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ABSTRACT

Utilizing large-scale datasets is essential for training high-performance deep learn-
ing models, but it also comes with substantial computation and storage costs. To
overcome these challenges, dataset distillation has emerged as a promising solu-
tion by compressing large-scale datasets into smaller synthetic versions that retain
the essential information needed for training. This paper proposes a novel parame-
terization framework for dataset distillation, coined Distilling Dataset into Neural
Field (DDiF), which leverages the neural field to store the necessary information
of large-scale datasets. Due to the unique nature of the neural field, which takes
coordinates as input and output quantity, DDiF effectively preserves the informa-
tion and easily generates various shapes of data. Beyond the efficacy, DDiF has
larger feature coverage than some previous literature if same budget is allowed,
which is proved from the frequency domain perspective. Under the same bud-
get setting, this larger coverage leads to a significant performance improvement
in downstream tasks by providing more synthetic instances due to the coding effi-
ciency. DDiF demonstrates both theoretical and empirical evidence of its ability to
operate efficiently within a limited budget, while better preserving the information
of the original dataset compared to conventional parameterization methods.

1 INTRODUCTION

High performances from recent deep learning models are largely driven by scaling laws (Bengio
et al., 2007; Kaplan et al.| 2020), which heavily rely on large-scale datasets. In spite of this perfor-
mance gain, utilizing large-scale datasets incurs significant computation and storage costs. Dataset
distillation has been proposed as a potential solution to address these challenges (Wang et al.,[2018).
The goal of dataset distillation is to synthesize a small-scale synthetic dataset that contains the es-
sential information for training deep learning models. Naturally, one of the research directions in
dataset distillation is defining the essential information and developing efficient methods to learn it.
Many studies have been proposed to match some statistics, which is known to be critical in training
neural networks, of large datasets with synthesized small ones.

In parallel, another crucial research direction is parameterizing a small-scale synthetic dataset un-
der a limited storage budget. The naive parameterization method generates a synthetic instance in
the same structure, i.e. data dimension, as the original instance. Due to issues of scalability and
redundancy in this naive approach, various parameterizations enhance the efficiency under a limited
storage budget. Specifically, parameterization methods commonly employ low-dimensional codes
and decoding functions that transform a code in reduced dimensions into a data instance of the
original input space. Conceptually, the decoding functions can be categorized into 1) static decod-
ing (Kim et al., 2022} |Shin et al |2024); 2) parameterized decoding (Deng & Russakovsky, 2022}
Sachdeva et al., [2023; |Lee et al., 2022; |Liu et al., 2022; |Wei et al., 2024); and 3) deep generative
prior (Cazenavette et al., 2023} |Su et al., [2024aib; Zhong et al., [2024). Although these methods
have shown promising results, they have limitations in terms of expressiveness and robustness at
varying resolutions. Additionally, there has been limited exploration of the theoretical foundations
underlying their methods.

This paper introduces a new parameterization framework for dataset distillation that stores informa-
tion into synthetic neural fields under a limited storage budget, coined Distilling Dataset into Neural
Field (DDiF). A field is a function that takes a coordinate as an input and returns a corresponding
quantity, and a neural field parameterizes the field using a neural network. DDiF parameterizes a
synthetic instance as a synthetic neural field. We noted that the neural field has a structural difference
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compared to conventional decoding functions in dataset distillation, which map a low-dimensional
space to an instance-level space. Thanks to the nature of the neural field, DDiF effectively encodes
information from high-dimensional data, which is a crucial challenge in dataset distillation. More-
over, DDIF can easily decode data of extensive sizes, even if it has not seen it in the distillation
process. Beyond the efficiency, we provide the theoretical analysis of parameterization through the
expressiveness of synthetic instances. Based on this theoretical understanding, we prove that DDiF
has a larger function space that can represent than some previous literature, which implies higher
expressiveness. Throughout the various evaluation scenarios, DDiF consistently shows performance
improvements, generalization, robustness, and adaptiveness on vary modality datasets.

In summary, our contributions are as follows:

* We propose a new parameterization framework for dataset distillation, Distilling Dataset
into Neural Field, which employs the neural field to parameterized the synthetic instance.

* We provide theoretical analyses on DDIF by comparing the previous methods from the
perspective of feasible spaces covered by decoded synthetic instances.

* We empirically investigate the effect of DDIF in its performance gain, cross-architecture
generalization, and matching statistics generalization. Particularly, we present a new ex-
perimental design of generalization in cross resolution demonstrating the resolution adap-
tiveness of DDIiF. The experimental datasets include images, video, audio, and 3D voxel.

2 PRELIMINARY

2.1 PROBLEM FORMULATION

This paper focuses on dataset distillation for classification tasks. We define a given large dataset
that needs to be distilled as 7 = (X7,Y7r) = {(z;, yl)}llzll, where X7 = {a:l}ﬂ denotes a set

of D-dimensional input data 2; € X C RP, and Y7 = {yz}zl1 denotes a set of corresponding
labels among C-classes y; € V) = {1,...,C}. Let a classifier fy : X — ) be a neural network
parameterized by § € ©. We also define a loss function £ : ) x J — R.

The main goal of dataset distillation is to synthesize a small dataset such that a model trained on
this synthetic dataset can generalize well to a large dataset. Formally, given a synthetic dataset
N NE T
S = (Xs5,Ys) = {(xj,yj)}ljz‘l where Xs = {xj}‘j:‘l, Ys = {yj}ljz‘l, and |S| < |T]|, the

objective of dataset distillation is formulated as follows:

. L1 N
min B y)pa.y) [¢(fos (2),y)] where 9s=afggmm‘§ > s (7)5;) (M)

(%5,9;)€S

Nonetheless, the optimization of Eq. (I)) is both computationally intensive and lacks scalability, as it
entails a bi-level optimization problem for both € and S (Zhao et al., |2020; Borsos et al., 2020). To
overcome these issues, several studies have suggested the surrogate objectives to effectively capture
essential information needed for training the neural network on 7, such as matching gradient (Zhao
et al., 2020), distribution (Zhao & Bilenl [2023)), and trajectory (Cazenavette et al., [2022). In this
paper, we denote these objectives as L(7T,S).

2.2  PARAMETERIZATION OF DATASET DISTILLATION

The basic parameterization of a synthetic instance is to configure it in the same format as a real
instance. For example, if a real image instance = has a dimension of C' x H x W, then the parame-
terized synthetic instance Z also becomes a tensor of C' x H x W. This input-sized parameterization
suffers from scalability as the dimension of a given instance increases. Also, input-sized parame-
terization does not utilize the storage budget efficiently because it contains redundant or irrelevant
information (Lei & Taol 2023} |Yu et al., 2023; Sachdeva & McAuley} 2023).

Addressing these concerns, several studies have proposed new parameterization methods to enhance
the efficiency and representation ability of synthetic dataset S. In general, the parameterization
method utilizes a pair of compressed codes Z and decompressing function g to construct a synthetic
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dataset: 1) Z = {zj}Lzz‘l where z; € R”" and 2) decoding function g4 : RP" — RP. |'| Under
this framework, a decoded synthetic instance is represented by a combination of code and decoding
functioni.e. £; = g4(z;). Also, a set of decoded synthetic instances become Xs = {g4(2)|z € Z}.

Based on the form of the decoding function, they can be broadly categorized into 1) static de-
coding, 2) parameterized decoding, and 3) deep generative prior. Static decoding employs a non-
parameterized decoding function g, such as resizing (Kim et al.l 2022)) and frequency transform
(Shin et al.| [2024)). These methods are fast, easy to apply, and do not require a budget for the decod-
ing function. However, since this decoding function is fixed, the structure of code z becomes limited
without the ability to adaptively transform g. Also, using a static decoding function inevitably re-
duces expressiveness from a generalization perspective, leading to information loss.

Parameterized decoding utilizes a linear combination or a lightweight trainable neural network as a
decoding function g4. They employ a linear combination with learnable coefficients (Deng & Rus-
sakovsky}, [2022} [Sachdeva et al.| 2023)), decoder (Lee et al., [2022} |[Zheng et al., [2023)), autoencoder
(Liu et al.l [2022; |Duan et al.l [2023), or transformer structure (Wei et al., 2024). Although flexible
decoding functions are used, the parameters of the learned decoding function must also be stored
within a limited budget, necessitating the use of a simple structure (i.e. linear combination) or a
neural network with a small number of parameters. For this reason, its effectiveness has not been
demonstrated for complex data types (e.g., 3D, medical images).

Deep generative prior leverages a pretrained deep generative model without additional training, fo-
cusing only on learning the latent vector (Cazenavette et al., [2023 Su et al., [2024a;b} [Zhong et al.,
2024). This framework encourages better generalization to unseen architecture and scale to high-
dimensional datasets. However, it assumes easy access to a well-trained generative model, which
can restrict the range of applications. Also, since the deep generative model contains a large number
of parameters, the decoding process and backward update process take a long time.

2.3 NEURAL FIELD REPRESENTATION

In physics and mathematics, a field F' is a function that takes a coordinate in space and outputs a
quantity (Xie et al.| 2022)). If we apply the concept of field to data modeling, a dataset in grid-based
representation can be regarded as a field. For example, an RGB image is a function that maps from
pixel locations to pixel intensity. Similarly, a video datatype is a function that additionally takes time
as input, and a 3D datatype is a function that outputs occupancy value on 3D coordinate system.

According to the universal approximation theorem (Cybenkol |1989), any field can be parameterized
by a neural network, which is referred to as a neural field Fy. It implies that grid-based data can
be expressed as a neural network. Let C := {¢; };e7 be a set of coordinates of grid-based data and
Q = {¢; }iez be a set of corresponding quantities. To encode a grid-based data point using a neural
field F;,, we minimize a distortion measure, such as squared error, over all given coordinates as:

minz 1Fy(ci) — aills (2)
P~
€L
Recently, the neural field has been adopted to many applications, such as representation learning
(Park et al.| 2019; Mildenhall et al., |2021), generative modeling (Skorokhodov et al., 2021; [Dupont
et al.,[2021)), medical imaging (Shen et al., 2022} Zang et al.,|2021), and robotics (Li et al., [2022)).

3 METHODOLOGY

This section proposes a new parameterization framework for dataset distillation that stores infor-
mation of a real dataset in synthetic neural fields under a limited storage budget, coined Distilling
Dataset into Neural Field (DDiF). The core idea of this paper is to store the distilled information
in the synthetic function. Although there are several candidates for the form of synthetic function,
we primarily focus on (neural) field. Figure[I]illustrates the overview of DDiF. In the following, we
begin by explaining the reasons for choosing neural field as the form of synthetic function. Then,
we introduce our framework, DDiF, which parameterizes a synthetic instance using a neural field.
Finally, we provide a theoretical analysis for a better understanding of parameterization and DDiF.

! Although some studies (Deng & Russakovsky, 2022; Moser et al.,[2024) use both §j and z as inputs for g,
we expressed it as gy (z) for the sake of uniformity.



Under review as a conference paper at ICLR 2025

— Forward Path <— Back Propagation « Original = lgnore - Add Task
Parameterization S Dataset distillation loss T (e-g. classification)
y
o fo
[€%)) LT.8)
Trained Image (64)
Image Network "R
y t
fo
G, y,6) L(T,S)
e x
Video
y Z
(g. ¥,2) LT 8) f,
’ - 3D
Coordinate set  Neural Field Quantity Dataset Input A |
Fy Coordinates Image (512)
Dataset Distillation Stage Deployment Stage

Figure 1: Overview of the proposed framework, DDiF. Following previous dataset distillation stud-
ies, the overall process consists of two stages. In the dataset distillation stage (left), each decoded
synthetic instance is constructed by the output of each synthetic neural field F;, by inputting coordi-
nate set C. DDIF optimizes only the parameters ), as coordinate set C does not require optimization
or storage. Also, DDIF enables the encoding of various complex datasets. In the deployment stage
(right), DDiF easily decodes data with sizes that were not seen during the dataset distillation stage.

3.1 WHY NEURAL FIELD IN DATASET DISTILLATION?

Even if the neural field is widely adopted, no research has been conducted on integrating the neural
field into dataset distillation. Herein, we provide several properties, which are beneficial to dataset
distillation due to its structure.

Coding Efficiency. The neural field effectively encodes gp: R > RP
information from high-dimensional data. Distilling high-  codes
dimensional datasets is a crucial challenge in expanding he

the applicability of dataset distillation (Le1 & Tao, [2023)). z g ¢
Input-sized parameterization typically scales poorly with

resolution due to the curse of discretization (Mescheder,

2020). Utilizing a decoding function g, : RP " 5 RP (a) Previous decoding function
might improve scalability, but ultimately, the output of the
decoding function g4 depends on the data dimension D.

It implies the need for a more complex decoding function

as D increases, which becomes problematic with a limited Coo@mes
storage budget. On the other hand, the neural field stores in-
formation regardless of data dimension, as it only requires

inputting over more coordinates. Furthermore, the output (b) Neural field
dimension of the neural field is not the same as the data
dimension; instead, it relies on the dimension of quantity.
Figure [2] illustrates the structural differences between the
existing decoding function and neural field.

]

Figure 2: Illustration of structural dif-
ference between conventional decod-
ing function and neural field.

Resolution Adaptiveness. The neural field is robust to diverse resolution. Consider there is a
dataset consisting of data at multiple resolutions. Existing methods in dataset distillation require
either creating separate synthetic datasets for each resolution or training at a specific resolution fol-
lowed by resizing. These approaches need more storage space or result in insufficient information.
On the contrary, the neural field enables to store the information from multiple resolutions without
any additional storage. Furthermore, in the real world, it is often necessary to resize data depend-
ing on various downstream tasks (Wang et al.l 2020b; [Shorten & Khoshgoftaar, 2019). Existing
parameterization methods can only apply postprocessing on optimized synthetic datasets, leading
to insufficient information or information distortion. Meanwhile, the neural field easily obtains the
various sizes of data by adjusting the coordinate set due to the continuous nature of the neural field.
Furthermore, since the neural field is a continuous function, it provides more accurate values for
unseen coordinates. Please refer to Section [#.2]for the empirical evidence of this claim.
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3.2 DDIF: DISTILLING DATASET INTO NEURAL FIELD

As aforementioned, the neural field possesses beneficial features to dataset distillation. We introduce
a basic framework for integrating the neural field into dataset distillation. In detail, DDiF param-
eterizes a synthetic instance ; as a neural field Fyy,. DDiF consists of two main components: 1)
Coordinate set C and 2) Synthetic neural fields Fy.

Coordinate Set C. To define the function, it is first necessary to define the input space of the
function. Fundamentally, a decoded synthetic instance by the parameterization method is the same
shape as the real instance. Therefore, our synthetic function must be defined in the space where
the information of the real instances is stored. Suppose that the given real instance x € X7 is
n-dimensional grid representation with resolution Ny, k = 1,...,n, and each element contains m
values, i.e. m = 3 of RGB values. Formally, the real instance x is element in R”*~N1X**XNn Then,
the coordinate set C, where the values of x are stored, are defined by a bounded set of lattice points:

C = {(il,ig, Zn)

Note that there are several properties of coordinate set C, which become advantages in dataset dis-
tillation. First, since every real instance x € X7 is defined on the same coordinate set C (the only
difference is the value on each coordinate), we do not need to consider the coordinate individually.
Also, C is easily obtained if only the shape of the decoded instance is defined, without any additional
information. For instance, assume that we want to get N x N-shaped data instances. Then, C is a
set of lattice points in [0, N] x [0, N]. Due to these static and bounded characteristics, DDiF does
not need to optimize or store the coordinate set C. From this property, DDiF is a new framework that
leverages flexible decoding function g4 without inferring codes Z, and the traditional compressed
codes become the parameters 1) of the synthetic neural field F, that will be stored for distillation.

Synthetic Neural Fields F\y. DDIF utilizes neural field F, : R®™ — R™ to obtain the decoded
synthetic instance T by inputting the coordinate set C E] Specifically, given a coordinate set C, the
decoded synthetic instance by DDiF is & = [Fy;(c)]cec. In short, we denote the decoded synthetic
instance as F,(C) in the DDIF framework. In DDIF, since a decoded synthetic instance & and a
synthetic neural field I, have one-to-one correspondence, obtaining K decoded synthetic instances
requires K synthetic neural fields. We denote the parameter set of synthetic neural fields as ¥ =

{%}' ‘1 and the set of synthetic neural fields as Fy = {F}, }I . For the structure of a synthetic
neural field Fy,, we follow the tradition of the neural field (M1ldenhall et al.l 2021} Tancik et al.|
2020), which utilizes a simple L-layer neural network:

Fy(e) = W(L)(h(Lfl) o h(O))(C) + b, h(l)(c) - J(l)(W(l)c + b(l))

ir € {0,1,--+ Ny}, Vk = 1n}

where W) ¢ Réxdi-1 p() ¢ R% are weights and bias at layer I. o(!) denotes a nonlinear
activation function. Under this formulation, ¢ becomes {W ), b(") }lL:()‘

The nonlinear activation function (") plays an important role in the expressiveness of coordinate-
based neural networks. Although the most widely used activation function is ReLU o(z) =
max(0, x), it limits the expressiveness due to the spectral bias (Rahaman et al.,2019;|Xu et al., 2019)
which indicates that ReLU-based MLP learns high frequencies very slowly. Several approaches have
been proposed to mitigate the spectral bias, such as random Fourier features (Tancik et al., 2020)
and sine activation functions (Sitzmann et al., 2020). We provide an ablation study to compare the
effectiveness of these approaches in Section 4.3|

Learning Framework. Given a coordinate set C and a parameter set of synthetic neural fields ¥,
a set of decoded synthetic instances is represented by X5 = {F, (C)}‘j\ﬂl. Under the arbitrary
dataset distillation loss £L(7,S), the overall optimization of DDIF is formulated as follows:

mlnC(T S) where S = {(Fy,(C),¥;) }I‘I’I 3)

DDiF has no limitations in applying a learnable soft label (Sucholutsky & Schonlaul [2021};|Cui et al.,
2023)), but we utilize predefined one-hot labels to ensure a fair comparison with previous parame-
terization i.e. ; = y; € Y. In practice, dataset distillation commonly utilizes randomly sampled

We defined C for dataset distillation training, but the domain of F, is the entire n-dimensional space R™.
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real instance x € Xy as the initialization

of synthetic instance z. In the same context, Algorithm 1: Training procedure of DDiF

we conduct the warm-up training for synthetic Input: Original real dataset 7; Dataset
neural fields Fy. Concretely, we train Fly d1st111at10n IOSS L; Initialized
using Eq. () with randomly selected |¥|/C U= {’(/J]} 415 Learning rate 7
samples for each class. Algorithm [I] specifies Output: Parameterized synthetic dataset
a training procedure for our method DDiF. {5, 3) }Il‘li\l

Initialize coordinate set C from z € T
Budget calculation. As Eq. (3) shows, the : for j = 1 to |¥| do v

optimization target of DDiF is U = {T/Jy}l 3 Sample a real instance (z,y) ~ T
Note that each synthetlc neural field F’y utlhze Uj <y

do(n+1)+ 75 di(dy—1 +1) +m(dp—1 + Optimize ¢; with Eq. (2)

1) =: b parameters. We highlight that b does repeat

not depend on the size of the real instance D, Sample a real mini-batch By ~ T

so the high resolution would not necessarily Bs < {Fy(C)[¢) € U} from Up ~ ¥
increase the budget in F,. Given a budgetis U U —nVyL(Br,Bs)

B, we set a structure of F7, such as width d;
and number of layers L, to satisfy |¥|xb < B.

n s

10 until convergence;

3.3 THEORETICAL ANALYSIS

Even if several parameterization methods for dataset distillation are proposed, there has been little
discussion regarding the theoretical understanding of their methods. Herein, we provide a simple but
intuitive theoretical analysis of parameterization through the expressiveness of synthetic instances.
Then, we investigate the expressiveness of DDiF when using the sine activation function. Lastly, we
compare DDiF with a previous work, FreD (Shin et al.| 2024)).

Let’s say that the expressiveness of a synthetic instance is equal to the coverage of its corresponding
data space. Then, the optimization of the synthetic instance limits the coverage by its optimization
feasibility. Given this conceptual assumption, we observe the relationship between the feasible
space of synthetic instances and the optimal value of the dataset distillation objective. Herein, we
assume only synthetic inputs X s as the optimization variable. Consequently, dataset distillation loss
L(T,S) is simply expressed as a function of Xs i.e. L(T,S) is represented by £(Xs).

Observation 1. Let two matrix variables X1 = [z11,...,x10] and Xo = [x21, ..., m20s] con-
sisting of columns x;; € &; C R for i = 1,2 and j = 1,..,.M. If X; C X, then
minxlele ;C(Xl) Z mianesz E(XQ).

Please refer to Appendix [A-T]for proof. Observation [T|claims that if a particular synthetic instance’s
feasible space contains another synthetic instance’s feasible space, the former’s optimal value is
lower under the same number of synthetic instances. This result is intuitive when considering situa-
tions where either optimizable dimension or value is constrained. Please refer to Appendix [C.3] for
the empirical evidence of Observation [T}

As an extension of Observation [T} which considers input-sized parameterization, Observation [2] in-
vestigates the relationship between the feasible space of decoded synthetic instances and the optimal
value of the dataset distillation objective:

Observation 2. Consider two functions g1, gs where g; : Z; — RY for i = 1,2. Also, consider
two matrix variables Z; = [zﬂ, ...,ziM] where their columns z;; € Z; fori = 1,2 and j =

. M. We denotes §;(Z;) = [gi(zi1), ... gi(zinr)] for i = 1,2. Set G; == {glg : Z; — R} for
i =12 If g1(21) C g2(22) for any g1 € G1 and g2 € Ga, then ming, cg, 7, ez L£(§1(Z1)) >
ming, cg, z,ezy £(92(Z2)).

Please refer to Appendix [A.2]for proof. Observation 2| claims a similar statement: the optimal value
of dataset distillation loss becomes smaller as the feasible space of decoded synthetic instances
becomes larger. The larger feasible space enables a more complex combination, or expressiveness, of
codes Z and decoding function g, and the combination enhances the performance. The experimental
finding in |Shin et al| (2024) that an increase in frequency dimension leads to improved dataset
distillation performance supports Observation [2]
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Now, we focus on the expressiveness of DDiF. The following theorem states the representation
ability of a two-layer sinusoidal neural network which is a special case of DDiF:

Theorem 1. (Novello| 2022) Consider a neural network Fy, : R — R with two hidden layers and
width d. If Fy, utilizes a sine activation function, then F, represents a function which is the sum of
sines and cosines:

Fy(z) = b2 4 Z ay, cos (wgx) + B sin (wyx) )
kezd
where wy, = (k,WO), ¢ = (kb)) + bl(»l), ap = Z?zl Apisin(pg,) and B, =

Zle A i cos (pr,i). Also, Ay; = Wi@))\k(Wi(l)) and )\k(Wi(l)) = Hj:1 Ty (Wi(jl)) where
Jy; denotes Bessel function of the first kind of order k;.
Remark 1. By using trigonometric identity, Eq. is represented by the sum of cosines:

d

Fy(z) =0 + Ap.icos (wpz + ¢l ;) where = i — — 5
v () ;gz:d ; k, (wre + ¢ii) Phi = Phi = 5 4)
According to Theorem E] and Remark El, DDiF enables to change the amplitudes Ay ;, frequencies
wy, phases cp;c) ;» and shift b, Eq. (5) has a similar form of expressiveness of previous work, FreD
(Shin et al., 2024)). FreD optimizes frequency coefficients, which are selected by the explained
variance ratio. They utilize inverse discrete cosine transform (IDCT) to decode synthetic instances
from the frequency domain. Suppose that FreD utilizes IDCT with N equidistant locations on
R. Also, when Y C Cxn = {0,..., N — 1} is the index set of selected frequency dimension; the
optimized frequency coefficients is denoted as I' := {v,|u € U}. Then, the value of decoded

synthetic instance by FreD is expressed in the form of a function over Cy:

U ™
g(x;T) = Z Yu €08 | —x + —— | where =z € Cy (6)
> e (e 1)

Thanks to the similarity, we provide the relationship between the feasible space of DDiF and FreD:
Theorem 2. Forany z € Cy, g(z;T') C Fy(z).

Please refer to Appendix [A.4]for proof. Theorem[2]implies that the range of decoded values of DDiF
is wider than FreD. From a dataset distillation perspective, if |/| > 6, DDIF enables to construct a
valid neural network i.e. d > 1 with same budget. Consequently, according to Observation 2} DDiF
achieves a smaller optimal value of dataset distillation loss than FreD. Please refer to Appendix [D.1]
for a detailed comparison between DDIF and FreD based on Egs. (5) and (6).

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

To evaluate the efficacy of DDiF, we primarily focus on the experiments on high-resolution image
datasets, ImageNet-Subset (Cazenavette et al., [2022} 2023) with 128, 256 resolution, which is a
more challenging task in dataset distillation. Please refer to Appendix [C]for the experiments on low-
resolution datasets, such as CIFAR-10 and CIFAR-100 (Krizhevsky et al., [2009). Furthermore, we
conduct several experiments to verify the applicability of DDiF on various modalities. We utilizes
miniUCF for video (Wang et al.| 2024} [Khurram| 2012), Mini Speech Commands for audio (Kim
et al.,2022; Warden, |2018]), and ModelNet (Wu et al.,|2015), ShapeNet (Chang et al., 2015) for 3D.
We enumerate the baselines and details of loss configurations in Appendix [B|

4.2 EXPERIMENTAL RESULTS

Main Performance. Table|l|shows the overall performance for ImageNet-Subset with resolution
128 and 256 under IPC=1. We utilize trajectory matching (TM) for 128 resolution and distribution
matching (DM) for 256 resolution. DDIF achieves the best performances in all experimental settings.
Remarkably, DDiF shows a significant performance margin compared to the second-best performer:
from 3.4%p to 6.1%p in 128 resolution, and from 5.8%p to 11.7%p in 256 resolution. Please check
A row of Table[T} We underline the performance gap from vanilla to DDIF is significant, proving the
efficacy of our method as dataset parameterization. In Table 2] DDiF shows consistent improvement
and highly competitive performance with baseline. These results demonstrate that the neural field
positively impacts efficiency and performance enhancement, particularly when the budget is very
limited. Please refer to Appendix |C|for the experiments on CIFAR-10 and CIFAR-100.
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Table 1: Test accuracies (%) on ImageNet-Subset with regard to various dataset parameterizations
under IPC=1. "IPC” denotes instances per class, which indicates the total allowed budget. We
utilize trajectory matching (TM) for 128 x 128 and distribution matching (DM) for 256 x 256.
For Vanilla (TM) in 128 x 128, we report our implementation results, which are higher than the
officially reported. Bold and Underline mean the best and second-best performance of each column,

respectively. ”—"" indicates no reported results. A represents the performance gap over Vanilla. The
full table with standard deviations is in Appendix
Resolution 128 x 128 256 x 256
Subset Nette Woof  Fruit Yellow Meow Squawk Nette  Woof  Fruit  Yellow Meow Squawk
Ioutsiged Vanilla 514 207 288 475 333 410 321 200 195 334 212 276
puts FRePo 481 297 — - - - - - - - - -
Static IDC 614 345 380 565 395 502 537 302 331 522 346 470
FreD 66.8 383 437 632 432 570 542 312 325 491 340 431
HaBa 519 324 347 504 369 419 - - - - - -
Parameterized  SPEED 669 380 434 626 436 609 577 - - - - -
LatentDD ~ — - - - - - 561 280 307 - 363 411
NSD 686 352 308 610 452 529 - - - - - -
. GLaD 387 234 231 - 260 358 - - - - - -
DGMPrior g Grap 154 283 256 - 296 397 - - - -
Function  PPIF 720 429 482 690 474 670 678 396 432 631 448 670
A(%) (40.1) @444) (674) (453) (423) (634) (1112) (96.0) (121.5) (88.9) (107.4) (142.8)
Entire dataset 7 874 670 639 844 667 8.5 925 801 702 905 722 932

Table 2: Test accuracies (%) on ImageNet-Subset Table 3:  Average test accuracies (%) on
under IPC=10. ImageNet-Subset (128 x 128) across AlexNet,
VGG11, ResNetl8, and ViT, under IPC=1.

Method  Nette Woof Fruit Yellow Meow Squawk

™ 63.0 358 403 60.0 40.4 52.3 Method  Nette Woof Fruit Yellow Meow Squawk
FRePo 665 422 — - - - ™ 20 148 171 223 162 255
IDC 708 398 464 687 479 654 ; : :
IDC 279 195 239 280 198 299
FreD 720 413 470 692 486 673
FreD 362 237 236 312 191 374
HaBa 647 386 425 630 429 568
SPEED 729 441 500 705 520 718  owD 304 0710 2L1 - 196 282
229 44l 50 - - 8 yoLap 308 174 215 - 201 288

DDiF 746 449 498 705 50.6 72.3 LD3M 320 199 214 _ 2.1 304
Entire 7 874 67.0 639 84.4 66.7 87.5 DDiF 593 341 393 511 33.8 54.0

Cross-architecture Generalization. The network structure used for dataset distillation might dif-
fer from the one used for training with the distilled dataset. Accordingly, the parameterization meth-
ods should achieve consistent performance enhancement across various test network architectures.
In this study, we utilize AlexNet (Krizhevsky et al.L|2012b), VGG11 (Simonyan & Zisserman,|[2014)),
ResNet18 (He et al., [2016)), and ViT (Dosovitskiy, [2020) while ConvNetDS5 is utilized in training.
Table 3] presents that DDiF consistently outperforms. Remarkably, DDiF shows a significant perfor-
mance gap to the second-best performer from 10.4%p to 23.1%p. These results indicate that DDiF
effectively encodes important task-relevant information regardless of the training network.

Robustness to the Dataset Distillation Loss. Table 4: Test accuracies (%) on ImageNet-Subset
Another important evaluation metric for param- (128 x 128) across DC and DM under IPC=1.

eterization is whether it constantly improves the
performance across various dataset distillation L Method Nette Woof Fruit Meow Squawk

losses. We utilize gradient matching (DC) and Vanilla 342 225 210 220 32.0
distribution matching (DM) to evaluate the ro- IDC 454 255 268 253 34.6
i1t FreD 49.1  26.1 300 287 39.7

bustness to the dataset distillation loss. In Table  DC GlLaD 354 223 207 26 338
[l DDiF achieves the best performances in both H-GLaD 369 240 224 241 353
dataset distillation losses. These results confirm DDiF 612 352 378 391 54.3
the robustness of DDIiF in dataset distillation Vanilla 304 207 204 20.1 26.6
loss, representing its wide adaptiveness. IDC 483 270 299 305 388
pm FreD 562 31.0 334 333 42.7

GLaD 322 212 218 223 27.6

Various Modality. Since dataset distillation H-GLaD 348 239 244 242 295

studies have mainly developed within the im- DDiF 692 420 453 458 64.6

age domain and only a few studies have focused

on the specific domain, the applicability of previous methods may be constrained. However, our
method, DDIF, consistently achieves the best performance across different domains, suggesting its
potential as a robust baseline for use across various modalities. First, Fi gureE] shows the test perfor-
mances on the video domain with regard to the required budget for running each method. Existing
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R ® )
25 ® Table 5: Test accuracies (%) Table 6: Test accuracies on 3D do-
S o on Audio domain. main under IPC=1.
20
§ . . Spec. / class 10 20 L Method ModelNet  ShapeNet
[
%15 oRandom eDM * Random 426 570 ~— Random 609 685
Herding eSDD ¢ Herding 562 729 Vanilla 56.3 48.6
40 ®K-Center #DDIF g DSA 65.0 74.0 DC IDC 78.7 79.9
10° 107 10° DM 69.1 772 FreD 85.6 88.2
Total utilized budget IDC-I 733 83.0 DDiF 87.1 89.6
IDC-1+HaBa 745 84.3 Vanilla 75.3 80.4
Figure 3: Test accuracies (%) IDC 829 86.6 pMm {JDCD ggg 2(5)2
on Video domain. Each black : re oL 20.6
DDiF 90.5 92.7 ;
line denotes the same num- - _ PD'F 884 93.1
ber of decoded instances per _Entre 934 Entire 91.6 98.3

class, 1 and 5, respectively.

dataset distillation methods, DM and SDD (Wang et al.l [2024) achieve higher performance than
coreset selections, but they still require a large storage budget size. DDiF achieves competitive per-
formance even with a budget equivalent to only 1.7% of SDD. Second, Table 5]and [6] shows the test
performances of audio and 3D domain, respectively. Both tables indicate that DDiF achieves the
highest performance. These results demonstrate the efficacy of DDiF in various modality datasets.
Cross-resolution Generalization. As 0

mentioned in Section 3.1] previous stud- u !

ies can only perform post-resizing on 10

optimized synthetic datasets, resulting in ‘

information distortion. In contrast, DDiF ' B Vanilla
can easily generate data of various sizes i
by adjusting the coordinate set, thanks to -25 Wree
the continuous nature of the neural field. 128(Org) 256 512 256 512 IZZEED
To verify this property, we introduce an Test resolution Test resolution
experiment when the size of data changes
from the dataset distillation stage to the
deployment stage, which is the first exper-
imental design in the dataset distillation
community. We define this setting as
a cross-resolution generalization.  We
apply the interpolation techniques, such
as nearest, bilinear, and bicubic, for the optimized synthetic data of existing parameterization.

|
(&

Test accuracy (%)

Test accuracy gap (%)

(a) Accuracy (b) Accuracy degradation

Figure 4: (a) Test accuracies (%) with different image
resolutions. The original resolution is 128x128. (b)
Test accuracy gap (%) from original. We use bilinear
interpolation for previous studies.

Figure [#a] shows test accuracies on each test resolution when utilizing the corresponding network
architecture, ConvNetD6 for 256 and ConvNetD7 for 512. DDiF shows the best performance over
all resolutions. Figure b] shows the amount of the test performance decrease percentage with the
resolution change i.e. (ACCorg — ACCiest)/ACC,, 4. DDIF shows the least decrease with regard
to resolution difference, being evidently robust to resolution change. Its robustness opens a new
adaptability of dataset distillation methods to more wide-range situations. Please refer to Appendix
[C|for the experimental results on different resizing techniques and the same architecture.

4.3 MORE ANALYSES

Fixed Number of Decoded Instances. To explore coding efficiency and expressivness, we fixed
the number of decoded synthetic instances and examined the performance by varying the budget
required for each synthetic instance. Figure [5] shows the performance curve when the number of
decoded synthetic instances is fixed as 1 per class. We observe that DDiF envelops the performance
curve of baselines. Specifically, it is empirical evidence of Theorem [2]that the performance curve of
DDiF envelops the performance curve of FreD. We also emphasize that DDiF maintains high per-
formance even with a small budget, whereas the baselines show significant performance degradation
as the allocated budget for each instance decreases. These results demonstrate that DDiF exhibits
higher coding efficiency and expressiveness compared to previous studies.
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Figure 6: Visualization of the decoded synthetic instances
from DDiF on various modalities.

Figure 5: Test accuracies (%) under
one decoded instance per class.

Qualitative Analysis. Figure [6] visualizes the decoded synthetic instances by DDIF on various
modalities. As shown in the first row in Figure[6] DDIF effectively decodes high-dimensional data
even with a very small budget, regardless of the modality. For instance, each synthetic neural field
utilizes a budget that is 1.96% of the original data size for images and 2.87% for 3D. After the
distillation stage, each decoded synthetic instance involves class-discriminative features, even with
significant budget reductions (See the second row). Notably, since the synthetic neural field is a con-
tinuous function, the quantity changes smoothly as the position changes. Please refer to Appendix

for more visualization results.

FFN SIREN
Network

Ablation Studies. DDiF employs a neu-
ral field, which is a neural network, to e
store the distilled information. We con- " m;\ﬁw
ducted several ablation studies to investi- §*

gate the effect of different components of
the neural network. Figures [7a] and [70] vi-
sualize the performance variation as the =
number of layers and the network width
change, respectively. As the number of
layers and the network width increases,

60

Test accuracy (%)

o
a

— a5 E70

Y
g
Test accuracy (%)
@
3
Test accuracy

50

o
S

N

S

30 40
Hidden dimension width

(b) Width d

4
Number of layers

(a) Layer L (c) Structure

the number of decoded synthetic instances
decreases because the number of param-
eters in each synthetic neural field also

Figure 7: Ablation studies on (a) layer L, (b) width
d, and (c) structure of neural field. The bottom black
dashed line indicates the performance of Vanilla.

increases. By comparing the layer and

width, the width has fewer decoded synthetic instances, but it has a more gradual performance
change than the layer. To explain the rationale, as shown in Eq. (3), width d directly affects k, which
is involved in the number of basis functions, while L only affects other factors. Thus, increasing d
leads to a modest change, as the increase in expressiveness offsets the reduction in quantity. In con-
trast, increasing L results in a relatively larger change, as the expressiveness remains similar while
the quantity decreases. Even when the structure of the neural field is changed as FFN
[2020), DDiF consistently shows performance improvement (see Figure[7c).

5 CONCLUSION

This paper introduces DDIiF, a novel parameterization framework for dataset distillation that encodes
information from large-scale datasets into synthetic neural fields under a constrained storage budget.
By utilizing neural fields, DDIF efficiently captures distilled information and can easily decode data
of varying sizes. We provide a theoretical analysis of dataset distillation parameterization, focusing
on the feasible space of decoded synthetic instances. Additionally, we demonstrate that DDiF pos-
sesses a larger feasible space compared to previous methods, indicating greater expressiveness. In
various evaluation scenarios, DDiF consistently exhibits improvements in performance, generaliza-
tion, robustness, and adaptability across diverse modality datasets. Please refer to Appendix [E] for
the limitation of DDiF.

10
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A PROOFS

A.1 PROOF OF OBSERVATION[I]

Observation 1. Let two matrix variables X, = [xn, @] and Xo = [x21, ..., x2n0s] con-
szstmg of columns x;; € X; C R fori = 1,2 and j = 1 M. If X1 C A, then
miny, exm £(X1) > miny, e pp L£(X2).

3 eeny

Proof. Fori=1,2,let X} = argminy, ¢ yum L£(X;). Note that XM C XM since X} C X,. By the
definition of X3, for any Xo € XM, £(X3) < L(X3). Since X7 € XM C XM, L(X3) < L(X7).
In conclusion, miny, ¢ yar £(X1) > miny, ¢ xar £(X2). O

A.2 PROOF OF OBSERVATION

Observation 2. Consider two functions g1, gs where g; : Z; — R% for i = 1,2. Also, consider
two matrix variables Z; = [zil, ...,ziM] where their columns z;; € Z; fori = 1,2 and j =
1,..., M. We denotes g;(Z;) = I:gi(Zil),...,gi(ZiM)] fori=1,2. Set G; = {glg : Z; — R} for
i =12 If g1(21) C g2(22) for any g1 € Gy and g3 € Ga, then ming, cg, 7, ez L(91(Z1)) =
ming, cg, z,ezy L£(92(Z2)).

K2

Proof. Fori = 1,2, let g7, ZF = argming, cg z,czm £(gi(Z;)). Note that g7 (27;) € g7 (Z1)

2N

92(Z5) for j = 1,..., M and any go € Go. It implies that there exists some go € Go, 22 € 2

such that 3(Z,) = g} (Z}). By the definition of g3, Z3, for any gy € Go, Zo € ZM, L(g3(Z3)) <
L(g2(Z2)). Therefore, L(g3(Z5)) < L(g;(Z7)). In conclusion, ming, cg, z,ezM L(1(Z1)) >
O

mingzegz,Zzezy L(92(Z2))-
A.3  DERIVATION OF THE EQ. (§)

Recall that o, := Zle Ap,isin (pg,;) and By, = Z?zl Api cos (pg.i)-
Fy(z) = b4 Z ay; cos (wgx) + P sin (wgx)

kezd

d d
= @4 Z { Z Ay isin (g ;) cos (wpx) + Z Ap i cos (g i) sin (wkx)}

kezd =1 i=1

d
= p® L Z Z Ay i sin (wkﬂc + sDk,z')

kezd i=1

d
s
= U0 LY scon ons k) where s = s 5

A.4 PROOF OF THEOREM[Z]

Theorem 2. Forany x € Cy, g(z;T') C Fy(z).

Proof To prove g(x;T') C Fy(z), it is sufficient to show that there exist neural network parameters
= {WW pU }2 0 which satisfy g(z;T") = Fy(z) forany I'and « € Cy = {0, ..., N — 1}. First,
we decompose Eq. (5) into a sum over C C Z¢ and the other terms:

Fy(z) = b3 4 Z ZAk,i cos (ka + <P;“>
kezd i=1
d d
= @ 4 Z Z Ay i cos (wkx + gp;m) + Z Z Ag,; cos (wkx + gagm)
kek i=1 keZA\K i=1
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Let K = {uei|u € U} where e; = [1,0,...,0]7 is the standard basis vector in R%. Set W(©) =
et pO) — SN €l p) — Ze1, and b2 = — Zkezd\K Zle Ay, ; cos (wkx + cp;“) Since the
absolute value of the Bessel function of the first kind has an upper bound |.J,,(r)| < oo for any p and
r, W) and W(?) can be configured to satisfy Ay ; = I/Vi(z) H;lzl Jr; (Wi(jl)) = .. Under these
parameters, F,(x) is same as g(z;T'):

d d
Fy(z) = b4 Z Z Api cos (wrr 4 ¢,;) + Z Z Api cos (wrx + ¢, ;)
kek i=1 keZA\K i=1
T T
= > 7ucos (*x + 7) = g(z;T)
ueld N 2N

Next, we prove that there is no I' such that g(z;T") = Fi;(z) for some ¢ and x € Cn. Note that
it is possible to choose k and W(®) which satisfy wj, = (k, W(©) #£ & forany u € U. Due
to the orthogonality of cosine functions having different frequencies, there is no I' that represents
cos (wipw + chH) terms. It implies g(z;T") cannot express Fy, (x) with some ¢ parameters. O

B EXPERIMENTAL DETAILS

B.1 DATASETS

Image Domain. We evaluate DDiF on a various benchmark image datasets. 1) ImageNet-Subset
(Howard, 2019; [Cazenavette et al., [2022) is dataset consists of a subset of similar characteristics in
the ImageNet. In the experiment, we consider various types of subsets by following |(Cazenavette
et al.[(2022)): ImageNette (various objects), ImageWoof (dog breeds), ImageFruit (fruit category),
ImageMeow (cats), ImageSquawk (birds), ImageYellow (yellowish objects). Each subset has 10
classes and more than 10,000 instances. We utilize two types of resolution: 128 x 128 and 256 x 256.
2) CIFAR-10 (Krizhevsky et al., 2009) consists of 60,000 RGB images in 10 classes. Each image
has a 32 x 32 size. Each class contains 5,000 images for training and 1,000 images for testing. 3)
CIFAR-100 (Krizhevsky et al.l [2009) consists of 60,000 32 x 32 RGB images of 100 categories.
Each class is split into 500 for training and 100 for testing.

Video Domain. We utilize MiniUCF (Wang et al., 2024), a subset of UCF101 (Soomro, [2012)
which includes 50 classes. The videos are sampled to 16 frames, and the frames are cropped and
resized to 112 x 112. Each data has 16 x 3 x 112 x 112 size.

Audio Domain. We utilize Mini Speech Commands (Kim et al., 2022), a subset of the original
Speech Commands dataset (Warden, 2018). We follow the data processing of Kim et al.| (2022).
The dataset consists of 8 classes, and each class has 875/125 data for training/testing. Each data is
64 x 64 log-scale magnitude spectrograms by short time Fourier transform (STFT).

3D Domain. We utilize a core version of ModelNet-10 (Wu et al.| [2015) and ShapeNet (Chang
et al., |2015), which are widely used in 3D. They includes 10 classes and 16 classes, resepctively.
Each 3D point cloud data is converted into 32 x 32 x 32 voxel.

B.2 NETWORK ARCHITECTURES.

ConvNet. By following previous studies, we leverage the ConvNetDn as a default network ar-
chitecture for both distillation and evaluation of synthetic datasets. The ConvNetDn is a convolu-
tional neural network with n duplicate blocks. Each n blocks consist of a convolution layer with
3 x 3-shape 128 filters, an instance normalization layer, ReLU, and an average pooling with 2 x 2
kernel size with stride 2. Lastly, it contains a linear classifier, which outputs the logits. Depend-
ing on the resolution of real dataset, we utilize different depth n. Specifically, ConvNetD3 for
32 x 32 CIFAR-10 and CIFAR-100, ConvNetD4 for 64 x 64 Audio spectrograms, ConvNetD5
for 128 x 128 ImageNet-Subset, ConvNetD6 for 256 x 256 ImageNet-Subset, and ConvNetD7 for
512 x 512 ImageNet-Subset.
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AlexNet. AlexNet is a basic convolutional neural network architecture suggested in (Krizhevsky
et al.l 2012a)). It consists of 5 convolution layers, 3 max-pooling layers, 2 Normalized layers, 2
fully connected layers and 1 SoftMax layer. In each convolution layer, ReL.U activation function is
utilized. We adopt this network to evaluate cross-architecture performance of DDiF.

VGG11. VGGI1 (Simonyan & Zisserman, [2014) is also applied for evaluation, which attributes
to 11 weighted layers. It consists of 8 convolution layers and 3 fully connected layers. Its design is
straightforward yet powerful, providing a balance between depth and computational efficiency. The
number of trainable parameters is around 132M, making it larger than earlier models but still suitable
for medium-scale tasks. We adopt this network to evaluate the cross-architecture performance of
DDiF.

ResNet18. ResNetl8 (He et al., [2016) introduces residual connections, which help mitigate the
vanishing gradient problem in deep networks by allowing gradients to bypass certain layers. It
consists of 18 layers with 4 residual blocks, each composed of two convolutional layers followed by
activation and normalization with around 11M trainable parameters. We utilize ResNet18 as one of
the architecture for evaluating synthetic datasets.

ViT. Vision Transformer (Dosovitskiy, [2020) utilizes the transformer architecture, initially de-
signed for sequence modeling tasks in NLP. For image classification, it divides images into non-
overlapping patches and processes them as a sequence using self-attention mechanisms. ViT has
around 10M trainable parameters in its base form and offers a competitive alternative to CNNss,
demonstrating the effectiveness of transformers in vision tasks. We selected ViT as the final net-
work to evaluate synthetic image datasets.

Conv3DNet. For 3D domain, we utilize Conv3DNet (Shin et al.,|2024), a 3D version of ConvNet.
Conv3DNet consists of three repeated blocks, each containing a 3 X 3 x 3 convolutional layer with
64 filters, 3D instance normalization, ReLU activation, and 3D average pooling with a 2 x 2 x 2
filter and a stride of 2. Lastly, it contains a linear classifier.

B.3 BASELINES.

Since our main focus lies on the parameterization of dataset distillation, we compare DDiF with 1)
static decoding, which are IDC (Kim et al.l 2022)) and FreD (Shin et al.| [2024); 2) parameterized
decoding, which are RTP (Deng & Russakovskyl |2022), HaBa (Liu et al., 2022), SPEED (Wei et al.}
2024])), LatentDD (Duan et al.| [2023)), and NSD (Yang et al., 2024)); and 3) deep generative prior,
which include GLaD (Cazenavette et al., 2023), H-GLaD (Zhong et al.| 2024)), and LD3M (Moser
et al.l 2024). We also demonstrate the performance improvement of DDiF compared to input-sized
parameterization, denoted as Vanilla.

B.4 IMPLEMENTATION SETTINGS.

Although any loss can be adapted to DDIF, we utilize TM (Cazenavette et al., 2022)) for £ as a
default unless specified. Following previous studies, we use DSA (Zhao & Bilen, 2021, which con-
sists of color jittering, cropping, cutout, flipping, scaling, and rotation. We adopt ZCA whitening on
CIFAR-10 (IPC=1, 10) and CIFAR-100 (IPC=1) with the Kornia (Riba et al., 2020) implementation.
We adopt SIREN (Sitzmann et al., 2020) for synthetic field F, as a default. SIREN is a multilayer
perceptron with a sinusoidal activation function, and it is widely used in the neural field area due to
its simple structure. We use the same width across all layers in a synthetic neural field i.e. d; = d
for all /. We utilize normalized coordinates defined on [—1,1]" for n-dimension data to enhance
stability (Sitzmann et al.| [2020), rather than using integer coordinates, which have a wide range. For
cross-resolution experiments, we utilize the coordinate set C', which consists of evenly spaced points
within the interval [—1, 1] according to the target resolution. We provide the detailed configuration
of the synthetic neural field, the resulting size of each neural field, the number of synthetic instances
per class, and the total number of neural fields in Table |/} We use Adam optimizer (Kingma & Ba,
2017) for all experiments. We fix the iteration number and learning rate for warm-up initialization
of synthetic neural field as 5000 and 0.0005. Without any description to distillation loss, we gen-
erally use matching training trajectory (TM) objective for dataset distillation loss L. Following the
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Table 7: Configurations of the synthetic neural field. In the case of Video, there is no increment of
decoded instances because we experimented with the fixed number of decoded instances.

Increment of

Modality Dataset IPC n L d m size(v) decoded instances
1 2 2 6 3 81 x37
CIFAR10 0 2 2 6 3 81 x37.9
50 2 2 20 3 543 x5.64
1 2 2 10 3 173 x17
Image  CIFAR100 0 2 2 15 3 333 %x9.2
50 2 2 30 3 1113 x2.76
1 2 3 20 3 963 x51
ImageNet-Subset (128) 10 2 3 20 3 963 x51
50 2 3 40 3 3523 x13.94
ImageNet-Subset (256) 1 2 3 40 3 3523 x55
. .. 1 3 6 40 3 8483 —
Video MiniUCF 5 36 40 3 8483 _
. .. 0 2 3 10 1 261 x15.6
Audio Mini Speech Commands 0 2 3 10 1 261 %15.6
D ModelNet 1 33 20 1 941 %34
ShapeNet 1 3 3 20 1 941 x34

previous studies, we utilize two types of default TM hyperparameters same as SPEED
and FreD 2024). We run 15,000 iterations for TM and 20,000 iterations for DM.
We use a mixture of RTX 3090, L40S, and Tesla A100 to run our experiments. We follow the con-
ventional evaluation procedure of the previous studies: train 5 randomly initialized networks with
an optimized synthetic dataset and evaluate the classification performance. We provide the detailed
hyperparameter in Table 23]

B.5 ALGORITHM FOR DECODING PROCESS OF SYNTHETIC INSTANCES

The main difference between DDiF and previous pa-
rameterization methods is the decoding process for
synthetic instances. Basically, the neural field takes
coordinates as input and output quantities. To gener-
ate a single synthetic instance, each coordinate ¢ € C
is input into the synthetic neural field F;, and then
the resulting value is assigned to the corresponding

Algorithm 2: Decoding process of Syn-
thetic instances in DDiF
Input: Set of parameters of synthetic
neural fields ¥; Coordinate set C
Output: Set of decoded synthetic
instances X g
1 Initialize Xg + ()
coordinate of the decoded synthetic instance x jc -2 for j = 110 |¥| do
Algorithm[2]illustrates this synthetic instance decod- 5 Initialize 7
ing process of DDiF. In this algorithm, we included a , for c € C do

loop over coordinates for clarity. However, it should L ~(c)

. . ) 5 z; « Fy (c)
be noted that in the actual implementation, the co- J N
ordinate set is input to the neural network in a full- ¢ Xs+ XsUZ;

batch manner.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 PERFORMANCE COMPARISON ON LOW-DIMENSIONAL DATASETS

To verify the wide-applicability of DDiF, we conducted experiments on low-dimensional datasets,
such as CIFAR-10 and CIFAR-100. In Table[8] DDiF exhibits highly competitive performances with
previous studies. These results demostrates that DDIF also properly applicable to low-dimensional
datasets, while DDiF shows significant performance improvement in high-dimensional datasets.
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Table 8: Test accuracies (%) on CIFAR-10 and CIFAR-100. Bold and Underline means best and

second-best performance of each column, respectively. ”—"" indicates no reported results.
Dataset CIFAR10 CIFAR100
IPC 1 10 50 1 10 50
™ 46.3+08 65.3+07 71.6+02 243+03 40.1+t04 47.7+02

Inputsized  ppopo 468107 65.5:04 717100 28.7i01 42.5:00 443400

IDC 50.0+0.4 67.5+05 74.5+02 — — —
FreD 60.6+0.8 70.3+0.3 75.8+0.1 34.6+04 42.7+0.2 47.8+0.1

HaBa 48.3+08 69.9+04 74.0+0.2 - - 47.0+0.2
RTP 66.4+0.4 712404 73.6+05 34.0+04 42.9+0.7 —
Parameterized HMN 65.7+0.3 73.7+0.1  76.9+02 36.3+02 454+02 48.5+0.2
SPEED 63.2+0.1  73.5+02 77.7+04 40.4+04 459403 49.1+02
NSD 68.5+0.8 734402 752+06 36.5+0.3 46.1+0.2 —

Function DDiF 66.5+0.4 74.0+0.4 77.5+0.3 42.1+02 46.0+0.2 49.9+0.2

Static

C.2 ADDITIONAL PERFORMANCE COMPARISON ON HIGH-DIMENSIONAL DATASET

Comparison under Large budget. In general, high-dimensional dataset distillation under a large
budget is rarely addressed in previous studies due to their significant computational cost. To demon-
strate the efficacy of DDiF even in a large budget setting, we conducted experiments on ImageNette
(128) under IPC=50. DDiF with TM achieves 75.2%=+1.3% while vanilla with TM achieves
72.8%40.8%. It means that DDIF effectively improves the dataset distillation performance even
with a larger storage budget for high resolution.

Comparison with Combination-based pa-
rameterization. Building on the observation
that there are common representations across
classes, several studies have proposed utilizing

Table 9: Test accuracies (%) on ImageNet-Subset
(128 x 128) under IPC=1.

Increment of

class-shared bases to improve budget efficiency decoded instances et Woof Fruit

and reduce spatial redundancies. In particu- “tm x1 514+23 297+09 288+12
lar, RTP (Deng & Russakovskyl [2022) gener- ~Tmartp 64 69.6+04 388+11 452417
ates synthetic instances by linearly combining —_TM+DDiF x5l 720+£09 429407 482412

class-shared bases, coefficients, and label vectors. Due to the advantage of combination, RTP has
demonstrated high performance across various datasets. We believe it is necessary to compare RTP
and DDiF on high-dimensional datasets, as the combination-based parameterization can also decode
a large number of synthetic instances within the same budget.

Table[]presents the results of RTP and DDIF on the 128 x 128 resolution ImageNet-Subset. For a fair
comparison, we use the same dataset distillation loss (TM) for both. While RTP consistently shows
performance improvements when applied to TM, DDiF achieves higher performance improvement
even though DDiF shows smaller increments of decoded instances. These results suggest that DDiF
enhances both the quantity and quality of synthetic instances.

C.3 PERFORMANCE COMPARISON UNDER THE FIXED NUMBER OF DECODED INSTANCES

In the main paper, we primarily conducted performance comparisons under the same storage budget,
which is the most general setting in dataset distillation. Herein, we investigate the expressiveness
of parameterization methods by conducting performance comparisons under the fixed number of
decoded instances. Through these experiments, we demonstrate that DDiF’s superiority stems not
only from the diversity improvement but also from the quality improvement.

Comparison with Input-sized parameterization. First, we compare with input-sized parameter-
ization. Under the IPC=1 setting, DDiF can decode 51 and 24 synthetic instances per class on 128
and 256 resolution, respectively. Therefore, we conducted experiments in two scenarios where the
number of decoded synthetic instances was determined based on either 1) the number of Vanilla’s
or 2) the number of DDiF’s. Table[T0] presents the results as follows:
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* When the number of decoded instances is small, there are some performance drop cases.
However, we emphasize that 1) this performance drop is not larger than 2.3%p and 2)
DDiF utilizes a much smaller budget. Moreover, it is interesting that DDiF achieves higher
performance than vanilla in some cases. We believe that it is related to previous findings
that input-sized parameterization includes superfluous or irrelevant information
2023}, [Yu et al| 2023} [Sachdeva & McAuleyl [2023).

* When the number of decoded instances is large, DDiF utilizes much less budget but
achieves performance comparable to input-sized parameterization.

These experimental results support that DDiF involves sufficient representational power while using
a much smaller budget compared to the input-sized parameterization.

Table 10: Test accuracies (%) on ImageNet-Subset with input-sized parameterization (Vanilla) and
DDiF. We utilize TM for 128 x 128 resolution and DM for 256 x 256 resolution. "DIPC” denotes
the number of decoded instances per class.

Resolution DIPC Methods Utilized Budget Nette Woof Fruit
1 Vanilla 491,520 514+23 297+09 288=+12
128 DDiF 9,630 491+20 294407 273+13
5 Vanilla 51 x 491,520 73.0+07 428+07 482+07
DDiF 491,520 720+£09 429107 482+12
| Vanilla 1,966,080 32.1 20.0 19.5
256 DDiF 79,530 312+08 21.2+09 213+15
55 Vanilla 55 x 1,966,080 70.1 +1.0 375+12 41.3+08
DDiF 1,966,080 67.8+1.0 39.6+1.6 432+17

Comparison with Parameterization methods.
In addition, we conducted a performance compar-
ison with FreD and SPEED, which show strong

Table 11: Test accuracies (%) on ImageNet-
Subset (128 x 128) with SPEED and DDiF. We

performance on high-resolution image datasets. utilize TM.
Under the IPC=1 setting, FreD and SPEED can DIPC  Utilized budget Nette
decode 8 and 15 synthetic instances per class FreD g 491.520 66.8 & 0.4
on 128 resolution, respectively. In Table [T}  ¢pprp 15 491.520 66.9 + 0.7
under the same number of decoded instances, . ' '
DDiF achieves higher performance while using . 8 77,040 67.1+£04
less budget compared to FreD and SPEED. Fur- DDiF 15 144,450 683 +11
51 491,520 72.0 £0.9

thermore, under the same budget, DDiF generates
more decoded instances and achieves superior performance with a significant margin. These results
repeatedly support the claim that DDiF exhibits high coding efficiency and expressiveness.
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C.4 ADDITIONAL RESULTS ON CROSS-RESOLUTION GENERALIZATION

Detailed experimental results. We ap-
ply the spatial-domain upsampling meth-

ods, such as nearest, bilinear, and bicubic, 70 S 0 '
for the optimized synthetic instances of & ;

1
N
o

previous parameterization methods. Par-
ticularly, FreD can also utilize frequency-

U
N
o

I
w
o

Test accuracy (%
a
o
Test accuracy gap (%)

domain upsampling since it stores masked £ 40 Iﬁg"'a
frequency coefficients. The most widely % 0 B
used for frequency-domain upsampling =50 Wseeeo

is zero-padding the frequency coeffi- 128(0rg) 296 ion 2 ootz Boor
cients before inverse frequency transform,

which means assigning zeros to the high-
frequency components
[2001). For example, in the case of DCT, Figure 8: (a) Test accuracies (%) with different image
which is the default setting of FreD, the resolutions. (b) Test accuracy gap (%) from original.
process of upsampling an N-resolution We use bilinear interpolation for previous studies. We

frequency coefficient /' to an M (> N)- utilize ConvNetD5, which is the same architecture in
resolution image can be described as the distillation stage.

IDCT (B X FOm-n }) where A = (% )2 is the scaling factor. We refer to this frequency-

(a) Accuracy (b) Accuracy degradation

M-N Om—nN N
domain upsampling as “’zero-padding”. For DDiF, we constructed a coordinate set suitable for the
test resolution, and then input it into the optimized synthetic neural field to generate the upsampled
synthetic instance. We refer to this method as “coordinate interpolation”.

Table[T2] presents the detailed experimental results. We observe that the previous parameterizations
show drastic performance degradation regardless of the interpolation method used. Whereas, DDiF
still achieves the highest cross-resolution generalization performance. Also, Figure [§] presents the
cross-resolution generalization performance under the same network architecture in the distillation
stage. As seen in Figure [d] DDIF achieves the best performance and shows the least performance
degradation over all resolutions. These extensive results consistently demonstrate that DDiF is ro-
bust to resolution change, and this robustness is largely driven by the continuous nature of the syn-
thetic neural field.

Comparison with Full dataset downsampling. The most intuitive and straightforward way to
reduce the budget of a dataset is by downsampling, which reduces the budget size of each instance.
It means that it is possible to downsample the full dataset to a specific resolution for storage and
then upsample it to the test resolution. One may doubt that this simple method can show high
cross-resolution generalization performance. To verify the superiority of DDiF on cross-resolution
generalization, we additionally conducted performance comparison experiments with full dataset
downsampling.

Table[T3]shows the experiment results where the full dataset was downsampled and then upsampled
to the original resolution during the test phase. When the budget is similar (when the downsampled
resolution is 4 x 4), DDIiF outperforms the full dataset downsampling method. We also experimented
when the downsampled resolution was the same as the resolution of the decoded synthetic instance.
In this case, the downsampled dataset achieved better performance, as expected. However, this set-
ting requires 1,289 times more budget than DDiF since the number of instances is not reduced. Such
a setup deviates from the core purpose of dataset distillation, which aims to optimize performance
under strict budget constraints.

Furthermore, we emphasize that the full dataset downsampling has two limitations on cross-
resolution generalization. First, it requires a slightly different assumption. Cross-resolution gen-
eralization experiment, which we proposed, is modeled to evaluate the dataset distillation ability
to generalize to higher resolution settings. This involves training on a low-resolution (128x128)
synthetic dataset and testing on high-resolution (256 x256) data. However, this full dataset down-
sampling experiment diverges from this cross-resolution setting since it assumes the availability of
a high-resolution dataset (256x256). Second, the training time during the test phase increases since
the number of data points remains the same as the full dataset. While the memory budget may
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Table 12: Test accuracies (%) with different resolutions and networks, we denote the difference

between ordinary and cross-resolution performance as Diff(%) = ACC,.y — ACCyeq and relative

. . ACClopg—ACChes
ratio as Ratio = —==2rg -~ ~test

ACC,,,

Test resolution  Test network  Method Upsampling Accuracy (1) Diff (|) Ratio (|)

nearest 29.5+1.6 219 0.43

Vanilla bilinear 31.2+1.1 20.2 0.39

bicubic 30.7+2.0 20.7 0.40

nearest 54.8+1.2 6.6 0.11

IDC bilinear 54.0+2.0 7.4 0.12

ConvNetD5 bicubic 55.0+1.6 6.4 0.10

nearest 58.8+1.4 8.1 0.12

SPEED bilinear 57.7+0.8 9.2 0.14

bicubic 58.1+1.0 8.8 0.13

nearest 55.2+42.2 11.6 0.17

FreD bilinear 55.0+2.6 11.8 0.16

256 bicubic 56.4+1.4 10.4 0.16

zero-padding 53.8+1.4 13.0 0.19

DDiF coord. interpolation 66.3+1.9 5.7 0.08

nearest 44.0+1.7 7.3 0.14

Vanilla bilinear 43.2+41.1 8.2 0.16

bicubic 43.9+1.8 7.4 0.14

nearest 54.7+1.6 6.7 0.11

IDC bilinear 54.5+1.6 6.9 0.11

ConvNetD6 bicubic 55.4+1.3 6.0 0.10

nearest 62.0+1.0 4.9 0.07

SPEED bilinear 61.8+1.8 5.1 0.08

bicubic 62.6+1.1 4.3 0.06

nearest 60.9+0.8 5.9 0.09

FreD bilinear 60.1+0.3 6.7 0.10

bicubic 61.4+0.8 5.8 0.09

zero-padding 61.8+1.0 5.0 0.07

DDiF coord. interpolation 70.6+1.2 1.4 0.02

nearest 27.4+1.4 24.0 0.47

Vanilla bilinear 27.1+41.9 24.2 0.47

bicubic 27.1+1.0 24.3 0.47

nearest 38.6+2.7 22.8 0.37

IDC bilinear 37.5+2.3 23.9 0.39

ConvNetD5 bicubic 39.5+2.1 21.9 0.36

nearest 43.3+42.2 23.6 0.35

SPEED bilinear 45.0+1.5 21.9 0.33

bicubic 44.8+3.0 22.1 0.33

nearest 425425 24.3 0.36

FreD bilinear 41.4+1.5 254 0.38

512 bicubic 41.6+1.3 25.2 0.38

zero-padding 42.9+1.5 23.9 0.36

DDiF coord. interpolation 58.7+1.2 13.3 0.18

nearest 41.2+41.5 10.1 0.20

Vanilla bilinear 40.6+2.6 10.7 0.21

bicubic 40.4+1.9 109 0.21

nearest 51.5+1.8 9.9 0.16

IDC bilinear 50.7+2.1 10.7 0.17

ConvNetD7 bicubic 51.2+42.8 10.7 0.17

nearest 59.6+2.0 7.3 0.11

SPEED bilinear 59.5+2.0 7.4 0.11

bicubic 60.1+1.7 6.8 0.10

nearest 55.1+41.2 11.7 0.18

EreD bilinear 53.8+1.0 13.0 0.19

© bicubic 54.4+0.9 124 0.19

zero-padding 56.3+0.8 10.5 0.16

DDiF coord. interpolation 69.0+1.0 3.0 0.04
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be comparable, this increased time cost is undesirable, especially in scenarios where efficiency is
critical.

Table 13: Performance comparison when the test resolution is 256 x 256. We utilize bicubic inter-
polation for full dataset resizing. The relative budget ratio indicates the ratio of full dataset down-
sampling over DDiF.

Test network Method Original resolution  Downsampled resolution  Relative budget ratio  Accuracy
Downsample 256256 4x4 1.3 452 +£23

ConvNetD5 256256 128x128 1,2894 91.3+05
DDiF 128x128 — 1.0 66.3 +1.9

Downsample 256x256 4x4 1.3 447104

ConvNetD6 256x256 128x128 1,289.4 91.2 +£0.0
DDiF 128x128 — 1.0 70.6 £ 1.2

C.5 EMPIRICAL EVIDENCE ON OBSERVATION[I]

The theoretical analysis in this paper begins with Observation [T} which states that as the feasible
space of synthetic instances in input-sized parameterization increases, the performance of dataset
distillation also improves. We have provided the proof for Observation[T](see Appendix[A); however,
we believe that it is also necessary to examine experimental results for an intuitive understanding.
Under the fixed number of synthetic instances, we investigate the performance changes of input-
sized parameterization while imposing constraints on the feasible space of synthetic instances. We
consider two types of constraints: 1) dimension masking and 2) value clipping. As shown in Tables
and @ when the feasible space becomes smaller (i.e., as the restrictions are enforced more
strongly), the dataset distillation performances decrease. These results serve as direct evidence of
observations in theoretical analysis.

Table 14: Dimension masking Table 15: Value clipping into [— R, R]

Masking (%) 0 25 50 75 R 00 2.0 1.0 0.5
Accuracy (%) 514423 50.2+1.7 48.7+32 41.1+1.9 Accuracy (%) 514423 432409 25.8+2.8 21.0£1.3

C.6 ROBUSTNESS TO CORRUPTION

We further investigate the robustness against corruption of DDiF in the trained synthetic datasets by
evaluating on ImageNet-Subset-C. This subset is designed specifically to assess robustness across
varying corruption types and severity levels. We report the average test accuracies over 15 corruption
types, each evaluated across 5 levels of severity, for each class in ImageNet-Subset-C. Table[I6]sum-
marizes the performance of DDIF and baseline models. The results in Table[I6]clearly demonstrate
that DDiF has the same substantial robustness to resolution change and corruption.

Table 16: Test accuracies (%) on ImageNet-Subset-C under [IPC=1. Test accuracy on ImageSquawk-
C of TM is not reported on previous works because the default size of the dataset does not fit to 128
x 128

Method ImageNette-C  ImageWoof-C  ImageFruit-C = ImageYellow-C ImageMeow-C ImageSquawk-C

™ 38.0 £1.6 23.8 £1.0 22.7 £1.1 35.6 £1.7 232 +1.1 -

IDC 34.5 +£0.6 18.7 £0.4 28.5 +£0.9 36.8 £1.4 22.2 +£1.2 26.8 £0.5
FreD 51.2 +£0.6 31.0 £0.9 323 +1.4 48.2 +1.0 30.3 +0.3 45.9 +0.6
DDiF 54.5 0.6 34.0 +0.4 36.6 +0.4 472 +0.7 30.3 +08 53.8 0.5

C.7 TiIME COMPLEXITY
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As mentioned earlier, the neural field takes coordinates as input and Table 17: Wall-clock time
produces quantities as output. This distinct characteristic of the (ms) of the decoding process
neural field offers the advantage of being resolution-invariant but for a single synthetic instance.
may raise concerns regarding the decoding process time. We admit ”ms” indicates the millisec-
that the decoding time of DDiF indeed increases as resolution grows  ond.

due to the need to forward a larger number of coordinates through

the neural field. To address this concern, we conducted an experi- 128%128  256%256
ment measuring the wall-clock time for decoding a single instance.

Vanilla 0.31 0.31
IDC 0.40 2.83
FreD 0.46 1.20

Table [T7) shows the results with 128 image resolution demonstrate
that while the time cost of DDIF is larger than methods relying on ~ HaBa 2.81 -
non-parameterized decoding functions, such as IDC and FreD, it SPEED 220 —
remains comparable to methods that use parameterized decoding  GLaD 31.33 -
functions, such as HaBa and SPEED, and exhibits a lower time DDiF 2.49 3.25
cost than methods that utilize pre-trained generative models, such
as GLaD. As the resolution increases to 256, the decoding time of
DDiF also increases and it is slightly larger than non-parameterized decoding functions. In conclu-
sion, although the decoding process time of DDiF increases as the resolution increases, it does not
differ significantly from that of conventional parameterization methods. We attribute this to 1) the
use of a small neural network structure for the synthetic neural field and 2) the full-batch forwarding
of the coordinate set in the implementation.

C.8 FULL TABLE WITH STANDARD DEVIATION AND ADDITIONAL VISUALIZATION

For improved layout, we have positioned full tables with standard deviation and additional example
figures at the end of the paper. Please refer to Table [I8] for ImageNet-Subset (128 x 128) under
IPC=1; Table [T9] for ImageNet-Subset (256 x 256) under IPC=1; Table 20| for ImageNet-Subset
under (128 x 128) IPC=10; Table |2;1'| for cross-architecture; and Table@for robustness to the loss.
In addition, please refer to Figures [9]to[I4] for Image domain; Figure[I3]for 3D domain; and Figure
for video domain.

D ADDITIONAL DISCUSSIONS

D.1 MORE COMPARISON WITH FRED

As seen in Egs. (B and (@), the functions represented by DDiF and FreD are similar, both being the
sum of cosine functions. Therefore, we can perform a term-by-term comparison of both equations.

* DDiF enables to change the amplitudes Ay, ;, frequencies wy,, phases SD;VJ’ and shift b(©),
while FreD only allows the amplitudes. It indicates that DDiF has higher representation
ability than FreD.

* Although FreD is a finite sum of cosine functions with a fixed frequency, DDiF represents
an infinite sum of cosine functions with tunable frequency. It means that DDiF can cover
a wide range of frequencies from low to high by selecting various k. According to the
empirical findings in [Wang et al.| (2020a), it has been demonstrated that datasets with a
larger number of frequencies exhibit improved generalization performance.

e DDiF is a continuous function, whereas FreD is a discrete function. Due to this charac-
teristic, FreD cannot encode information for coordinates that were not provided during the
distillation stage. In contrast, since DDIiF operates over a continuous domain, it inherently
stores information for coordinates that were not supplied during the distillation stage.

In summary, DDiF has a more flexible and expressive function than FreD.

D.2 DISCUSSION ABOUT THEORETICAL ANALYSIS

We provide the theoretical analysis to propose a framework for comparing parameterization meth-
ods, which have traditionally been evaluated solely based on performance, through expressive-
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ness—specifically, the size of the feasible space. Observations[T]and P]indicate that a larger feasible
space for decoded synthetic instances through input-sized parameterization or parameterization re-
sults in lower dataset distillation loss. Remark [I] and Theorem ] to show that DDIF has higher
expressiveness than prior work (FreD). We believe that the proposed theoretical analysis framework
will serve as a cornerstone for future theoretical comparisons of parameterization methods in dataset
distillation areas.

However, this theoretical analysis still has room for further improvement. In the theoretical analysis,
we consider the fixed number of decoded instance scenarios, not the fixed storage budget. We
experimentally demonstrated the superiority of DDiF not only in the fixed storage budget scenario
but also in various situations with a fixed number of decoded instances (see Figure[5]and Appendix
[C3). In particular, we demonstrated the high efficiency and expressiveness of DDiF by showing that,
even with a smaller budget in the fixed number of decoded instances, DDiF achieved competitive
or higher performance than previous studies. Even though the proposed theoretical analysis in this
paper is experimentally verified through extensive results, this framework has the limitation of not
primarily focusing on the fixed storage budget scenario, which is the widely used setting of dataset
distillation. We believe that constructing a theoretical framework to compare the expressiveness of
parameterization methods under a fixed storage budget is necessary, and the proposed theoretical
analysis in this paper can serve as a foundational background for such efforts.

D.3 COMPARISON WITH DIM

As mentioned in Section 3] the synthetic function has several possible forms. DiM
employs a probability density function as a synthetic function and utilizes a deep generative
model to parameterize it. Specifically, the decoded synthetic instance of DiM is the sampled output
of a deep generative model by inputting random noise:

m(gnE(T, S) where S = g4(2), Z ~N(0,1)

DDiF and DiM have in common that they store the distilled information in the synthetic function and
only store the parameters of the function without any additional codes. However, there are several
structural differences.

* The output of DiM still depends on the data dimension. As aforementioned, this type of
decoding function requires a more complicated structure and storage budget as the data
dimension grows larger. Actually, DiM has not been extensively tested on high-resolution
datasets. On the contrary, DDIF stores information regardless of data dimension, which
indicates broader applicability across various resolutions.

* The decoding process of DiM is stochastic. Due to the stochasticity, DiM can sample the
diverse decoded synthetic instances and save the redeployment cost. However, at the same
time, DiM carries the risk of generating less informative synthetic instances. Consequently,
it leads to instability in training on downstream tasks. Furthermore, DiM might suffer from
redundant sampling due to mode collapse, a well-known issue of the generative model.
Meanwhile, since the decoding process of DDiF is deterministic, DDiF has an advantage
in stability.

E LIMITATION

Less efficiency on Low-dimensional datasets. One of the main ideas in parameterization is ex-
panding the trade-off curve between quantity and quality: reducing the utilized budget of each syn-
thetic instance, while maximally preserving the expressiveness of it. While DDiF has an extensive
feature coverage theoretically and shows competitive performances with previous studies experi-
mentally, it might be less efficient for some low-dimensional datasets due to the structural features
of the neural field. This is because, given the low-dimensional instance, it can be difficult to design
a neural field that is sufficiently expressive with fewer parameters. In spite of this issue, we repeat-
edly highlight that DDiF has a significant performance improvement on high-dimensional datasets.
Furthermore, we speculate that a deeper analysis of the neural field structure could be an interesting
direction for future research in dataset distillation.
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Individual Parameterization. Several studies have claimed that storing intra- and inter-class in-
formation in a shared component is effective. From this perspective, our proposed method, which
has a one-to-one correspondence between synthetic instances and synthetic neural fields, does not
have a component to store shared information. We believe that it can be extended by adding modu-
lation or conditional code, and this paper may serve as a good starting point.

Table 18: Test accuracies (%) on ImageNet-Subset (128 x 128) with regard to various dataset pa-
rameterization methods under IPC=1.

Subset Nette Woof Fruit Yellow Meow Squawk

Inout sized ™ 51.4 +2.3 29.7 0.9 288 +12 47.5+15 333 +07 41.0+15
P FRePo  48.1+07 29.7 +0.6 - - - -
Static IDC 614 +10 345+11 380+11 56.5+1.8 395+15 50.2+15

FreD 66.8 +0.4 383 +15 43.7+16 63.2+1.0 43.2+08 57.0+08

HaBa 519 +1.7 324 +07 347 +11 504 +16 369 +09 419 +14
Parameterized SPEED 66.9 0.7 38.0 09 434 +06 62.6+1.3 43.6+07 60.9 +1.0

NSD 68.6 +0.s 352404 398402 61.0+05 452401 52.9 0.7
DGM Pri GLaD 38.7 +1.6 234 +1.1 23.1 0.4 — 26.0 +1.1 35.8 +1.4
MOT H.GLaD 454 +1.1 283 402 25.6 +0.7 - 20.6 1.0 39.7 408

Function DDiF 72.0 +09 429 +07 482 +12 69.0 08 474 +13 67.0+1.3

Table 19: Test accuracies (%) on ImageNet-Subset (256 x 256) resolution under IPC=1. "DM” in
this table means it utilize distribution matching objective for distillation.

Subset Nette Woof Fruit Yellow Meow Squawk
Input sized DM 32.1 20.0 19.5 334 21.2 27.6
Static IDC 53.7+12 302415 33.1+15 522+14 34.6+18 47.0+15
FreD 542 +11 31.2409 325+19 49.1 +04 34.0+1.2 43.1+15
Parameterized SPEED (DM) 57.7 +o0.9 — — — — —
DGM Prior LatentDM (DM) 56.1 28.0 30.7 — 36.3 47.1
Function DDiF 67.8 t1.0 39.6 +1.6 43.2+1.7 63.1+08 448 +1.1 67.0 +0.9

Table 20: Test accuracies (%) on ImageNet-Subset (128 x 128) with regard to various dataset pa-
rameterization methods under IPC=10.

Subset Nette Woof Fruit Yellow Meow Squawk

™ 63.0+1.3 358 +1.8 403 +13 60.0+15 404 +22 523 +1.0
FRePo 66.5 0.8 42.2 +0.9 — —

IDC 70.8 +0.5 39.8 +0.9 464 +14 68.7+08 479 1.4 654 +1.2
FreD 720 +0.8 413 +12 47.0+11 69.2 +06 48.6+04 67.3 +038

HaBa 64.7 +1.6 38.6+1.3 425 +16 63.0+16 429109 56.8+1.0
SPEED 729 +15 44.1 +14 50.0 08 70.5+15 52.0+13 71.8+1.3

Function DDiF 74.6 0.7 449 +05 498 +08 70.5+18 50.6+11 723 +13

Input sized

Static

Parameterized
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Table 21: Test accuracies (%) on Cross Architecture networks with ImageNet Subsets (128 x 128),
IPC=1

Dataset

Test Net ~ Method Nette Woof Fruit Yellow Meow Squawk

™ 13.2 +06 10.0 +0.0 10.0 0.0 11.0=+02 9.8 +0.0 —
AlexNet IDC 17.4 09 16.5+07 179 07 20.6 +0.9 16.8 +05 20.7 +1.0
XN FreD 357404 239407 158407 198412 144405 363 403
DDiF 60.7 +2.3 364 +23 41.8 +t06 56.2 t0.8 40.3+19 60.5 +0.4

™ 174 +21  12.6 +1.8 11.8 +t1.0 169 +1.1 13.8 +1.3 —
VGGI11 IDC 19.6 +1.5 160 +2.1 13.8 +1.3 168 £35 13.1 +2.0 19.1 +1.2
FreD 21.8 +29 17.1 +1.7 12.6 26 182 +1.1 132 4+19 18.6 +2.3
DDiF 53.6 15 299 +19 33.8+19 442 +17 32.0+18 379 +15

™ 349 123 207 +1.0 23.1+15 434+£11 22.8 £2.2 —
ResNet18 IDC 43.6 £1.3 232 +0.8 329428 442 +35 282405 47.8 +1.9
esive FreD 488 +1s 284 +06 34.0+19 493+11 29.0+1s 50.2 +0s
DDiF 638 t18 375+19 42.0+19 559 +t10 358+18 62.6+15

™ 226 +1.1 159 +04 23.3 +04 18.1 +1.3 18.6 +0.9 —
ViT IDC 31.0 t0.6 224 +08 31.1 +08 30.3 +t06 21.4+07 32.2+1.2

FreD 38.4 +to7 254 +17 319+14 37.6+20 197108 444 +1.0
DDiF 59.0 to4 328 +0s8 394108 47.9 tos 27.0+06 548 +1.1

Table 22: Compatibility on different dataset distillation loss with ImageNet Subsets (128 x 128),
IPC=1

Dataset
Lpp Method Nette Woof Fruit Meow Squawk
Vanilla 342 +1.7 225+10 21.0x09 22.0+06 32.0=+15
IDC 454 107 255 +07 26.8 +0.4 253 406 34.6 +0.5
DC FreD 49.1 +0.8 26.1 +1.1 30.0 +o.7 28.7 +1.0 39.7 0.7
GLaD 354 +12 223 +11  20.7 1.1 22.6 0.8 33.8 +0.9
H-GLaD 36.9 +0.8 24.0+08 224 +1.1 24.1 +0.9 35.3 +1.0
DDiF 612 +10 352+17 37.8+11 3901 +13 543 +1.0
Vanilla 30.4 2.7 207 +1.0 204 +1.9 20.1 1.2 26.6 +2.6
IDC 483 +1.3 27.0+1.0 299 +o7 305+10 388 +1.4
DM FreD 56.2 +1.0 31.0+12 334 +05 33.3+06 42.7+08

GLaD 322 +17 212415 21.8+1.8 223 +16 27.6+1.9
H-GLaD 348 +1.0 239+19 2444+21 242+11 295 +15
DDiF 692 +10 42.0+04 453 +18 458 +t1.1 64.6 +1.1
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Table 23: Configuration of hyperparameters.

(a) Gradient matching (DC)

(b) Distribution matching (DM)

Synthetic ~ Learning rate Synthetic  Learning rate
Dataset IPC .
atase batch size  (Neural field) Dataset IPC batch size (Neural field)
ImageNet-Subset _5
1 - 5x 1075 ImageNet-Subset _5
(128 x 128) (128 x 128) 1 - 5x 10
Mini Speech C ands 10 64 1075
i Speech Commands ) 64 10-4 ImageNet-Subset 1 ) 10-5
) (256 x 256)
ModelNet 1 - 10
ShapeNet 1 - 1074 MiniUCF ! ) 10~
5 - 104
ModelNet 1 - 1074
ShapeNet 1 - 1074
(c) Trajectory matching (TM)
Dataset IPC Synthetic Expert Max start Synthetic Learning rate Learning rate  Learning rate
atase steps epochs epoch batch size  (Neural field) (Step size) (Teacher)
1 60 2 10 74 1073 1072 1072
CIFAR-10 10 60 2 10 256 1073 107 1072
50 60 2 40 235 1074 1073 1072
1 60 2 40 170 1073 107° 1072
CIFAR-100 10 60 2 40 230 1073 1075 1072
50 60 2 40 276 1073 10-° 1072
1 20 2 10 102 10* 10-¢ 10-2
) 10 40 2 20 30 1074 10-5 10-2
50 40 2 20 30 104 10-° 1072
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(a) Initialization (b) Synthesized

Figure 9: (a) Warm-up initialized images on ImageNette with DDIiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDIF constructs 51 images per
class under the same budget.

(a) Initialization (b) Synthesized

Figure 10: (a) Warm-up initialized images on ImageWoof with DDiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51 images per
class under the same budget.
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(a) Initialization (b) Synthesized

Figure 11: (a) Warm-up initialized images on ImageFruit with DDIF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDIF constructs 51 images per
class under the same budget.

(a) Initialization (b) Synthesized

Figure 12: (a) Warm-up initialized images on Image Yellow with DDiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51 images per
class under the same budget.
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(a) Initialization (b) Synthesized

Figure 13: (a) Warm-up initialized images on ImageMeow with DDIiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDIF constructs 51 images per
class under the same budget.

(a) Initialization (b) Synthesized

Figure 14: (a) Warm-up initialized images on ImageSquawk with DDiF, (b) Best-performed syn-
thetic dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51
images per class under the same budget.
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(a) Initialization (b) Synthesized
Figure 15: (a) Warm-up initialization images and (b) Synthesized images of ModelNet-10. Start

reading labels from the top and continue to right: 1) bathtub, 2) bed, 3) chair, 4) desk, 5) dresser, 6)
monitor, 7) nightstand, 8) sofa, 9) table, 10) toilet

G Edad ad adadmd Bd B B Bd md Ed md B KB

(b) Synthesized

Figure 16: (a) Warm-up initialization images and (b) Synthesized images of MiniUCF. Start reading
labels from the top: 1) FrisbeeCatch, 2) HammerThrow, 3) HulaHoop, 4) JumpingJack, 5) Parallel-
Bars
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