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ABSTRACT

Mainstream ranking approaches typically follow a Generator–Evaluator two-stage
paradigm, where a generator produces candidate lists and an evaluator selects the
best one. Recent work has attempted to enhance performance by expanding the
number of candidate lists, for example, through multi-generator settings. How-
ever, ranking involves selecting a recommendation list from a combinatorially
large space, simply enlarging the candidate set remains ineffective, and perfor-
mance gains quickly saturate. At the same time, recent advances in large rec-
ommendation models have shown that end-to-end one-stage models can achieve
promising performance with the expectation of scaling laws. Motivated by this,
we revisit ranking from a generator-only one-stage perspective. We theoretically
prove that, for any (finite Multi-)Generator–Evaluator model, there always exists
a generator-only model that achieves strictly smaller approximation error to the
optimal ranking policy, while also enjoying a scaling law as its size increases.
Building on this result, we derive an evidence upper bound of the one-stage op-
timization objective, from which we find that one can leverage a reward model
trained on real user feedback to construct a reference policy in a group-relative
manner. This reference policy serves as a practical surrogate of the optimal pol-
icy, enabling effective training of a large generator-only ranker. Based on these
insights, we propose GoalRank, a generator-only ranking framework. Extensive
offline experiments on public benchmarks and large-scale online A/B tests demon-
strate that GoalRank consistently outperforms state-of-the-art methods.

1 INTRODUCTION

Recommender systems are indispensable for coping with the exponential growth of online con-
tent (Gomez-Uribe & Hunt, 2015). Industrial platforms typically adopt a multi-stage pipeline, com-
prising retrieval (He et al., 2020; Zhang et al., 2024) and ranking (Yu et al., 2019; Liu et al., 2023;
Zhang et al., 2025). The ranking stage is particularly critical, as it determines the final sequence of
items shown to users and has a major impact on both user satisfaction and platform revenue.

Formally, the ranking task can be defined as an N→L list-generation problem: given N candidates
from the preceding stage, the model outputs an ordered list of length L. The search space is the set
of length-L permutations, P(N,L) = N !

(N−L)! , which makes exhaustive enumeration intractable for
large N . Early approaches adopt a one-stage single generator that directly produces recommen-
dation lists by scoring items and arranging them greedily (Zhuang et al., 2018; Ai et al., 2018; Pei
et al., 2019a; Gong et al., 2022; Liu et al., 2023), as illustrated in Figure 1(a). However, this greedy
strategy only models the item interdependencies in the candidate set (of sizeN ) but not in the output
list (of size L), often resulting in suboptimal rankings.

To address this limitation, subsequent studies propose a two-stage Generator–Evaluator
paradigm (Shi et al., 2023; Xi et al., 2024; Lin et al., 2024; Ren et al., 2024b; Zhang et al., 2025)
(Figure 1b): a generator first proposes multiple candidate lists, and an evaluator then selects the
best one according to an estimated list-wise value. To mitigate the risk that generators produce
only locally optimal candidates, later works introduce multi-generator settings (Figure 1c), thereby
increasing both the number and diversity of candidate lists. In practice, however, simply scaling
the number of candidates or generators yields diminishing returns, with performance gains quickly
plateauing (Figure 1d).
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Figure 1: Illustration of different ranking paradigms: (a) Generator-only; (b) Generator–Evaluator;
(c) Multi-Generator–Evaluator; and (d) Performance trend with increasing number of generators.

Meanwhile, advances in end-to-end, one-stage large recommendation models suggest that a single
sufficiently expressive model can subsume multi-stage pipelines, avoid cross-stage inconsistencies,
and exhibit favorable scaling behavior (Zhai et al., 2024; Deng et al., 2025). These findings indi-
cate that the two-stage Generator–Evaluator paradigm may not be indispensable for achieving high-
quality ranking. Motivated by this, we revisit the generator-only paradigm and ask: can a larger,
more powerful one-stage ranker directly produce high-quality lists without relying on an external
evaluator? Formally, let π∗ denote the optimal ranking policy. We focus on two central questions:

i For any (finite Multi-)Generator–Evaluator system, does there exist a single generator-only
model whose policy achieves a strictly smaller approximation error with respect to π∗?

ii If such a model exists, how can it be trained effectively to realize this approximation advantage
in practice?

To answer these questions, we analyze (in Section 3.1) the approximation error between the pol-
icy space induced by a finite set of (Multi-)Generator–Evaluator models and the optimal ranking
policy π∗. This analysis proves the existence of a generator-only model that can achieve a strictly
smaller approximation error. Moreover, we show that as the size of this generator-only ranking
model increases, its approximation error with respect to π∗ decreases accordingly. Building on
these theoretical insights, we then turn to the practical challenge of how to train such a one-stage
ranking model. By deriving an evidence upper bound of the existing optimization objective, we find
that one can leverage a reward model trained on real user feedback to construct a reference policy
in a group-relative manner, which serves as a surrogate for π∗. This enables us to train a large
generator-only ranking model effectively. Based on this idea, we propose a new training framework,
GoalRank (Group-Relative OptimizAtion for a Large Ranker). We validate the effectiveness of
GoalRank on public benchmarks as well as through large-scale online A/B tests, showing substan-
tial improvements over state-of-the-art baselines and clear evidence of scaling laws.

The main contributions of this work can be summarized as follows:

• Theoretical foundation. We prove that for any (finite Multi-)Generator–Evaluator family, there
always exists a generator-only model that achieves a strictly smaller approximation error to the
optimal ranking policy, and that this error decreases as model size increases (scaling law).

• Optimization principle. We introduce the Group-Relative optimization principle, which pro-
vides a tractable and effective criterion for training large generator-only ranking models.

• Model and validation. We instantiate these ideas in GoalRank, a generator-only large ranker
trained under the proposed principle. Extensive offline experiments and online A/B tests demon-
strate consistent improvements over strong baselines and reveal clear scaling laws with respect
to model capacity.

2 RELATED WORK AND PRELIMINARIES

The ranking task in recommender systems can be formulated as an N→L list-generation problem:
given N candidate items, the model outputs an ordered list of length L. Let U and V denote the user
and item sets. For each user u, the candidate set is Vu ⊆ V with |Vu| = N . The generation space is

Lu =
{
(v1, . . . , vL) ∈ VL

u : vi ̸= vj (i ̸= j)
}
, |Lu| = P(N,L) = N !

(N−L)! .
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Since P(N,L) is exponentially large, existing works build approximate ranking paradigms to ex-
plore this space.

Single-Stage Generator-Only Models. A straightforward solution is to use a single generator G
that scores items and constructs a list greedily (Zhuang et al., 2018; Ai et al., 2018; Pei et al., 2019a;
Gong et al., 2022; Liu et al., 2023; Feng et al., 2021b; Xi et al., 2022; Pei et al., 2019b). Classic
models include DLCM (Ai et al., 2018) and PRM (Pei et al., 2019a), which refine item scores using
local listwise features. Formally:

l∗u = G(Xu,Vu).

Although efficient, these methods typically underexplore inter-item dependencies and may not re-
main consistent with the conditioning of the original candidate set.

Two-Stage Generator–Evaluator Paradigm. To better address the combinatorial N→L search
space, recent work adopts a two-stage (multi-)Generator–Evaluator (G–E) framework (Chen et al.,
2022; Shi et al., 2023; Xi et al., 2024; Lin et al., 2024; Ren et al., 2024b; Wang et al., 2025b). A
generator produces multiple candidate lists, and an evaluator scores them to select the best one:

l∗u = arg max
l∈Lu,k

E(Xu, l), Lu,k = {Gi(Xu,Vu) | i = 1, . . . , k }.

The special case k=1 reduces to a single-generator–evaluator model. Multi-generator extensions
(k > 1) aim to enlarge the proposal space (Yang et al., 2025), but empirical gains saturate rapidly
as k grows. This diminishing return suggests that merely increasing the number of generators is
inefficient and highlights the need for fundamentally stronger listwise modeling.

Other Directions. Other concurrent efforts incorporate large language models (Ren et al., 2024a;
Gao et al., 2024; Wu et al., 2024; Gao et al., 2025; Ren et al., 2025; Liu et al., 2025) or reinforcement
learning (Feng et al., 2021c; Wang et al., 2024; 2025c; Wei et al., 2020). LLM-based methods
leverage textual side information, while RL-based approaches decompose the listwise value function
to align rankings with user utility.

3 METHODOLOGY

In this section, we address the research questions raised in Section 1, namely: (i) can the generator-
only paradigm outperform the (Multi-)Generator–Evaluator paradigm, and (ii) if so, how can such
a generator-only ranking model be effectively learned? Building on the insights gained from these
analyses, we then propose a new generator-only large ranker framework, GoalRank, which lever-
ages group-relative optimization to approximate the optimal ranking policy.

3.1 CAN THE GENERATOR-ONLY PARADIGM PERFORM BETTER?

To assess the feasibility of a single-stage large ranking model, we first ask whether a sufficiently
large generator-only model can match or even exceed the expressive power of the widely used two-
stage (Multi-)Generator-Evaluator pipeline. Formally, suppose there exists an optimal ranking pol-
icy π∗. We compare the best attainable approximation error of (i) a k-mixture of small generators
combined with an evaluator, and (ii) a single larger generator. To make this comparison precise, we
begin by defining a capacity-restricted generator class.

Definition 1 ((α, β)-bounded generator class). Given maximum generator width α and depth β, the
(α, β)-bounded generator class is defined as

Gm(α, β) :=
{
gm

∣∣ W (gm) ≤ α, D(gm) ≤ β
}
,

where gm denotes a generator, and W (·) and D(·) measure width- and depth-type complexities,
respectively.

Then, the evaluator can be regarded as operating over a low-dimensional probability simplex, which
determines how multiple small generators jointly influence the final ranking policy.

Definition 2 (k-mixture (α, β)-bounded policy space). The policy space induced by Gm(α, β) is

Fm(α, β) :=
{
softmax◦ gm

∣∣ gm ∈ Gm(α, β)
}
,

3
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which contains all policies realizable by a single generator in Gm(α, β) with a softmax output layer.
Given k generators in Gm(α, β) and an evaluator, the corresponding k-mixture (α, β)-bounded
policy space is

Ck
m(α, β) :=

{∑k
i=1 ωi πi

∣∣∣ ω ∈ ∆k−1, πi ∈ Fm(α, β)
}
,

where ∆k−1 is the (k − 1)-dimensional probability simplex and ω = (ω1, . . . , ωk) satisfies∑k
i=1 ωi = 1 and ωi ≥ 0.

In Definition 2 we adopt soft mixture weights ω. In practice, the evaluator often implements (or
approximates) a hard selection (one-hot ω). Thus, Ck

m(α, β) strictly contains the policy class real-
ized by hard selection, which can both simplifies subsequent derivations and strengthens Theorem 1.
Then, to evaluate how well a policy space approximates the optimal ranking policy π∗, we use the
following notion.

Definition 3 (Approximation distance (KL error)). Let π∗ be a target policy and F be a policy
space. The approximation distance from F to π∗ is

E(F) := inf
π∈F

KL
(
π∗∥π

)
, KL

(
π∗∥π

)
=

∑
l∈L

π∗(l) log
π∗(l)

π(l)
.

where L denotes the finite space of candidate lists considered by the ranker.

With these definitions in place, we can now state our main result.

Theorem 1. Given α, β > 0 and any k ∈ N>0. For the k-mixture policy space Cm
k (α, β) in

Definition 2, there exists a class of larger generators

GM (α, β, n) :=
{
gM

∣∣ W (gM ) ≥ kα+ n, D(gM ) ≥ β
}
, n ∈ N>0,

with associated policy space

FM (α, β, n) :=
{
softmax◦ gM

∣∣ gM ∈ GM (α, β, n)
}
,

such that
E
(
FM (α, β, n)

)
< E

(
Ck
m(α, β)

)
, lim

n→∞
E
(
FM (α, β, n)

)
= 0.

Proofs and technical details are deferred to Appendix A. Theorem 1 shows that for any two-stage
ranking mixing k small generators, there exists a sufficiently large one-stage generator-only ranking
model whose induced policy space achieves a strictly smaller approximation error to π∗. Moreover,
as the size of this generator increases (i.e., as n grows), the approximation error can be driven
arbitrarily close to zero. We remark that Theorem 1 is stated in terms of width scaling; the same
conclusion holds under depth scaling, with proofs provided in Appendix A.

3.2 HOW CAN GENERATOR-ONLY RANKING MODEL BE EFFECTIVELY LEARNED?

According to Theorem 1, our goal is to train a larger generator-only ranking model that can achieve
a closer approximation to the optimal ranking policy π∗. Suppose we have access to an ideal reward
model r∗(l) that provides an unbiased estimate of the user feedback for any candidate list l ∈ Lu of
user u1. We define the entropy-regularized oracle policy as

π∗ := argmax
π

{
El∼π[r

∗(l)] + τH(π)
}
, (1)

where H(π) denotes the entropy of the policy, introduced as a regularization term to avoid greedy
instability and to encourage exploration, and τ > 0 controls the strength of entropy regularization.
Optimizing Equation 1 yields the Boltzmann distribution

π∗(l) =
exp(r∗(l)/τ)

Z
, Z =

∑
l′

exp(r∗(l′)/τ) . (2)

1Here, the reward value refers to the user’s actual feedback to a list, e.g., watch time or interaction behaviors.
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Figure 2: Training pipeline of group-relative optimization for a large ranker, GoalRank.

Moreover, the objective in Equation 1 can be equivalently rewritten as

El∼π[r
∗(l)] + τH(π) = τ

∑
l

π(l)
(
log exp(r∗(l)/τ)

Z − log π(l) + logZ
)
.

Thus, τ logZ = sup
π

{
El∼π[r

∗(l)] + τH(π)
}
,

and the supremum is attained if and only if KL(π∥π∗) = 0. In this case, the objective achieves its
maximum. Therefore, optimizing π is equivalent to minimizing the KL divergence to π∗.

In practice, however, the ideal reward model r∗(l) is inaccessible. We therefore consider a poten-
tially biased reward model r̂(l) = r∗(l) + b(l), where b(l) denotes the bias. Intuitively, the smaller
the bias, the more reliable the reward model. When considering a list group B, if the reward gaps
among lists are sufficiently large, the contribution of r∗(l) dominates the bias b(l), such that the
(partial) order over B is approximately preserved. Formally, given a threshold σ∗ > 0, if

max
li,lj∈B

∣∣r̂(li)− r̂(lj)
∣∣ > σ∗, (3)

we can exploit this order-invariance to construct a reference policy in a group-relative manner:

πref(l | B) =
exp

(
(r̂(l)− r̄B)/σB

)∑
l′ exp

(
(r̂(l′)− r̄B)/σB

) , (4)

where r̄B and σB are the mean and standard deviation of r̂ over B. We then train a parametric
policy πθ to align with πref by minimizing the cross-entropy (equivalently, the KL divergence up to
a constant): Finally, the training objective can be expressed as

L(πθ) = −EB∼D

[∑
l∈B

πref(l | B) log πθ(l)

]
. (5)

This objective provides a tractable surrogate for minimizing KL(πθ∥π∗) using only r̂ and group-
relative normalization.

3.3 GOALRANK

Based on the above insights, we propose a practical training framework for large ranking models in
real-world recommendation scenarios.

Reward modeling. Following Zhang et al. (2025), we first train a reward model r̂ using real user
feedback data, which can estimate the expected feedback for a given recommendation list (details
are provided in Appendix B).

Generator and policy. As illustrated in Figure 2, given a generator gθ, the corresponding ranking
policy is defined as πθ := softmax◦ gθ. Conditioned on user context Xu and the candidate item set
Vu provided by the preceding stage, the generator produces a recommendation list as

lθu = argmax
l
πθ(l | Xu,Vu). (6)

5
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Note that this framework is model-agnostic: the generator can be instantiated by any sequence
generation model.

Group construction. As discussed in the previous section, constructing effective groups requires
sufficiently large reward gaps among lists within each group, which is difficult to achieve when sam-
pling multiple lists from a single generator. To address this, we introduce an auxiliary set of ranking
policies M (including heuristic methods and lightweight neural models with implementation details
provided in Appendix C). For each user u, we then construct a group of recommendation lists as

Bu = {lθu} ∪ {liu | liu = argmax
l
πi(l | Xu,Vu), πi ∈ M}.

As an additional option, all lists in Bu can be ranked by their rewards, and a uniformly sampled sub-
set can then be selected, which further enforces larger reward gaps within the group and strengthens
the validity of the condition in Equation 3.

Training. Given Bu, we compute the reference policy πref(· | Bu) via Equation 4 and optimize gθ
by minimizing the loss in Equation 5, instantiated with user-specific groups {Bu}u∈U . This realizes
the group-relative principle and provides a practical path to align πθ with the oracle policy structure
using accessible signals.

4 EXPERIMENT

In this section, we present both offline and online experiments to evaluate the effectiveness of Goal-
Rank, which are designed to address the following research questions:

• RQ1: How does GoalRank perform on N→L ranking tasks compared with state-of-the-art base-
lines, and does it exhibit scaling behavior as model or data size increases?

• RQ2: How do (i) the size of recommendation list group B and (ii) the reward model’s prediction
bias affect GoalRank performance?

• RQ3 (online): How does GoalRank perform in real-world industrial recommendation scenarios?

4.1 OFFLINE EXPERIMENTS

4.1.1 DATASETS AND OFFLINE EXPERIMENTS SETTING

We conduct offline experiments on two public datasets, ML-1M (Harper, 2015) and Amazon-
Book (McAuley et al., 2015), as well as two datasets of different scales collected from our industrial
short-video platform, denoted as Industry and Industry-0.1B. The statistics of the four preprocessed
datasets are summarized in Appendix D.1.

For dataset construction, we first perform an 80/20 temporal split. For each user’s interaction history
(sorted chronologically), the task is framed as anN→L list-generation ranking problem withN = 50
and L = 6. Specifically, we use a pre-trained Matrix Factorization (MF) model (Koren et al., 2009)
as the retriever to select the top-50 candidate items for each user. The last six interactions in each
user’s historical sequence are treated as ground truth, representing the target list after ranking. For
industry datasets, we define a long view (watching a video for more than 85% of its duration) as a
positive signal, indicating meaningful user–item engagement.

Following common practices, we report Hit Ratio@L (H@L), NDCG@L (N@L), MAP@L
(M@L), F1@L, and AUC with L = 6. Reported results are averaged over five independent runs.

4.1.2 BASELINES

We compare GoalRank against representative state-of-the-art methods from:

• Generator-only methods: These approaches rely on a single generator to produce item scores and
directly generate the ranking list. Simple item-wise scoring models such as DNN (Covington et al.,
2016) estimate user feedback independently for each user–item pair. More advanced methods,
including DLCM (Ai et al., 2018), PRS (Feng et al., 2021a), PRM (Pei et al., 2019a), and MIR (Xi

6
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Table 1: Overall performance of different ranking methods. The highest scores are in bold, and
the runner-ups are with underlines. All improvements are statistically significant with student t-test
p < 0.05.“Improv.” denotes the improvements over the best baselines.

Methods
ML-1M Industry Book

H@6 N@6 M@6 F1@6 AUC H@6 N@6 M@6 F1@6 AUC H@6 N@6 M@6 F1@6 AUC

G-only

DNN 56.86 70.30 59.28 62.16 86.87 37.32 54.56 42.38 43.72 74.73 60.28 69.61 58.58 62.45 83.02
DLCM 62.31 73.87 63.82 67.96 89.35 39.69 60.67 48.90 46.61 75.80 66.80 75.88 65.39 69.28 91.93

PRS 59.35 73.10 62.51 64.72 88.84 44.75 64.39 51.88 52.59 89.93 66.15 75.70 64.84 68.64 92.01
PRM 60.09 72.85 62.21 65.51 88.20 39.92 55.93 42.97 46.18 85.15 67.86 76.88 66.44 70.42 92.00
MIR 62.22 74.33 64.47 67.97 87.76 37.01 55.79 43.16 44.50 79.95 66.08 71.48 56.62 68.62 91.82

RankMixer 60.88 72.65 62.68 64.18 92.47 49.72 69.19 58.73 60.24 91.03 68.03 76.45 66.27 71.26 92.23

G-E

EGRank 62.76 74.75 64.97 68.46 88.72 40.09 59.01 47.52 47.06 77.44 70.73 80.75 72.40 73.33 89.40
PIER 62.74 75.99 65.98 68.74 90.43 45.35 65.11 52.55 53.35 90.93 71.14 80.22 71.62 73.74 92.26

NAR4Rec 62.81 75.01 65.42 68.31 88.30 44.31 63.83 51.45 52.08 89.94 70.08 79.46 70.69 72.66 92.44

MG-E
G-3 55.51 67.39 55.52 55.51 60.73 49.42 68.29 56.23 55.50 83.44 68.76 76.36 65.82 71.33 85.44

G-20 58.66 69.86 58.60 64.18 81.76 52.66 70.70 59.02 61.81 76.46 72.99 78.68 68.66 75.72 77.07
G-100 60.64 70.97 59.93 66.29 76.48 55.77 72.35 60.95 64.27 75.30 77.21 82.15 73.78 80.09 77.36

GoalRank 73.56↑ 83.43↑ 76.16↑ 80.15↑ 97.64↑ 69.93↑ 86.93↑ 79.01↑ 82.29↑ 98.07↑ 80.35↑ 84.88↑ 77.91↑ 83.44↑ 94.46↑
Improv. +17.12% +9.79% +15.43% +16.60% +5.59% +25.39% +20.15% +29.63% +28.04% +7.73% +4.07% +3.32% +5.60% +4.18% +2.19%

et al., 2022), explicitly capture mutual dependencies among candidate items. We additionally
compare with RankMixer (Zhu et al., 2025).

• Generator–Evaluator methods: These methods (e.g., EGRerank (Huzhang et al., 2021),
PIER (Shi et al., 2023), and NAR4Rec (Ren et al., 2024b)) first generate multiple reranked can-
didate lists and then leverage an evaluator to select the most effective one for the user. Follow-
ing Yang et al. (2025), for PIER, we first apply a pointwise ranking model to select the top-6 items,
enumerate all possible permutations, and then use the evaluator to identify the optimal ranking.

• Multi-Generator–Evaluator methods: These approaches ensemble multiple generators to ex-
pand the candidate-list space and enhance ranking performance (Yang et al., 2025). We evaluate
this strategy under different ensemble sizes, with the number of generators set to 3, 20, and 100.

To ensure fairness, all baselines are tuned within their respective parameter spaces. Unless other-
wise specified (e.g., in scaling law experiments), the hidden embedding dimension of all models is
fixed at 128, and model depths are kept consistent.Moreover, all baselines share exactly the same
evaluator (reward model) as GoalRank. Additional details on baseline configurations and the
architecture of GoalRank are provided in Appendix D.2.

4.1.3 MAIN RESULTS (RQ1)

Ranking Performance. Table 1 reports the overall results across three datasets. We highlight:

• GoalRank consistently achieves the best performance. GoalRank outperforms all baselines.
On ML-1M, it improves H@6 and M@6 by +17.12% and +15.43%; on the Industry dataset, the
gains are even more pronounced, reaching +25.39% in H@6 and +29.63% in M@6. These results
confirm that a single large generator can better capture ranking signals than multi-stage model.

• Two-stage G-E methods outperform early G-only approaches. Models such as PIER and
NAR4Rec surpass DNN, DLCM, and PRM by explicitly modeling list-wise utility, validating
the effectiveness of evaluators over greedy generation.

• MG-E further improves but quickly saturates. As generator count increases from 3 to 100,
H@6 rises from 49.42 to 55.77 on Industry. However, the gains diminish rapidly, and even the
strongest MG-E models remain far below GoalRank, underscoring the inefficiency of enlarging
the candidate set alone.

Scaling Performance. In Section 3.1, we showed theoretically that GoalRank admits scaling laws.
Here, we empirically validate this by varying hidden dimensions, layer depth, and attention heads,
adjusting model size from 1M to 0.1B. We compare GoalRank with four representative baselines:
DNN, RanMixer, PIER, and MG-E. For fairness, baselines are scaled in the same manner as Goal-
Rank, while the size of MG-E is increased by enlarging the number of generators.

Figure 3 presents the scaling performance on the Industry-0.1B dataset. We exclude AUC since
GoalRank already achieves values above 0.98 even at small model sizes, though we observe further
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Figure 3: Scaling performance of GoalRank and baselines on the Industry-0.1B dataset across model
sizes from 1M to 0.1B parameters.

Table 2: Performance with varying group sizes |B|.
|B| 3 5 8 10 20 50 80 100

H@6 62.88 64.52 69.95 69.94 69.93 67.34 63.29 63.50
N@6 81.76 83.42 86.82 87.17 86.93 85.33 82.76 82.94
M@6 72.50 74.44 78.86 79.34 79.01 76.96 73.69 73.92
F1@6 74.00 75.94 82.25 82.28 82.29 79.26 74.47 74.76
AUC 97.50 97.79 98.05 98.15 98.07 98.06 97.75 97.77

Table 3: Performance with varying bias
level λ.

λ H@6 N@6 M@6 F1@6 AUC

0.0 69.93 86.93 79.01 82.29 98.07
0.2 65.32 83.21 74.33 76.89 97.90
0.5 63.77 82.75 73.79 75.05 97.73

improvements as the model size increases, approaching 1.0. The model size ranges from 1M to 0.1B
parameters.2 We summarize the key findings as follows:

• GoalRank demonstrates strong scaling. Metrics improve steadily from 1M to 0.1B, with the
sharpest gains between 10M and 0.1B, confirming clear scaling laws.

• Baselines show weak scaling. Larger sizes yield only modest improvements, reflecting the inher-
ent limitation of pointwise scoring in approximating the optimal policy.

• MG-E saturates. Adding generators helps initially but plateaus quickly, indicating diminishing
returns compared with GoalRank’s single-model scaling.

4.1.4 ABLATION STUDY (RQ2)

In this section, we present ablation studies to examine two key factors: (i) the impact of the group
size |B| on constructing the reference policy, and (ii) the robustness of GoalRank under varying
levels of bias in the reward model. We report results on the Industry dataset, which is representative
of the overall trends observed across all datasets.

Influence of the Size of B. Table 2 reports the performance of GoalRank under different group
sizes |B|. We observe that very small groups (3–5) fail to provide enough samples for constructing
a reliable reference policy, while overly large groups (50–100) weaken the reward gaps mentioned
in Equation 3 and thus amplify the bias of the reward model. The best performance is achieved with
moderate group sizes (8–20), which strike a balance between sample sufficiency and bias mitigation.
Importantly, GoalRank consistently outperforms the best baseline even when |B| is set suboptimally.

Influence of Prediction Bias of Reward Models. As discussed in Section 3.2, the reward model
r̂ used to construct the reference policy is inevitably biased. To examine the effect of this bias, we
introduce controlled noise by defining

r̂bias=λ(l) := (1− λ)r̂(l) + λε, ε ∼ N (0, 1),

and evaluate GoalRank under different bias levels λ ∈ {0.0, 0.2, 0.5}. Results in Table 3 show
that performance degrades only slightly as λ increases, indicating that GoalRank is robust to reward
model bias. Remarkably, even with λ = 0.5, GoalRank still outperforms state-of-the-art baselines.

4.2 LIVE EXPERIMENTS

4.2.1 EXPERIMENTAL SETUP

We evaluate GoalRank through a large-scale online A/B test on a real-world short-video recommen-
dation platform. The platform serves over half a billion daily active users, with an item pool of tens

2For very small models, training on the full dataset leads to unstable convergence. To ensure fair compari-
son, we proportionally sample the dataset for all models (including GoalRank) at the same parameter scale.
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Table 4: Online performances improvement of GoalRank. All results are statistically significant.
Method APP Stay Time Watch Time Effective View Like Comment

GoalRank + MG-E v.s. MG-E 0.092% 0.111% 0.836 % 0.228% 0.506%
GoalRank v.s. MG-E 0.149% 0.197% 1.212% 0.227% 0.802%

of millions of videos. The system follows a two-stage workflow: (i) retrieval, which selects N can-
didate items from millions, and (ii) ranking, which generates a final recommendation list of length
L. GoalRank is deployed in the ranking stage, where N = 120 candidates are provided and L = 6
items are exposed to each user. The workflow and latency is illustrated in Figure 4 (Appendix).

4.2.2 EVALUATION PROTOCOL

We randomly partition online traffic into eight buckets, each covering about one-eighth of total users
(tens of millions per bucket). We compare three settings: the production MG-E baseline(which con-
sists of tens of generator models and hundreds of candidate lists), a hybrid setting where GoalRank
serves 30% of the traffic alongside MG-E, and a pure GoalRank deployment. Each A/B test runs for
at least 14 days to ensure statistical reliability. We track standard business metrics, including App
Stay Time (a key overall engagement indicator), Watch Time (average continuous viewing length),
Effective Views (total view count), and other behavior-specific rates on recommended items.

4.2.3 RESULTS ANALYSIS

We report the results of the two-week online A/B tests in Table 4. GoalRank consistently outper-
forms the production MG-E framework across all business-critical metrics. Even in the hybrid set-
ting (GoalRank + MG-E), we observe significant gains, while a full deployment of GoalRank yields
the largest improvements. These results demonstrate that GoalRank can not only complement but
also fully replace the existing MG-E framework, providing superior ranking quality without incur-
ring trade-offs. GoalRank + MG-E has been deployed to serve the full user traffic in production.

5 CONCLUSION

In this work, we revisit the design of ranking models in recommender systems and challenged
the prevailing (Multi-)Generator–Evaluator paradigm. We theoretically proved that, for any (finite
Multi-)Generator–Evaluator model, there always exists a generator-only ranker that achieves strictly
smaller approximation error to the optimal ranking policy, and that this error decreases further as
model size grows. Building on this result, we derived an evidence upper bound of the one-stage
objective and introduced the group-relative optimization principle, which leverages a reward model
trained on real user feedback to construct a reference policy and provides a practical training objec-
tive for generator-only rankers. We instantiated these insights in GoalRank, a large generator-only
ranker optimized under the proposed principle. Extensive offline and online experiments demon-
strated that GoalRank consistently outperforms SOTA methods and exhibits clear scaling behavior.

Limitation and Future Work. In real-world applications, ranking often needs to accommodate
diverse and frequently changing business objectives. Compared with (Multi-)Generator–Evaluator
models, a generator-only framework like GoalRank is less flexible in adapting to such shifts. A
promising direction is to incorporate business-specific contextual signals into GoalRank, thereby
enhancing its adaptability and generalization across objectives. Moreover, recent progress in large
recommendation models has demonstrated remarkable success in the retrieval stage. However, most
of these efforts overlook list-wise modeling, limiting their ability to capture the benefits unique to
ranking. Future work may therefore explore how large retrieval and large ranking models can be
jointly optimized to build more powerful end-to-end recommender systems.

Reproducibility Statement. For the theoretical results, detailed derivations are provided in Ap-
pendix A. For the empirical studies, we will release the implementation and training code at
https://anonymous.4open.science/r/GoalRank to ensure reproducibility.

Ethics Statement. This work aims to improve the ranking stage of recommender systems to enhance
user satisfaction. It does not raise any specific ethical concerns.
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A PROOF OF THEOREM 1

Notation. Recall the space of the ranking list in Section 2. For simplicity and clarity, in this
section, we omit the u ∈ U in the expressions of the following symbols. The space of ranking list L
is:

L :=
{
l = (v1, . . . , vL) ∈ VL

∣∣ vi ̸= vj (i ̸= j)
}
, |L| = P(N,L) :=

N !

(N − L)!
.

Then the state set during the generation process can be expressed as:

S :=
{
(i, l<i)

∣∣ i ∈ [L], l<i ∈ Vi−1, va ̸= vb (a ̸= b)
}
.

and corresponding actions at state (i, l<i):

A(i, l<i) := V \ {v1, . . . , vi−1}, |A(i, l<i)| = N − (i− 1).

Given a score vector a ∈ RV and a feasible set A ⊆ V , the masked softmax is

(
softmaxA(a)

)
j
:=


eaj∑
t∈A e

at
, j ∈ A,

0, j /∈ A.

For a finite index set I and x ∈ RI , write ∥x∥∞;I := maxi∈I |xi|. We use KL(·∥·) for Kull-
back–Leibler divergence.
Lemma 1. Let k ∈ N and gm,i ∈ Gm (i = 1, . . . , k) be k generators. Assume each gm,i is locally
Lipschitz in its parameter θi ∈ [A,B]dm , and the masking set A(t, l<t) depends only on (t, l<t)
(not on parameters). For mixing weights ω = [ωi]

k
i=1 ∈ ∆k−1, define

Φ : Θk → ∆|L|−1, Θk :=
(
[A,B]dm

)k ×∆k−1, (7)

where

Φ(θ1:k,ω) =

k∑
i=1

ωi πgm,i
,

where πgm,i
=

(
πgm,i

(l)
)
l∈L is the masked-softmax autoregressive policy induced by gm,i. Then

Ck
m := im(Φ) satisfies:

1. Ck
m is compact;

2. dimHaus

(
Ck
m

)
≤ min

{
kdm + (k − 1), |L| − 1

}
.

Proof. Compactness. Each parameter domain [A,B]dm is compact, and finite Cartesian products
preserve compactness; the simplex ∆k−1 is also compact. Hence Θk is compact. For a fixed
list l ∈ L and position t, given the smoothness of softmax and gm,i is C1, the masked-softmax
distribution

πgm,i
(l) =

L∏
t=1

exp
(
z
(i)
t,lt

(l<t)
)∑

j∈A(t,l<t)
exp

(
z
(i)
t,j (l<t)

) , z
(i)
t,· = gm,i(t, l<t, ·; θi),

is C1 in θi, as masking only discards coordinates independent of parameters.

Since Φ is a convex combination of such policies, it is C1 in (θ1:k,ω), hence continuous. By
continuity of Φ on the compact domain Θk, its image Ck

m is compact.

Dimension bound. On Θk (compact), each map (θi,ω) 7→ ωiπgm,i is Lipschitz: θi 7→ z(i) is Lip-
schitz; composition with masked-softmax is Lipschitz (bounded Jacobian on the relevant compact
image); the product over t and convex mixing in ω preserve Lipschitzness since all factors are uni-
formly bounded. Thus Φ is Lipschitz on Θk. Lipschitz maps do not increase Hausdorff dimension,
yielding

dimHaus(im(Φ)) ≤ dimHaus(Θk) = kdm + (k − 1),

and trivially dimHaus(im(Φ)) ≤ |L| − 1, giving the stated minimum.
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Theorem 2. Let V be the candidate set with N := |V|, and let L be the set of length-L lists without
repetition, so d := |L| − 1 = P(N,L) − 1. Let Ck

m(α, β) ⊂ ∆d be the k-mixture (α, β)-bounded
policy space. Assume Lemma 1 holds with

dimHaus

(
Ck
m(α, β)

)
≤ r := k dm + (k − 1) and r < d.

Then for Lebesgue-almost every fully supported target policy π∗ ∈ int(∆d),

inf
π∈Ck

m(α,β)
KL

(
π∗∥π

)
> 0. (8)

Proof. By Lemma 1, Ck
m(α, β) is compact and dimHaus(Ck

m(α, β)) ≤ r < d = dim(aff(∆d)).
Hence the d-dimensional relative Lebesgue measure (equivalently, the d-dimensional Hausdorff
measure) of Ck

m(α, β) inside aff(∆d) is zero. Therefore, for Lebesgue-a.e. π∗ ∈ int(∆d) we have
π∗ /∈ Ck

m(α, β).

Fix such a π∗ with π∗ ≻ 0. Every π ∈ Ck
m(α, β) assigns strictly positive probability to each l ∈ L,

so the map

Ψ(π) := KL
(
π∗∥π

)
=

∑
l∈L

π∗(l) log
π∗(l)

π(l)

is finite and continuous on the compact set Ck
m(α, β); thus the minimum

δ := min
π∈Ck

m(α,β)
KL

(
π∗∥π

)
is attained. Since KL(π∗∥π) = 0 iff π = π∗ and π∗ /∈ Ck

m(α, β), we must have δ > 0, proving
Equation 8.

Classical universal approximation results (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991;
Leshno et al., 1993; Sonoda & Murata, 2017) yield the following lemma. For clarity and gen-
erality, we adopt MLP-based generators as the foundational model class. The goal is to show that
even the most basic architecture—the MLP—already has sufficient expressive power to approximate
the target policy. Universal approximation for Transformers (and related architectures) in sequence
modeling is also known; see Yun et al. (2019); Augustine (2024).
Lemma 2. Let K ⊂ Rn be compact and let F : K → Rm be continuous. Let ϕ : R → R be any
continuous activation function that is not a polynomial on any interval.3 Then for every η > 0 there
exists a fixed-depth (e.g., one hidden layer), arbitrarily wide MLP hΘ : K → Rm with activation ϕ
such that

∥hΘ − F∥∞;K < η.

Consequently, for any finite Borel measure µ on K and any 1 ≤ p < ∞, we also have ∥hΘ −
F∥Lp(K,µ) < η.

Remark 1 (Finite domains). On a finite domain K = {x1, . . . , xT }, continuity is automatic and

∥hΘ − F∥∞;K = max
t∈[T ]

∥hΘ(xt)− F (xt)∥∞,

which coincides with the maximum pointwise error.

To adapt Lemma 2 to the ranking setting, we encode the autoregressive state–action tuples into a
compact Euclidean set.
Corollary 1. Let

ρ : D → R, D :=
{
(i, l<i, j) : 1 ≤ i ≤ L, j ∈ A(i, l<i)

}
,

be defined by
ρ(i, l<i, j) := log π∗(li = j | l<i),

where π∗ is a fully supported target autoregressive policy on the feasible sets A(i, l<i). Fix any
injective encoding ψ : D ↪→ K ⊂ Rd with K compact. Then for any σ > 0 there exists an MLP
hΘ : K → R such that

∥hΘ ◦ ψ − ρ ∥∞;D ≤ σ.

3This covers common activations such as sigmoid, tanh, ReLU, leaky-ReLU, ELU, and softplus.
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Proof. The index set D is finite (since N,L < ∞), hence any function defined on ψ(D) ⊂ K is
continuous w.r.t. the subspace topology. Apply Lemma 2 with m = 1 to obtain hΘ with the desired
uniform bound.

Lemma 3. Let p(j) ∝ eρj on a finite set and q(j) ∝ eρj+εj with |εj | ≤ σ for all j. Then for all j,

e−2σ ≤ q(j)

p(j)
≤ e2σ,

and in particular
KL(p∥q) ≤ 2σ, ∥p− q∥1 ≤ e2σ − 1.

Moreover, for an autoregressive policy over length-L lists,

KL
(
π∗∥π̃

)
=

L∑
i=1

El<i∼π∗

[
KL

(
pi(· | l<i)∥qi(· | l<i)

)]
≤ 2Lσ.

Fact 1. Fix a feasible set A. Let p = softmaxA(a) and q = softmaxA(b) with a, b ∈ RV . If
∥a− b∥∞;A ≤ σ, then

KL(p∥q) ≤ 2σ.

Proof. Write εj := bj − aj for j ∈ A, so |εj | ≤ σ. Then

qj
pj

=
ebj/

∑
t∈A e

bt

eaj/
∑

t∈A e
at

=
eεj∑

t∈A pte
εt

∈
[e−σ

eσ
,
eσ

e−σ

]
=

[
e−2σ, e2σ

]
.

Hence log
pj

qj
≤ 2σ for all j ∈ A, and

KL(p∥q) =
∑
j∈A

pj log
pj
qj

≤
∑
j∈A

pj · 2σ = 2σ.

Fact 2. Let π∗ and π be autoregressive list policies on V of length L with conditionals supported
on A(i, l<i). Then

KL(π∗∥π) =
L∑

i=1

El<i∼π∗

[
KL

(
π∗(· | l<i) ∥π(· | l<i)

)]
.

Proof. By the chain rule,

log
π∗(l1, . . . , lL)

π(l1, . . . , lL)
=

L∑
i=1

log
π∗(li | l<i)

π(li | l<i)
.

Taking expectation w.r.t. π∗ yields

KL(π∗∥π) =
L∑

i=1

El<i∼π∗ Eli∼π∗(·|l<i)

[
log

π∗(li | l<i)

π(li | l<i)

]
,

which is the stated form because the inner expectation equals KL
(
π∗(· | l<i)∥π(· | l<i)

)
.

Theorem 3. Let GMLP be the class of (fixed-depth, arbitrary-width) MLP generators that, given
(i, l<i), produce logits g(i, l<i, ·) ∈ RV . Define the induced policy class

FMLP :=
{
πΘ : πΘ( · | l<i) = softmaxA(i,l<i)

(
gΘ(i, l<i, ·)

) }
.

Then for every ε > 0 there exists a width W (ε,N,L) and parameters Θ such that

KL(π∗∥πΘ) ≤ ε, hence lim
W→∞

E(FMLP) = 0,

where E(F) := infπ∈F KL(π∗∥π).
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Proof. Define target logits on the effective domain D by ρ(i, l<i, j) := log π∗(li = j | l<i) for
j ∈ A(i, l<i). Fix an injective encoding ψ : D ↪→ K ⊂ Rd into a compact K.

By Corollary 1, for any σ > 0 there exists an MLP hΘ : K → R such that ∥hΘ ◦ ψ − ρ∥∞;D ≤ σ.
Use gΘ(i, l<i, j) := hΘ(ψ(i, l<i, j)) for j ∈ V . Define the policy

πΘ(li = j | l<i) := softmaxA(i,l<i)

(
gΘ(i, l<i, ·)

)
j
.

For each prefix l<i, Fact 1 with a = ρ(i, l<i, ·), b = gΘ(i, l<i, ·) yields

KL(π∗(· | l<i) ∥ πΘ(· | l<i)) ≤ 2σ.

Applying Fact 2 gives

KL(π∗∥πΘ) =

L∑
i=1

El<i∼π∗
[
KL

(
π∗(· | l<i)∥πΘ(· | l<i)

)]
≤ 2Lσ.

Choose σ = ε/(2L) to obtain KL(π∗∥πΘ) ≤ ε. Finally, by Lemma 2 (or the finiteness of D), the
achievable σ tends to 0 as width W → ∞, proving limW→∞ E(FMLP) = 0.

Proposition 1. Let Gm(α, β), Fm(α, β), and Ck
m(α, β) be as in Definitions 1–2. For n ∈ N>0, let

the large-generator class be

GM (α, β, n) :=
{
gM

∣∣ W (gM ) ≥ kα+ n, D(gM ) ≥ β
}
,

with induced policy class FM (α, β, n) := {softmax◦ gM : gM ∈ GM (α, β, n)}. Assume the list-
generation domain has a finite effective index set D = {(i, l<i, j) : j ∈ A(i, l<i)} and the activation
σ enjoys a universal-approximation property on compact sets (e.g., standard MLP activations). Then

Ck
m(α, β) ⊆ FM (α, β, n),

where the closure is taken w.r.t. uniform convergence of masked conditionals on D.

Proof. Fix any mixture element πmix ∈ Ck
m(α, β). By Definition 2, there exist generators gm,r ∈

Gm(α, β), r = 1, . . . , k, with logits zr(i, l<i, ·) on A(i, l<i) and mixture weights ωr(i, l<i) ≥ 0

with
∑k

r=1 ωr(i, l<i) = 1 such that

πmix(· | l<i) =

k∑
r=1

ωr(i, l<i) softmaxA(i,l<i)

(
zr(i, l<i, ·)

)
.

Note that here we extend the mixture weights to be prefix-dependent, i.e., ωr(i, l<i). This exten-
sion makes the proposition both stricter and more flexible, thereby broadening its generalization
capability. If one wishes to exactly follow Definition 2, the weights can simply be degenerated to
ωr(l).

Step 1 (block-diagonal embedding of the k small generators). Without loss of generality, pad
each gm,r to width exactly α per hidden layer by adding zero weights/units. Construct a depth-
β, width-M network gM with M ≥ kα + n whose hidden layers are partitioned into k disjoint
generator blocks of width α and one evaluator block of width n:

M = α+ · · ·+ α︸ ︷︷ ︸
k blocks

+ n︸︷︷︸
evaluator

.

For layers 1, . . . , β − 1, set the large-layer weights to be block-diagonal so that the r-th generator
block exactly replicates the corresponding layer of gm,r, and the evaluator block either copies its
previous state or computes auxiliary features (details in Step 2). Thus, after β− 1 hidden layers, the
first kα coordinates of the big network’s hidden state equal the concatenation of the β− 1-th hidden
activations of {gm,r}kr=1.

Step 2 (parameterizing the evaluator weights ω with k−1 degrees of freedom). Use the evaluator
block (of width n ≥ k − 1) to produce mixture logits u(i, l<i) ∈ Rk with the constraint that one
coordinate is fixed as a reference (e.g., uk ≡ 0), and define

ωr(i, l<i) :=
eur(i,l<i)∑k
q=1 e

uq(i,l<i)
(r = 1, . . . , k),
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which realizes an arbitrary point in ∆k−1 through a k − 1-dimensional parameterization. Because
D is finite, the map (i, l<i) 7→ ω(i, l<i) can be approximated arbitrarily well by the evaluator block
via UAT.

Step 3 (combiner at depth β: realizing the log-sum-exp logits). Define for j ∈ A(i, l<i) the
target combined logits

z̃j(i, l<i) := log

k∑
r=1

ωr(i, l<i)

Zr(i, l<i)
ezr,j(i,l<i), Zr(i, l<i) :=

∑
t∈A(i,l<i)

ezr,t(i,l<i).

At the last hidden layer (the β-th nonlinear layer), allow cross-block connections from all generator
blocks and the evaluator block into a width-M hidden layer that serves as a single-hidden-layer
approximator for the multivariate continuous mapping

Φ :
(
z1, . . . , zk, ω

)
7→ z̃ on the finite domain D.

By universal approximation, there exist weights in this last hidden layer (and the final linear readout)
so that the resulting gM satisfies

∥ gM − z̃ ∥∞;D ≤ σ

for any prescribed σ > 0. Note that the depth requirement D(gM ) ≥ β is met (we used exactly β
nonlinear layers), and the width requirement W (gM ) ≥ kα + n is used to house the k embedded
blocks (kα units) and the evaluator block (n units).

Step 4 (from logits to conditionals). By the identity

softmaxA(i,l<i)

(
z̃(i, l<i, ·)

)
=

k∑
r=1

ωr(i, l<i) softmaxA(i,l<i)

(
zr(i, l<i, ·)

)
,

the conditional produced by softmaxA(z̃) equals the target mixture conditional. Since ∥gM −
z̃∥∞;D ≤ σ and the masked softmax is continuous, softmaxA(gM ) converges uniformly on D
to softmaxA(z̃) = πmix as σ ↓ 0. Therefore πmix ∈ FM (α, β, n). Because πmix was arbitrary, the
claimed inclusion holds.

Remark 2 (Why kα + n and k − 1 neurons for ω). The kα term guarantees disjoint capacity to
exactly embed the k small generators via block-diagonal copying across the first β−1 hidden layers.
The additional n units form an evaluator head; choosing n ≥ k − 1 suffices to parameterize the
simplex ∆k−1 via softmax logits u ∈ Rk with one fixed reference coordinate, while also providing
enough width for the last-layer universal approximation of the log-sum-exp combiner.

Proof of Theorem 1. Step 1 (Coverage of k-mixtures by a single large generator). By Proposi-
tion 1,

Ck
m(α, β) ⊆ FM (α, β, n),

where the closure is taken w.r.t. uniform convergence of masked conditionals on the finite effective
domain. Because π∗(l) > 0 for all l ∈ L and L is finite, the map π 7→ KL(π∗∥π) is continuous
under uniform convergence of the conditionals. Hence, for every n,

E
(
FM (α, β, n)

)
≤ E

(
Ck
m(α, β)

)
. (9)

Step 2 (Arbitrary accuracy by increasing width). By Theorem 3 (UAT-backed policy approxima-
tion), for every ε > 0 there exists a fixed depth L0 and a width threshold W (ε,N,L), together with
parameters Θ, such that the induced policy πΘ satisfies KL(π∗∥πΘ) ≤ ε. Choose the fixed depth in
Theorem 3 so that L0 ≥ β, which is allowed by the theorem. Then, taking n large enough to ensure
kα+ n ≥W (ε,N,L), we have πΘ ∈ FM (α, β, n) and therefore

E
(
FM (α, β, n)

)
≤ ε. (10)

Since ε > 0 was arbitrary, it follows that limn→∞ E(FM (α, β, n)) = 0.

Step 3 (Strict improvement over the k-mixture space). By Theorem 2, there exists δ > 0 such
that E(Ck

m(α, β)) = δ. Apply Step 2 with ε := δ/2. Then for some n0,

E
(
FM (α, β, n0)

)
≤ δ/2 < δ = E

(
Ck
m(α, β)

)
.

By monotonicity in n (the class FM (α, β, n) enlarges with n), the strict inequality holds for all
n ≥ n0. Combining with equation 9 concludes the proof of both statements.
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B REWARD MODEL TRAINING

Following Zhang et al. (2025), we train a reward model to approximate user feedback on exposed
recommendation lists. Let u ∈ U denote a user with context information Xu (e.g., historical inter-
actions or side features). Suppose lu = (v1, . . . , v|l|) is the exposure list presented to user u, where
vi ∈ Vu ⊆ V and |l| is the list length. The corresponding real user feedback, such as watch time,
clicks, or other engagement signals, is denoted by rlu ∈ R.

The reward model is defined as a function

r̂ : X × V |l| → R,

which, given the user context Xu and a candidate list lu, predicts the expected feedback r̂(lu | Xu).

To train the reward model, we minimize the mean squared error between the predicted feedback
r̂(lu | Xu) and the observed feedback rlu across all users:

L(r̂) = Eu∈U

[(
r̂(lu | Xu)− rlu

)2]
.

C METHODS FOR GROUP CONSTRUCTION

We consider multiple strategies for constructing groups of candidate lists, beyond the standard au-
toregressive sampling approach. The main methods are summarized as follows:

• Autoregressive list generation (Jayaram & Thickstun, 2021): The conventional approach sam-
ples a single list by generating the entire trajectory in an autoregressive generator. While effective
in capturing dependencies, this method is relatively slow and produces only one list per sampling
trajectory.

• Parallel tree-structured generation (Jayaram & Thickstun, 2021; Wang et al., 2025a): To
improve efficiency and diversity, we allow the autoregressive generator to branch out in the first
K steps, forming a tree of partial sequences. The remaining L − K steps are then completed
deterministically, enabling parallel exploration of multiple candidate lists.

• Softmax-based stochastic sampling (Holtzman et al., 2019; Efraimidis & Spirakis, 2006):
After the first step of scoring by generator, items are sampled probabilistically according to the
softmax distribution of their scores, instead of deterministically selecting the top item, which
encourages more diverse list generation.

• Markov process approximation (Metropolis et al., 1953): The list generation process is mod-
eled as a Markov chain, where each step only conditions on the immediately preceding item rather
than the full history. We exhaustively explore and score all possible two-item pairs in the first two
steps and the remaining items in the list are sampled sequentially in a chain-like manner.

• Random selection: As a simple baseline, we randomly sample six items to form a candidate list
without using model guidance.

• Heuristic substitution (Wang et al., 2025b): Starting from already sampled lists, we heuristically
replace up to two items to create new candidate lists while maintaining partial consistency with
existing ones.

• Diversity-oriented generation (Yang et al., 2025) : we generate lists that are explicitly encour-
aged to differ significantly from previously sampled lists, thereby enhancing the diversity of the
candidate set.

D DETAILS OF OFFLINE EXPERIMENTS SETTINGS

D.1 DETAILS OF DATASET

The ML-1M dataset is a widely used public benchmark in recommender systems, containing approx-
imately 1 million ratings provided by over 6,000 users on more than 3,900 movies. The Amazon
Books dataset is a large-scale collection of product reviews focused on books available on Amazon,
consisting of about 2 million reviews from over 35,000 users spanning more than 39,000 books. The
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Figure 4: Online workflows.

Industry dataset is collected from a real-world short-video platform that serves over half a billion
daily active users and hosts an item pool of tens of millions of videos. We construct two versions of
this dataset: a smaller one with over 3 million interactions from 89,310 users on 10,395 videos, and
a larger one with over 0.1 billion interactions from 1 million users on 0.3 million videos.

For preprocessing, all interactions are organized in chronological order, and users/items with fewer
than 20 interactions are filtered out following the standard 20-core protocol. We employ a Matrix
Factorization (MF) model as the retriever simulator to generate candidate items for the ranking stage.
The data is split into training and testing sets with a ratio of 8:2. For the ranking stage, interactions
are sorted chronologically, and the last six interactions are used as the item list exposed to users
after reranking. Table 5 reports the statistics of the processed datasets, including the number of
users, items, interactions, and revealed lists.

Table 5: Dataset Statistics

Dataset |U| |I| # Interaction # List
ML-1M 6,020 3,043 995,154 161,646
Amazon-Book 35,732 38,121 1,960,674 311,386
Industry 89,310 10,395 3,270,132 513,010
Industry-0.1B 1,146,032 312,573 100,269,812 16,099,612

D.2 DETAILS OF BASELINES

We detail the compared baselines of our main experiments in the following, covering three major
categories: Generator-only methods, Generator–Evaluator methods, and Multi-Generator–Evaluator
methods:

Generator-only methods: These approaches directly predict the item-wise scores for candidates
and rank them accordingly, without explicit evaluation of whole lists.

• DNN (Covington et al., 2016) learn the user feedback for each user-item interaction.
• DLCM (Ai et al., 2018) refines initial rankings by leveraging local context from top-retrieved

documents , using a recurrent neural network to capture document interactions and an attention-
based loss function to capture item interactions.

• PRS (Feng et al., 2021a) also known as SetRank, which is a neural learning-to-rank model em-
ploys permutation-invariant neural ranking with multi-head self-attention to model cross-item de-
pendencies, achieving robust performance across variable-length input sets.

• PRM (Pei et al., 2019a) addresses personalized re-ranking by integrating user-specific preferences
into the re-ranking process, thus enhancing both personalization and relevance.

• MIR (Xi et al., 2022) captures complex hierarchical interactions between user actions and candi-
date list features to improve the accuracy of list-wise recommendation.
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Generator-Evaluator Methods: These methods adopt a two-stage paradigm where the generator
produces candidate lists and the evaluator selects the most promising one.

• EGRerank (Huzhang et al., 2021) proposes an evaluator–generator framework for e-commerce
ranking. The evaluator estimates list utility given context, while the generator leverages reinforce-
ment learning to maximize evaluator scores, with an additional discriminator ensuring evaluator
generalization.

• PIER (Shi et al., 2023) follows a two-stage architecture consisting of a Fine-grained Permutation
Selection Module (FPSM) and an Omnidirectional Context-aware Prediction Module (OCPM).
The FPSM leverages SimHash to identify the top-K candidate permutations based on user inter-
ests, while the OCPM evaluates these permutations through an omnidirectional attention mecha-
nism.

• NAR4Rec (Ren et al., 2024b) introduces a non-autoregressive generative re-ranking model that al-
leviates data sparsity and candidate variability via contrastive decoding and unlikelihood training,
while also considering its integration into broader generator–evaluator frameworks.

Multi Generator-Evaluator: These methods extend the generator–evaluator paradigm by ensem-
bling multiple generators to enlarge the candidate list space and improve final ranking quality. For
example, MG-E (Yang et al., 2025) aggregates outputs from multiple generators, each specializing
in different candidate distributions, before applying evaluation for list selection.

To ensure a fair comparison, we adopt a relatively lightweight generator architecture for GoalRank.
Specifically, the GoalRank Generator consists of two blocks: a lower block that performs feature
crossing over all candidate items using several Transformer layers, and an upper block implemented
as a Transformer decoder. During list generation, the decoder autoregressively predicts next-item
scores over the full candidate set at each step, and GoalRank constructs the final list by sequentially
selecting items (via Top-1 or sampling-based strategies).

D.3 ONLINE LATENCY AND MFU

To demonstrate the efficiency and resource-utilization advantages of GoalRank’s single-stage ar-
chitecture, we report both the online latency and MFU of GoalRank compared with the existing
Multi-Generator–Evaluator (MGE) pipeline. Notably, during training, many components of Goal-
Rank can be executed in parallel. For example, the construction of auxiliary ranking-policy groups
for reference-policy generation can be fully parallelized, resulting in negligible additional overhead.
Under this setting:

• Latency. GoalRank achieves an online latency of 18.611 ms, which is substantially faster than
the multi-stage MGE pipeline (34.235 ms). This improvement stems from GoalRank’s ability
to directly generate the final list in a single stage, eliminating evaluator scoring and multiple
candidate-list constructions .

• MFU. GoalRank attains an MFU of 12.65%, compared with 2.03% for the traditional two-stage
MGE pipeline. The higher MFU reflects significantly better hardware utilization, ensuring that
GoalRank does not increase overall training cost despite offering stronger performance.

These results validate that GoalRank is practical, efficient, and deployment-ready. Furthermore,
GoalRank has been successfully deployed in our online environment to serve full user traffic.

E USE OF LLMS

Large language models (LLMs) were employed to polish the main body of this paper. Their use was
limited to grammar checking and correction of typographical errors.
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