

000 001 002 003 004 005 GOALRANK: GROUP-RELATIVE OPTIMIZATION FOR A 006 LARGE RANKING MODEL 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 Mainstream ranking approaches typically follow a Generator–Evaluator two-stage
031 paradigm, where a generator produces candidate lists and an evaluator selects the
032 best one. Recent work has attempted to enhance performance by expanding the
033 number of candidate lists, for example, through multi-generator settings. How-
034 ever, ranking involves selecting a recommendation list from a combinatorially
035 large space, simply enlarging the candidate set remains ineffective, and perfor-
036 mance gains quickly saturate. At the same time, recent advances in large rec-
037 commending models have shown that end-to-end one-stage models can achieve
038 promising performance with the expectation of scaling laws. Motivated by this,
039 we revisit ranking from a generator-only one-stage perspective. We theoretically
040 prove that, for any (finite Multi-)Generator–Evaluator model, there always exists
041 a generator-only model that achieves strictly smaller approximation error to the
042 optimal ranking policy, while also enjoying a scaling law as its size increases.
043 Building on this result, we derive an evidence upper bound of the one-stage op-
044 timization objective, from which we find that one can leverage a reward model
045 trained on real user feedback to construct a reference policy in a *group-relative*
046 manner. This reference policy serves as a practical surrogate of the optimal pol-
047 icy, enabling effective training of a large generator-only ranker. Based on these
048 insights, we propose **GoalRank**, a generator-only ranking framework. Extensive
049 offline experiments on public benchmarks and large-scale online A/B tests demon-
050 strate that **GoalRank** consistently outperforms state-of-the-art methods.
051
052

1 INTRODUCTION

053 Recommender systems are indispensable for coping with the exponential growth of online con-
054 tent (Gomez-Uribe & Hunt, 2015). Industrial platforms typically adopt a multi-stage pipeline, com-
055 prising retrieval (He et al., 2020; Zhang et al., 2024) and ranking (Yu et al., 2019; Liu et al., 2023;
056 Zhang et al., 2025). The ranking stage is particularly critical, as it determines the final sequence of
057 items shown to users and has a major impact on both user satisfaction and platform revenue.
058

059 Formally, the ranking task can be defined as an $N \rightarrow L$ list-generation problem: given N candidates
060 from the preceding stage, the model outputs an ordered list of length L . The search space is the set
061 of length- L permutations, $P(N, L) = \frac{N!}{(N-L)!}$, which makes exhaustive enumeration intractable for
062 large N . Early approaches adopt a **one-stage single generator** that directly produces recom-
063 mendation lists by scoring items and arranging them greedily (Zhuang et al., 2018; Ai et al., 2018; Pei
064 et al., 2019a; Gong et al., 2022; Liu et al., 2023), as illustrated in Figure 1(a). However, this greedy
065 strategy only models the item interdependencies in the candidate set (of size N) but not in the output
066 list (of size L), often resulting in suboptimal rankings.
067

068 To address this limitation, subsequent studies propose a **two-stage Generator–Evaluator**
069 paradigm (Shi et al., 2023; Xi et al., 2024; Lin et al., 2024; Ren et al., 2024b; Zhang et al., 2025)
070 (Figure 1b): a generator first proposes multiple candidate lists, and an evaluator then selects the
071 best one according to an estimated list-wise value. To mitigate the risk that generators produce
072 only locally optimal candidates, later works introduce **multi-generator** settings (Figure 1c), thereby
073 increasing both the number and diversity of candidate lists. In practice, however, simply scaling
074 the number of candidates or generators yields diminishing returns, with performance gains quickly
075 plateauing (Figure 1d).
076

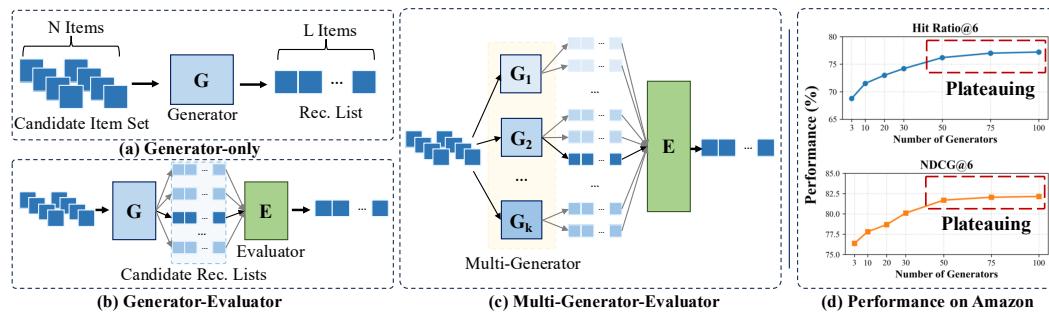


Figure 1: Illustration of different ranking paradigms: (a) Generator-only; (b) Generator–Evaluator; (c) Multi-Generator–Evaluator; and (d) Performance trend with increasing number of generators.

Meanwhile, advances in **end-to-end, one-stage** large recommendation models suggest that a single sufficiently expressive model can subsume multi-stage pipelines, avoid cross-stage inconsistencies, and exhibit favorable scaling behavior (Zhai et al., 2024; Deng et al., 2025). These findings indicate that the two-stage Generator–Evaluator paradigm may not be indispensable for achieving high-quality ranking. Motivated by this, we revisit the **generator-only** paradigm and ask: can a larger, more powerful one-stage ranker directly produce high-quality lists without relying on an external evaluator? Formally, let π^* denote the optimal ranking policy. We focus on two central questions:

- i For any (finite Multi-)Generator–Evaluator system, does there exist a single generator-only model whose policy achieves a strictly smaller approximation error with respect to π^* ?
- ii If such a model exists, how can it be trained effectively to realize this approximation advantage in practice?

To answer these questions, we analyze (in Section 3.1) the approximation error between the policy space induced by a finite set of (Multi-)Generator–Evaluator models and the optimal ranking policy π^* . This analysis proves the existence of a generator-only model that can achieve a strictly smaller approximation error. Moreover, we show that as the size of this generator-only ranking model increases, its approximation error with respect to π^* decreases accordingly. Building on these theoretical insights, we then turn to the practical challenge of how to train such a one-stage ranking model. By deriving an evidence upper bound of the existing optimization objective, we find that one can leverage a reward model trained on real user feedback to construct a reference policy in a *group-relative* manner, which serves as a surrogate for π^* . This enables us to train a large generator-only ranking model effectively. Based on this idea, we propose a new training framework, **GoalRank** (Group-Relative OptimizAtion for a Large Ranker). We validate the effectiveness of **GoalRank** on public benchmarks as well as through large-scale online A/B tests, showing substantial improvements over state-of-the-art baselines and clear evidence of scaling laws.

The main contributions of this work can be summarized as follows:

- **Theoretical foundation.** We prove that for any (finite Multi-)Generator–Evaluator family, there always exists a generator-only model that achieves a strictly smaller approximation error to the optimal ranking policy, and that this error decreases as model size increases (scaling law).
- **Optimization principle.** We introduce the Group-Relative optimization principle, which provides a tractable and effective criterion for training large generator-only ranking models.
- **Model and validation.** We instantiate these ideas in **GoalRank**, a generator-only large ranker trained under the proposed principle. Extensive offline experiments and online A/B tests demonstrate consistent improvements over strong baselines and reveal clear scaling laws with respect to model capacity.

2 RELATED WORK AND PRELIMINARIES

The ranking task in recommender systems can be formulated as an $N \rightarrow L$ list-generation problem: given N candidate items, the model outputs an ordered list of length L . Let \mathcal{U} and \mathcal{V} denote the user and item sets. For each user u , the candidate set is $\mathcal{V}_u \subseteq \mathcal{V}$ with $|\mathcal{V}_u| = N$. The generation space is

$$\mathcal{L}_u = \{(v_1, \dots, v_L) \in \mathcal{V}_u^L : v_i \neq v_j (i \neq j)\}, \quad |\mathcal{L}_u| = P(N, L) = \frac{N!}{(N-L)!}.$$

108 Since $P(N, L)$ is exponentially large, existing works build approximate ranking paradigms to ex-
 109 plore this space.
 110

111 **Single-Stage Generator-Only Models.** A straightforward solution is to use a single generator G
 112 that scores items and constructs a list greedily (Zhuang et al., 2018; Ai et al., 2018; Pei et al., 2019a;
 113 Gong et al., 2022; Liu et al., 2023; Feng et al., 2021b; Xi et al., 2022; Pei et al., 2019b). Classic
 114 models include DLCM (Ai et al., 2018) and PRM (Pei et al., 2019a), which refine item scores using
 115 local listwise features. Formally:

$$l_u^* = G(\mathcal{X}_u, \mathcal{V}_u).$$

116 Although efficient, these methods typically underexplore inter-item dependencies and may not re-
 117 main consistent with the conditioning of the original candidate set.
 118

119 **Two-Stage Generator-Evaluator Paradigm.** To better address the combinatorial $N \rightarrow L$ search
 120 space, recent work adopts a two-stage (multi-)Generator-Evaluator (G-E) framework (Chen et al.,
 121 2022; Shi et al., 2023; Xi et al., 2024; Lin et al., 2024; Ren et al., 2024b; Wang et al., 2025b). A
 122 generator produces multiple candidate lists, and an evaluator scores them to select the best one:

$$l_u^* = \arg \max_{l \in \mathcal{L}_{u,k}} E(\mathcal{X}_u, l), \quad \mathcal{L}_{u,k} = \{ G_i(\mathcal{X}_u, \mathcal{V}_u) \mid i = 1, \dots, k \}.$$

123 The special case $k=1$ reduces to a single-generator-evaluator model. Multi-generator extensions
 124 ($k > 1$) aim to enlarge the proposal space (Yang et al., 2025), but empirical gains saturate rapidly
 125 as k grows. This diminishing return suggests that merely increasing the number of generators is
 126 inefficient and highlights the need for fundamentally stronger listwise modeling.
 127

128 **Other Directions.** Other concurrent efforts incorporate large language models (Ren et al., 2024a;
 129 Gao et al., 2024; Wu et al., 2024; Gao et al., 2025; Ren et al., 2025; Liu et al., 2025) or reinforcement
 130 learning (Feng et al., 2021c; Wang et al., 2024; 2025c; Wei et al., 2020). LLM-based methods
 131 leverage textual side information, while RL-based approaches decompose the listwise value function
 132 to align rankings with user utility.
 133

3 METHODOLOGY

134 In this section, we address the research questions raised in Section 1, namely: (i) can the generator-
 135 only paradigm outperform the (Multi-)Generator-Evaluator paradigm, and (ii) if so, how can such
 136 a generator-only ranking model be effectively learned? Building on the insights gained from these
 137 analyses, we then propose a new generator-only large ranker framework, **GoalRank**, which lever-
 138 ages group-relative optimization to approximate the optimal ranking policy.
 139

3.1 CAN THE GENERATOR-ONLY PARADIGM PERFORM BETTER?

140 To assess the feasibility of a single-stage large ranking model, we first ask whether a sufficiently
 141 large generator-only model can match or even exceed the expressive power of the widely used two-
 142 stage (Multi-)Generator-Evaluator pipeline. Formally, suppose there exists an optimal ranking pol-
 143 icy π^* . We compare the best attainable approximation error of (i) a k -mixture of small generators
 144 combined with an evaluator, and (ii) a single larger generator. To make this comparison precise, we
 145 begin by defining a capacity-restricted generator class.

146 **Definition 1** $((\alpha, \beta)$ -bounded generator class). *Given maximum generator width α and depth β , the
 147 (α, β) -bounded generator class is defined as*

$$\mathcal{G}_m(\alpha, \beta) := \{ g_m \mid W(g_m) \leq \alpha, D(g_m) \leq \beta \},$$

148 where g_m denotes a generator, and $W(\cdot)$ and $D(\cdot)$ measure width- and depth-type complexities,
 149 respectively.
 150

151 Then, the evaluator can be regarded as operating over a low-dimensional probability simplex, which
 152 determines how multiple small generators jointly influence the final ranking policy.
 153

154 **Definition 2** $(k$ -mixture (α, β) -bounded policy space). *The policy space induced by $\mathcal{G}_m(\alpha, \beta)$ is*

$$\mathcal{F}_m(\alpha, \beta) := \{ \text{softmax} \circ g_m \mid g_m \in \mathcal{G}_m(\alpha, \beta) \},$$

162 which contains all policies realizable by a single generator in $\mathcal{G}_m(\alpha, \beta)$ with a softmax output layer.
 163 Given k generators in $\mathcal{G}_m(\alpha, \beta)$ and an evaluator, the corresponding k -mixture (α, β) -bounded
 164 policy space is

$$166 \quad \mathcal{C}_m^k(\alpha, \beta) := \left\{ \sum_{i=1}^k \omega_i \pi_i \mid \omega \in \Delta^{k-1}, \pi_i \in \mathcal{F}_m(\alpha, \beta) \right\},$$

168 where Δ^{k-1} is the $(k-1)$ -dimensional probability simplex and $\omega = (\omega_1, \dots, \omega_k)$ satisfies
 169 $\sum_{i=1}^k \omega_i = 1$ and $\omega_i \geq 0$.
 170

171 In Definition 2 we adopt soft mixture weights ω . In practice, the evaluator often implements (or
 172 approximates) a hard selection (one-hot ω). Thus, $\mathcal{C}_m^k(\alpha, \beta)$ strictly contains the policy class real-
 173 ized by hard selection, which can both simplifies subsequent derivations and strengthens Theorem 1.
 174 Then, to evaluate how well a policy space approximates the optimal ranking policy π^* , we use the
 175 following notion.

176 **Definition 3** (Approximation distance (KL error)). *Let π^* be a target policy and \mathcal{F} be a policy
 177 space. The approximation distance from \mathcal{F} to π^* is*

$$178 \quad \mathcal{E}(\mathcal{F}) := \inf_{\pi \in \mathcal{F}} \text{KL}(\pi^* \parallel \pi), \quad \text{KL}(\pi^* \parallel \pi) = \sum_{l \in \mathcal{L}} \pi^*(l) \log \frac{\pi^*(l)}{\pi(l)}.$$

181 where \mathcal{L} denotes the finite space of candidate lists considered by the ranker.
 182

183 With these definitions in place, we can now state our main result.

184 **Theorem 1.** *Given $\alpha, \beta > 0$ and any $k \in \mathbb{N}_{>0}$. For the k -mixture policy space $\mathcal{C}_m^k(\alpha, \beta)$ in
 185 Definition 2, there exists a class of larger generators*

$$186 \quad \mathcal{G}_M(\alpha, \beta, n) := \{g_M \mid W(g_M) \geq k\alpha + n, D(g_M) \geq \beta\}, \quad n \in \mathbb{N}_{>0},$$

188 with associated policy space

$$189 \quad \mathcal{F}_M(\alpha, \beta, n) := \{\text{softmax} \circ g_M \mid g_M \in \mathcal{G}_M(\alpha, \beta, n)\},$$

191 such that

$$192 \quad \mathcal{E}(\mathcal{F}_M(\alpha, \beta, n)) < \mathcal{E}(\mathcal{C}_m^k(\alpha, \beta)), \quad \lim_{n \rightarrow \infty} \mathcal{E}(\mathcal{F}_M(\alpha, \beta, n)) = 0.$$

194 Proofs and technical details are deferred to Appendix A. Theorem 1 shows that for any two-stage
 195 ranking mixing k small generators, there exists a sufficiently large one-stage generator-only ranking
 196 model whose induced policy space achieves a strictly smaller approximation error to π^* . Moreover,
 197 as the size of this generator increases (i.e., as n grows), the approximation error can be driven
 198 arbitrarily close to zero. We remark that Theorem 1 is stated in terms of width scaling; the same
 199 conclusion holds under depth scaling, with proofs provided in Appendix A.
 200

201 3.2 HOW CAN GENERATOR-ONLY RANKING MODEL BE EFFECTIVELY LEARNED?

202 According to Theorem 1, our goal is to train a larger generator-only ranking model that can achieve
 203 a closer approximation to the optimal ranking policy π^* . Suppose we have access to an ideal reward
 204 model $r^*(l)$ that provides an unbiased estimate of the user feedback for any candidate list $l \in \mathcal{L}_u$ of
 205 user u ¹. We define the entropy-regularized oracle policy as

$$207 \quad \pi^* := \arg \max_{\pi} \left\{ \mathbb{E}_{l \sim \pi} [r^*(l)] + \tau \mathcal{H}(\pi) \right\}, \quad (1)$$

209 where $\mathcal{H}(\pi)$ denotes the entropy of the policy, introduced as a regularization term to avoid greedy
 210 instability and to encourage exploration, and $\tau > 0$ controls the strength of entropy regularization.
 211 Optimizing Equation 1 yields the Boltzmann distribution

$$213 \quad \pi^*(l) = \frac{\exp(r^*(l)/\tau)}{Z}, \quad Z = \sum_{l'} \exp(r^*(l')/\tau). \quad (2)$$

212
 213
 214
 215
¹Here, the reward value refers to the user's actual feedback to a list, e.g., watch time or interaction behaviors.

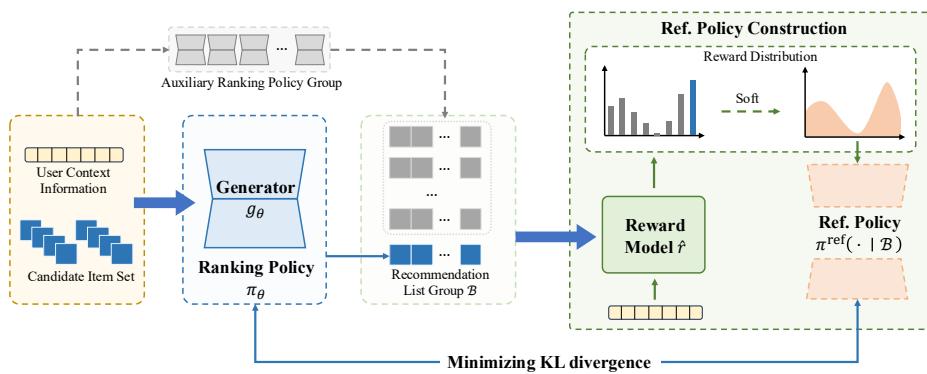


Figure 2: Training pipeline of group-relative optimization for a large ranker, GoalRank.

Moreover, the objective in Equation 1 can be equivalently rewritten as

$$\mathbb{E}_{l \sim \pi}[r^*(l)] + \tau \mathcal{H}(\pi) = \tau \sum_l \pi(l) \left(\log \frac{\exp(r^*(l)/\tau)}{Z} - \log \pi(l) + \log Z \right).$$

$$\text{Thus, } \tau \log Z = \sup_{\pi} \left\{ \mathbb{E}_{l \sim \pi}[r^*(l)] + \tau \mathcal{H}(\pi) \right\},$$

and the supremum is attained if and only if $\text{KL}(\pi \| \pi^*) = 0$. In this case, the objective achieves its maximum. Therefore, optimizing π is equivalent to minimizing the KL divergence to π^* .

In practice, however, the ideal reward model $r^*(l)$ is inaccessible. We therefore consider a potentially biased reward model $\hat{r}(l) = r^*(l) + b(l)$, where $b(l)$ denotes the bias. Intuitively, the smaller the bias, the more reliable the reward model. When considering a list group \mathcal{B} , if the reward gaps among lists are sufficiently large, the contribution of $r^*(l)$ dominates the bias $b(l)$, such that the (partial) order over \mathcal{B} is approximately preserved. Formally, given a threshold $\sigma^* > 0$, if

$$\max_{l_i, l_j \in \mathcal{B}} |\hat{r}(l_i) - \hat{r}(l_j)| > \sigma^*, \quad (3)$$

we can exploit this order-invariance to construct a **reference policy in a group-relative manner**:

$$\pi^{\text{ref}}(l | \mathcal{B}) = \frac{\exp((\hat{r}(l) - \bar{r}_{\mathcal{B}})/\sigma_{\mathcal{B}})}{\sum_{l'} \exp((\hat{r}(l') - \bar{r}_{\mathcal{B}})/\sigma_{\mathcal{B}})}, \quad (4)$$

where $\bar{r}_{\mathcal{B}}$ and $\sigma_{\mathcal{B}}$ are the mean and standard deviation of \hat{r} over \mathcal{B} . We then train a parametric policy π_θ to align with π^{ref} by minimizing the cross-entropy (equivalently, the KL divergence up to a constant): Finally, the training objective can be expressed as

$$\mathcal{L}(\pi_\theta) = -\mathbb{E}_{\mathcal{B} \sim \mathcal{D}} \left[\sum_{l \in \mathcal{B}} \pi^{\text{ref}}(l | \mathcal{B}) \log \pi_\theta(l) \right]. \quad (5)$$

This objective provides a tractable surrogate for minimizing $\text{KL}(\pi_\theta \| \pi^*)$ using only \hat{r} and group-relative normalization.

3.3 GOALRANK

Based on the above insights, we propose a practical training framework for large ranking models in real-world recommendation scenarios.

Reward modeling. Following Zhang et al. (2025), we first train a reward model \hat{r} using real user feedback data, which can estimate the expected feedback for a given recommendation list (details are provided in Appendix B).

Generator and policy. As illustrated in Figure 2, given a generator g_θ , the corresponding ranking policy is defined as $\pi_\theta := \text{softmax} \circ g_\theta$. Conditioned on user context \mathcal{X}_u and the candidate item set \mathcal{V}_u provided by the preceding stage, the generator produces a recommendation list as

$$l_u^\theta = \arg \max_l \pi_\theta(l | \mathcal{X}_u, \mathcal{V}_u). \quad (6)$$

270 Note that this framework is model-agnostic: the generator can be instantiated by any sequence
 271 generation model.
 272

273 **Group construction.** As discussed in the previous section, constructing effective groups requires
 274 sufficiently large reward gaps among lists within each group, which is difficult to achieve when sam-
 275 pling multiple lists from a single generator. To address this, we introduce an auxiliary set of ranking
 276 policies \mathcal{M} (including heuristic methods and lightweight neural models with implementation details
 277 provided in Appendix C). For each user u , we then construct a group of recommendation lists as

$$278 \quad \mathcal{B}_u = \{l_u^\theta\} \cup \{l_u^i \mid l_u^i = \arg \max_l \pi_i(l \mid \mathcal{X}_u, \mathcal{V}_u), \pi_i \in \mathcal{M}\}.$$

$$279$$

280 As an additional option, all lists in \mathcal{B}_u can be ranked by their rewards, and a uniformly sampled sub-
 281 set can then be selected, which further enforces larger reward gaps within the group and strengthens
 282 the validity of the condition in Equation 3.
 283

284 **Training.** Given \mathcal{B}_u , we compute the reference policy $\pi^{\text{ref}}(\cdot \mid \mathcal{B}_u)$ via Equation 4 and optimize g_θ
 285 by minimizing the loss in Equation 5, instantiated with user-specific groups $\{\mathcal{B}_u\}_{u \in \mathcal{U}}$. This realizes
 286 the group-relative principle and provides a practical path to align π_θ with the oracle policy structure
 287 using accessible signals.
 288

289 4 EXPERIMENT

$$290$$

291 In this section, we present both offline and online experiments to evaluate the effectiveness of Goal-
 292 Rank, which are designed to address the following research questions:
 293

- 294 • **RQ1:** How does **GoalRank** perform on $N \rightarrow L$ ranking tasks compared with state-of-the-art base-
 295 lines, and does it exhibit scaling behavior as model or data size increases?
- 296 • **RQ2:** How do (i) the size of recommendation list group \mathcal{B} and (ii) the reward model’s prediction
 297 bias affect **GoalRank** performance?
- 298 • **RQ3 (online):** How does **GoalRank** perform in real-world industrial recommendation scenarios?

300 4.1 OFFLINE EXPERIMENTS

$$301$$

302 4.1.1 DATASETS AND OFFLINE EXPERIMENTS SETTING

$$303$$

304 We conduct offline experiments on two public datasets, ML-1M (Harper, 2015) and Amazon-
 305 Book (McAuley et al., 2015), as well as two datasets of different scales collected from our industrial
 306 short-video platform, denoted as Industry and Industry-0.1B. The statistics of the four preprocessed
 307 datasets are summarized in Appendix D.1.
 308

309 For dataset construction, we first perform an 80/20 temporal split. For each user’s interaction history
 310 (sorted chronologically), the task is framed as an $N \rightarrow L$ list-generation ranking problem with $N = 50$
 311 and $L = 6$. Specifically, we use a pre-trained Matrix Factorization (MF) model (Koren et al., 2009)
 312 as the retriever to select the top-50 candidate items for each user. The last six interactions in each
 313 user’s historical sequence are treated as ground truth, representing the target list after ranking. For
 314 industry datasets, we define a long view (watching a video for more than 85% of its duration) as a
 315 positive signal, indicating meaningful user-item engagement.
 316

317 Following common practices, we report Hit Ratio@L (H@L), NDCG@L (N@L), MAP@L
 318 (M@L), F1@L, and AUC with $L = 6$. Reported results are averaged over five independent runs.
 319

320 4.1.2 BASELINES

$$321$$

322 We compare **GoalRank** against representative state-of-the-art methods from:
 323

- 324 • **Generator-only methods:** These approaches rely on a single generator to produce item scores and
 325 directly generate the ranking list. Simple item-wise scoring models such as DNN (Covington et al.,
 326 2016) estimate user feedback independently for each user-item pair. More advanced methods,
 327 including DLCM (Ai et al., 2018), PRS (Feng et al., 2021a), PRM (Pei et al., 2019a), and MIR (Xi

324
 325
 326
 Table 1: Overall performance of different ranking methods. The highest scores are in **bold**, and
 the runner-ups are with underlines. All improvements are statistically significant with student t-test
 $p < 0.05$. “Improv.” denotes the improvements over the best baselines.

	Methods	ML-1M					Industry					Book				
		H@6	N@6	M@6	F1@6	AUC	H@6	N@6	M@6	F1@6	AUC	H@6	N@6	M@6	F1@6	AUC
G-only	DNN	56.86	70.30	59.28	62.16	86.87	37.32	54.56	42.38	43.72	74.73	60.28	69.61	58.58	62.45	83.02
	DLCM	62.31	73.87	63.82	67.96	89.35	39.69	60.67	48.90	46.61	75.80	66.80	75.88	65.39	69.28	91.93
	PRS	59.35	73.10	62.51	64.72	88.84	44.75	64.39	51.88	52.59	89.93	66.15	75.70	64.84	68.64	92.01
	PRM	60.09	72.85	62.21	65.51	88.20	39.92	55.93	42.97	46.18	85.15	67.86	76.88	66.44	70.42	92.00
	MIR	62.22	74.33	64.47	67.97	87.76	37.01	55.79	43.16	44.50	79.95	66.08	71.48	56.62	68.62	91.82
	RankMixer	60.88	72.65	62.68	64.18	<u>92.47</u>	49.72	69.19	58.73	60.24	<u>91.03</u>	68.03	76.45	66.27	71.26	92.23
G-E	EGRank	62.76	74.75	64.97	68.46	88.72	40.09	59.01	47.52	47.06	77.44	70.73	80.75	72.40	73.33	89.40
	PIER	62.74	<u>75.99</u>	<u>65.98</u>	<u>68.74</u>	90.43	45.35	65.11	52.55	53.35	90.93	71.14	80.22	71.62	73.74	92.26
	NAR4Rec	<u>62.81</u>	75.01	65.42	68.31	88.30	44.31	63.83	51.45	52.08	89.94	70.08	79.46	70.69	72.66	<u>92.44</u>
MG-E	G-3	55.51	67.39	55.52	55.51	60.73	49.42	68.29	56.23	55.50	83.44	68.76	76.36	65.82	71.33	85.44
	G-20	58.66	69.86	58.60	64.18	81.76	52.66	70.70	59.02	61.81	76.46	72.99	78.68	68.66	75.72	77.07
	G-100	60.64	70.97	59.93	66.29	76.48	<u>55.77</u>	72.35	<u>60.95</u>	<u>64.27</u>	75.30	<u>77.21</u>	<u>82.15</u>	<u>73.78</u>	<u>80.09</u>	77.36
GoalRank	GoalRank	73.56\uparrow	83.43\uparrow	76.16\uparrow	80.15\uparrow	97.64\uparrow	69.93\uparrow	86.93\uparrow	79.01\uparrow	82.29\uparrow	98.07\uparrow	80.35\uparrow	84.88\uparrow	77.91\uparrow	83.44\uparrow	94.46\uparrow
	Improv.	+17.12%	+9.79%	+15.43%	+16.60%	+5.59%	+25.39%	+20.15%	+29.63%	+28.04%	+7.73%	+4.07%	+3.32%	+5.60%	+4.18%	+2.19%

340
 341 et al., 2022), explicitly capture mutual dependencies among candidate items. We additionally
 342 compare with RankMixer (Zhu et al., 2025).

343 • **Generator–Evaluator methods:** These methods (e.g., EGRank (Huzhang et al., 2021),
 344 PIER (Shi et al., 2023), and NAR4Rec (Ren et al., 2024b)) first generate multiple reranked can-
 345 didate lists and then leverage an evaluator to select the most effective one for the user. Following
 346 Yang et al. (2025), for PIER, we first apply a pointwise ranking model to select the top-6 items,
 347 enumerate all possible permutations, and then use the evaluator to identify the optimal ranking.

348 • **Multi-Generator–Evaluator methods:** These approaches ensemble multiple generators to ex-
 349 pand the candidate-list space and enhance ranking performance (Yang et al., 2025). We evaluate
 350 this strategy under different ensemble sizes, with the number of generators set to 3, 20, and 100.

351 To ensure fairness, all baselines are tuned within their respective parameter spaces. Unless other-
 352 wise specified (e.g., in scaling law experiments), the hidden embedding dimension of all models is
 353 fixed at 128, and model depths are kept consistent. **Moreover, all baselines share exactly the same**
 354 **evaluator (reward model) as GoalRank.** Additional details on baseline configurations and the
 355 architecture of GoalRank are provided in Appendix D.2.

356 4.1.3 MAIN RESULTS (RQ1)

357 **Ranking Performance.** Table 1 reports the overall results across three datasets. We highlight:

358

359 • **GoalRank consistently achieves the best performance.** GoalRank outperforms all baselines.
 360 On ML-1M, it improves H@6 and M@6 by +17.12% and +15.43%; on the Industry dataset, the
 361 gains are even more pronounced, reaching +25.39% in H@6 and +29.63% in M@6. These results
 362 confirm that a single large generator can better capture ranking signals than multi-stage model.

363 • **Two-stage G-E methods outperform early G-only approaches.** Models such as PIER and
 364 NAR4Rec surpass DNN, DLCM, and PRM by explicitly modeling list-wise utility, validating
 365 the effectiveness of evaluators over greedy generation.

366 • **MG-E further improves but quickly saturates.** As generator count increases from 3 to 100,
 367 H@6 rises from 49.42 to 55.77 on Industry. However, the gains diminish rapidly, and even the
 368 strongest MG-E models remain far below GoalRank, underscoring the inefficiency of enlarging
 369 the candidate set alone.

370 **Scaling Performance.** In Section 3.1, we showed theoretically that GoalRank admits scaling laws.
 371 Here, we empirically validate this by varying hidden dimensions, layer depth, and attention heads,
 372 adjusting model size from 1M to 0.1B. We compare GoalRank with four representative baselines:
 373 DNN, RanMixer, PIER, and MG-E. For fairness, baselines are scaled in the same manner as Goal-
 374 Rank, while the size of MG-E is increased by enlarging the number of generators.

375 Figure 3 presents the scaling performance on the Industry-0.1B dataset. We exclude AUC since
 376 GoalRank already achieves values above 0.98 even at small model sizes, though we observe further

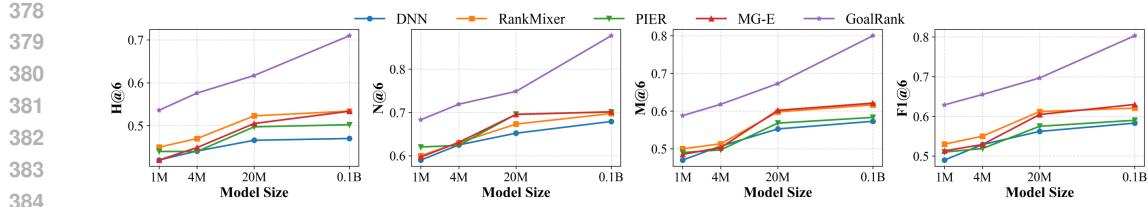


Figure 3: Scaling performance of GoalRank and baselines on the Industry-0.1B dataset across model sizes from 1M to 0.1B parameters.

Table 2: Performance with varying group sizes $|\mathcal{B}|$.

$ \mathcal{B} $	3	5	8	10	20	50	80	100
H@6	62.88	64.52	69.95	69.94	69.93	67.34	63.29	63.50
N@6	81.76	83.42	86.82	87.17	86.93	85.33	82.76	82.94
M@6	72.50	74.44	78.86	79.34	79.01	76.96	73.69	73.92
F1@6	74.00	75.94	82.25	82.28	82.29	79.26	74.47	74.76
AUC	97.50	97.79	98.05	98.15	98.07	98.06	97.75	97.77

Table 3: Performance with varying bias level λ .

λ	H@6	N@6	M@6	F1@6	AUC
0.0	69.93	86.93	79.01	82.29	98.07
0.2	65.32	83.21	74.33	76.89	97.90
0.5	63.77	82.75	73.79	75.05	97.73

improvements as the model size increases, approaching 1.0. The model size ranges from 1M to 0.1B parameters.² We summarize the key findings as follows:

- **GoalRank demonstrates strong scaling.** Metrics improve steadily from 1M to 0.1B, with the sharpest gains between 10M and 0.1B, confirming clear scaling laws.
- **Baselines show weak scaling.** Larger sizes yield only modest improvements, reflecting the inherent limitation of pointwise scoring in approximating the optimal policy.
- **MG-E saturates.** Adding generators helps initially but plateaus quickly, indicating diminishing returns compared with GoalRank’s single-model scaling.

4.1.4 ABLATION STUDY (RQ2)

In this section, we present ablation studies to examine two key factors: (i) the impact of the group size $|\mathcal{B}|$ on constructing the reference policy, and (ii) the robustness of GoalRank under varying levels of bias in the reward model. We report results on the Industry dataset, which is representative of the overall trends observed across all datasets.

Influence of the Size of \mathcal{B} . Table 2 reports the performance of GoalRank under different group sizes $|\mathcal{B}|$. We observe that very small groups (3–5) fail to provide enough samples for constructing a reliable reference policy, while overly large groups (50–100) weaken the reward gaps mentioned in Equation 3 and thus amplify the bias of the reward model. The best performance is achieved with moderate group sizes (8–20), which strike a balance between sample sufficiency and bias mitigation. Importantly, GoalRank consistently outperforms the best baseline even when $|\mathcal{B}|$ is set suboptimally.

Influence of Prediction Bias of Reward Models. As discussed in Section 3.2, the reward model \hat{r} used to construct the reference policy is inevitably biased. To examine the effect of this bias, we introduce controlled noise by defining

$$\hat{r}_{\text{bias}=\lambda}(l) := (1 - \lambda)\hat{r}(l) + \lambda\varepsilon, \quad \varepsilon \sim \mathcal{N}(0, 1),$$

and evaluate GoalRank under different bias levels $\lambda \in \{0.0, 0.2, 0.5\}$. Results in Table 3 show that performance degrades only slightly as λ increases, indicating that GoalRank is robust to reward model bias. Remarkably, even with $\lambda = 0.5$, GoalRank still outperforms state-of-the-art baselines.

4.2 LIVE EXPERIMENTS

4.2.1 EXPERIMENTAL SETUP

We evaluate GoalRank through a large-scale online A/B test on a real-world short-video recommendation platform. The platform serves over half a billion daily active users, with an item pool of tens

²For very small models, training on the full dataset leads to unstable convergence. To ensure fair comparison, we proportionally sample the dataset for all models (including GoalRank) at the same parameter scale.

432 Table 4: Online performances improvement of GoalRank. All results are statistically significant.
433

Method	APP Stay Time	Watch Time	Effective View	Like	Comment
GoalRank + MG-E v.s. MG-E	0.092%	0.111%	0.836 %	0.228%	0.506%
GoalRank v.s. MG-E	0.149%	0.197%	1.212%	0.227%	0.802%

437 of millions of videos. The system follows a two-stage workflow: (i) retrieval, which selects N can-
438 didate items from millions, and (ii) ranking, which generates a final recommendation list of length
439 L . GoalRank is deployed in the ranking stage, where $N = 120$ candidates are provided and $L = 6$
440 items are exposed to each user. The workflow and latency is illustrated in Figure 4 (Appendix).

442 4.2.2 EVALUATION PROTOCOL

443 We randomly partition online traffic into eight buckets, each covering about one-eighth of total users
444 (tens of millions per bucket). We compare three settings: the production MG-E baseline(which con-
445 sists of tens of generator models and hundreds of candidate lists), a hybrid setting where GoalRank
446 serves 30% of the traffic alongside MG-E, and a pure GoalRank deployment. Each A/B test runs for
447 at least 14 days to ensure statistical reliability. We track standard business metrics, including *App*
448 *Stay Time* (a key overall engagement indicator), *Watch Time* (average continuous viewing length),
449 *Effective Views* (total view count), and other behavior-specific rates on recommended items.

451 4.2.3 RESULTS ANALYSIS

452 We report the results of the two-week online A/B tests in Table 4. GoalRank consistently outper-
453 forms the production MG-E framework across all business-critical metrics. Even in the hybrid set-
454 ting (GoalRank + MG-E), we observe significant gains, while a full deployment of GoalRank yields
455 the largest improvements. These results demonstrate that GoalRank can not only complement but
456 also fully replace the existing MG-E framework, providing superior ranking quality without incur-
457 ring trade-offs. GoalRank + MG-E has been deployed to serve the full user traffic in production.

461 5 CONCLUSION

462 In this work, we revisit the design of ranking models in recommender systems and challenged
463 the prevailing (Multi-)Generator–Evaluator paradigm. We theoretically proved that, for any (finite
464 Multi-)Generator–Evaluator model, there always exists a generator-only ranker that achieves strictly
465 smaller approximation error to the optimal ranking policy, and that this error decreases further as
466 model size grows. Building on this result, we derived an evidence upper bound of the one-stage
467 objective and introduced the group-relative optimization principle, which leverages a reward model
468 trained on real user feedback to construct a reference policy and provides a practical training objec-
469 tive for generator-only rankers. We instantiated these insights in **GoalRank**, a large generator-only
470 ranker optimized under the proposed principle. Extensive offline and online experiments demon-
471 strated that **GoalRank** consistently outperforms SOTA methods and exhibits clear scaling behavior.

472 **Limitation and Future Work.** In real-world applications, ranking often needs to accommodate
473 diverse and frequently changing business objectives. Compared with (Multi-)Generator–Evaluator
474 models, a generator-only framework like GoalRank is less flexible in adapting to such shifts. A
475 promising direction is to incorporate business-specific contextual signals into GoalRank, thereby
476 enhancing its adaptability and generalization across objectives. Moreover, recent progress in large
477 recommendation models has demonstrated remarkable success in the retrieval stage. However, most
478 of these efforts overlook list-wise modeling, limiting their ability to capture the benefits unique to
479 ranking. Future work may therefore explore how large retrieval and large ranking models can be
480 jointly optimized to build more powerful end-to-end recommender systems.

481 **Reproducibility Statement.** For the theoretical results, detailed derivations are provided in Ap-
482 pendix A. For the empirical studies, we will release the implementation and training code at
483 <https://anonymous.4open.science/r/GoalRank> to ensure reproducibility.

484 **Ethics Statement.** This work aims to improve the ranking stage of recommender systems to enhance
485 user satisfaction. It does not raise any specific ethical concerns.

486 REFERENCES
487

488 Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. Learning a deep listwise context model
489 for ranking refinement. In *The 41st International ACM SIGIR Conference on Research & Devel-
490 opment in Information Retrieval, SIGIR '18*, pp. 135–144, New York, NY, USA, 2018. Associa-
491 tion for Computing Machinery. ISBN 9781450356572. doi: 10.1145/3209978.3209985. URL
492 <https://doi.org/10.1145/3209978.3209985>.

493 Midhun T Augustine. A survey on universal approximation theorems. *arXiv preprint
494 arXiv:2407.12895*, 2024.

495 Chi Chen, Hui Chen, Kangzhi Zhao, Junsheng Zhou, Li He, Hongbo Deng, Jian Xu, Bo Zheng, Yong
496 Zhang, and Chunxiao Xing. Extr: click-through rate prediction with externalities in e-commerce
497 sponsored search. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
498 and Data Mining*, pp. 2732–2740, 2022.

499 Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
500 In *Proceedings of the 10th ACM Conference on Recommender Systems, RecSys '16*, pp. 191–198,
501 New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450340359. doi:
502 10.1145/2959100.2959190. URL <https://doi.org/10.1145/2959100.2959190>.

503 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control,
504 signals and systems*, 2(4):303–314, 1989.

505 Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
506 Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
507 alignment. *arXiv preprint arXiv:2502.18965*, 2025.

508 Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a reservoir. *Information
509 processing letters*, 97(5):181–185, 2006.

510 Yufei Feng, Yu Gong, Fei Sun, Junfeng Ge, and Wenwu Ou. Revisit recommender system in the
511 permutation prospective. *arXiv preprint arXiv:2102.12057*, 2021a.

512 Yufei Feng, Yu Gong, Fei Sun, Junfeng Ge, and Wenwu Ou. Revisit recommender system in the
513 permutation prospective. *arXiv preprint arXiv:2102.12057*, 2021b.

514 Yufei Feng, Binbin Hu, Yu Gong, Fei Sun, Qingwen Liu, and Wenwu Ou. Grn: Generative rerank
515 network for context-wise recommendation. *arXiv preprint arXiv:2104.00860*, 2021c.

516 Jingtong Gao, Bo Chen, Xiangyu Zhao, Weiwen Liu, Xiangyang Li, Yichao Wang, Zijian Zhang,
517 Wanyu Wang, Yuyang Ye, Shanru Lin, et al. Llm-enhanced reranking in recommender systems.
518 *arXiv preprint arXiv:2406.12433*, 2024.

519 Jingtong Gao, Bo Chen, Xiangyu Zhao, Weiwen Liu, Xiangyang Li, Yichao Wang, Wanyu Wang,
520 Huirong Guo, and Ruiming Tang. Llm4rerank: Llm-based auto-reranking framework for recom-
521 mendations. In *Proceedings of the ACM on Web Conference 2025*, pp. 228–239, 2025.

522 Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
523 value, and innovation. *ACM Trans. Manag. Inf. Syst.*, 6(4):1–19, 2015.

524 Xudong Gong, Qinlin Feng, Yuan Zhang, Jiangling Qin, Weijie Ding, Biao Li, Peng Jiang, and Kun
525 Gai. Real-time short video recommendation on mobile devices. In *Proceedings of the 31st ACM
526 International Conference on Information & Knowledge Management, CIKM '22*, pp. 3103–3112,
527 New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392365. doi:
528 10.1145/3511808.3557065. URL <https://doi.org/10.1145/3511808.3557065>.

529 F Maxwell Harper. The movielens datasets: History and context. *acm transactions on interactive in-
530 telligent systems (tiis)* 5 4 (2015) 1–19. f maxwell harper and joseph a konstan. 2015. the movie-
531 lens datasets: History and context. *acm transactions on interactive intelligent systems (tiis)* 5 4
532 (2015) 1–19, 2015.

540 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. Lightgcn
 541 - Simplifying and Powering Graph Convolution Network for Recommendation. In *Proceedings*
 542 *of the 43rd International ACM SIGIR Conference on Research and Development in Information*
 543 *Retrieval*, pp. 639–648, 2020.

544 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 545 degeneration. *arXiv preprint arXiv:1904.09751*, 2019.

546 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural networks*, 4
 547 (2):251–257, 1991.

548 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
 549 versal approximators. *Neural networks*, 2(5):359–366, 1989.

550 Guangda Huzhang, Zhen-Jia Pang, Yongqing Gao, Yawen Liu, Weijie Shen, Wen-Ji Zhou, Qianying
 551 Lin, Qing Da, An-Xiang Zeng, Han Yu, et al. Aliexpress learning-to-rank: Maximizing online
 552 model performance without going online. *IEEE Transactions on Knowledge and Data Engineer-
 553 ing*, 35(2):1214–1226, 2021.

554 Vivek Jayaram and John Thickstun. Parallel and flexible sampling from autoregressive models via
 555 langevin dynamics. In *International Conference on Machine Learning*, pp. 4807–4818. PMLR,
 556 2021.

557 Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
 558 systems. *Computer*, 42(8):30–37, 2009.

559 Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
 560 works with a nonpolynomial activation function can approximate any function. *Neural networks*,
 561 6(6):861–867, 1993.

562 Xiao Lin, Xiaokai Chen, Chenyang Wang, Hantao Shu, Linfeng Song, Biao Li, and Peng Jiang.
 563 Discrete conditional diffusion for reranking in recommendation. In *Companion Proceedings of*
 564 *the ACM Web Conference 2024*, WWW '24, pp. 161–169, New York, NY, USA, 2024. Associa-
 565 tion for Computing Machinery. ISBN 9798400701726. doi: 10.1145/3589335.3648313. URL
 566 <https://doi.org/10.1145/3589335.3648313>.

567 Qi Liu, Bo Wang, Nan Wang, and Jiaxin Mao. Leveraging passage embeddings for efficient listwise
 568 reranking with large language models. In *Proceedings of the ACM on Web Conference 2025*, pp.
 569 4274–4283, 2025.

570 Shuchang Liu, Qingpeng Cai, Zhankui He, Bowen Sun, Julian McAuley, Dong Zheng, Peng Jiang,
 571 and Kun Gai. Generative flow network for listwise recommendation. In *Proceedings of the 29th*
 572 *ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '23, pp. 1524–1534,
 573 New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:
 574 10.1145/3580305.3599364. URL <https://doi.org/10.1145/3580305.3599364>.

575 Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
 576 ommendations on styles and substitutes. In *Proceedings of the 38th international ACM SIGIR*
 577 *conference on research and development in information retrieval*, pp. 43–52, 2015.

578 Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
 579 Teller. Equation of state calculations by fast computing machines. *The journal of chemical*
 580 *physics*, 21(6):1087–1092, 1953.

581 Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang,
 582 Junfeng Ge, Wenwu Ou, and Dan Pei. Personalized re-ranking for recommendation. In *Pro-
 583 ceedings of the 13th ACM Conference on Recommender Systems*, RecSys '19, pp. 3–11, New
 584 York, NY, USA, 2019a. Association for Computing Machinery. ISBN 9781450362436. doi:
 585 10.1145/3298689.3347000. URL <https://doi.org/10.1145/3298689.3347000>.

586 Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang,
 587 Junfeng Ge, Wenwu Ou, et al. Personalized re-ranking for recommendation. In *Proceedings of*
 588 *the 13th ACM conference on recommender systems*, pp. 3–11, 2019b.

594 Ruiyang Ren, Yuhao Wang, Kun Zhou, Wayne Xin Zhao, Wenjie Wang, Jing Liu, Ji-Rong Wen, and
 595 Tat-Seng Chua. Self-calibrated listwise reranking with large language models. In *Proceedings of*
 596 *the ACM on Web Conference 2025*, pp. 3692–3701, 2025.

597

598 Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
 599 Huang. Representation learning with large language models for recommendation. In *Proceedings*
 600 *of the ACM Web Conference 2024*, WWW '24, pp. 3464–3475, New York, NY, USA, 2024a.
 601 Association for Computing Machinery. ISBN 9798400701719. doi: 10.1145/3589334.3645458.
 602 URL <https://doi.org/10.1145/3589334.3645458>.

603 Yuxin Ren, Qiya Yang, Yichun Wu, Wei Xu, Yalong Wang, and Zhiqiang Zhang. Non-autoregressive
 604 generative models for reranking recommendation. In *Proceedings of the 30th ACM SIGKDD*
 605 *Conference on Knowledge Discovery and Data Mining*, KDD '24, pp. 5625–5634, New York,
 606 NY, USA, 2024b. Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/
 607 3637528.3671645. URL <https://doi.org/10.1145/3637528.3671645>.

608

609 Xiaowen Shi, Fan Yang, Ze Wang, Xiaoxu Wu, Muzhi Guan, Guogang Liao, Wang Yongkang,
 610 Xingxing Wang, and Dong Wang. Pier: Permutation-level interest-based end-to-end re-ranking
 611 framework in e-commerce. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge*
 612 *Discovery and Data Mining*, KDD '23, pp. 4823–4831, New York, NY, USA, 2023. Associa-
 613 tion for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599886. URL
 614 <https://doi.org/10.1145/3580305.3599886>.

615 Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is universal
 616 approximator. *Applied and Computational Harmonic Analysis*, 43(2):233–268, 2017.

617

618 Shuli Wang, Yinqi Huang, Changhao Li, Yuan Zhou, Yonggang Liu, Yongqiang Zhang, Yinhua
 619 Zhu, Haitao Wang, and Xingxing Wang. You only evaluate once: A tree-based rerank method at
 620 meituan. *arXiv preprint arXiv:2508.14420*, 2025a.

621

622 Shuli Wang, Xue Wei, Senjie Kou, Chi Wang, Wenshuai Chen, Qi Tang, Yinhua Zhu, Xiong Xiao,
 623 and Xingxing Wang. Nlgr: Utilizing neighbor lists for generative rerank in personalized rec-
 624 ommendation systems. In *Companion Proceedings of the ACM on Web Conference 2025*, pp.
 530–537, 2025b.

625

626 Xiaobei Wang, Shuchang Liu, Xueliang Wang, Qingpeng Cai, Lantao Hu, Han Li, Peng Jiang, Kun
 627 Gai, and Guangming Xie. Future impact decomposition in request-level recommendations. In
 628 *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*,
 629 pp. 5905–5916, 2024.

630

631 Xiaobei Wang, Shuchang Liu, Qingpeng Cai, Xiang Li, Lantao Hu, Han Li, and Guangming Xie.
 632 Value function decomposition in markov recommendation process. In *Proceedings of the ACM*
 633 *on Web Conference 2025*, pp. 379–390, 2025c.

634

635 Jianxiong Wei, Anxiang Zeng, Yueqiu Wu, Peng Guo, Qingsong Hua, and Qingpeng Cai. Generator
 636 and critic: A deep reinforcement learning approach for slate re-ranking in e-commerce. *arXiv*
 637 *preprint arXiv:2005.12206*, 2020.

638

639 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
 640 Zhu, Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. *World*
 641 *Wide Web*, 27(5):60, 2024.

642

643 Yunjia Xi, Weiwen Liu, Jieming Zhu, Xilong Zhao, Xinyi Dai, Ruiming Tang, Weinan Zhang, Rui
 644 Zhang, and Yong Yu. Multi-level interaction reranking with user behavior history. In *Proceedings*
 645 *of the 45th International ACM SIGIR Conference on Research and Development in Information*
 646 *Retrieval*, pp. 1336–1346, 2022.

647

648 Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Qing Liu, Weinan Zhang, and Yong Yu. Utility-
 649 oriented reranking with counterfactual context. *ACM Trans. Knowl. Discov. Data*, 18(8), July
 650 2024. ISSN 1556-4681. doi: 10.1145/3671004. URL <https://doi.org/10.1145/3671004>.

648 Hailan Yang, Zhenyu Qi, Shuchang Liu, Xiaoyu Yang, Xiaobei Wang, Xiang Li, Lantao Hu, Han
 649 Li, and Kun Gai. Comprehensive list generation for multi-generator reranking. In *Proceedings*
 650 of the 48th International ACM SIGIR Conference on Research and Development in Information
 651 Retrieval, pp. 2298–2308, 2025.

652 Lu Yu, Chuxu Zhang, Shangsong Liang, and Xiangliang Zhang. Multi-order attentive ranking model
 653 for sequential recommendation. In *Proceedings of the AAAI conference on artificial intelligence*,
 654 volume 33, pp. 5709–5716, 2019.

655 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
 656 Are transformers universal approximators of sequence-to-sequence functions? *arXiv preprint*
 657 *arXiv:1912.10077*, 2019.

658 Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong,
 659 Fangda Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential
 660 transducers for generative recommendations. *arXiv preprint arXiv:2402.17152*, 2024.

661 Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, Huawei Shen, and Xueqi Cheng. Understanding and
 662 improving adversarial collaborative filtering for robust recommendation. *Advances in Neural*
 663 *Information Processing Systems*, 37:120381–120417, 2024.

664 Kaike Zhang, Xiaobei Wang, Xiaoyu Liu, Shuchang Liu, Hailan Yang, Xiang Li, Fei Sun, and
 665 Qi Cao. From generation to consumption: Personalized list value estimation for re-ranking. *arXiv*
 666 *preprint arXiv:2508.02242*, 2025.

667 Jie Zhu, Zhifang Fan, Xiaoxie Zhu, Yuchen Jiang, Hangyu Wang, Xintian Han, Haoran Ding, Xin-
 668 min Wang, Wenlin Zhao, Zhen Gong, et al. Rankmixer: Scaling up ranking models in industrial
 669 recommenders. In *Proceedings of the 34th ACM International Conference on Information and*
Knowledge Management, pp. 6309–6316, 2025.

670 Tao Zhuang, Wenwu Ou, and Zhirong Wang. Globally optimized mutual influence aware ranking
 671 in e-commerce search. In *Proceedings of the 27th International Joint Conference on Artificial*
 672 *Intelligence*, IJCAI’18, pp. 3725–3731. AAAI Press, 2018. ISBN 9780999241127.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

A PROOF OF THEOREM 1

Notation. Recall the space of the ranking list in Section 2. For simplicity and clarity, in this section, we omit the $u \in \mathcal{U}$ in the expressions of the following symbols. The space of ranking list \mathcal{L} is:

$$\mathcal{L} := \{ l = (v_1, \dots, v_L) \in \mathcal{V}^L \mid v_i \neq v_j (i \neq j) \}, \quad |\mathcal{L}| = P(N, L) := \frac{N!}{(N - L)!}.$$

Then the state set during the generation process can be expressed as:

$$\mathcal{S} := \{ (i, l_{<i}) \mid i \in [L], l_{<i} \in \mathcal{V}^{i-1}, v_a \neq v_b (a \neq b) \}.$$

and corresponding actions at state $(i, l_{<i})$:

$$\mathcal{A}(i, l_{<i}) := \mathcal{V} \setminus \{v_1, \dots, v_{i-1}\}, \quad |\mathcal{A}(i, l_{<i})| = N - (i - 1).$$

Given a score vector $a \in \mathbb{R}^{\mathcal{V}}$ and a feasible set $\mathcal{A} \subseteq \mathcal{V}$, the *masked softmax* is

$$(\text{softmax}_{\mathcal{A}}(a))_j := \begin{cases} \frac{e^{a_j}}{\sum_{t \in \mathcal{A}} e^{a_t}}, & j \in \mathcal{A}, \\ 0, & j \notin \mathcal{A}. \end{cases}$$

For a finite index set \mathcal{I} and $x \in \mathbb{R}^{\mathcal{I}}$, write $\|x\|_{\infty; \mathcal{I}} := \max_{i \in \mathcal{I}} |x_i|$. We use $\text{KL}(\cdot \parallel \cdot)$ for Kullback–Leibler divergence.

Lemma 1. Let $k \in \mathbb{N}$ and $g_{m,i} \in \mathcal{G}_m$ ($i = 1, \dots, k$) be k generators. Assume each $g_{m,i}$ is locally Lipschitz in its parameter $\theta_i \in [A, B]^{d_m}$, and the masking set $\mathcal{A}(t, l_{<t})$ depends only on $(t, l_{<t})$ (not on parameters). For mixing weights $\omega = [\omega_i]_{i=1}^k \in \Delta^{k-1}$, define

$$\Phi : \Theta_k \rightarrow \Delta^{|\mathcal{L}|-1}, \quad \Theta_k := ([A, B]^{d_m})^k \times \Delta^{k-1}, \quad (7)$$

where

$$\Phi(\theta_{1:k}, \omega) = \sum_{i=1}^k \omega_i \pi_{g_{m,i}},$$

where $\pi_{g_{m,i}} = (\pi_{g_{m,i}}(l))_{l \in \mathcal{L}}$ is the masked-softmax autoregressive policy induced by $g_{m,i}$. Then $\mathcal{C}_m^k := \text{im}(\Phi)$ satisfies:

1. \mathcal{C}_m^k is compact;
2. $\dim_{\text{Haus}}(\mathcal{C}_m^k) \leq \min\{kd_m + (k - 1), |\mathcal{L}| - 1\}$.

Proof. **Compactness.** Each parameter domain $[A, B]^{d_m}$ is compact, and finite Cartesian products preserve compactness; the simplex Δ^{k-1} is also compact. Hence Θ_k is **compact**. For a fixed list $l \in \mathcal{L}$ and position t , given the smoothness of softmax and $g_{m,i}$ is C^1 , the masked-softmax distribution

$$\pi_{g_{m,i}}(l) = \prod_{t=1}^L \frac{\exp(z_{t,l_t}^{(i)}(l_{<t}))}{\sum_{j \in \mathcal{A}(t, l_{<t})} \exp(z_{t,j}^{(i)}(l_{<t}))}, \quad z_{t,\cdot}^{(i)} = g_{m,i}(t, l_{<t}, \cdot; \theta_i),$$

is C^1 in θ_i , as masking only discards coordinates independent of parameters.

Since Φ is a convex combination of such policies, it is C^1 in $(\theta_{1:k}, \omega)$, hence continuous. By continuity of Φ on the compact domain Θ_k , its image \mathcal{C}_m^k is **compact**.

Dimension bound. On Θ_k (compact), each map $(\theta_i, \omega) \mapsto \omega_i \pi_{g_{m,i}}$ is Lipschitz: $\theta_i \mapsto z^{(i)}$ is Lipschitz; composition with masked-softmax is Lipschitz (bounded Jacobian on the relevant compact image); the product over t and convex mixing in ω preserve Lipschitzness since all factors are uniformly bounded. Thus Φ is Lipschitz on Θ_k . Lipschitz maps do not increase Hausdorff dimension, yielding

$$\dim_{\text{Haus}}(\text{im}(\Phi)) \leq \dim_{\text{Haus}}(\Theta_k) = kd_m + (k - 1),$$

and trivially $\dim_{\text{Haus}}(\text{im}(\Phi)) \leq |\mathcal{L}| - 1$, giving the stated minimum. \square

756 **Theorem 2.** Let \mathcal{V} be the candidate set with $N := |\mathcal{V}|$, and let \mathcal{L} be the set of length- L lists without
 757 repetition, so $d := |\mathcal{L}| - 1 = P(N, L) - 1$. Let $\mathcal{C}_m^k(\alpha, \beta) \subset \Delta^d$ be the k -mixture (α, β) -bounded
 758 policy space. Assume Lemma 1 holds with

$$760 \dim_{\text{Haus}}(\mathcal{C}_m^k(\alpha, \beta)) \leq r := k d_m + (k - 1) \quad \text{and} \quad r < d.$$

761 Then for Lebesgue-almost every fully supported target policy $\pi^* \in \text{int}(\Delta^d)$,

$$763 \inf_{\pi \in \mathcal{C}_m^k(\alpha, \beta)} \text{KL}(\pi^* \|\pi) > 0. \quad (8)$$

765 *Proof.* By Lemma 1, $\mathcal{C}_m^k(\alpha, \beta)$ is compact and $\dim_{\text{Haus}}(\mathcal{C}_m^k(\alpha, \beta)) \leq r < d = \dim(\text{aff}(\Delta^d))$.
 766 Hence the d -dimensional relative Lebesgue measure (equivalently, the d -dimensional Hausdorff
 767 measure) of $\mathcal{C}_m^k(\alpha, \beta)$ inside $\text{aff}(\Delta^d)$ is zero. Therefore, for Lebesgue-a.e. $\pi^* \in \text{int}(\Delta^d)$ we have
 768 $\pi^* \notin \mathcal{C}_m^k(\alpha, \beta)$.

769 Fix such a π^* with $\pi^* \succ 0$. Every $\pi \in \mathcal{C}_m^k(\alpha, \beta)$ assigns strictly positive probability to each $l \in \mathcal{L}$,
 770 so the map

$$772 \Psi(\pi) := \text{KL}(\pi^* \|\pi) = \sum_{l \in \mathcal{L}} \pi^*(l) \log \frac{\pi^*(l)}{\pi(l)}$$

774 is finite and continuous on the compact set $\mathcal{C}_m^k(\alpha, \beta)$; thus the minimum

$$776 \delta := \min_{\pi \in \mathcal{C}_m^k(\alpha, \beta)} \text{KL}(\pi^* \|\pi)$$

778 is attained. Since $\text{KL}(\pi^* \|\pi) = 0$ iff $\pi = \pi^*$ and $\pi^* \notin \mathcal{C}_m^k(\alpha, \beta)$, we must have $\delta > 0$, proving
 779 Equation 8. \square

780 Classical universal approximation results (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991;
 781 Leshno et al., 1993; Sonoda & Murata, 2017) yield the following lemma. For clarity and
 782 generality, we adopt MLP-based generators as the foundational model class. The goal is to show that
 783 even the most basic architecture—the MLP—already has sufficient expressive power to approximate
 784 the target policy. Universal approximation for Transformers (and related architectures) in sequence
 785 modeling is also known; see Yun et al. (2019); Augustine (2024).

786 **Lemma 2.** Let $K \subset \mathbb{R}^n$ be compact and let $F : K \rightarrow \mathbb{R}^m$ be continuous. Let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be any
 787 continuous activation function that is not a polynomial on any interval.³ Then for every $\eta > 0$ there
 788 exists a fixed-depth (e.g., one hidden layer), arbitrarily wide MLP $h_\Theta : K \rightarrow \mathbb{R}^m$ with activation ϕ
 789 such that

$$790 \|h_\Theta - F\|_{\infty; K} < \eta.$$

791 Consequently, for any finite Borel measure μ on K and any $1 \leq p < \infty$, we also have $\|h_\Theta - F\|_{L^p(K, \mu)} < \eta$.

793 **Remark 1** (Finite domains). On a finite domain $K = \{x_1, \dots, x_T\}$, continuity is automatic and

$$795 \|h_\Theta - F\|_{\infty; K} = \max_{t \in [T]} \|h_\Theta(x_t) - F(x_t)\|_\infty,$$

797 which coincides with the maximum pointwise error.

798 To adapt Lemma 2 to the ranking setting, we encode the autoregressive state-action tuples into a
 799 compact Euclidean set.

800 **Corollary 1.** Let

$$802 \rho : \mathcal{D} \rightarrow \mathbb{R}, \quad \mathcal{D} := \{(i, l_{<i}, j) : 1 \leq i \leq L, j \in \mathcal{A}(i, l_{<i})\},$$

803 be defined by

$$804 \rho(i, l_{<i}, j) := \log \pi^*(l_i = j \mid l_{<i}),$$

805 where π^* is a fully supported target autoregressive policy on the feasible sets $\mathcal{A}(i, l_{<i})$. Fix any
 806 injective encoding $\psi : \mathcal{D} \hookrightarrow K \subset \mathbb{R}^d$ with K compact. Then for any $\sigma > 0$ there exists an MLP
 807 $h_\Theta : K \rightarrow \mathbb{R}$ such that

$$808 \|h_\Theta \circ \psi - \rho\|_{\infty; \mathcal{D}} \leq \sigma.$$

809 ³This covers common activations such as sigmoid, tanh, ReLU, leaky-ReLU, ELU, and softplus.

810 *Proof.* The index set \mathcal{D} is finite (since $N, L < \infty$), hence any function defined on $\psi(\mathcal{D}) \subset K$ is
 811 continuous w.r.t. the subspace topology. Apply Lemma 2 with $m = 1$ to obtain h_Θ with the desired
 812 uniform bound. \square

813 **Lemma 3.** *Let $p(j) \propto e^{\rho_j}$ on a finite set and $q(j) \propto e^{\rho_j + \varepsilon_j}$ with $|\varepsilon_j| \leq \sigma$ for all j . Then for all j ,*

$$815 \quad 816 \quad 817 \quad e^{-2\sigma} \leq \frac{q(j)}{p(j)} \leq e^{2\sigma},$$

818 *and in particular*

$$819 \quad \text{KL}(p\|q) \leq 2\sigma, \quad \|p - q\|_1 \leq e^{2\sigma} - 1.$$

820 *Moreover, for an autoregressive policy over length- L lists,*

$$821 \quad 822 \quad 823 \quad \text{KL}(\pi^* \|\tilde{\pi}) = \sum_{i=1}^L \mathbb{E}_{l_{<i} \sim \pi^*} [\text{KL}(p_i(\cdot \mid l_{<i}) \| q_i(\cdot \mid l_{<i}))] \leq 2L\sigma.$$

824 **Fact 1.** *Fix a feasible set \mathcal{A} . Let $p = \text{softmax}_{\mathcal{A}}(a)$ and $q = \text{softmax}_{\mathcal{A}}(b)$ with $a, b \in \mathbb{R}^{\mathcal{V}}$. If
 825 $\|a - b\|_{\infty; \mathcal{A}} \leq \sigma$, then*

$$826 \quad \text{KL}(p\|q) \leq 2\sigma.$$

827 *Proof.* Write $\varepsilon_j := b_j - a_j$ for $j \in \mathcal{A}$, so $|\varepsilon_j| \leq \sigma$. Then

$$830 \quad 831 \quad 832 \quad \frac{q_j}{p_j} = \frac{e^{b_j} / \sum_{t \in \mathcal{A}} e^{b_t}}{e^{a_j} / \sum_{t \in \mathcal{A}} e^{a_t}} = \frac{e^{\varepsilon_j}}{\sum_{t \in \mathcal{A}} p_t e^{\varepsilon_t}} \in \left[\frac{e^{-\sigma}}{e^\sigma}, \frac{e^\sigma}{e^{-\sigma}} \right] = [e^{-2\sigma}, e^{2\sigma}].$$

833 Hence $\log \frac{p_j}{q_j} \leq 2\sigma$ for all $j \in \mathcal{A}$, and

$$835 \quad 836 \quad \text{KL}(p\|q) = \sum_{j \in \mathcal{A}} p_j \log \frac{p_j}{q_j} \leq \sum_{j \in \mathcal{A}} p_j \cdot 2\sigma = 2\sigma.$$

837 \square

838 **Fact 2.** *Let π^* and π be autoregressive list policies on \mathcal{V} of length L with conditionals supported
 839 on $\mathcal{A}(i, l_{<i})$. Then*

$$840 \quad 841 \quad 842 \quad \text{KL}(\pi^* \|\pi) = \sum_{i=1}^L \mathbb{E}_{l_{<i} \sim \pi^*} [\text{KL}(\pi^*(\cdot \mid l_{<i}) \| \pi(\cdot \mid l_{<i}))].$$

843 *Proof.* By the chain rule,

$$844 \quad \log \frac{\pi^*(l_1, \dots, l_L)}{\pi(l_1, \dots, l_L)} = \sum_{i=1}^L \log \frac{\pi^*(l_i \mid l_{<i})}{\pi(l_i \mid l_{<i})}.$$

845 Taking expectation w.r.t. π^* yields

$$846 \quad 847 \quad 848 \quad \text{KL}(\pi^* \|\pi) = \sum_{i=1}^L \mathbb{E}_{l_{<i} \sim \pi^*} \mathbb{E}_{l_i \sim \pi^*(\cdot \mid l_{<i})} \left[\log \frac{\pi^*(l_i \mid l_{<i})}{\pi(l_i \mid l_{<i})} \right],$$

849 which is the stated form because the inner expectation equals $\text{KL}(\pi^*(\cdot \mid l_{<i}) \| \pi(\cdot \mid l_{<i}))$. \square

850 **Theorem 3.** *Let \mathcal{G}_{MLP} be the class of (fixed-depth, arbitrary-width) MLP generators that, given
 851 $(i, l_{<i})$, produce logits $g(i, l_{<i}, \cdot) \in \mathbb{R}^{\mathcal{V}}$. Define the induced policy class*

$$852 \quad \mathcal{F}_{\text{MLP}} := \{ \pi_\Theta : \pi_\Theta(\cdot \mid l_{<i}) = \text{softmax}_{\mathcal{A}(i, l_{<i})}(g_\Theta(i, l_{<i}, \cdot)) \}.$$

853 *Then for every $\varepsilon > 0$ there exists a width $W(\varepsilon, N, L)$ and parameters Θ such that*

$$854 \quad \text{KL}(\pi^* \|\pi_\Theta) \leq \varepsilon, \quad \text{hence} \quad \lim_{W \rightarrow \infty} \mathcal{E}(\mathcal{F}_{\text{MLP}}) = 0,$$

855 *where $\mathcal{E}(\mathcal{F}) := \inf_{\pi \in \mathcal{F}} \text{KL}(\pi^* \|\pi)$.*

864 *Proof.* Define target logits on the effective domain \mathcal{D} by $\rho(i, l_{<i}, j) := \log \pi^*(l_i = j \mid l_{<i})$ for
 865 $j \in \mathcal{A}(i, l_{<i})$. Fix an injective encoding $\psi : \mathcal{D} \hookrightarrow K \subset \mathbb{R}^d$ into a compact K .
 866

867 By Corollary 1, for any $\sigma > 0$ there exists an MLP $h_\Theta : K \rightarrow \mathbb{R}$ such that $\|h_\Theta \circ \psi - \rho\|_{\infty; \mathcal{D}} \leq \sigma$.
 868 Use $g_\Theta(i, l_{<i}, j) := h_\Theta(\psi(i, l_{<i}, j))$ for $j \in \mathcal{V}$. Define the policy

$$\pi_\Theta(l_i = j \mid l_{<i}) := \text{softmax}_{\mathcal{A}(i, l_{<i})}(g_\Theta(i, l_{<i}, \cdot))_j.$$

871 For each prefix $l_{<i}$, Fact 1 with $a = \rho(i, l_{<i}, \cdot)$, $b = g_\Theta(i, l_{<i}, \cdot)$ yields
 872

$$\text{KL}(\pi^*(\cdot \mid l_{<i}) \parallel \pi_\Theta(\cdot \mid l_{<i})) \leq 2\sigma.$$

873 Applying Fact 2 gives
 874

$$\text{KL}(\pi^* \parallel \pi_\Theta) = \sum_{i=1}^L \mathbb{E}_{l_{<i} \sim \pi^*} [\text{KL}(\pi^*(\cdot \mid l_{<i}) \parallel \pi_\Theta(\cdot \mid l_{<i}))] \leq 2L\sigma.$$

875 Choose $\sigma = \varepsilon/(2L)$ to obtain $\text{KL}(\pi^* \parallel \pi_\Theta) \leq \varepsilon$. Finally, by Lemma 2 (or the finiteness of \mathcal{D}), the
 876 achievable σ tends to 0 as width $W \rightarrow \infty$, proving $\lim_{W \rightarrow \infty} \mathcal{E}(\mathcal{F}_{\text{MLP}}) = 0$. \square
 877

878 **Proposition 1.** Let $\mathcal{G}_m(\alpha, \beta)$, $\mathcal{F}_m(\alpha, \beta)$, and $\mathcal{C}_m^k(\alpha, \beta)$ be as in Definitions 1–2. For $n \in \mathbb{N}_{>0}$, let
 879 the large-generator class be
 880

$$\mathcal{G}_M(\alpha, \beta, n) := \{g_M \mid W(g_M) \geq k\alpha + n, D(g_M) \geq \beta\},$$

881 with induced policy class $\mathcal{F}_M(\alpha, \beta, n) := \{\text{softmax} \circ g_M : g_M \in \mathcal{G}_M(\alpha, \beta, n)\}$. Assume the list-
 882 generation domain has a finite effective index set $\mathcal{D} = \{(i, l_{<i}, j) : j \in \mathcal{A}(i, l_{<i})\}$ and the activation
 883 σ enjoys a universal-approximation property on compact sets (e.g., standard MLP activations). Then
 884

$$\mathcal{C}_m^k(\alpha, \beta) \subseteq \overline{\mathcal{F}_M(\alpha, \beta, n)},$$

885 where the closure is taken w.r.t. uniform convergence of masked conditionals on \mathcal{D} .
 886

887 *Proof.* Fix any mixture element $\pi_{\text{mix}} \in \mathcal{C}_m^k(\alpha, \beta)$. By Definition 2, there exist generators $g_{m,r} \in$
 888 $\mathcal{G}_m(\alpha, \beta)$, $r = 1, \dots, k$, with logits $z_r(i, l_{<i}, \cdot)$ on $\mathcal{A}(i, l_{<i})$ and mixture weights $\omega_r(i, l_{<i}) \geq 0$
 889 with $\sum_{r=1}^k \omega_r(i, l_{<i}) = 1$ such that
 890

$$\pi_{\text{mix}}(\cdot \mid l_{<i}) = \sum_{r=1}^k \omega_r(i, l_{<i}) \text{softmax}_{\mathcal{A}(i, l_{<i})}(z_r(i, l_{<i}, \cdot)).$$

891 Note that here we extend the mixture weights to be prefix-dependent, i.e., $\omega_r(i, l_{<i})$. This extension
 892 makes the proposition both stricter and more flexible, thereby broadening its generalization
 893 capability. If one wishes to exactly follow Definition 2, the weights can simply be degenerated to
 894 $\omega_r(l)$.
 895

896 **Step 1 (block-diagonal embedding of the k small generators).** Without loss of generality, pad
 897 each $g_{m,r}$ to width exactly α per hidden layer by adding zero weights/units. Construct a depth-
 898 β , width- M network g_M with $M \geq k\alpha + n$ whose hidden layers are partitioned into k disjoint
 899 *generator blocks* of width α and one *evaluator block* of width n :
 900

$$M = \underbrace{\alpha + \dots + \alpha}_{k \text{ blocks}} + \underbrace{n}_{\text{evaluator}}.$$

901 For layers $1, \dots, \beta - 1$, set the large-layer weights to be block-diagonal so that the r -th generator
 902 block exactly replicates the corresponding layer of $g_{m,r}$, and the evaluator block either copies its
 903 previous state or computes auxiliary features (details in Step 2). Thus, after $\beta - 1$ hidden layers, the
 904 first $k\alpha$ coordinates of the big network’s hidden state equal the concatenation of the $\beta - 1$ -th hidden
 905 activations of $\{g_{m,r}\}_{r=1}^k$.
 906

907 **Step 2 (parameterizing the evaluator weights ω with $k-1$ degrees of freedom).** Use the evaluator
 908 block (of width $n \geq k - 1$) to produce *mixture logits* $u(i, l_{<i}) \in \mathbb{R}^k$ with the constraint that one
 909 coordinate is fixed as a reference (e.g., $u_k \equiv 0$), and define
 910

$$\omega_r(i, l_{<i}) := \frac{e^{u_r(i, l_{<i})}}{\sum_{q=1}^k e^{u_q(i, l_{<i})}} \quad (r = 1, \dots, k),$$

which realizes an arbitrary point in Δ^{k-1} through a $k-1$ -dimensional parameterization. Because \mathcal{D} is finite, the map $(i, l_{<i}) \mapsto \omega(i, l_{<i})$ can be approximated arbitrarily well by the evaluator block via UAT.

Step 3 (combiner at depth β : realizing the log-sum-exp logits). Define for $j \in \mathcal{A}(i, l_{<i})$ the target *combined* logits

$$\tilde{z}_j(i, l_{<i}) := \log \sum_{r=1}^k \frac{\omega_r(i, l_{<i})}{Z_r(i, l_{<i})} e^{z_{r,j}(i, l_{<i})}, \quad Z_r(i, l_{<i}) := \sum_{t \in \mathcal{A}(i, l_{<i})} e^{z_{r,t}(i, l_{<i})}.$$

At the last hidden layer (the β -th nonlinear layer), allow *cross-block* connections from all generator blocks and the evaluator block into a width- M hidden layer that serves as a single-hidden-layer approximator for the multivariate continuous mapping

$$\Phi : (z_1, \dots, z_k, \omega) \mapsto \tilde{z} \text{ on the finite domain } \mathcal{D}.$$

By universal approximation, there exist weights in this last hidden layer (and the final linear readout) so that the resulting g_M satisfies

$$\|g_M - \tilde{z}\|_{\infty; \mathcal{D}} \leq \sigma$$

for any prescribed $\sigma > 0$. Note that the depth requirement $D(g_M) \geq \beta$ is met (we used exactly β nonlinear layers), and the width requirement $W(g_M) \geq k\alpha + n$ is used to house the k embedded blocks ($k\alpha$ units) and the evaluator block (n units).

Step 4 (from logits to conditionals). By the identity

$$\text{softmax}_{\mathcal{A}(i, l_{<i})}(\tilde{z}(i, l_{<i}, \cdot)) = \sum_{r=1}^k \omega_r(i, l_{<i}) \text{softmax}_{\mathcal{A}(i, l_{<i})}(z_r(i, l_{<i}, \cdot)),$$

the conditional produced by $\text{softmax}_{\mathcal{A}}(\tilde{z})$ equals the target mixture conditional. Since $\|g_M - \tilde{z}\|_{\infty; \mathcal{D}} \leq \sigma$ and the masked softmax is continuous, $\text{softmax}_{\mathcal{A}}(g_M)$ converges uniformly on \mathcal{D} to $\text{softmax}_{\mathcal{A}}(\tilde{z}) = \pi_{\text{mix}}$ as $\sigma \downarrow 0$. Therefore $\pi_{\text{mix}} \in \overline{\mathcal{F}_M(\alpha, \beta, n)}$. Because π_{mix} was arbitrary, the claimed inclusion holds. \square

Remark 2 (Why $k\alpha + n$ and $k-1$ neurons for ω). *The $k\alpha$ term guarantees disjoint capacity to exactly embed the k small generators via block-diagonal copying across the first $\beta-1$ hidden layers. The additional n units form an evaluator head; choosing $n \geq k-1$ suffices to parameterize the simplex Δ^{k-1} via softmax logits $u \in \mathbb{R}^k$ with one fixed reference coordinate, while also providing enough width for the last-layer universal approximation of the log-sum-exp combiner.*

Proof of Theorem 1. **Step 1 (Coverage of k -mixtures by a single large generator).** By Proposition 1,

$$\mathcal{C}_m^k(\alpha, \beta) \subseteq \overline{\mathcal{F}_M(\alpha, \beta, n)},$$

where the closure is taken w.r.t. uniform convergence of masked conditionals on the finite effective domain. Because $\pi^*(l) > 0$ for all $l \in \mathcal{L}$ and \mathcal{L} is finite, the map $\pi \mapsto \text{KL}(\pi^* \parallel \pi)$ is continuous under uniform convergence of the conditionals. Hence, for every n ,

$$\mathcal{E}(\mathcal{F}_M(\alpha, \beta, n)) \leq \mathcal{E}(\mathcal{C}_m^k(\alpha, \beta)). \quad (9)$$

Step 2 (Arbitrary accuracy by increasing width). By Theorem 3 (UAT-backed policy approximation), for every $\varepsilon > 0$ there exists a fixed depth L_0 and a width threshold $W(\varepsilon, N, L)$, together with parameters Θ , such that the induced policy π_Θ satisfies $\text{KL}(\pi^* \parallel \pi_\Theta) \leq \varepsilon$. Choose the fixed depth in Theorem 3 so that $L_0 \geq \beta$, which is allowed by the theorem. Then, taking n large enough to ensure $k\alpha + n \geq W(\varepsilon, N, L)$, we have $\pi_\Theta \in \mathcal{F}_M(\alpha, \beta, n)$ and therefore

$$\mathcal{E}(\mathcal{F}_M(\alpha, \beta, n)) \leq \varepsilon. \quad (10)$$

Since $\varepsilon > 0$ was arbitrary, it follows that $\lim_{n \rightarrow \infty} \mathcal{E}(\mathcal{F}_M(\alpha, \beta, n)) = 0$.

Step 3 (Strict improvement over the k -mixture space). By Theorem 2, there exists $\delta > 0$ such that $\mathcal{E}(\mathcal{C}_m^k(\alpha, \beta)) = \delta$. Apply Step 2 with $\varepsilon := \delta/2$. Then for some n_0 ,

$$\mathcal{E}(\mathcal{F}_M(\alpha, \beta, n_0)) \leq \delta/2 < \delta = \mathcal{E}(\mathcal{C}_m^k(\alpha, \beta)).$$

By monotonicity in n (the class $\mathcal{F}_M(\alpha, \beta, n)$ enlarges with n), the strict inequality holds for all $n \geq n_0$. Combining with equation 9 concludes the proof of both statements. \square

972 **B REWARD MODEL TRAINING**
973

974 Following Zhang et al. (2025), we train a reward model to approximate user feedback on exposed
975 recommendation lists. Let $u \in \mathcal{U}$ denote a user with context information \mathcal{X}_u (e.g., historical inter-
976 actions or side features). Suppose $l_u = (v_1, \dots, v_{|l|})$ is the exposure list presented to user u , where
977 $v_i \in \mathcal{V}_u \subseteq \mathcal{V}$ and $|l|$ is the list length. The corresponding real user feedback, such as watch time,
978 clicks, or other engagement signals, is denoted by $r_{l_u} \in \mathbb{R}$.

979 The reward model is defined as a function
980

$$\hat{r} : \mathcal{X} \times \mathcal{V}^{|l|} \rightarrow \mathbb{R},$$

982 which, given the user context \mathcal{X}_u and a candidate list l_u , predicts the expected feedback $\hat{r}(l_u \mid \mathcal{X}_u)$.
983

984 To train the reward model, we minimize the mean squared error between the predicted feedback
985 $\hat{r}(l_u \mid \mathcal{X}_u)$ and the observed feedback r_{l_u} across all users:

$$\mathcal{L}(\hat{r}) = \mathbb{E}_{u \in \mathcal{U}} \left[(\hat{r}(l_u \mid \mathcal{X}_u) - r_{l_u})^2 \right].$$

988 **C METHODS FOR GROUP CONSTRUCTION**
989

991 We consider multiple strategies for constructing groups of candidate lists, beyond the standard au-
992 toregressive sampling approach. The main methods are summarized as follows:

- 994 • **Autoregressive list generation (Jayaram & Thickstun, 2021):** The conventional approach sam-
995 ples a single list by generating the entire trajectory in an autoregressive generator. While effective
996 in capturing dependencies, this method is relatively slow and produces only one list per sampling
997 trajectory.
- 998 • **Parallel tree-structured generation (Jayaram & Thickstun, 2021; Wang et al., 2025a):** To
999 improve efficiency and diversity, we allow the autoregressive generator to branch out in the first
1000 K steps, forming a tree of partial sequences. The remaining $L - K$ steps are then completed
1001 deterministically, enabling parallel exploration of multiple candidate lists.
- 1002 • **Softmax-based stochastic sampling (Holtzman et al., 2019; Efraimidis & Spirakis, 2006):** After
1003 the first step of scoring by generator, items are sampled probabilistically according to the
1004 softmax distribution of their scores, instead of deterministically selecting the top item, which
1005 encourages more diverse list generation.
- 1006 • **Markov process approximation (Metropolis et al., 1953):** The list generation process is mod-
1007 eled as a Markov chain, where each step only conditions on the immediately preceding item rather
1008 than the full history. We exhaustively explore and score all possible two-item pairs in the first two
1009 steps and the remaining items in the list are sampled sequentially in a chain-like manner.
- 1010 • **Random selection:** As a simple baseline, we randomly sample six items to form a candidate list
1011 without using model guidance.
- 1012 • **Heuristic substitution (Wang et al., 2025b):** Starting from already sampled lists, we heuristically
1013 replace up to two items to create new candidate lists while maintaining partial consistency with
1014 existing ones.
- 1015 • **Diversity-oriented generation (Yang et al., 2025) :** we generate lists that are explicitly encou-
1016 raged to differ significantly from previously sampled lists, thereby enhancing the diversity of the
1017 candidate set.

1018 **D DETAILS OF OFFLINE EXPERIMENTS SETTINGS**
10191020 **D.1 DETAILS OF DATASET**
1021

1023 The ML-1M dataset is a widely used public benchmark in recommender systems, containing approx-
1024 imately 1 million ratings provided by over 6,000 users on more than 3,900 movies. The Amazon
1025 Books dataset is a large-scale collection of product reviews focused on books available on Amazon,
1026 consisting of about 2 million reviews from over 35,000 users spanning more than 39,000 books. The

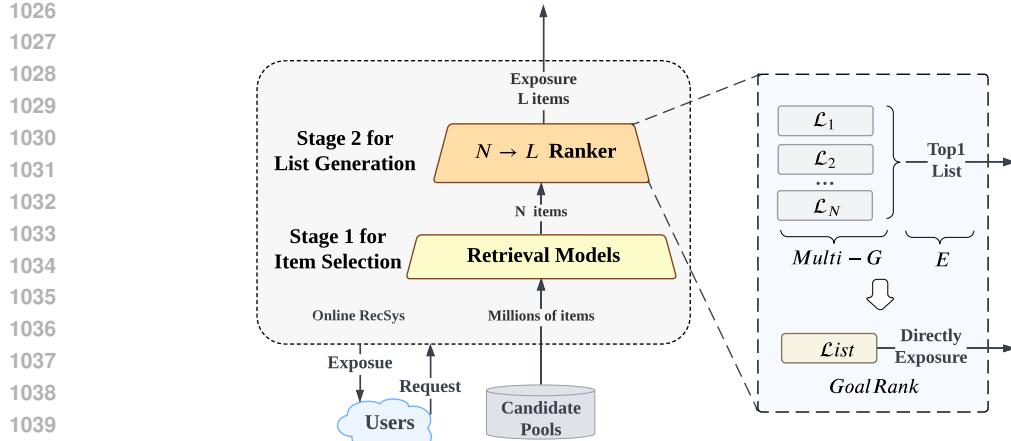


Figure 4: Online workflows.

Industry dataset is collected from a real-world short-video platform that serves over half a billion daily active users and hosts an item pool of tens of millions of videos. We construct two versions of this dataset: a smaller one with over 3 million interactions from 89,310 users on 10,395 videos, and a larger one with over 0.1 billion interactions from 1 million users on 0.3 million videos.

For preprocessing, all interactions are organized in chronological order, and users/items with fewer than 20 interactions are filtered out following the standard 20-core protocol. We employ a Matrix Factorization (MF) model as the retriever simulator to generate candidate items for the ranking stage. The data is split into training and testing sets with a ratio of 8:2. For the ranking stage, interactions are sorted chronologically, and the last six interactions are used as the item list exposed to users after reranking. Table 5 reports the statistics of the processed datasets, including the number of users, items, interactions, and revealed lists.

Table 5: Dataset Statistics

Dataset	$ \mathcal{U} $	$ \mathcal{I} $	# Interaction	# List
ML-1M	6,020	3,043	995,154	161,646
Amazon-Book	35,732	38,121	1,960,674	311,386
Industry	89,310	10,395	3,270,132	513,010
Industry-0.1B	1,146,032	312,573	100,269,812	16,099,612

D.2 DETAILS OF BASELINES

We detail the compared baselines of our main experiments in the following, covering three major categories: Generator-only methods, Generator–Evaluator methods, and Multi-Generator–Evaluator methods:

Generator-only methods: These approaches directly predict the item-wise scores for candidates and rank them accordingly, without explicit evaluation of whole lists.

- DNN (Covington et al., 2016) learn the user feedback for each user-item interaction.
- DLCM (Ai et al., 2018) refines initial rankings by leveraging local context from top-retrieved documents, using a recurrent neural network to capture document interactions and an attention-based loss function to capture item interactions.
- PRS (Feng et al., 2021a) also known as SetRank, which is a neural learning-to-rank model employs permutation-invariant neural ranking with multi-head self-attention to model cross-item dependencies, achieving robust performance across variable-length input sets.
- PRM (Pei et al., 2019a) addresses personalized re-ranking by integrating user-specific preferences into the re-ranking process, thus enhancing both personalization and relevance.
- MIR (Xi et al., 2022) captures complex hierarchical interactions between user actions and candidate list features to improve the accuracy of list-wise recommendation.

1080
 1081 **Generator-Evaluator Methods:** These methods adopt a two-stage paradigm where the generator
 1082 produces candidate lists and the evaluator selects the most promising one.
 1083

- 1084 • EGReRank (Huzhang et al., 2021) proposes an evaluator–generator framework for e-commerce
 1085 ranking. The evaluator estimates list utility given context, while the generator leverages reinforce-
 1086 ment learning to maximize evaluator scores, with an additional discriminator ensuring evaluator
 1087 generalization.
- 1088 • PIER (Shi et al., 2023) follows a two-stage architecture consisting of a Fine-grained Permutation
 1089 Selection Module (FPSM) and an Omnidirectional Context-aware Prediction Module (OCPM).
 1090 The FPSM leverages SimHash to identify the top- K candidate permutations based on user inter-
 1091 ests, while the OCPM evaluates these permutations through an omnidirectional attention mecha-
 1092 nism.
- 1093 • NAR4Rec (Ren et al., 2024b) introduces a non-autoregressive generative re-ranking model that al-
 1094 leviates data sparsity and candidate variability via contrastive decoding and unlikelihood training,
 1095 while also considering its integration into broader generator–evaluator frameworks.

1096 **Multi Generator-Evaluator:** These methods extend the generator–evaluator paradigm by ensem-
 1097 bling multiple generators to enlarge the candidate list space and improve final ranking quality. For
 1098 example, MG-E (Yang et al., 2025) aggregates outputs from multiple generators, each specializing
 1099 in different candidate distributions, before applying evaluation for list selection.

1100 To ensure a fair comparison, we adopt a relatively lightweight generator architecture for GoalRank.
 1101 Specifically, the GoalRank Generator consists of two blocks: a lower block that performs feature
 1102 crossing over all candidate items using several Transformer layers, and an upper block implemented
 1103 as a Transformer decoder. During list generation, the decoder autoregressively predicts next-item
 1104 scores over the full candidate set at each step, and GoalRank constructs the final list by sequentially
 1105 selecting items (via Top-1 or sampling-based strategies).

1106 D.3 ONLINE LATENCY AND MFU

1107 To demonstrate the efficiency and resource-utilization advantages of GoalRank’s single-stage ar-
 1108 chitecture, we report both the online latency and MFU of GoalRank compared with the existing
 1109 Multi-Generator–Evaluator (MGE) pipeline. Notably, during training, many components of Goal-
 1110 Rank can be executed in parallel. For example, the construction of auxiliary ranking-policy groups
 1111 for reference-policy generation can be fully parallelized, resulting in negligible additional overhead.
 1112 Under this setting:

- 1113 • **Latency.** GoalRank achieves an online latency of **18.611 ms**, which is substantially faster than
 1114 the multi-stage MGE pipeline (**34.235 ms**). This improvement stems from GoalRank’s ability
 1115 to directly generate the final list in a single stage, eliminating evaluator scoring and multiple
 1116 candidate-list constructions .
- 1117 • **MFU.** GoalRank attains an MFU of **12.65%**, compared with **2.03%** for the traditional two-stage
 1118 MGE pipeline. The higher MFU reflects significantly better hardware utilization, ensuring that
 1119 GoalRank does not increase overall training cost despite offering stronger performance.

1120 These results validate that GoalRank is **practical, efficient, and deployment-ready**. Furthermore,
 1121 **GoalRank has been successfully deployed in our online environment to serve full user traffic.**

1122 E USE OF LLMs

1123 Large language models (LLMs) were employed to polish the main body of this paper. Their use was
 1124 limited to grammar checking and correction of typographical errors.