that is f -no-regret for the learner on matrix B1, then for all
matrices B2 being equivalent to B1, the same interaction history is also f -no-regret. As a result, for all f -no-regret learner
algorithm A2 on B1, there exists another learner algorithm A′

2 on B2 that simulates A2 on B1 which is also f -no-regret on
B2.

Proof. We use the notation Reg2(·;B) to denote the learner regret on its payoff matrix B. Since B1 and B2 are in the same
equivalence class, by definition we have B2 = cB1 + µ1Tn for some c ∈ R+, µ ∈ Rm. The interaction history {xt, yt}Tt=1

being f -no-regret on B1 implies for some constant C:

Reg2({xt, yt}Tt=1;B1) = max
y∈∆n

T∑
t=1

xT
t B1y −

T∑
t=1

xT
t B1yt ≤ C · f(T ). (49)
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Therefore, we have the following bound on the learner regret on B2:

Reg2({xt, yt}Tt=1;B2) = max
y∈∆n

T∑
t=1

xT
t B2y −

T∑
t=1

xT
t B2yt

= max
y∈∆n

T∑
t=1

xT
t (cB1 + µ1Tn )y −

T∑
t=1

xT
t (cB1 + µ1Tn )yt

=c

(
max
y∈∆n

T∑
t=1

xT
t B1y −

T∑
t=1

xT
t B1yt

)
+ max

y∈∆n

T∑
t=1

xT
t µ1

T
ny −

T∑
t=1

xT
t µ1

T
nyt

=c

(
max
y∈∆n

T∑
t=1

xT
t B1y −

T∑
t=1

xT
t B1yt

)
+ max

y∈∆n

T∑
t=1

xT
t µ−

T∑
t=1

xT
t µ

=c

(
max
y∈∆n

T∑
t=1

xT
t B1y −

T∑
t=1

xT
t B1yt

)
≤cCf(T ),

(50)

where the fourth equation holds because 1Tny =
∑n

i=1 yi = 1 for all y ∈ ∆n. This shows that {xt, yt}Tt=1 is also f -no-regret
on B2.
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C. Proofs for Section 5.2
Within the proofs in this section we will make extensive use of the following property that for all x ∈ ∆m:

−∥di(B, B̂)∥max1n−1 ≤ (B◦i − B̂◦i )Tx ≤ ∥di(B, B̂)∥max1n−1. (51)

This property can be obtained by bounding each row of the column vector (B◦i − B̂◦i )Tx with the fact that each entry of x is
in [0, 1].

C.1. Proof of Proposition 5.9

Suppose we have d ≥ ∥di(B, B̂)∥max.

To prove that E−
i (B̂, d) ⊆ Ei(B), notice that if E−

i (B̂, d) = ∅ the inclusion naturally holds. Otherwise for all x ∈ E−
i (B̂, d),

it holds that
(B◦i )Tx =(B◦i − B̂◦i )Tx+ (B̂◦i )Tx

(i)
≤(B◦i − B̂◦i )Tx− d1n−1

(ii)
≤(∥di(B, B̂)∥max − d)1n−1

≤0,

(52)

where (i) holds by definition of E−
i (B̂, d) and (ii) holds due to (51), so that x ∈ Ei(B).

Similarly to prove Ei(B) ⊆ E+
i (B̂, d), we only need to consider the case where Ei(B) ̸= ∅ for all x ∈ Ei(B), we have:

(B̂◦i )Tx =(B̂◦i − B◦i )Tx+ (B◦i )Tx
(i)
≤(B̂◦i − B◦i )Tx
(ii)
≤∥di(B, B̂)∥max1n−1

≤d1n−1,

(53)

where again (i) holds by definition of Ei(B) and (ii) uses (51). Therefore x ∈ E+
i (B̂, d).

C.2. Relaxed Empty Facet Condition under Positive Inducibility Gap

Proposition C.1. Ci > 0 is equivalent to Ei = ∅, both imply the following:

{x ∈ ∆m : (B◦i )Tx ≤
Ci

2
1n−1} = ∅. (54)

Proof. We first prove that Ci > 0⇔ Ei = ∅. Notice that

Ci > 0⇔∀x ∈ ∆m,max
j

xT (B◦i ):,j > 0

⇔∀x ∈ ∆m,∃j, s.t. xT (B◦i ):,j > 0

⇔∀x ∈ ∆m,∃j, s.t. (B◦i )T:,jx > 0

⇔Ei = ∅.

(55)

We now prove the second part by proving that if there exists x0 ∈ ∆m satisfying

(B◦i )Tx0 ≤
Ci

2
1n−1, (56)

we have Ci ≤ 0. This is because

(B◦i )Tx0 ≤
Ci

2
1n−1 =

1

2
min
x∈∆m

max
j

xT (B◦i ):,j1n−1 (57)
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implies

(B◦i )Tx0 ≤
1

2
max

j
xT
0 (B◦i ):,j1n−1, (58)

which means that for j∗ attaining the maximum,

xT
0 (B◦i ):,j∗ ≤

1

2
xT
0 (B◦i ):,j∗ , (59)

which is equivalent to
xT
0 (B◦i ):,j∗ ≤ 0. (60)

This means that
Ci = min

x∈∆m

max
j

xT (B◦i ):,j

≤max
j

xT
0 (B◦i ):,j

=xT
0 (B◦i ):,j∗

≤0,

(61)

which completes the proof.

C.3. Proof of Proposition 5.14

• Proof of part 1:
By Proposition C.1, Ei = ∅ implies

{x ∈ ∆m : (B◦i )Tx ≤
Ci

2
1n−1} = ∅. (62)

Therefore,

{x ∈ ∆m : (B̂◦i )Tx ≤ (B̂◦i − B◦i )Tx+
Ci

2
1n−1} = ∅. (63)

Combining (51) and (21) we obtain

(B̂◦i − B◦i )Tx ≥ −∥di(B, B̂)∥max1n−1 ≥ −d1n−1 ≥ −
Ci

4
1n−1. (64)

Based on the two equations above, we further have

{x ∈ ∆m : (B̂◦i )Tx ≤
Ci

4
1n−1} = ∅, (65)

and since d < Ci

4 , it holds that E+
i (B̂, d) = ∅.

• Proof of part 2:
Let x0 = argminx∈∆m

maxj x
T (B◦i ):,j , if Ei(B) ̸= ∅, by definition we have

(B◦i )Tx0 ≤ Ci1n−1. (66)

That is,
(B̂◦i )Tx0 ≤(B̂◦i − B◦i )Tx0 + Ci1n−1

(i)
≤∥di(B, B̂)∥max1n−1 + Ci1n−1

(ii)
≤(Ci + d)1n−1

(iii)
≤ − d1n−1,

(67)

where we have used (51) in (i), the condition (21) in (ii) and the assumption d ≤ −Ci/2 in (iii). This means that
x0 ∈ E−

i (B̂, d) and hence E−
i (B̂, d) ̸= ∅.
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C.4. Proof of Lemma 5.16

To bound the difference term:
V +
i (A, B̂)− V −

i (A, B̂), (68)

notice that (16) can be written as:
maximize V +

i (A, B̂) = xTA:,i

subject to


(B̂◦i )T
1Tm
−1Tm
−Im

x ≤


d1n−1

1
−1
0

 ,
(69)

and similarly for (17):
maximize V −

i (A, B̂) = xTA:,i

subject to


(B̂◦i )T
1Tm
−1Tm
−Im

x ≤


−d1n−1

1
−1
0

 .
(70)

For notational simplicity, we use M to denote the matrix


(B̂◦i )T
1Tm
−1Tm
−Im

 and we only need to bound the term M−1
I

[
2δ1k
0m−k

]
over

all linearly independent index sets I such that |I| = m and k = |[n− 1]∩ I| is the number of rows in MI corresponding to
those in (B̂◦i )T . We begin with presenting some auxiliary lemmas:

Lemma C.2. Consider a linear optimization problem in the following form:

maximize V = cTx

subject to Ax ≤ b,
(71)

and its perturbed problem:
maximize V (δ) = cTx

subject to Ax ≤ b+ δ,
(72)

where x ∈ Rn and A ∈ Rm×n for some m ≥ n (notice that in the context of this lemma the matrix A and its dimensions
m,n are in general not those considered in the broader setting of the game). Assume both problems are feasible and the
constraint sets are bounded, recall that AI denote the matrix constructed by selecting rows of A from some index set
I ⊆ [m], we have that

V (δ)− V ≤ max
I∈S

cTA−1
I δI , (73)

where S denotes the set of all index sets corresponding to rows in any basic solution to (71), or equivalently, the maximization
is over all linearly independent row combinations of size n.

Proof. See Appendix G.1.

Lemma C.3. For arbitrary B̂◦i and the corresponding M described above, we have:

max
I∈S

∥∥∥∥M−1
I

[
2d1k
0m−k

]∥∥∥∥
∞
≤ 2dSen((B̂◦i )T ), (74)

where S denotes the set of all index sets containing linearly independent rows of M with size m and k = |[n− 1] ∩ I|.

Proof. See Appendix G.2.
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Lemma C.4. For an invertible matrix B and a small perturbation matrix δB, let ∥ · ∥ be any sub-multiplicative matrix
norm, if ∥B−1∥∥δB∥ < 1, B + δB is also invertible and its inverse is bounded by:

∥(B + δB)−1∥ ≤ ∥B−1∥
1− ∥B−1∥∥δB∥

. (75)

Proof. See Appendix G.3.

Proof of Lemma 5.16. Compare equations (69) and (70) we obtain the following through Lemma C.3:

V +
i (A, B̂)− V −

i (A, B̂) ≤∥A:,i∥∞ max
I

∥∥∥∥M−1
I

[
2δ1k
0m−k

]∥∥∥∥
∞

≤2d∥A:,i∥∞Sen((B̂◦i )T ).
(76)

Since for all invertible submatrices
[
(B̂◦i )T
1Tm

]
P,Q

and
[
(B◦i )T
1Tm

]
P,Q

such that ∥di(B, B̂)∥Sen((B◦i )T ) ≤ 1
2 , the following

inequality ∥∥∥∥∥
[
(B◦i )T
1Tm

]−1

P,Q

∥∥∥∥∥
∞

∥∥∥∥∥
[
(B̂◦i )T
1Tm

]
P,Q
−
[
(B◦i )T
1Tm

]
P,Q

∥∥∥∥∥
∞

< 1 (77)

is satisfied, and for every possible combinations of P and Q, Lemma C.4 implies:∥∥∥∥∥
[
(B̂◦i )T
1Tm

]−1

P,Q

∥∥∥∥∥
∞

≤

∥∥∥∥∥
[
(B◦i )T
1Tm

]−1

P,Q

∥∥∥∥∥
∞

1−

∥∥∥∥∥
[
(B◦i )T
1Tm

]−1

P,Q

∥∥∥∥∥
∞

∥∥∥∥∥
[
(B̂◦i )T
1Tm

]
P,Q
−
[
(B◦i )T
1Tm

]
P,Q

∥∥∥∥∥
∞

≤ Sen((B◦i )T )
1− Sen((B◦i )T )∥di(B, B̂)∥∞

.

(78)

We have that

Sen((B̂◦i )T ) ≤
Sen((B◦i )T )

1− dSen((B◦i )T )
, (79)

which leads to the final result:
V +
i (A, B̂)− V −

i (A, B̂)
≤2d∥A:,i∥∞Sen((B̂◦i )T )

≤2d∥A:,i∥∞Sen((B◦i )T )
1− dSen((B◦i )T )

≤4d∥A:,i∥∞Sen((B◦i )T ),

(80)

where the last inequality holds because 1− dSen((B◦i )T ) ≥ 1
2 .

C.5. Refined Statement and Proof of Theorem 5.17

We first expand the big O(·) notation in the statement of Theorem 5.17 and obtain the following theorem:
Theorem C.5. Under Assumption 5.12, if P1 has an estimator B̂ of B such that ∥di(B, B̂)∥∞ ≤ ϵ = O(g(T )/T ),∀i for
some g(T ) = o(T ), then if P2 is using a f -no-regret algorithm A2 with constant C, there exists an algorithm A1 satisfying:

StackReg1(A1,A2) =

(
4
(
ϵT +

√
Tf(T )

)
Sen

(
(B◦i∗)T

)
+

C
√

Tf(T )

maxj,k ∥B(ej − ek)∥∞

)
∥A∥max

=O
(√

Tf(T ) + g(T )
)
.

(81)
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Proof. Consider the algorithm A1 that commits to the solution (x−, i−) to:

maximizei,x V −
i (A, B̂) = xTA:,i

subject to (B̂◦i )Tx ≤ −(ϵ+ f̃(T )/T )1n−1,

x ∈ ∆m, i ∈ [n].

(82)

where f̃(T ) is some function satisfying f̃(T ) = o(T ) and f(T ) = o(f̃(T )). Since ϵ + f̃(T )/T ≥ ∥di(B, B̂)∥∞,
Proposition 5.9 guarantees that ei− is a best response to x− under B.

Let (x∗, i∗) denote the Stackelberg equilibrium of the game. We have that Ei∗(B) ̸= ∅ and since ϵ = O(g(T )/T ),
ϵ+ f̃(T )/T goes to zero as T →∞, Assumption 5.12 and Proposition 5.14 guarantees that V −

i∗ (A, B̂) is well-defined (and
therefore so is V +

i∗ (A, B̂)) for large enough T .

Since A2 is f -no-regret, it holds that

EA2

[
T∑

t=1

(x−)TB(ei− − yt)

]
≤ C · f(T ) (83)

for some constant C. We have that

EA1,A2

[
T∑

t=1

xT
t Ayt

]

=EA1,A2

[
T∑

t=1

(x−)TAyt

]

=EA1,A2

[
T∑

t=1

(x−)TAei−

]
+ EA1,A2

[
T∑

t=1

(x−)TA(yt − ei−)

]
.

(84)

For the first term, notice that for large enough T , ϵ+ f̃(T )/T ≤ 1
2Sen((B◦

i∗ )
T )

and get:

EA1,A2

[
T∑

t=1

(x−)TAei−

]
=TV −

i−(A, B̂)
(i)
≥TV −

i∗ (A, B̂)
=TV +

i∗ (A, B̂)− (TV +
i∗ (A, B̂)− TV −

i∗ (A, B̂))
(ii)
≥TV (A,B)− 4(ϵT + f̃(T ))∥A:,i∗∥∞Sen((B◦i∗)T ),

(85)

where (i) holds since we are taking maximum in (82), and (ii) holds by Proposition 5.9 and Lemma 5.16.

for the second term, since x− satisfies

(B̂◦i−)
Tx− ≤ −(ϵ+ f̃(T )/T )1n−1, (86)

we have
(B◦i−)

Tx− =(B̂◦i−)
Tx− + (B◦i− − B̂

◦
i−)

Tx−

(i)
≤(−(ϵ+ f̃(T )/T ) + ∥di−(B, B̂)∥∞)1n−1

(ii)
≤ − f̃(T )

T
1n−1,

(87)

where (i) holds by definition of di(·, ·) and (51), and (ii) holds by the assumption that ∥di−(B, B̂)∥∞ ≤ ϵ.
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Thus ei− is the unique best response to x− and Hölder’s inequality yields

(x−)TBEA2

[
T∑

t=1

(ei− − yt)

]
≥ f̃(T )

T
max
j,k
∥B(ej − ek)∥∞

∥∥∥∥∥EA2

[
T∑

t=1

(yt − ei−)

]∥∥∥∥∥
1

. (88)

Therefore, ∥∥∥∥∥EA2

[
T∑

t=1

(yt − ei−)

]∥∥∥∥∥
1

≤ Cf(T )T

f̃(T )maxj,k ∥B(ej − ek)∥∞
. (89)

Thus we have:

EA1,A2

[
T∑

t=1

(x−)TA(yt − ei−)

]
(i)
≥− ∥(x−)TA∥∞

∥∥∥∥∥EA2

[
T∑

t=1

(yt − ei−)

]∥∥∥∥∥
1

(ii)
≥ − ∥A∥max

Cf(T )T

f̃(T )maxj,k ∥B(ej − ek)∥∞
,

(90)

where we apply Hölder again in (i) and use the fact that x− ∈ ∆m in (ii).

Combining (84), (85) and (90) we obtain as T →∞:

EA1,A2

[
T∑

t=1

xT
t Ayt

]
≥TV (A,B)− 4(ϵT + f̃(T ))∥A:,i∗∥∞Sen((B◦i∗)T )

− ∥A∥max
Cf(T )T

f̃(T )maxj,k ∥B(ej − ek)∥∞
≥TV (A,B)− 4(g(T ) + f̃(T ))∥A:,i∗∥∞Sen((B◦i∗)T )

− ∥A∥max
Cf(T )T

f̃(T )maxj,k ∥B(ej − ek)∥∞
.

(91)

taking f̃(T ) =
√
Tf(T ) we have:

StackReg1(A1,A2)

≤4
(
ϵT +

√
Tf(T )

)
∥A:,i∗∥∞Sen

(
(B◦i∗)T

)
+ ∥A∥max

C
√
Tf(T )

maxj,k ∥B(ej − ek)∥∞

≤

(
4
(
ϵT +

√
Tf(T )

)
Sen

(
(B◦i∗)T

)
+

C
√

Tf(T )

maxj,k ∥B(ej − ek)∥∞

)
∥A∥max

=O(g(T ) +
√

Tf(T )).

(92)

This completes the proof of Theorem 5.17.
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D. Lower Bound on Stackelberg Regret against General f -no-regret Learners
In this section we provide Theorem D.1, which shows that even if the optimizer knows B, the learner still has a no-regret
algorithm with regret budget f that can lead to a

√
Tf(T ) Stackelberg regret of P1, indicating that our Stackelberg regret

bound in Theorem 5.17 is essentially optimal.
Theorem D.1. Consider a given function f(T ) = o(T ) which serves as the regret budget of P2, there exists a game instance
G = (A,B) that satisfies Assumption 5.12 and an f -no-regret learner algorithm A2 that can be used by P2 such that for all
mixed strategy x ∈ ∆m, the non-adaptive algorithm A1 that plays xt = x at all time steps has Stackelberg regret at least
Ω(
√

Tf(T )).

Proof. Consider the game instance G = (A,B) where:

A =

[
0 0
3 1

]
, B =

[
1 0
0 1

]
, (93)

whose unique Stackelberg equilibrium is:

x∗ = (
1

2
,
1

2
)T , y∗ = (1, 0)T (94)

with a Stackelberg value V (A,B) = 3
2 . For an algorithm A1 that outputs a fixed optimizer action x = (x1, x2)

T and given
a sequence {yt}Tt=1 of learner actions, the learner regret can be expressed as:

Reg2({xt = x, yt}Tt=1) = T max{x1, x2} −
T∑

t=1

xT yt. (95)

Consider the learner algorithm A2 to be:

1. If x2 ≥ x1, play (0, 1)T ;

2. Otherwise, play (0, 1)T for f(T )
1−2x2

rounds, and (1, 0)T for the remaining T − f(T )
1−2x2

rounds.

The learner regret of A2 if x2 ≥ x1 is:

Reg2(A2, {xt = x}Tt=1) = Tx2 − Tx2 = 0, (96)

and if x2 < x1, we have:

Reg2(A2, {xt = x}Tt=1) =Tx1 −
x2f(T )

1− 2x2
− (T − f(T )

1− 2x2
)x1

=T (1− x2)−
x2f(T )

1− 2x2
− (T − f(T )

1− 2x2
)(1− x2)

=
(1− x2)f(T )

1− 2x2
− x2f(T )

1− 2x2

=f(T ),

(97)

and therefore A2 is f -no-regret.

If the optimizer wants to achieve sublinear Stackelberg regret, x must satisfy x2 < x1, or otherwise A2 will stick to (0, 1)T

and incur a Θ(T ) Stackelberg regret, now we calculate the Stackelberg regret of the optimizer when x2 < x1:

StackReg1({xt = x, yt}Tt=1) =
3

2
T − (3(T − f(T )

1− 2x2
) +

f(T )

1− 2x2
) · x2

=(
3

2
− 3x2)T +

2x2

1− 2x2
f(T ).

(98)

The minimum Stackelberg regret over x2 ∈ [0, 1
2 ) can be achieved by taking

x2 =
1

2
−
√

f(T )

6T
, (99)

where StackReg1({xt = x, yt}Tt=1) = Θ(
√

Tf(T )), so in general the Stackelberg regret is Ω(
√

Tf(T )).
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E. Algorithms and Proofs for Section 6
Before we start presenting the algorithms and proofs, we first prove an auxiliary lemma which suggests that in an explore-
then-commit style algorithm, any interaction history that has length o(T ) before committing will have no impact on the
asymptotic learner regret, stated formally as follows:
Lemma E.1. Consider an optimizer action x̃ ∈ ∆m, if the optimizer action sequence {xt}Tt=1 satisfies xt = x̃, ∀t > τ for
some τ = O(f(T )), then the interaction sequence {xt, yt}Tt=1 is f -no-regret if and only if

Reg2({xt, yt}Tt=τ+1) ≤ C · f(T ) (100)

for some constant C, and consequently, A2 is f -no-regret on {xt}Tt=1 if and only if

x̃TBEA2

[
T∑

t=τ+1

(ỹ − yt)

]
≤ C · f(T ) (101)

for some constant C.

Proof. Let ỹ ∈ BR(B, x̃) be a best response to x̃. For the “if” direction, on observing that:

Reg2({xt, yt}Tt=1) = max
y∈∆n

T∑
t=1

xT
t By −

T∑
t=1

xT
t Byt

≤ max
y∈∆n

τ∑
t=1

xT
t By −

τ∑
t=1

xT
t Byt + max

y∈∆n

T∑
t=τ+1

xT
t By −

T∑
t=τ+1

xT
t Byt

= Reg2({xt, yt}τt=1) +Reg2({xt, yt}Tt=τ+1)

≤ τ∥B∥max + C · f(T )
≤ C ′ · f(T )

(102)

for some constant C ′ where we have used the fact that τ = O(f(T )), and therefore {xt, yt}Tt=1 is f -no-regret. For the “only
if” direction, notice that

Reg2({xt, yt}Tt=1) = max
y∈∆n

T∑
t=1

xT
t By −

T∑
t=1

xT
t Byt

≥
T∑

t=1

xT
t B(ỹ − yt)

=

τ∑
t=1

xT
t B(ỹ − yt) + x̃TB

T∑
t=τ+1

(ỹ − yt)

≥ −τ∥B∥max +Reg2({xt, yt}Tt=τ+1).

(103)

If we want Reg2({xt, yt}Tt=1) ≤ C · f(T ) for some constant C, we must have:

Reg2({xt, yt}Tt=τ+1) ≤ C · f(T ) + τ∥B∥max ≤ C ′f(T ) (104)

for some constant C ′, which completes the proof. The proof of (101) follows directly by taking expectation over all {yt}Tt=1

trajectories generated by A2.

E.1. Algorithm 1, Detailed Version and Proof of Theorem 6.2 and Discussion

We present the pseudocode for Algorithm 1 as follows:

Here test(·) is a procedure that compares the learner’s response at two consecutive time steps to determine the underlying
best response to some optimizer action x = (p, 1−p), as shown in Algorithm 2, and BinarySearch(·, ·, d) is a procedure
that approximates the optimizer action x∗ at which the learner is indifferent up to an error margin d, as shown in Algorithm 3.

We also provide the detailed version of Theorem 6.2 as follows:
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Algorithm 1 Playing Against Ascending Learner
Input: Accuracy margin d.
Run BR(0)← test(0) and BR(1)← test(1).
if test(0) = test(1) then

Let y∗ = test(0) = test(1).
Compute x̃← argmaxx∈∆m

xTAy∗.
else
pL ← 1[BR(1) = (1, 0)], pR ← 1[BR(1) = (0, 1)].
p∗L, p

∗
R ← BinarySearch(pL, pR, d).

if p∗L < p∗R then
E−

1 ← [0,max{p∗L − d, 0}];
E−

2 ← [min{1, p∗R + d}, 1].
else
E−

2 ← [0,max{p∗R − d, 0}];
E−

1 ← [min{1, p∗L + d}, 1].
end if
Compute x̃ through (9) and (10).

end if
Stick to x̃ for all remaining time steps.

Algorithm 2 test
Input: Action parameter p ∈ [0, 1]
Use t to denote the current timestep.
Play xt = (p, 1− p)T and observe yt = (qt, 1− qt)

T .
Play an arbitrary xt+1 and observe yt+1 = (qt+1, 1− qt+1)

T .
if qt+1 > qt then

return (1, 0)T

else
return (0, 1)T

end if

Theorem E.2. Suppose m = n = 2 and the payoff matrix B does not contain identical columns. For some chosen
parameter d, if either one facet is empty, or each facet has diameter at least d and P2 uses an ascent algorithm A2 that is
f -no-regret, Algorithm 1 with accuracy margin d achieves a Stackelberg regret of at most(

4 +
C

ϵ1
f(T )

)
∥A∥max (105)

if the learner has a strictly dominated action, where ϵ1 = minx∈∆m
xTB(e1 − e2), and(

−2 log d+ 6 + 2Td+
2Cf(T )

ϵ2d

)
∥A∥max (106)

otherwise, where ϵ2 is a constant that depends only on B. Under either case, C is a constant that depends only on the
learner regret constant and payoff matrix. This indicates that the Stackelberg regret is at most O( f(T )

d + dT − log d) as
long as d = Ω(exp(−f(T ))).

Proof. If one of the facet is empty, we would have test(0) = test(1). In this case, despite the first 4 interaction steps
used by 2 test calls, Algorithm 1 will output the Stackelberg equilibrium strategy for all subsequent actions.

Now we analyze the Stackelberg regret against an f -no-regret algorithm A2. W.l.o.g suppose e2 is the strictly dominated
action, since e2 is strictly dominated, we would have xTBe1 − xTBe2 > 0 for all x ∈ ∆m, there exists a constant ϵ that
depends only on B (but not d), such that:

x̃TBe1 − x̃TBe2 ≥ ϵ. (107)
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Algorithm 3 BinarySearch
Input: Interval endpoints pL, pR, accuracy margin d.
if |pL − pR| ≤ d then

return pL, pR
end if
BR← test(pL+pR

2 ).
if BR = (1, 0)T then

return BinarySearch(pL+pR

2 , pR, d)
else

return BinarySearch(pL, pL+pR

2 , d)
end if

Therefore, by Lemma E.1 the sequence should satisfy:

Reg2({xt, yt}Tt=5) = x̃TB

T∑
t=5

(e1 − yt) ≤ C · f(T ) (108)

for some constant C, therefore, we have:

∥
T∑

t=5

(e1 − yt)∥∞ ≤
C

ϵ
f(T ). (109)

This would lead to an upper bound on the Stackelberg regret:

StackReg1(A1,A2) ≤ 4V (A,B)−
4∑

t=1

xT
t Ayt + x̃TA

T∑
t=5

(e1 − yt)

≤ 4∥A∥max + ∥x̃TA∥1∥
T∑

t=5

(e1 − yt)∥∞

≤ 4∥A∥max + ∥A∥max
C

ϵ
f(T ).

(110)

If neither facets are empty, the binary search phase shrinks the interval length from 1 to d, which requires at most
− log d + 1 calls of the BinarySearch function. Each Binary search calls the procedure test for at most one time,
which corresponds to at most two interaction time steps. Therefore, the total number of time steps in the binary search phase
is at most −2 log d+ 6, leading to a Stackelberg regret of at most (−2 log d+ 6)∥A∥max, which is O(f(T )).

Since each facet has length at least d, the pessimistic facets computed by E−
1 and E−

2 satisfies dH(Ei, E
−
i ) ≤ 2d and

infx∈E−
i ,x′∈Ej

∥x− x′∥1 ≥ d for i = 1, 2. Therefore, combining Lemma E.1 and Theorem 5.5 we obtain:

StackReg1(A1,A2) ≤ ⌊−2 log d+ 6⌋V (A,B)−
⌊−2 log d+6⌋∑

t=1

xT
t Ayt + x̃TA

T∑
t=⌊−2 log d+6⌋+1

(e1 − yt)

≤ (−2 log d+ 6)∥A∥max + ∥x̃TA∥1∥
T∑

t=⌊−2 log d+6⌋+1

(e1 − yt)∥∞

≤ (−2 log d+ 6)∥A∥max +

(
2Td+

2Cf(T )

ϵd

)
∥A∥max.

(111)

Discussion on matrix reconstruction view. Observe that by Definition 5.6 multiplication by a positive constant and
shifting an all-one vector in a row preserves the equivalence class, there are only three possible forms of payoff matrices B:[

0 λ
0 1

]
;

[
0 λ
0 −1

]
;

[
0 λ
0 0

]
. (112)
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In the third case (and the instances where λ = 0) Assumption 5.12 is not satisfied, indicating that this B instance is not
learnable. So we focus on the first two cases where λ ̸= 0.

For the first case where

B =

[
0 λ
0 1

]
(113)

for xt = (p, 1− p) we know that if λ > 0 then y∗ = (0, 1) is a dominant action, and when λ ≤ 0 we have:
p < 1

1−λ (0, 1) is the best response;
p = 1

1−λ all actions are equivalent;
p > 1

1−λ (1, 0) is the best response.
(114)

Similarly for the second case where

B =

[
0 λ
0 −1

]
, (115)

if λ < 0 then (1, 0) is a dominant action and when λ ≥ 0 we have:
p < 1

1+λ (1, 0) is the best response;
p = 1

1+λ all actions are equivalent;
p > 1

1+λ (0, 1) is the best response.
(116)

Now we have reduced the problem to identifying the matrix type and finding λ (or equivalently, p∗ := 1
1±λ where all actions

are equivalent to the learner).

E.2. Algorithm 4, Detailed Version and Proof of Theorem 6.3

We present the pseudocode for Algorithm 4 as follows, where the ExploreRow procedure shown in Algorithm 5.

Algorithm 4 Playing Against Mirror Descent
Input: Per-row exploration step k.
for i = 1, 2, . . . ,m do

B̂i ← ExploreRow(ei, k)
end for
Construct estimation B̂ =

[
B̂1 B̂2 . . . B̂m

]T
Compute the equivalence class B̂ and commit to x̃ through (82) with f̃(T ) =

√
Tf(T ).

Algorithm 5 ExploreRow
Input: Action x ∈ ∆m, exploration step k.
for τ = 1, 2, . . . , k + 1 do

Play x, observe the follower action yτ in this time step.
end for
return B̂i =

1
k

∑k
τ=1−ητ∇yD(yτ+1∥yτ )

The detailed version of Theorem 6.3 is presented as follows:
Theorem E.3. If the learner payoff matrix B statisfies the assumptions needed in Theorem 5.17, P2 follows update
rule (25), and each entry ξt,i is i.i.d. R-sub-Gaussian, then with probability at least 1 − δ, P1 using Algorithm 4 with
k = (T/g(T ))

2
2R2 log(2mn/δ), incurs Stackelberg regret of at most(

m (1 + k) + 4

(
8ng(T )

maxj,k ∥B(ej − ek)∥∞
+
√

Tf(T )

)
Sen((B◦i∗)T ) +

C
√

Tf(T )

maxj,k ∥B(ej − ek)∥∞

)
∥A∥max. (117)

where C is a constant that depends only on the learner regret constant and payoff matrix.
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Proof. The Lagrangian of this problem can be written as:

L(y, λ, µ) = ηtD(y∥yt)− (xT
t B + ξTt )y − λT y + µ(

∑
i

yi − 1). (118)

Since yt+1 is the optimal solution to (25), the KKT condition yields:

ηt∇t+1yD(yt+1∥yt)−BTxt − λ+ µ1− ξt = 0;

yt+1,i · λi = 0,∀i ∈ [n].
(119)

Since the Bregman divergence regularizer satisfies∇yD(yt+1∥yt)→∞ if there exists i ∈ [n] such that yt+1,i → 0, we can
deduce that λ = 0, and the condition becomes:

ηt∇yD(yt+1∥yt)−BTxt + µ1− ξt = 0. (120)

Let ht denote ht := ηt∇yD(yt+1∥yt), we know that

BTxt = ht + µt1− ξt, (121)

here we used µt instead of µ to indicate the different Lagrange multipliers at different time steps. If we set xt = ei, we
obtain:

Bi = ht + µt1− ξt, (122)

where BT
i is the i-th row of B, so if we fix xt = ei for t = 1 to k, we have the following estimation of Bi:

B̂i =
1

k

k∑
t=1

ht (123)

with error term:

Bi − B̂i =
1

k

k∑
t=1

µt1−
1

k

k∑
t=1

ξt. (124)

The first term doesn’t affect the equivalence class of B, and the second term diminishes over time. Hence we can obtain an
estimation with arbitrarily small error using uniform exploration. Assuming that each entry ξt,i is i.i.d. R-sub-Gaussian, we
obtain through Chernoff bound:

Pr

(
1

k
∥

k∑
t=1

ξt∥∞ ≤ ϵ

)
≤ 2n exp

(
− kϵ2

2R2

)
. (125)

If we take k = 2R2

ϵ2 log 2mn
δ it holds with probability at least 1− δ/m that

∥Bi − B̂i −
1

k

k∑
t=1

µt1∥∞ ≤ ϵ. (126)

Combining this with Theorem 5.17, we take ϵ = Θ(g(T )/T ), the number of steps to explore one row of B would be:

k =

(
T

g(T )

)2

2R2 log
2mn

δ
. (127)

When g(T ) = Ω(
√
T ) we would have k = o(T ), indicating that the exploration cost would also be sublinear in T . The

length of the exploration phase consists of at most m(k + 1) steps and achieves an estimation B̂ in the equivalence class B̂.
We first give an upper bound on ∥di(B, B̂)∥ for all i. Notice that:

max
j1,j2
∥B:,j1 −B:,j2∥∞ −max

j1,j2
∥B̂:,j1 − B̂:,j2∥∞

≤max
j1,j2
{∥B:,j1 −B:,j2∥∞ − ∥B̂:,j1 − B̂:,j2∥∞}

≤max
j1,j2
∥(B − B̂)(ej1 − ej2)∥∞

=max
j1,j2

max
i
|(BT

i − B̂T
i )(ej1 − ej2)|

=max
j1,j2

max
i
|ξ̄T (ej1 − ej2)|

≤2∥ξ̄∥∞,

(128)
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where ξ̄ = 1
k

∑
t ξt for all t in this ExploreRow function call. To make notation simpler, in this proof we mildly overload

the notation to let:
Bi =

[
B:,1 −B:,i B:,2 −B:,i . . . B:,n −B:,i

]
,

B̂i =
[
B̂:,1 − B̂:,i B̂:,2 − B̂:,i . . . B̂:,n − B̂:,i

]
.

We have:

di(B, B̂) =
Bi

maxj,k ∥B:,j −B:,k∥∞
− B̂i

maxj,k ∥B̂:,j − B̂:,k∥∞

=
maxj1,j2 ∥B̂:,j1 − B̂:,j2∥∞Bi −maxj1,j2 ∥B:,j1 −B:,j2∥∞B̂i
maxj1,j2 ∥B:,j1 −B:,j2∥∞ ×maxj1,j2 ∥B̂:,j1 − B̂:,j2∥∞

=
Bi(maxj1,j2 ∥B̂:,j1 − B̂:,j2∥∞ −maxj1,j2 ∥B:,j1 −B:,j2∥∞)

maxj1,j2 ∥B:,j1 −B:,j2∥∞ ×maxj1,j2 ∥B̂:,j1 − B̂:,j2∥∞

+
maxj1,j2 ∥B:,j1 −B:,j2∥∞(Bi − B̂i)

maxj1,j2 ∥B:,j1 −B:,j2∥∞ ×maxj1,j2 ∥B̂:,j1 − B̂:,j2∥∞

≤ 2∥ξ̄∥∞Bi
maxj1,j2 ∥B:,j1 −B:,j2∥∞ ×maxj1,j2 ∥B̂:,j1 − B̂:,j2∥∞

+
Bi − B̂i

maxj1,j2 ∥B:,j1 −B:,j2∥∞ − 2∥ξ̄∥∞
.

(129)

Since our exploration round k =
(

T
g(T )

)2
2R2 log 2mn

δ we obtain through union bound that with probability at least 1− δ,

for all ExploreRow function calls, ∥ξ̄∥∞ ≤ g(T )
T which goes to zero as T →∞, for large enough T we have:

∥di(B, B̂)∥∞ ≤
4∥ξ̄∥∞∥Bi∥∞

(maxj1,j2 ∥B:,j1 −B:,j2∥∞)2
+

2∥Bi − B̂i∥∞
maxj1,j2 ∥B:,j1 −B:,j2∥∞

≤ 4n∥ξ̄∥∞
maxj1,j2 ∥B:,j1 −B:,j2∥∞

+
4n∥ξ̄∥∞

maxj1,j2 ∥B:,j1 −B:,j2∥∞

≤ 8n∥ξ̄∥∞
maxj1,j2 ∥B:,j1 −B:,j2∥∞

=
8n

maxj1,j2 ∥B:,j1 −B:,j2∥∞
g(T )

T

=Θ(
g(T )

T
).

(130)

Therefore, combining Lemma E.1 and Theorem 5.17 we obtain:

StackReg1(A1,A2)

≤ m(k + 1)V (A,B) +

(
4

(
8ng(T )

maxj,k ∥B(ej − ek)∥∞
+
√
Tf(T )

)
Sen

(
(B◦i∗)T

)
+

C
√
Tf(T )

maxj,k ∥B(ej − ek)∥∞

)
∥A∥max

≤ m(k + 1)∥A∥max +

(
4

(
8ng(T )

maxj,k ∥B(ej − ek)∥∞
+
√
Tf(T )

)
Sen

(
(B◦i∗)T

)
+

C
√
Tf(T )

maxj,k ∥B(ej − ek)∥∞

)
∥A∥max

= O(

(
T

g(T )

)2

) +O(
√
Tf(T ) + g(T ))

= O(
√

Tf(T ) + g(T ) +

(
T

g(T )

)2

),

(131)
which completes the proof.
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F. Numerical Experiments
F.1. Empirical Simulations for Section 6.1

For all experiments in this section, we assume the learner is using Online Gradient descent (OGD) with step size

ηt =
η0√
t

(132)

For the purpose of properly displaying the interaction and learning process, we choose different η0 for different game
instances. For each game instance, we compare the performance and learning dynamics for optimizer algorithm being either
OGD or Binary Search explore-then-commit (BS, Algorithm 1). For Binary Search, we set the accuracy margin d = 0.01.
For each game instance, we plot both the payoff and the strategy (indicated by its 0-th entry) of each player at different time
steps. We assume optimizer is the row player and learner is the column player.

Matching pennies. We first test repeated matching pennies, where the payoff matrices are given by:

A =

[
1 −1
−1 1

]
;B =

[
−1 1
1 −1

]
. (133)

Both the unique Nash equilibrium and the Stackelberg equilibria all have

x = (
1

2
,
1

2
)T . (134)

We obtain the curve shown in Figure 3.
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Figure 3. Learning dynamics for optimizer algorithms OGD and BS for matching pennies.

Here the blue curves represent the learning dynamics when the optimizer uses binary search (Algorithm 1) with the
exploration phase shaded in red. The orange curves represent the dynamics when the optimizer uses OGD. In both optimizer
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algorithms, the solid lines are curves for the optimizer and the dashed lines are curves for the learner. We plot the optimizer
Stackelberg strategy and payoff in black dotted lines.

We can see that when both players are using OGD, the trajectory keeps oscillating and does not converge to the Nash
equilibrium. In comparison, when the optimizer uses BS, it quickly learns its real underlying Stackelberg equilibrium (which
is also the Nash) and commits to it, yielding a stable learning dynamics.

Constructed game instance 1. Below we show that BS indeed yields a smaller Stackelberg regret than OGD. We construct
the following game instance:

A =

[
5 0
0 3

]
;B =

[
−2 2
3 −3

]
. (135)

The unique Stackelberg equilibrium action for the optimizer is:

x = (
3

5
,
2

5
)T (136)

with Stackelberg value 3. We obtain the curve shown in Figure 4. In Figure 4 all curves are drawn with the same line
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Figure 4. Learning dynamics for optimizer algorithms OGD and BS for game instance 1.

style as in Figure 3, in addition we use blue and orange dotted lines to plot the average optimizer payoff for BS and OGD
respectively.

We notice again that when the optimizer is using OGD, the algorithm fails to converge. In addition, after the optimizer
commits to the pessimistic Stackelberg solution, the learner slowly converges to the best response induced by the Stackelberg
equilibrium and steers the optimizer payoff close to the Stackelberg value, which is higher on average than the payoff using
SGD.
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Constructed game instance 2. One may argue that OGD fails because it doesn’t converge, however it is not the case.
Below we construct a game instance that has a unique Nash equilibrium to which OGD converges, and a unique Stackelberg
equilibrium with higher optimizer utility than that of Nash. The game instance is as follows:

A =

[
2 0
3 1

]
;B =

[
1 0
0 2

]
. (137)

The unique Nash equilibrium is
x = y = (0, 1)T , (138)

while the unique Stackelberg equilibrium is

x = (2/3, 1/3)T , y = (1, 0)T . (139)

The optimizer payoff at Nash is 1, while its Stackelberg value is 2. The simulation result is shown in Figure 5.
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Figure 5. Learning dynamics for optimizer algorithms OGD and BS for game instance 2.

The plot above shows that even if both converges, BS and OGD converge to completely different equilibria, while BS always
yields a higher payoff and therefore a lower Stackelberg regret.

F.2. Empirical Simulations for Section 6.2

In this section we show the effectiveness of Algorithm 4. and illustrate the necessity of pessimism. Here we assume the
optimizer is using Algorithm 4, but with different pessimism levels d ∈ {0.01, 0.02, 0.05}. We assume that the learner is
using Stochastic Mirror descent with KL regularizer. For each pure strategy of the optimizer, we set the number of steps for
exploration to be k = 50. We consider the following game instance:

A =

[
0 1
5 0

]
;B =

[
2 −2
−3 3

]
. (140)
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The unique Stackelberg equilibrium of this game is

x = (
3

5
,
2

5
)T (141)

with optimizer payoff 2. We plot the payoffs and strategies of both player at each time step with different d in Figure 6.
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Figure 6. Learning dynamics of payoff estimation for different pessimism levels d.

In Figure 6, different line colors indicate the learning dynamics of different pessimism levels. The solid lines are optimizer
curves while the dashed lines being learner curves. The shaded region indicates the exploration phase and the black dotted
line represents the optimizer Stackelberg payoff and strategy.

We can see that for larger d, the optimizer is being more pessimistic and chooses an action that is farther away from the
Stackelberg equilibrium. This leads to a lower optimizer payoff after the learner converges to the unique best response
induced by the action. However, for less pessimistic choices of d, since the committed optimizer strategy x̃ is too close to
the Stackelberg equilibrium where the learner is indifferent from all mixed strategies, the gradients of the learner payoff
with respect x̃ will be extremely small and thus takes a lot longer to converge. Once it hasn’t converged the optimizer payoff
of committing to x̃ will be smaller, illustrating the effectiveness of being pessimistic.
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G. Proof of Auxiliary Lemmas
G.1. Proof of Lemma C.2

The dual problem of (71) can be written as:
minimize bT y

subject to AT y = c,

y ≥ 0,

(142)

and that of (72) is:
minimize (b+ δ)T y

subject to AT y = c,

y ≥ 0.

(143)

We can now follow the approach in Section 5.4 and Section 5.5 in (Bertsimas & Tsitsiklis, 1997) to obtain the result: Since
both (71) and (72) are feasible and have bounded constraint sets, they have a finite optimal value and a corresponding
optimal solution, so do their dual problems. Therefore for each dual problem there exists an optimal solution that is a basic
feasible solution (which are the same for both dual problems), denoted by y1, y2, . . . , yI . That is,

V = min
i=1,2,...,I

bT yi (144)

and
V (δ) = min

i=1,2,...,I
(b+ δ)T yi. (145)

Therefore we have:
V (δ)− V = min

i=1,2,...,I
(b+ δ)T yi − min

i=1,2,...,I
bT yi

≤ max
i=1,2,...,I

δT yi.
(146)

Since for each i = 1, 2, . . . , I , a linearly independent set of columns I of AT of size n captures the basic feasible solution
(which is an independent set of rows of A) and yi is specified by yi = (AI)

T c in its entries within I and 0 elsewhere, we
can rewrite δT yi as

δT yi = yTi δ = cTAIδI , (147)

which completes the proof.

G.2. Proof of Lemma C.3

Consider an index set I containing linearly independent rows of M that satisfies |I| = m.

Since all m×m submatrices contain k rows in

(B̂◦i )T1Tm
−1Tm

 and m− k rows in −Im for some 0 < k ≤ m. Thus MI has the

form:

MI =


M̃I

−eTIk+1−n−1

−eTIk+2−n−1

. . .
−eTIm−n−1

 , (148)

where Ij denotes the j-th index in I and M̃I contains the first k rows selected from

(B̂◦i )T1Tm
−1Tm

. Now we show some

properties of M−1
I .

First, since ∀i ∈ {k + 1, k + 2, . . . ,m} and ∀j ∈ [m], it holds that

[i = j] = Iij
(i)
= (MI)

T
i (M

−1
I ):,j

(ii)
= −eTIi−n−1(M

−1
I ):,j = −(M−1

I )Ii−n−1,j , (149)
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where (i) comes from the definition of M−1
I and (ii) holds due to (148), we have that:

(M−1
I )Ii−n−1 = −eTi . (150)

Second, consider the product for arbitrary ∆ ∈ Rk,

M−1
I

[
∆

0m−k

]
=

k∑
j=1

(M−1
I ):,j∆j , (151)

whose i-th row can be written as: (
M−1

I

[
∆

0m−k

])
i

=

k∑
j=1

(M−1
I )ij∆j . (152)

Let E = {Ik+1 − n− 1, Ik+2 − n− 1, . . . , Im − n− 1}, we can see from (150) that if i ∈ E ,(
M−1

I

[
∆

0m−k

])
i

= 0. (153)

Also, consider the product of (M−1
I )i,:(MI):,j for i, j ∈ [m]\E , we have:

Iij =(M−1
I )Ti,:(MI):,j

=

k∑
l=1

(M−1
I )i,l(MI)l,j +

m∑
l=k+1

(M−1
I )i,l(MI)l,j︸ ︷︷ ︸
=0

=

k∑
l=1

(M−1
I )i,l(MI)l,j ,

(154)

where
∑m

l=k+1(M
−1
I )i,l(MI)l,j = 0 because

(MI)l,j = 0,∀l ∈ {k + 1, . . . ,m}, j ∈ [m]\E (155)

as shown in (148). Similarly, for the product of (MI)i,:(M
−1
I ):,j for i, j ∈ [k], we have:

Iij =(MI)
T
i,:(M

−1
I ):,j

=
∑

l∈[m]\E

(MI)i,l(M
−1
I )l,j +

∑
l∈E

(MI)i,l(M
−1
I )l,j︸ ︷︷ ︸

=0

=
∑

l∈[m]\E

(MI)i,l(M
−1
I )l,j ,

(156)

where
∑

l∈E(MI)i,l(M
−1
I )l,j = 0 due to

(M−1
I )l,j = 0,∀l ∈ E , j ∈ [k] (157)

as indicated by (150).

The two equations (154) and (156) above show that if we consider the submatrix of (MI)[k],[m]\E consisting of its first k
rows and columns in [m]\E , its inverse is equal to the corresponding entries of the inverse of MI . More specifically,

(M−1
I )[m]\E,[k] = (MI)

−1
[k],[m]\E . (158)

Now that we have:∥∥∥∥M−1
I

[
∆

0m−k

]∥∥∥∥
∞

= ∥(M−1
I ):,[k]∆∥∞

(i)
= ∥(M−1

I )[m]\E,[k]∆∥∞ = ∥(MI)
−1
[k],[m]\E∆∥∞, (159)
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where again (i) holds due to (157). Since the selection of I is arbitrary, E can also be constructed arbitrarily, so the upper

bound for
∥∥∥∥M−1

I

[
∆

0m−k

]∥∥∥∥
∞

would be

max
I,E
∥(MI)

−1
[k],[m]\E∆∥∞ = max

P,Q

∥∥∥∥∥
[
(B̂◦i )T
1Tm

]−1

P,Q
∆

∥∥∥∥∥
∞

, (160)

where the maximization is over all P,Q that satisfies:

P ⊆ [n],Q ⊆ [m], |P| = |Q|,
[
(B̂◦i )T
1Tm

]
P,Q

invertible. (161)

Also, because the entries corresponding to ±1Tm and are not perturbed, we can multiply those constraints by arbitrary
nonzero ϵ and still get the same result, which completes the proof.

G.3. Proof of Lemma C.4

Given that ∥B−1∥∥δB∥ < 1, we can expand the series (I +B−1δB)−1 as a convergent Neumann series:

(I +B−1δB)−1 =

∞∑
k=0

(−B−1δB)k. (162)

So that (I +B−1δB)−1 is well-defined. As a result,

(B + δB)−1 = (B(I +B−1δB))−1 = (I +B−1δB)−1B−1 (163)

is also well-defined, and further
∥(B + δB)−1∥ =∥(I +B−1δB)−1B−1∥

≤∥(I +B−1δB)−1∥∥B−1∥

=∥B−1∥∥
∞∑
k=0

(−B−1δB)k∥

≤∥B−1∥
∞∑
k=0

∥(−B−1δB)k∥

≤∥B−1∥
∞∑
k=0

∥B−1∥k∥δB∥k

=
∥B−1∥

1− ∥B−1∥∥δB∥
,

(164)

which completes the proof.
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