
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TINY-CAD-CODER: LEVERAGING PRE-TRAINED
CODE MODELS FOR IMPROVED CAD GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative methods for Computer-Aided Design (CAD) are an emerging chal-
lenge with broad implications in engineering and manufacturing. Prior work has
used direct tokenization or JSON representations and fine-tuned large language
models (LLMs), but these approaches are limited to the text and image modalities
of the LLM, rely on expensive feedback loops, and struggle with validity. We ar-
gue that CAD is inherently code-like: it consists of ordered command sequences
with variable parameters, closely resembling programming languages. Building
on this insight, we introduce Tiny-CAD-Coder, a framework that fine-tunes pre-
trained code models for CAD generation and adapts to diverse input modalities
through prefix tuning. By representing construction histories as Python code, our
method exploits the syntactic and semantic priors of code models, while prefix
embeddings provide a lightweight and extensible interface to condition on B-Rep,
text, images, or other structured inputs that are not covered by LLMs used in prior
works. Our experiments show that a 1B parameter code model matches or out-
performs fine-tuned 7B-parameters LLMs and multi-shot prompting with 450B
models. We also contribute a dataset of 180k CAD code samples derived from
Omni-CAD. Our results establish code models with prefix tuning as an efficient
and general foundation for multi-modal CAD generation tasks.

1 INTRODUCTION

Generative AI is increasingly impacting the engineering design domain with CAD as its central
tool (Hirz et al., 2011; Sharma et al., 2023; Berger et al., 2025b), yet the creation of parametric
models requires manual labor and expertise-intensive (Regassa Hunde & Debebe Woldeyohannes,
2022). This has motivated research into learning-based CAD automation (Berger et al., 2025b).
Automating CAD requires generating editable, parametric sequence rather than meshes or voxels,
as engineering applications demand modifiability and reusability (Camba et al., 2016; Willis et al.,
2021).

Recent work represents CAD as JSON and adapts general-purpose LLMs (Wang et al., 2025; Xu
et al., 2025), but overlooks the inherently structured, code-like nature of CAD construction se-
quences. Other publications have explored using a Python CAD library to generate CAD objects
iteratively with commercial LLMs such as GPT-4 (Alrashedy et al., 2025; Mallis et al., 2025; Ocker
et al., 2025) or fine-tuning open-source Vision-Language-Models (VLM) (Doris et al., 2025; He
et al., 2025). These approaches leverage existing models and their multi-modal capabilities and are
therefore easily accessible. But they do not generalize beyond text and image conditions, report
issues in generating valid geometries, and incur high API costs.

Our approach differs from these works by (1) using a pre-trained code model as the foundation for
CAD generation instead of a pre-aligned VLM. We argue that models pre-trained on large amounts
of code are better suited for CAD generation than general-purpose LLMs, as they inherently un-
derstand the structured nature of code-like data. (2) Unlike prior works that restrict evaluation to
modalities already well supported by off-the-shelf LLMs our method uses prefix tuning (Li & Liang,
2021) to easily adapt our model to new input modalities instead of relying on fine-tuning a pre-
aligned model. And (3) we remove computationally expensive iterative feedback loops, enabling
efficient one-shot CAD generation.
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To this end, we introduce Tiny-CAD-Coder, which leverages DeepSeek-Coder-1B (Guo et al., 2024)
for efficient CAD generation. First, we pretrain the model on CAD code using the self-supervised
next-token prediction objective, which allows the model to learn the structure and semantics of
CAD construction sequences. Then, we train an alignment model on various modalities such as B-
Rep embeddings. Finally, using prefix tuning, we condition our model on various input modalities
beyond generic text and image inputs. Our experiments demonstrate that a 3B parameter code model
surpasses the performance of fine-tuned 7B LLMs and multi-shot 450B models.

In short, our contributions are as follows:

• We establish that CAD is best represented as code, and validate this by comparing different
data representations on sequence lengths and ablating LLMs and code models for CAD
generation.

• We introduce Tiny-CAD-Coder, a parameter-efficient approach that leverages DeepSeek-
Coder with prefix tuning. Our 1B parameter model matches or surpasses the performance
of larger models. Further, it surpasses the performance of previous GAN-based CAD gen-
eration methods.

• We demonstrate that our approach enables the use of various input modalities, that have not
been explored in previous works, showcasing its versatility across CAD generation tasks.

2 RELATED WORK

2.1 INPUT MODALITIES

Recent publications tackle Text-to-CAD or Image-to-CAD generation tasks, where the input is a text
description or an image of the desired CAD object, because existing VLMs already support these
data modes. However Berger et al. (2025b) points out that engineers actually prefer different CAD
tasks to be performed by AI such as reverse engineering B-Rep objects or generating variants from
a given CAD object, rather than generating CAD from text or images.

Boundary Representation (B-Rep) is a key data format commonly used as a vendor-neutral file
format, facilitating interoperability between different CAD systems. This interoperability comes
with a loss of information, because B-Rep only contains the faces and edges of a 3D object, but the
construction history is lost. Reverse engineering the construction history given only the outer shell
a significant challenge (Dupont et al., 2022).

Further, this task is more challenging than Text-to-CAD or Image-to-CAD generation, as there is no
pretrained LLM aligned with B-Rep embeddings available, whereas LLMs and VLMs come already
aligned with text and image embeddings.

2.2 GAN-BASED CAD GENERATION

Early approaches (Para et al., 2021; Wu et al., 2021; Xu et al., 2023; 2022) for generating CAD
construction sequences used Latent-GANs, where a GAN (Goodfellow et al., 2014) learns a latent
representation of CAD objects that is decoded into sequences by a Transformer model. These models
are limited to unconditional generation and cannot incorporate external inputs such as text or B-Rep
data, which are essential for tasks like Text-to-CAD and B-Rep-to-CAD generation.

2.3 LLM-BASED CAD GENERATION

Recent approaches have discovered LLMs for CAD generation. There are two main criteria to
classify the approaches: training method is one of the following: no training, fine-tuning and full
training. Second is the choice of representation for CAD data. This is one of the following: JSON
representations of CAD objects, Python code representations based on a library such as CadQuery
(Urbanczyk et al., 2024), and a CAD-specific tokenized representation (Wu et al., 2021). A struc-
tured overview of recent literature is given in Table 1.

No Training The multi-task capabilities of commercial LLMs such as GPT-4 allow for CAD gen-
eration without additional training (Alrashedy et al., 2025; Mallis et al., 2025; Ocker et al., 2025)
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Table 1: Comparison of CAD generation approaches using LLMs grouped by training method and
data representation.

Training Method Data Representation Publications

Zero-Shot Code Alrashedy et al. (2025); Mallis et al.
(2025); Ocker et al. (2025)

Fine-Tune JSON Xu et al. (2025); Wang et al. (2025)

Fine-Tune Code Doris et al. (2025); He et al. (2025)

Full Training Tokens Khan et al. (2024); Alam & Ahmed
(2025)

and are therefore quick to implement. However, the LLMs are not specifically trained for CAD tasks
and hence tend to output invalid CAD and therefore require iterative feedback loops. For example
Mallis et al. (2025) report a almost no correct CAD objects in one-shot inference. While these ap-
proaches show promise, they are computationally expensive and slow due to the iterative nature of
the feedback loop and the large size of the models.

Fine-Tuning Fine-tuning approaches typically use 7B LLMs or VLMs to generate Python or
JSON representations of CAD objects, with recent work exploring VLM fine-tuning for CAD tasks
using CadQuery (Urbanczyk et al., 2024) or JSON-based formats (refer to Table 1). Doris et al.
(2025) makes use of a VLM to encode an input image and then generates the corresponding CAD
construction sequence. However, these approaches still rely on large LLMs or VLMs, which are
computationally expensive and inefficient for the narrow scope and structured nature of CAD gen-
eration tasks and limit conversion tasks to the modality of the base models.

Full Training In contrast to fine-tuning, full training involves training a Transformer model for
CAD generation from scratch. This approach has been explored in Khan et al. (2024); Alam &
Ahmed (2025), where the model is trained on a large corpus of CAD data to learn the underlying
structure and semantics of CAD construction sequences. This is feasible because the tokenized
representation of CAD data is compact, allowing for a small context window of 512 tokens and less
than 100M trainable parameters.

2.4 OTHER CAD GENERATION METHODS

Other approaches directly generate B-Rep (Boundary Representation) (Jayaraman et al., 2021;
Zhang et al., 2024) or 3D meshes (Nash et al., 2020) data without relying on construction sequences,
but these 3D object representations lack the editability required for engineering design with CAD
(Vukašinović & Duhovnik, 2019). Hence, we do not consider these approaches in our work.

3 DATA

Data format. We only consider CAD data containing construction histories as such parametric data
is best suitable for engineering design. In contrast to prior JSON-based approaches, we represent
CAD data as Python code to capture its hierarchical, sequential, and code-like nature. Accordingly,
our ablation study in Section 7.1 confirms that code models outperform general-purpose LLMs for
CAD generation.

Furthermore, compared to JSON representations used in prior work, our Python code representation
uses on average 73.6% less tokens per sample, reducing sequence length and hence computational
requirements (see Section A.1 of the appendix)

Preprocessing pipeline. We normalize each model to a unit cube and center it at the origin to
remove scale and translation bias. We round all floating-point values to two decimal places to reduce

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed training procedure. a) Self-supervised pre-training of the base
code model on CAD construction sequences to adapt it to CAD-specific syntax and semantics. b)
Alignment of modality-specific encoders (B-Rep, text, image) with the code model using a con-
trastive loss on paired data. c) End-to-end prefix tuning with multimodal inputs to learn task-specific
prefixes for conditioned CAD generation while preserving the knowledge from pre-training. The
lock icon indicates frozen model parameters.

the input length and apply de-duplication. All geometric processing is done using the RapidCAD-
Py1 library.

Then we use a custom script to reverse-engineer Python code that generates the CAD objects and
generate the images and B-Rep objects for the Image-to-CAD and B-Rep-to-CAD tasks. The text
descriptions are taken from Xu et al. (2025).

Finally, we partition the dataset into 90% training, 5% validation, and 5% testing.

4 METHODOLOGY

We use DeepSeek-Coder-1B (Guo et al., 2024) as the base code generation model. It is pre-trained
on diverse programming languages, including Python, providing a strong understanding of struc-
tured and hierarchical code patterns. To efficiently adapt the model under computational constraints,
we apply LoRA (Hu et al., 2021) with rank r = 32 and scaling factor α = 64, modifying only the
query and value projection matrices.

Self-supervised Pre-training The objective of the pre-training stage (Figure 1a) is to adapt the
base DeepSeek-Coder-1B model to CAD-specific code patterns by continuing training on a large
corpus of CAD construction sequences. The model is trained with the standard autoregressive lan-
guage modeling loss:

Lpretrain = −
T∑

t=1

logP (xt | x<t; θ),

where xt denotes the token at time step t and θ are the model parameters. This continued pre-training
enables the model to capture CAD-specific syntax, geometric primitive definitions and construction
sequence patterns. Then the model has to learn this once and the task-specific prefixes can be learned
efficiently in the next steps. We will re-use the decoder for different tasks, shortening the overall
training time.

Alignment Training The goal of alignment training (part b) in Figure 1 is to integrate geometric
information from the encoder with the DeepSeek-Coder-1B embedding space, facilitating effective
cross-modal conditioning. To achieve this, we learn projection layers that map features into prefix
tokens compatible with DeepSeek-Coder-1B We employ a contrastive alignment loss of the form:

Lalign = − log
exp(sim(zg, zc)/τ)∑
j exp(sim(zg, zj)/τ)

,

1https://www.github.com/anonymized during review
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where zg is the geometric embedding, zc is the corresponding code embedding, τ is a temperature
parameter, and sim is the cosine similarity function. We use a decay in the alignment loss weight
so during the beginning of the training, aligning the embeddings is prioritized. Our experiments
showed that this helps in stabilizing training and leads to better convergence.

End-to-End Prefix Tuning The final training stage in Figure 1c involves end-to-end prefix tun-
ing, where the objective is to learn task-specific prefixes for conditioned CAD generation while
preserving the knowledge from pre-training. To enable conditioning on inputs, we use task-specific
encoders to learn a latent embedding from the input, which is then projected by a lightweight adap-
tive layer into a sequence of prefix embedding P ∈ Rk×d, where k is the prefix length and d the
hidden dimension. The prefix embedding is split into prefix tokens and is prepended to the code
token embeddings, enabling cross-modal conditioning without modifying the decoder weights:

h0 = [P ;Encoder(xinput);Embed(xcode)].

We optimize a combined generation and reconstruction loss:

Ltotal = Lgen + λLrecon,

where

Lgen = −
T∑

t=1

logP (yt | y<t, xinput; θ, P ),

and
Lrecon = ∥UV-Net(Execute(y))− UV-Net(xinput)∥22 .

The generation loss encourages accurate conditional CAD code generation, while the reconstruction
loss ensures that the generated model’s geometry remains consistent with the input.

4.1 IMPLEMENTATION DETAILS

Our experiments show that a range of 8 to 16 prefix tokens is sufficient to capture the necessary
context for CAD generation, balancing expressiveness and efficiency. Increasing the number of to-
kens beyond this range did not improve the loss, while fewer tokens led to performance degradation.
Training was performed on four Nvidia L40S GPUs with a combined 196 GB of GPU memory and
took approximately 12 hours to complete. The CAD code required a sequence length of 1024 to-
kens to cover 86% of the training data, which we found sufficient to capture the complexity of CAD
construction sequences. For details on hyperparameters refer to Section 7.2.

5 EXPERIMENTS

For our experiments, we use our Tiny-CAD-Coder model that has been pretrained on CAD data. For
all experiments, we use the same pretrained decoder, demonstrating its ability to adapt to different
tasks. In our experiments, we first evaluate our decoder’s capability to generate CAD objects from
scratch. We then demonstrate its adaptability by fine-tuning the model to generate CAD objects
from B-Rep representations and text descriptions.

5.1 EVALUATION METRICS

To evaluate our model quantitatively, we use geometric and syntactic metrics. The geometric metrics
assess the quality of the generated CAD objects, while the syntactic metrics evaluate the correctness
of the generated construction sequences.

The Chamfer Distance (CD) (Fan et al., 2016) between two shapes S1 and S2 finds for each point
(x, y) in a point cloud its nearest neighbor in the opposite point cloud and sums the squared dis-
tances:

CD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥22 +
1

|S2|
∑
y∈S2

min
x∈S1

∥x− y∥22. (1)

5
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The Normal Consistency (NC) metric evaluates the geometric consistency of generated CAD mod-
els by comparing surface normal vectors. For each face in the generated geometry, we compute the
angular difference between its normal vector and the corresponding face in the ground truth model:

NC =
1

N

N∑
i=1

cos−1(npred
i · ngt

i ), (2)

where npred
i and ngt

i are the normalized normal vectors of the i-th face in the predicted and ground
truth models, respectively.

The Invalid Ratio (IR) is the ratio of invalid sequences to the total number of generated sequences.
A sequence is considered invalid if it cannot be processed by a CAD system due to geometric or
syntactic errors.

The Intersection over Union (IoU) metric measures the overlap between the reconstructed model
M̂ and the ground truth model M . It is defined as

IoU(M̂,M) =

∣∣∣M̂ ∩M
∣∣∣∣∣∣M̂ ∪M
∣∣∣ , (3)

where |·| denotes the volume of the respective region. The IoU value ranges from 0 (no overlap) to
1 (perfect overlap).

The CodeBLEU Score (Ren et al., 2020) is a specialized metric for evaluating code generation that
extends traditional BLEU by incorporating syntax tree matching and data flow analysis. Unlike stan-
dard BLEU, which only considers n-gram overlap, CodeBLEU captures the structural and semantic
properties of code:

CodeBLEU = α · BLEU + β · BLEUweight + γ · Matchast + δ · Matchdf, (4)
where Matchast measures abstract syntax tree similarity and Matchdf evaluates data flow consistency.
We report the CodeBLEU as an average of both valid and invalid sequences, as it reflects the model’s
overall ability to generate syntactically correct and semantically meaningful CAD code.

5.2 SEQUENCE COMPLETION

Sequence completion involves predicting the next elements in a partially observed sequence. In the
context of CAD generation, this means inferring the missing CAD commands from a given partial
sequence. This tasks forms the base for the other tasks, as the model has to learn the structure and
semantics of CAD commands and their parameters.

5.3 B-REP-TO-CAD GENERATION

This follows the setup in Figure 1c). The encoder is based on the UV-Net architecture (Jayaraman
et al., 2021) and embeds B-Rep objects into a latent vector z by converting B-Reps into a face-
adjacency graph and processing them with graph neural networks. We add batch normalization
between convolutional layers because we experienced numerical instability during our experiments.
The latent vector z is passed into our decoder model as prefix tokens. Additionally to the memory,
the decoder receives context tokens C1:i from the original construction sequence as context to infer
the following tokens. For our experiments we set i = 5.

Given the B-Rep input B and the pre-trained parameters θ, the model is trained with cross-entropy
loss between the original sequence of CAD commands C and the predicted sequence Ĉ:

LB-Rep = −
T∑

t=1

logP (ct | c<t, B; θ), (5)

where ct represents the CAD command token at time step t. Both models were trained until conver-
gence, defined as the point at which the improvement in validation loss was less than ∆ = 0.001 for
npatience = 5 consecutive epochs. We expect the pretrained decoder to accelerate the task-specific
training process, as the model has already learned the underlying structure of CAD commands and
their parameters during pre-training.

6
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Table 2: Unified results across tasks. Dashes indicate metrics not reported in the original publica-
tions. We evaluate on the three established CAD generation tasks: Sequence Completion, Text-to-
CAD, and Image-to-CAD. CadCodeVerify* (Alrashedy et al., 2025) takes as input text plus image
data and uses iterative refinement. Our model achieves competitive or superior performance across
all tasks while using significantly fewer parameters than prior works.

Sequence Completion
Model CodeBLEU ↑ CD ↓ NC ↑ IR ↓ IOU ↑
Ours 0.85 1.00 96.0 3% 51.4
Berger et al. (2025a) – 1.01 – 8% –
Mamba-CAD (Li et al., 2025) – 1.03 – 8% –
DeepCAD (Wu et al., 2021) – 69.7 – 40.2% –
TM-CAD (Li et al., 2025) – 82.3 – 44.3% –

Text-to-CAD

Ours 0.75 2.22 99.0 0.25% –
Berger et al. (2025a) – 2.58 – 4.4% –
Text2CAD (Khan et al., 2024) – 2.65 – 0.93% –
CAD-GPT (Wang et al., 2025) – 2.83 – 7.43% –

Image-to-CAD

Ours 0.79 5.39 97.2 14.5% 58.8
CadCodeVerify* (Alrashedy et al., 2025) – – – 6.0% 94.1
CadCoder (Doris et al., 2025) – – – 0.0% 67.5
CAD-GPT (Wang et al., 2025) – 9.77 – 1.61% –

B-Rep-to-CAD

Ours 0.62 2.05 95.0 6.99% 49.9
Berger et al. (2025a) – 2.64 – 10.1% –
BRep2Seq (Zhang et al., 2024) – 3.35 – 11.8% 70.3

5.4 TEXT-TO-CAD GENERATION

Again, we follow the setup in Figure 1c with a text encoder. We use the pre-trained BERT text
encoder to embed text descriptions into a latent vector z. The text description data is taken from Xu
et al. (2025) and our Python CAD code to train first the alignment and then the prefix tuning stage.
We re-use the same pre-trained decoder model as in the previous task, reducing the overall training
time.

5.5 IMAGE-TO-CAD GENERATION

We follow the setup in Figure 1c with an image encoder. We use a pre-trained Vision Transformer
(ViT) (Wu et al., 2020) to embed images into a latent vector z and pass this latent vector as prefix
tokens to our decoder. We use the images provided by Xu et al. (2025) and our Python CAD code
to train first the alignment and then the prefix tuning stage. We re-use the same pre-trained decoder
model as in the previous tasks, reducing the overall training time.

6 RESULTS

We evaluate Tiny-CAD-Coder across four CAD generation tasks: Sequence Completion, B-Rep-to-
CAD, Text-to-CAD, and Image-to-CAD. Our results are summarized in Table 2. Qualitative results
for the Text-to-CAD and B-Rep-to-CAD tasks are shown in Figures 2 and 3, respectively.

CodeBLEU Among code-based CAD generation methods, we are the first to report CodeBLEU.
Scores between 0.62 and 0.85 indicate that our model generates syntactically correct and semanti-
cally meaningful CAD programs, validating the choice of a code-centric representation.

Invalid Ratio On the widely reported invalid ratio, our model consistently outperforms prior work
across all tasks except Image-to-CAD. In that setting, CadCodeVerify (Doris et al., 2025) achieves

7
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Figure 2: Qualitative results of the B-Rep-to-CAD generation task. The model takes a B-Rep repre-
sentation without construction history (left) as input and generates a corresponding CAD construc-
tion sequence (right).

Figure 3: Randomly sampled qualitative results of the Image-to-CAD generation task. The model
uses a visual transformer architecture to generate CAD code from an image input. Top row contains
the input image and bottom row the rendered CAD model. Columns five and seven show error cases.

a perfect score of 0.0 due to its specialized verification pipeline. Nevertheless, our approach yields
substantially lower invalid ratios in Text-to-CAD and B-Rep-to-CAD, demonstrating improved ro-
bustness without post-hoc correction.

Geometric Quality For Chamfer Distance and Normal Consistency, our approach matches or sur-
passes larger fine-tuned VLMs while using significantly fewer parameters. Notably, our 1B pa-
rameter model achieves comparable or better results than fine-tuned 7B LLMs and even multi-shot
prompting with 450B models.

Efficiency Our framework achieves these results without iterative feedback loops, reducing infer-
ence latency and compute cost. This establishes code models with prefix tuning as a parameter-
efficient and scalable foundation for CAD generation.

Qualitative Evaluation Figures 2–4 provide visual comparisons. Generated CAD objects closely
match ground truth sequences in geometry and topology, with failure cases primarily arising from
minor syntactic errors (Figure 6).

7 ABLATION STUDY

7.1 CHOICE OF BASE MODEL

To validate our hypothesis that code models are better suited for CAD generation than general-
purpose LLMs, we conduct an ablation study comparing models with 3B parameters or less, because
for narrow tasks small, specialized models achieve comparable performance to large models and are
more economical to deploy (Belcak et al., 2025). We pretrain all models on the same CAD dataset on
the sequence completion task on 1% of the data, evaluating performance metrics, maximum feasible
batch size (Max BS) and speed in optimizer steps per second, ceteris paribus. As a control, we also
evaluate DeepSeek-Coder-1B with random weights initialization. The results in Table 3 show that
code models perform better than general-purpose LLMs, with DeepSeek-Coder-1B achieving the
best trade-off between performance and efficiency. Pre-training on code yields a clear performance

8
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gain over random initialization, demonstrating that the improvement stems from the prior knowledge
encoded in the model.

Table 3: Comparison of LLMs and code models for CAD generation. Batch size refers to the
maximum feasible batch size before out of memory errors occur. Speed is measured in optimizer
steps per second. Our chosen base model, DeepSeek-Coder-1B, achieves the best trade-off.

Model Name CodeBLEU CD IR Max BS Speed

StarCoder-3B (Lozhkov et al., 2024) 0.69 4.03 64.6 10 1.20
CodeGemma-2B (Team et al., 2024) 0.63 22.0 78.2 4 0.3
DeepSeek-Coder-1B (Guo et al., 2024) 0.78 10.8 39.2 16 1.81
QwenCoder2.5-3B (Hui et al., 2024) 0.68 1.1 71.9 2 0.2

Gemma2-3B (Riviere et al., 2024) 0.67 28.4 73.8 5 0.82
StableLM-3B (Tow et al., 2024) 0.73 15.8 47.8 8 –

DeepSeek-Coder-1B (rand. init.) (Guo et al., 2024) 0.66 20.0 70.6 16 1.81

7.2 HYPERPARAMETERS

We used gridsearch to optimize the hyperparameters on a small proxy models (Liu et al., 2024).
The following hyperparameters were optimized: learning rate, batch size, prefix length. The final
configuration used a learning rate of 1 × 10−4, batch size of 8, and 16 prefix tokens. We used the
AdamW optimizer with an initial learning rate of 0.001, weight decay of 0.01, and a cosine learning
rate schedule. The final hyperparameters can be found in the supplementary source code.

8 CHALLENGES AND LIMITATIONS

Despite the promising results of Tiny-CAD-Coder, several challenges and limitations remain that
affect the practical deployment of code-based CAD generation systems.

Invalid code. Unlike other publications like Doris et al. (2025), we found generating syntactically
valid code to be a greater challenge. Our model tends to make small errors such as missing paren-
theses or confusing commas for periods, which can render the entire sequence invalid. For examples
and a more detailed analysis, please refer to Section B of the appendix.

Bias toward simple geometries. The model tends to generate simpler CAD objects, likely due to
their overrepresentation in the training data and lower risk of invalidity. Valid sequences average
97.4 characters, invalid ones 131.1 (Mann–Whitney (Mann & Whitney, 1947) U test, p = 5.5 ×
10−4). Similar trends were observed in prior work (Wu et al., 2021).

Broken geometry. Even when a generated construction sequence is syntactically correct, the result-
ing geometry may be topologically invalid. These issues arise when the model learns the statistical
distribution of construction sequences, resulting in outputs that are syntactically valid but geometri-
cally flawed.

9 CONCLUSION

We presented Tiny-CAD-Coder, a framework that adapts pre-trained code models for parametric
CAD generation. By casting construction histories as code and applying prefix tuning, our 1B model
matches or exceeds the performance of fine-tuned 7B LLMs and even multi-shot 450B models, while
enabling conditioning on diverse modalities that can be expanded in the future. This establishes code
models as an efficient and scalable foundation for CAD generation.

Remaining challenges include ensuring syntactic validity, overcoming a bias toward simple geome-
tries, and enforcing geometric consistency. Future work will integrate constraint-aware validation,
adopt curriculum strategies to increase design complexity, and extend prefix tuning to modalities
such as sketches or design intent. More broadly, our results suggest that domain-specific code mod-
els can serve as compact yet powerful backbones for structured generation tasks beyond CAD.
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REPRODUCIBILITY STATEMENT

We provide complete source code and instructions as supplementary material. The package includes
dataset loaders for B-Rep, images, and text (data loader/), model definitions and configuration
files (models/), and evaluation utilities (modules/). A train.py entry point supports training
and inference across all modalities. YAML configuration files store all hyperparameters such as
learning rate, batch size, and dataset paths. The included README.md details setup steps, depen-
dency installation, and data preparation, including scripts for generating Python code, B-Reps, and
images. All reported metrics (CodeBLEU, Chamfer Distance, Normal Consistency, Invalid Ratio,
IoU) are computed and logged automatically during evaluation.

Results in the paper can be reproduced by running the provided training configura-
tions using train.py with one of the keywords (--cadcoderseq, --cadcoderbrep,
--cadcodertext, --cadcoderimage). In the YAML configuration, the model training can
be set to start training, continue from a checkpoint or run evaluation mode. For more details, please
refer to the README.md and config.py. Training was performed on 4 NVIDIA L40S GPUs
(196 GB total memory), but the code also runs on smaller hardware by reducing batch size.

While we provide complete scripts and instructions, some modifications may be required depending
on the operating system, hardware setup, or library versions. Researchers may report issues through
the repository’s issue tracker; we intend to address common problems where feasible.
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Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng
Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort,
Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kartikeya Badola,
Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene,
Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly Mc-
Nealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
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Figure 4: Ablation study comparing CAD representations. Python code is both compact and expres-
sive, enabling the use of pre-trained code models.

A ABLATIONS

A.1 COMPARISON OF CAD REPRESENTATIONS

We next compare alternative ways of representing CAD objects for sequence modeling. Three
formats are evaluated: (1) JSON-based representations as in Wang et al. (2025); Xu et al. (2025),
(2) tokenized CAD-specific command vocabularies (Wu et al., 2021; Khan et al., 2024; Alam &
Ahmed, 2025), and (3) Python code using the CadQuery library.

Figure 4 shows that JSON is the most verbose due to heavy use of punctuation and structural tokens.
Tokenized CAD commands are compact, but lack flexibility and human readability. Our Python code
representation achieves similar compactness while preserving full expressiveness and compatibility
with off-the-shelf code models. This leads to shorter sequences, lower memory requirements, and
faster training.

For this comparison we randomly sampled 1000 CAD objects from the DeepCAD dataset (Wu et al.,
2021).

A.2 PREFIX TOKEN USAGE

To verify that the model attends to the prefix tokens rather than relying solely on teacher forcing
during training, we logged attention weights between prefix and code tokens throughout training.
In additional experiments, we masked the entire code input sequence, forcing the model to rely
exclusively on the prefix tokens. Despite this constraint, the model’s loss consistently decreased,
confirming that the decoder learns to extract useful information from the prefix embeddings. These
results validate that the prefix encoder contributes meaningful conditioning signals.

B FAILURE CASES

Although Tiny-CAD-Coder reduces invalid outputs compared to prior work, a subset of generated
programs still fail due to syntactic or geometric errors. Figure 5 quantifies the main failure cat-
egories. Only ∼6% of invalid cases stem from geometry inconsistencies, while the majority are
simple syntax issues such as missing parentheses, misused punctuation, or undefined variables. Fig-
ure 6 shows example excerpts of invalid code.

LLM USAGE

We used an LLM to assist with grammar correction, typo fixing, and improving the clarity of English
text as English is not our first language.
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Figure 5: Histogram of invalid code reasons. Most errors are syntactic, indicating that lightweight
code-repair methods could substantially reduce invalid ratios.

1 [...]
2 wp_sketch0 = app.Workplane(Plane(Vector(-0.73, 0,18, 0), Vector(1, 0, 0),

Vector(0, 0, 1)))
3 [...]

1 [...]
2 solid0=wp_sketch0.add(loop0).extrude(0.02)
3 solid=solid0
4 Generating a workplane for sketch 1
5 [...]

1 [...]
2 loop1=wp_sketch1.moveTo(0.4,, 0).circle(0.37)
3 [...]

Figure 6: Example excerpts of syntactically invalid CAD code. (Top) An invalid decimal due to a
comma causes an InvalidDecimal exception. (Middle) A missing # comment symbol triggers
an IndentationError. (Bottom) An extra comma causes a SyntaxError.
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