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Abstract001

We explore the ability of Transformers to002
generalize Synchronous Context-Free Gram-003
mars (SCFG), i.e. to learn a particular gram-004
mar just from example strings. Two experi-005
ments were conducted. The first experiment006
explored Transformers’ capacity to translate007
between synthetic languages corresponding to008
the source and target side of an SCFG gram-009
mar. The second experiment sought for a Trans-010
former configuration which would be capable011
of SCFG parsing, i.e. identifying the ability to012
recognize licensed SCFG pairs of strings based013
on only positive and negative training examples.014
With a sufficiently large model, Transformers015
proved capable to learn this task to a high accu-016
racy (97.8%) even for very long inputs, longer017
than any training items.018

1 Introduction019

Transformers (Vaswani et al., 2023) are, in prin-020

ciple, incapable of handling unbounded strings of021

context-free grammars due to their fixed-size archi-022

tecture (Hahn, 2020). Yet, they excel in many natu-023

ral language processing tasks, including machine024

translation, where they achieve near-human quality025

(Popel et al., 2020), as well as image (Dosovitskiy026

et al., 2020) and speech (Dong et al., 2018) process-027

ing. Translation, however, often requires model-028

ing complex structural alignments between source029

and target languages, which, for some language030

pairs, can be described by synchronous context-free031

grammars (SCFGs) (Chiang, 2006). SCFGs im-032

pose a “doubly bracketing” structure—parallel hier-033

archical dependencies in both languages—making034

them particularly challenging for Transformers,035

as their theoretical limitations suggest a need for036

model size to scale with input length (Hahn, 2020).037

While these theoretical constraints are well-038

established, their practical implications remain un-039

derexplored. How large must a Transformer be to040

process SCFGs of varying complexity? How many041

examples, and of what diversity, are needed to learn 042

such grammars? This paper studies the empirical 043

behavior of Transformers on synthetic SCFGs to 044

estimate these practical limits and investigate their 045

learnability. Our work complements theoretical 046

analyses (Hahn, 2020; Merrill et al., 2021, 2022; 047

Weiss et al., 2021) by providing experimental evi- 048

dence on the interplay between model size, training 049

data, and grammar complexity. 050

We focus on two tasks: translation, where 051

Transformers must induce and apply SCFG rules 052

to map between synchronized languages, and pars- 053

ing, where they determine whether a string pair 054

conforms to the grammar. Our experiments aim to 055

assess whether Transformers can generalize from 056

examples—inferring hierarchical rules rather than 057

memorizing surface patterns. To this end, we: 058

• Design SCFG templates that emphasize key 059

properties, such as deep recursion and nested 060

productions, while maintaining simplicity (e.g., 061

limited vocabulary size). 062

• Train two Transformer architectures: 063

1. Encoder-Decoder for translation between 064

synchronized languages. Success here sug- 065

gests the model infers hierarchical dependen- 066

cies, indicating rule induction rather than pat- 067

tern memorization. 068

2. Encoder-Only for parsing, predicting 069

whether sentence pairs conform to the 070

SCFG’s rules, even for longer inputs. This 071

tests generalization beyond the training set. 072

Our results provide empirical insights into the 073

constants governing Transformer performance: the 074

model size (e.g., heads, layers) required for inputs 075

of given lengths and the number and diversity of 076

examples needed to learn SCFGs of varying com- 077

plexity. 078
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2 Synchronous Context-Free Grammars079

SCFGs extend standard Context-Free Grammars080

(CFGs) by generating pairs of related strings si-081

multaneously (Chiang, 2006). SCFGs consist of082

production rules with dual right-hand sides (rhs),083

referred to as the “source rhs” and “target rhs”.084

Each production synchronously generates the same085

non-terminals on both sides, though their positions086

may differ, allowing flexibility in the order between087

source and target outputs. Non-terminals in SCFGs088

are linked via indices: numbers that connect each089

source non-terminal to its corresponding target non-090

terminal, enabling synchronous generation.091

2.1 Experimental Grammar Design092

The constructed grammar for this study incorpo-093

rates five critical features:094

• Deep recursion: Enables complex hierarchical095

structures.096

• Compact vocabulary: Limited terminal sym-097

bols (vocabulary of the two languages).098

• Binary form: Pre-binarized to ensure compat-099

ibility with the CYK-like SCFG parser, which100

requires the grammar to be in Chomsky Normal101

Form. This is guaranteed by productions with102

either two non-terminals or a terminal.103

• No ϵ-productions: ϵ-productions are not used at104

all in this whole experiment because they would105

introduce an ulterior level of complexity, espe-106

cially for the parsing stage.107

• Ambiguity: A single token on the source right-108

hand side may correspond to multiple possible109

translations on the target right-hand side, intro-110

ducing ambiguity in the process.111

The grammar generation system extends the112

nltk.grammar library that handles common CFGs113

(Bird et al., 2009). The implementation preserves114

the original module’s interface while incorporating115

functionality for synchronous production.116

The grammars used for the generations of pairs117

are visible in Appendix A.118

2.1.1 Language Generation Parameters119

The generation process of grammar G is controlled120

by parameters that affect:121

• Recursion probability: Decreases logarithmi-122

cally with derivation depth. Tuning this param-123

eter determines whether to prioritize shallower124

trees or more complex ones.125

• Maximum length: It limits the generation of126

sentences to a certain upper bound.127

The final distribution of the sentences, sorted by 128

their length, is visible in Figure 1 and Figure 2 of 129

Appendix B, while the distribution of the termi- 130

nals that belong to the two synchronous grammars 131

(source rhs and target rhs) are visible in Figure 3 132

and Figure 4 of Appendix C. 133

A Synchronous CYK Parser, also called Bi- 134

Text Parser(Chiang, 2006), was implemented from 135

scratch in order to clean out all the sentences that 136

are common both in the good grammar G and in 137

the wrong grammars G′ and rand. 138

3 First Experiment: Machine Translation 139

This experiment evaluates the performance of a 140

sequence-to-sequence Transformer model for ma- 141

chine translation, implemented using the FairSeq 142

library. (Ott et al., 2019) 143

FairSeq, a PyTorch-based framework developed 144

by Meta, abstracts low-level complexities, enabling 145

efficient experimentation with Transformer archi- 146

tectures and hyperparameters. The objective was 147

to train a Transformer on paired sentences and as- 148

sess its ability to generate accurate target sentences 149

from source sentences during testing. Specifically, 150

we evaluated whether the generated translations 151

align with the gold-standard test set or remain con- 152

sistent within the specified G when paired with the 153

source sentence - this is checked using the parser. 154

While promising results would demonstrate the 155

transformer’s translation capabilities, they may not 156

fully reveal its generalization ability, as it could 157

rely on simplistic token mappings between syn- 158

thetic languages. To address this, a more complex 159

experiment is described in Section 4. 160

3.1 Dataset Preparation 161

The dataset comprises 100,000 sentence pairs, split 162

into three subsets: training(66%), validation(22%), 163

and test(12%). 164

3.2 Model Configuration and Results 165

The Transformer model was trained on the bina- 166

rized dataset using an encoder-decoder architecture. 167

The best-performing configuration, which achieved 168

a remarkable 97% accuracy on 10,000 test samples, 169

is detailed in Appendix D under Model 1. This 170

configuration demonstrated that the Transformer ef- 171

fectively learned to translate between the synthetic 172

languages. However, reducing the model’s capacity 173

or training duration degraded performance signif- 174

icantly. The worst configuration tested, referred 175
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as Model 2 in Appendix D, yielding only 1.17%176

accuracy on generated sentence pairs.177

These results highlight the importance of suf-178

ficient model capacity and training duration for179

effective translation in this context.180

4 Second Experiment: Acceptor181

The first experiment demonstrated the capability182

of a Transformer to generate a target-language183

sentence that correctly translates a given source184

sentence. This experiment investigates whether a185

Transformer can classify a pair of input sentences186

as generatable by a SCFG (Chiang, 2006).187

The Acceptor Transformer is an encoder-only188

Transformer designed to perform a binary classi-189

fication task. It takes as input a pair of sentences190

from source and target languages and outputs a191

token: "Y" (accepted) if the pair conforms to the192

target grammar, or "n" (rejected) otherwise.193

Successful classification of sentence pairs as194

within or outside the SCFG’s language would in-195

dicate the transformer’s ability to generalize over196

data, rather than relying solely on memorization197

of large datasets. Such capability suggests an un-198

derstanding of the grammar’s complex structure,199

characterized by recursion and potential ambiguity.200

4.1 Dataset Preparation201

The experiment utilizes two different datasets for202

the experiment. Both datasets are filtered through a203

parser to exclude any pairs that could interfere with204

Transformer training. The datasets are designed for205

the following purposes:206

• Small Training Set: A relatively small dataset207

(200,000 pairs) tests the transformer’s efficiency208

in learning from limited data.209

• Validation on Similar Data: Short sentences210

(length 2–14, matching training) with a over-211

lap of approximately 15% evaluate whether the212

model performs well on familiar sentences.213

• Testing on Complex Data: Longer, entirely un-214

seen sentences (length 15–100) assess general-215

ization, as these sentences are more complex.216

(The yellow histograms in Appendix H show217

the exact quantity of examples per each length218

using both the random grammar and the “anti-219

grammar” G′.)220

The dataset is composed of pairs of sentences221

built as shown in Appendix E.222

Dataset G + G′ 223

The first dataset is derived from the chosen G and 224

an “anti-grammar” G′ designed to be structurally 225

similar but to generate a small percentage of in- 226

correct sentence pairs. The two grammars are 227

thought to have all reachable productions, all non- 228

terminals on the left-hand side able to produce both 229

unary and binary productions (which means respec- 230

tively to yield terminals or call other non-terminals) 231

and to have about 30 total productions. The "anti- 232

grammar" G′ introduces a new non-terminal and 233

some indices inversion with the goal of deviating 234

the standard grammar G from its normal behaviour. 235

Dataset G + random 236

The second dataset is built with pair sentences gen- 237

erated by G and randomly generated pair sentences. 238

The random grammar uses, as for G′, the same ter- 239

minal vocabulary of G and even mimics the same 240

probabilities of picking them. The strength of this 241

methodology lies in the fact that all terminals are 242

completely randomly placed in the sentence, there- 243

fore following no structure tree produced by the 244

previously mentioned algorithm. This will result in 245

more robustness for our experiment. 246

Another dataset of this type was built for a third 247

grammar named G14 and shown in Appendix A, 248

more complex than G, with more productions, ter- 249

minals and more recursion in its productions which 250

has also given positive results. 251

4.2 Model Setup 252

Multiple encoder-only Transformer configurations 253

were trained and evaluated on the two datasets 254

to determine which dataset yields superior perfor- 255

mance and whether randomly generated incorrect 256

pairs enhance generalization over SCFGs. The pri- 257

mary objective was to identify the optimal number 258

of attention heads, model dimension, and number 259

of layers for improved classification accuracy and 260

to derive scaling laws that facilitate generalization 261

over SCFGs. 262

Results indicate that both datasets produce com- 263

parable performance, with configurations yielding 264

the best and worst performances consistent across 265

datasets. The randomly generated incorrect pairs 266

(Dataset 2) achieve slightly higher accuracies (ap- 267

proximately 1% improvement). Poorly performing 268

configurations typically feature a small model di- 269

mension and limited dataset exposure (e.g., few 270

epochs). Many experiments have been conducted 271
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with different configurations of the model. The two272

extremes are reported in the following sections.273

4.3 Worst Configuration274

The Transformer architecture for the reported re-275

sults features 3 layers, 16 attention heads, a 64-276

dimensional model and embedding space, trained277

for 5 epochs with a batch size of 256. Results for278

the two datasets are presented in Appendix G.279

This configuration predominantly predicts “n”280

for longer sentences, despite reasonable validation281

performance, suggesting limited generalization to282

unseen test data. See Appendix H, Figure 7.283

4.4 Best Configuration284

The architecture for the reported results features285

5 layers, 32 attention heads, a 256-dimensional286

model and 128-dimensional embedding space,287

trained for 13 epochs with a batch size of 256.288

Results for the two datasets are presented in Ap-289

pendix G while the accuracy performances on test290

set are visible in Figure 8 and Figure 9 of Ap-291

pendix H. The learning curve and the loss of the292

model are shown in Appendix F.293

4.5 Future Work294

To build on the findings of this study, the following295

directions for future research are proposed:296

Exploration of Complex Grammars: Investi-297

gate other and more sophisticated grammars, in-298

cluding those that closely resemble natural lan-299

guages. This includes designing and testing SCFGs300

with increased numbers of terminals and produc-301

tion rules.302

Grammatical Property Injection: Embed-303

ding specific grammatical properties into natural-304

language-like SCFGs. We aim to identify which305

grammatical properties facilitate or hinder transla-306

tion tasks, providing deeper insights into the mod-307

els’ ability to learn structural recursion. We al-308

ready have results (Appendix F) that suggest that309

a more complex grammar, having both a greater310

number of eligible productions and a larger termi-311

nal vocabulary, requires larger model dimension312

and embedding space as well as more training time313

to converge.314

Development of Scaling Laws: Conduct ex-315

tensive experiments to derive scaling laws (Ka-316

plan et al., 2020) that optimize Transformer perfor-317

mance across a wide range of grammars. These318

laws would quantify the relationships between319

model parameters (e.g., number of attention heads,320

layers, and model dimensionality) and dataset size 321

to maximize translation accuracy. Preliminary ob- 322

servations suggest that configurations with 16 or 323

32 attention heads, 3 layers, and a model dimen- 324

sionality of 256 to 512 are promising. 325

These directions aim to enhance the generaliz- 326

ability of our findings and provide a deeper un- 327

derstanding of Transformer capabilities in learning 328

and translating recursive grammatical structures. 329

5 Conclusions 330

We empirically examined the learnability of Syn- 331

chronous CFGs by transformers. Our results dif- 332

fered from the initial expectations. Contrary to 333

our hypothesis, the sequence-to-sequence Trans- 334

former demonstrated the ability to learn the general 335

structure of the grammar, despite the vast number 336

of possible recursive syntactic structures of only 337

a fraction was demonstrated in the training data. 338

Encoder-only also learned to identify sequences 339

licensed by the SCFG at the accuracy of 96.7%, 340

offering a practically appealing alternative to exact 341

parsing. 342

Limitations 343

This study inevitably has limitations. The experi- 344

ment currently demonstrates that Transformers can 345

learn some specific grammars with a limited set of 346

terminals (far fewer than what would be needed 347

for natural languages) and a small number of pro- 348

duction rules (in the range 30–50, in contrast to 349

thousands required to simulate a natural language). 350

Despite the high recursion in these rules, the sim- 351

plicity of the grammars restricts the generalizabil- 352

ity of the findings. Moreover, natural languages 353

have more complex alignments, not captured in 354

our grammars, such as non-1:1 token alignments 355

and the absence of ϵ productions. The results for 356

grammar G14 (a more complex grammar than G), 357

shown in Figure 6, suggest that the best configura- 358

tion from the Section 4 experiment can still learn a 359

more complex grammar. However, achieving the 360

same prediction accuracy as for G requires differ- 361

ent model tuning. 362
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A Grammar definition 422

1. G: (manually created) 423

S -> A{1} B{2} // B{2} A{1} 424

A -> A{1} B{2} // A{1} B{2} 425

A -> C{1} F{2} // C{1} F{2} 426

B -> B{1} F{2} // F{2} B{1} 427

B -> D{1} A{2} // D{1} A{2} 428

C -> C{1} D{2} // D{2} C{1} 429

C -> F{1} B{2} // B{2} F{1} 430

D -> F{1} A{2} // F{1} A{2} 431

D -> D{1} C{2} // D{1} C{2} 432

F -> D{1} B{2} // B{2} D{1} 433

F -> F{1} C{2} // C{2} F{1} 434

A -> a // e 435

A -> b // f 436

A -> a // g 437

B -> b // f 438

B -> a // e 439

C -> c // g 440

C -> d // f 441

D -> d // h 442

D -> c // g 443

F -> c // g 444

F -> a // h 445

2. G′ ("anti-grammar"): 446

S -> A{1} B{2} // B{2} A{1} 447

A -> F{1} E{2} // F{1} E{2} 448

A -> C{1} F{2} // C{1} F{2} 449

B -> A{1} F{2} // F{2} A{1} 450

B -> D{1} A{2} // D{1} A{2} 451

C -> D{1} D{2} // D{2} D{1} 452

C -> B{1} B{2} // B{2} B{1} 453

D -> F{1} A{2} // F{1} A{2} 454

D -> S{1} C{2} // S{1} C{2} 455

F -> D{1} B{2} // B{2} D{1} 456

F -> F{1} C{2} // C{2} F{1} 457

E -> D{1} C{2} // D{1} C{2} 458

E -> F{1} A{2} // A{2} F{1} 459

A -> d // e 460

A -> c // f 461

A -> b // g 462

B -> a // f 463

B -> c // e 464

C -> d // g 465

C -> d // h 466

D -> c // h 467

D -> c // g 468

F -> a // g 469

F -> b // e 470

E -> b // h 471
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3. G14: (generated by a Grammar Generator)472

S -> N{1} Y{2} // N{1} Y{2}473

Y -> A{1} R{2} // R{2} A{1}474

N -> D{1} N{2} // N{2} D{1}475

R -> S{1} A{2} // S{1} A{2}476

D -> N{1} R{2} // N{1} R{2}477

N -> D{1} R{2} // R{2} D{1}478

D -> R{1} N{2} // N{2} R{1}479

R -> Y{1} D{2} // Y{1} D{2}480

N -> A{1} N{2} // N{2} A{1}481

A -> Y{1} N{2} // Y{1} N{2}482

N -> R{1} A{2} // R{1} A{2}483

A -> R{1} R{2} // R{1} R{2}484

Y -> R{1} Y{2} // Y{2} R{1}485

D -> A{1} R{2} // R{2} A{1}486

Y -> k // m487

R -> k // s488

A -> d // m489

Y -> d // t490

D -> l // p491

D -> i // s492

A -> i // v493

Y -> k // s494

A -> h // u495

Y -> l // v496

B Distribution of the sentences497
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Figure 1: Distribution of 100,000 positive examples.
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Figure 2: Distribution of 100,000 negative examples.
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Figure 3: Distribution of source and target terminals in
G.
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Figure 4: Distribution of source and target terminals in
random, programmed to follow the same distribution
as G.

D Seq2Seq Model Tables 499

Parameter Model 1 Model 2
Enc. Layers 6 1
Dec. Layers 6 1
Enc. Emb. Dim. 512 256
Dec. Emb. Dim. 512 256
Epochs 15 1

Table 1: Comparison of Model Configurations

E Dataset pairs 500

Dataset pairs follow this structure: 501

<CLS> (src) <SEP> (tgt) <LABEL> (Y/n) 502

Where (src) is a string ∈ the source language de- 503

scribed by G and (tgt) is a string ∈ the target lan- 504

guage described by G. <CLS>, <SEP>, <LABEL> 505

are special tokens and "Y" or "n" represent the final 506

labels: accepted or rejected. 507
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Figure 5: Learning curve of the model for G+random
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Model Config:
d_model: 256
dim_feedforward: 128
dropout: 0.3
epochs: 13
learning_rate: 0.001
max_seq_length: 250
nhead: 32
num_encoder_layers: 5
train_len: 414
vocab_size: 18

Training and Validation Metrics

Training Loss
Training Accuracy
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Validation Accuracy

Figure 6: Learning curve of the same model for a more
complex grammar G14+random

G Acceptor Best/Worst Configurations509

Metric G+G′ G+random
Training accuracy 97.38% 97.32%
Validation accuracy 86.23% 91.48%
Test accuracy 49.86% 50.16%

‘Y’ labels 1.16% 0.37%
‘n’ labels 98.57% 99.95%

Table 2: Performance results for the worst Transformer
configuration.

Metric G+G′ G+random
Training accuracy 98.12% 99.12%
Validation accuracy 97.74% 98.75%
Test accuracy 95.62% 96.70%

‘Y’ labels 99.88% 99.74%
‘n’ labels 91.35% 93.67%

Table 3: Performance results for the best Transformer
configuration.
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Figure 7: Worst configuration performance on G + G′.
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Figure 8: Best performance using G + G′.
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Figure 9: Best performance using G + random.
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