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Abstract

We explore the ability of Transformers to
generalize Synchronous Context-Free Gram-
mars (SCFG), i.e. to learn a particular gram-
mar just from example strings. Two experi-
ments were conducted. The first experiment
explored Transformers’ capacity to translate
between synthetic languages corresponding to
the source and target side of an SCFG gram-
mar. The second experiment sought for a Trans-
former configuration which would be capable
of SCFG parsing, i.e. identifying the ability to
recognize licensed SCFG pairs of strings based
on only positive and negative training examples.
With a sufficiently large model, Transformers
proved capable to learn this task to a high accu-
racy (97.8%) even for very long inputs, longer
than any training items.

1 Introduction

Transformers (Vaswani et al., 2023) are, in prin-
ciple, incapable of handling unbounded strings of
context-free grammars due to their fixed-size archi-
tecture (Hahn, 2020). Yet, they excel in many natu-
ral language processing tasks, including machine
translation, where they achieve near-human quality
(Popel et al., 2020), as well as image (Dosovitskiy
et al., 2020) and speech (Dong et al., 2018) process-
ing. Translation, however, often requires model-
ing complex structural alignments between source
and target languages, which, for some language
pairs, can be described by synchronous context-free
grammars (SCFGs) (Chiang, 2006). SCFGs im-
pose a “doubly bracketing” structure—parallel hier-
archical dependencies in both languages—making
them particularly challenging for Transformers,
as their theoretical limitations suggest a need for
model size to scale with input length (Hahn, 2020).

While these theoretical constraints are well-
established, their practical implications remain un-
derexplored. How large must a Transformer be to
process SCFGs of varying complexity? How many

examples, and of what diversity, are needed to learn
such grammars? This paper studies the empirical
behavior of Transformers on synthetic SCFGs to
estimate these practical limits and investigate their
learnability. Our work complements theoretical
analyses (Hahn, 2020; Merrill et al., 2021, 2022;
Weiss et al., 2021) by providing experimental evi-
dence on the interplay between model size, training
data, and grammar complexity.

We focus on two tasks: translation, where
Transformers must induce and apply SCFG rules
to map between synchronized languages, and pars-
ing, where they determine whether a string pair
conforms to the grammar. Our experiments aim to
assess whether Transformers can generalize from
examples—inferring hierarchical rules rather than
memorizing surface patterns. To this end, we:

* Design SCFG templates that emphasize key
properties, such as deep recursion and nested
productions, while maintaining simplicity (e.g.,
limited vocabulary size).

* Train two Transformer architectures:

1. Encoder-Decoder for translation between
synchronized languages. Success here sug-
gests the model infers hierarchical dependen-
cies, indicating rule induction rather than pat-
tern memorization.

2. Encoder-Only for parsing, predicting
whether sentence pairs conform to the
SCFG’s rules, even for longer inputs. This
tests generalization beyond the training set.

Our results provide empirical insights into the
constants governing Transformer performance: the
model size (e.g., heads, layers) required for inputs
of given lengths and the number and diversity of
examples needed to learn SCFGs of varying com-
plexity.



2 Synchronous Context-Free Grammars

SCFGs extend standard Context-Free Grammars
(CFGs) by generating pairs of related strings si-
multaneously (Chiang, 2006). SCFGs consist of
production rules with dual right-hand sides (rhs),
referred to as the “source rhs” and “target rhs”.
Each production synchronously generates the same
non-terminals on both sides, though their positions
may differ, allowing flexibility in the order between
source and target outputs. Non-terminals in SCFGs
are linked via indices: numbers that connect each
source non-terminal to its corresponding target non-
terminal, enabling synchronous generation.

2.1 Experimental Grammar Design

The constructed grammar for this study incorpo-

rates five critical features:

* Deep recursion: Enables complex hierarchical
structures.

* Compact vocabulary: Limited terminal sym-
bols (vocabulary of the two languages).

* Binary form: Pre-binarized to ensure compat-
ibility with the CYK-like SCFG parser, which
requires the grammar to be in Chomsky Normal
Form. This is guaranteed by productions with
either two non-terminals or a terminal.

* No e-productions: e-productions are not used at
all in this whole experiment because they would
introduce an ulterior level of complexity, espe-
cially for the parsing stage.

* Ambiguity: A single token on the source right-
hand side may correspond to multiple possible
translations on the target right-hand side, intro-
ducing ambiguity in the process.

The grammar generation system extends the
nltk.grammar library that handles common CFGs
(Bird et al., 2009). The implementation preserves
the original module’s interface while incorporating
functionality for synchronous production.

The grammars used for the generations of pairs
are visible in Appendix A.

2.1.1 Language Generation Parameters

The generation process of grammar G is controlled

by parameters that affect:

* Recursion probability: Decreases logarithmi-
cally with derivation depth. Tuning this param-
eter determines whether to prioritize shallower
trees or more complex ones.

e Maximum length: It limits the generation of
sentences to a certain upper bound.

The final distribution of the sentences, sorted by
their length, is visible in Figure 1 and Figure 2 of
Appendix B, while the distribution of the termi-
nals that belong to the two synchronous grammars
(source rhs and target rhs) are visible in Figure 3
and Figure 4 of Appendix C.

A Synchronous CYK Parser, also called Bi-
Text Parser(Chiang, 2006), was implemented from
scratch in order to clean out all the sentences that
are common both in the good grammar G and in
the wrong grammars G’ and rand.

3 First Experiment: Machine Translation

This experiment evaluates the performance of a
sequence-to-sequence Transformer model for ma-
chine translation, implemented using the FairSeq
library. (Ott et al., 2019)
FairSeq, a PyTorch-based framework developed
by Meta, abstracts low-level complexities, enabling
efficient experimentation with Transformer archi-
tectures and hyperparameters. The objective was
to train a Transformer on paired sentences and as-
sess its ability to generate accurate target sentences
from source sentences during testing. Specifically,
we evaluated whether the generated translations
align with the gold-standard test set or remain con-
sistent within the specified G when paired with the
source sentence - this is checked using the parser.
While promising results would demonstrate the
transformer’s translation capabilities, they may not
fully reveal its generalization ability, as it could
rely on simplistic token mappings between syn-
thetic languages. To address this, a more complex
experiment is described in Section 4.

3.1 Dataset Preparation

The dataset comprises 100,000 sentence pairs, split
into three subsets: training(66%), validation(22%),
and test(12%).

3.2 Model Configuration and Results

The Transformer model was trained on the bina-
rized dataset using an encoder-decoder architecture.
The best-performing configuration, which achieved
a remarkable 97% accuracy on 10,000 test samples,
is detailed in Appendix D under Model 1. This
configuration demonstrated that the Transformer ef-
fectively learned to translate between the synthetic
languages. However, reducing the model’s capacity
or training duration degraded performance signif-
icantly. The worst configuration tested, referred



as Model 2 in Appendix D, yielding only 1.17%
accuracy on generated sentence pairs.

These results highlight the importance of suf-
ficient model capacity and training duration for
effective translation in this context.

4 Second Experiment: Acceptor

The first experiment demonstrated the capability
of a Transformer to generate a target-language
sentence that correctly translates a given source
sentence. This experiment investigates whether a
Transformer can classify a pair of input sentences
as generatable by a SCFG (Chiang, 2006).

The Acceptor Transformer is an encoder-only
Transformer designed to perform a binary classi-
fication task. It takes as input a pair of sentences
from source and target languages and outputs a
token: "Y" (accepted) if the pair conforms to the

target grammar, or "n" (rejected) otherwise.

Successful classification of sentence pairs as
within or outside the SCFG’s language would in-
dicate the transformer’s ability to generalize over
data, rather than relying solely on memorization
of large datasets. Such capability suggests an un-
derstanding of the grammar’s complex structure,
characterized by recursion and potential ambiguity.

4.1 Dataset Preparation

The experiment utilizes two different datasets for
the experiment. Both datasets are filtered through a
parser to exclude any pairs that could interfere with
Transformer training. The datasets are designed for
the following purposes:

* Small Training Set: A relatively small dataset
(200,000 pairs) tests the transformer’s efficiency
in learning from limited data.

* Validation on Similar Data: Short sentences
(length 2—-14, matching training) with a over-
lap of approximately 15% evaluate whether the
model performs well on familiar sentences.

* Testing on Complex Data: Longer, entirely un-
seen sentences (length 15-100) assess general-
ization, as these sentences are more complex.
(The yellow histograms in Appendix H show
the exact quantity of examples per each length
using both the random grammar and the “anti-
grammar” G'.)

The dataset is composed of pairs of sentences

built as shown in Appendix E.

Dataset G + G’

The first dataset is derived from the chosen G and
an “anti-grammar” G’ designed to be structurally
similar but to generate a small percentage of in-
correct sentence pairs. The two grammars are
thought to have all reachable productions, all non-
terminals on the left-hand side able to produce both
unary and binary productions (which means respec-
tively to yield terminals or call other non-terminals)
and to have about 30 total productions. The "anti-
grammar" G’ introduces a new non-terminal and
some indices inversion with the goal of deviating
the standard grammar G from its normal behaviour.

Dataset G + random

The second dataset is built with pair sentences gen-
erated by GG and randomly generated pair sentences.
The random grammar uses, as for G, the same ter-
minal vocabulary of G and even mimics the same
probabilities of picking them. The strength of this
methodology lies in the fact that all terminals are
completely randomly placed in the sentence, there-
fore following no structure tree produced by the
previously mentioned algorithm. This will result in
more robustness for our experiment.

Another dataset of this type was built for a third
grammar named G14 and shown in Appendix A,
more complex than G, with more productions, ter-
minals and more recursion in its productions which
has also given positive results.

4.2 Model Setup

Multiple encoder-only Transformer configurations
were trained and evaluated on the two datasets
to determine which dataset yields superior perfor-
mance and whether randomly generated incorrect
pairs enhance generalization over SCFGs. The pri-
mary objective was to identify the optimal number
of attention heads, model dimension, and number
of layers for improved classification accuracy and
to derive scaling laws that facilitate generalization
over SCFGs.

Results indicate that both datasets produce com-
parable performance, with configurations yielding
the best and worst performances consistent across
datasets. The randomly generated incorrect pairs
(Dataset 2) achieve slightly higher accuracies (ap-
proximately 1% improvement). Poorly performing
configurations typically feature a small model di-
mension and limited dataset exposure (e.g., few
epochs). Many experiments have been conducted



with different configurations of the model. The two
extremes are reported in the following sections.

4.3 Worst Configuration

The Transformer architecture for the reported re-
sults features 3 layers, 16 attention heads, a 64-
dimensional model and embedding space, trained
for 5 epochs with a batch size of 256. Results for
the two datasets are presented in Appendix G.
This configuration predominantly predicts “n”
for longer sentences, despite reasonable validation
performance, suggesting limited generalization to
unseen test data. See Appendix H, Figure 7.

4.4 Best Configuration

The architecture for the reported results features
5 layers, 32 attention heads, a 256-dimensional
model and 128-dimensional embedding space,
trained for 13 epochs with a batch size of 256.
Results for the two datasets are presented in Ap-
pendix G while the accuracy performances on test
set are visible in Figure 8 and Figure 9 of Ap-
pendix H. The learning curve and the loss of the
model are shown in Appendix F.

4.5 Future Work

To build on the findings of this study, the following
directions for future research are proposed:

Exploration of Complex Grammars: Investi-
gate other and more sophisticated grammars, in-
cluding those that closely resemble natural lan-
guages. This includes designing and testing SCFGs
with increased numbers of terminals and produc-
tion rules.

Grammatical Property Injection: Embed-
ding specific grammatical properties into natural-
language-like SCFGs. We aim to identify which
grammatical properties facilitate or hinder transla-
tion tasks, providing deeper insights into the mod-
els’ ability to learn structural recursion. We al-
ready have results (Appendix F) that suggest that
a more complex grammar, having both a greater
number of eligible productions and a larger termi-
nal vocabulary, requires larger model dimension
and embedding space as well as more training time
to converge.

Development of Scaling Laws: Conduct ex-
tensive experiments to derive scaling laws (Ka-
plan et al., 2020) that optimize Transformer perfor-
mance across a wide range of grammars. These
laws would quantify the relationships between
model parameters (e.g., number of attention heads,

layers, and model dimensionality) and dataset size
to maximize translation accuracy. Preliminary ob-
servations suggest that configurations with 16 or
32 attention heads, 3 layers, and a model dimen-
sionality of 256 to 512 are promising.

These directions aim to enhance the generaliz-
ability of our findings and provide a deeper un-
derstanding of Transformer capabilities in learning
and translating recursive grammatical structures.

5 Conclusions

We empirically examined the learnability of Syn-
chronous CFGs by transformers. Our results dif-
fered from the initial expectations. Contrary to
our hypothesis, the sequence-to-sequence Trans-
former demonstrated the ability to learn the general
structure of the grammar, despite the vast number
of possible recursive syntactic structures of only
a fraction was demonstrated in the training data.
Encoder-only also learned to identify sequences
licensed by the SCFG at the accuracy of 96.7%,
offering a practically appealing alternative to exact
parsing.

Limitations

This study inevitably has limitations. The experi-
ment currently demonstrates that Transformers can
learn some specific grammars with a limited set of
terminals (far fewer than what would be needed
for natural languages) and a small number of pro-
duction rules (in the range 30-50, in contrast to
thousands required to simulate a natural language).
Despite the high recursion in these rules, the sim-
plicity of the grammars restricts the generalizabil-
ity of the findings. Moreover, natural languages
have more complex alignments, not captured in
our grammars, such as non-1:1 token alignments
and the absence of ¢ productions. The results for
grammar (G4 (a more complex grammar than G),
shown in Figure 6, suggest that the best configura-
tion from the Section 4 experiment can still learn a
more complex grammar. However, achieving the
same prediction accuracy as for G requires differ-
ent model tuning.
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A Grammar definition

1. G: (manually created)
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A{1} B{2} //
-> A{1} B{2} //
-> C{1} F{2} //
-> B{1} F{2} //
-> D{1} A{2} //
-> {13} D{2} //
-> F{1} B{2} //
-> F{1} A{2} //
-> D{13} C{2} //
-> D{1} B{2} //
-> F{1} c{2} //
//
//
//
//
//
//
//
//
//
//
//
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2. G' ("anti-grammar"):

-> A{1} B{2} //
-> F{1} E{2} //
-> C{1} F{2} //
-> A{1} F{2} //
-> D{1} A{2} //
-> D{1} D{2} //
-> B{1} B{2} //
-> F{1} A{2} //
-> S{1} ¢{2} //
-> D{1} B{2} //
-> F{1} c{2} //
-> D{1} ¢{2} //
F{1} A{2} //
//
//
//
//
//
//
//
//
//
//
//
//
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B{2}
A{1}
{13
F{2}
D{1}
D{2}
B{2}
F{1}
D{1}
B{2}
C{2}

B{2}
F{1}
{13
F{2}
D{1}
D{2}
B{2}
F{1}
{1}
B{2}
C{23}
D{1}
A{2}

AT
B{2}
F{2}
B{1}
AL2}
{1}
F{1}
A{2}
C{2}
D{1}
F{1}

A{T}
E{2}
F{2}
AT
A{2}
D{1}
B{1}
A{2}
C{2}
D{1}
F{1)
C{2}
F{13
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3. G14: (generated by a Grammar Generator)

=> N{1} Y{2} // N{1} Y{2}
-> A{1} R{2} // R{2} A{1}
-> D{1} N{2} // N{2} D{1}
-> S{1} A{2} // S{1} A{2}
-> N{1} R{2} // N{1} R{2}
-> D{1} R{2} // R{2} D{1}
-> R{1} N{2} // N{2} R{1}
-> Y{1} D{2} // Y{1} D{2}
-> A{1} N{2} // N{2} A{1}
=> Y{1} N{2} /7 Y{1} N{2}
-> R{1} A{2} // R{1} A{2}
-> R{1} R{2} // R{1} R{2}
R{1} Y{2} /7 Y{2} R{1}
-> A{1} R{2} // R{2} A{1}

< >» <>» OU0O<>»r I <UO<<>»r2Z2>» 2Z220V0Z2Z0308$®WZ<W0
|
\Y%

>k //m
>k // s
->d//m
->d// t
> 1//p
->1i// s
> 1i//v
>k // s
->h // u
> 1//v

B Distribution of the sentences
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Figure 1: Distribution of 100,000 positive examples.

Distribution of Generated Sentence Lengths
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Figure 2: Distribution of 100,000 negative examples.

C Distribution of the terminals

G.
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Figure 4: Distribution of source and target terminals in
random, programmed to follow the same distribution

as G.

D Seq2Seq Model Tables

Parameter Model 1 Model 2
Enc. Layers 6 1
Dec. Layers 6 1
Enc. Emb. Dim. 512 256
Dec. Emb. Dim. 512 256
Epochs 15 1

Table 1: Comparison of Model Configurations

E Dataset pairs

Dataset pairs follow this structure:
<CLS> (src) <SEP> (tgt) <LABEL> (Y/n)

Where (src) is a string € the source language de-
scribed by G and (tgt) is a string € the target lan-
guage described by G. <CLS>, <SEP>, <LABEL>

are special tokens and "Y" or "n" represent the final
labels: accepted or rejected.
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Figure 7: Worst configuration performance on G + G’.
Figure 5: Learning curve of the model for G+random
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Figure 8: Best performance using G + G'.

Figure 6: Learning curve of the same model for a more
complex grammar (G14+random
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Figure 9: Best performance using G + random.

Metric G+G" G+random
Training accuracy 97.38% 97.32%
Validation accuracy  86.23% 91.48%

Test accuracy 49.86% 50.16%
‘Y’ labels 1.16% 0.37%
‘n’ labels 98.57% 99.95%

Table 2: Performance results for the worst Transformer
configuration.

Metric G+G”  G+random
Training accuracy 98.12% 99.12%
Validation accuracy  97.74% 98.75 %

Test accuracy 95.62% 96.70%
‘Y’ labels 99.88% 99.74%
‘n’ labels 91.35% 93.67 %

Table 3: Performance results for the best Transformer
configuration.



	Introduction
	Synchronous Context-Free Grammars
	Experimental Grammar Design
	Language Generation Parameters


	First Experiment: Machine Translation
	Dataset Preparation
	Model Configuration and Results

	Second Experiment: Acceptor
	Dataset Preparation
	Model Setup
	Worst Configuration
	Best Configuration
	Future Work

	Conclusions
	Grammar definition
	Distribution of the sentences
	Distribution of the terminals
	Seq2Seq Model Tables
	Dataset pairs
	Learning
	Acceptor Best/Worst Configurations
	Acceptor performances

