
Plane Geometry Problem Solving with Multi-modal Reasoning: A Survey

Anonymous ACL submission

Abstract001

Plane geometry problem solving (PGPS) has002
recently gained significant attention as a bench-003
mark to assess the multi-modal reasoning ca-004
pabilities of large vision-language models. De-005
spite the growing interest in PGPS, the re-006
search community still lacks a comprehensive007
overview that systematically synthesizes recent008
work in PGPS. To fill this gap, we present a009
survey of existing PGPS studies. We first cate-010
gorize PGPS methods into an encoder-decoder011
framework and summarize the corresponding012
output formats used by their encoders and de-013
coders. Subsequently, we classify and analyze014
these encoders and decoders according to their015
architectural designs. Finally, we outline major016
challenges and promising directions for future017
research. In particular, we discuss the halluci-018
nation issues arising during the encoding phase019
within encoder-decoder architectures, as well020
as the problem of data leakage in current PGPS021
benchmarks.022

1 Introduction023

Automated plane geometry problem solving024

(PGPS) has emerged as an important benchmark025

in artificial intelligence research due to its unique026

requirement for multi-modal reasoning with math-027

ematical rigor (Seo et al., 2015; Chen et al., 2021).028

Typically, geometry problems combine textual de-029

scriptions with visual diagrams, each providing es-030

sential complementary information. The inherent031

necessity to integrate linguistic and visual modal-032

ities makes plane geometry a compelling testbed033

for advancing the multi-modal understanding ca-034

pabilities of AI systems. Furthermore, practical035

motivations such as developing intelligent tutoring036

systems (Ritter et al., 2010; Aleven and Koedinger,037

2002; Lee et al., 2025) and standardized bench-038

marks for evaluating AI reasoning (Chen et al.,039

2021; Cao and Xiao, 2022) highlight the impor-040

tance of continued research in this area.041

Nevertheless, substantial challenges persist in 042

achieving full automation. Foremost among these 043

is the complexity arising from the multi-modal na- 044

ture of geometry problems, requiring precise align- 045

ment between textual statements and correspond- 046

ing diagram elements (Seo et al., 2014). Resolving 047

ambiguities in textual descriptions through visual 048

references and accurately mapping entities between 049

text and diagrams pose significant hurdles (Sachan 050

et al., 2017; Zhang et al., 2022). Geometric dia- 051

grams also introduce unique challenges absent in 052

natural images and other types of diagrams, includ- 053

ing precise recognition of abstract symbols, e.g., 054

angle markers and length indicators, accurate detec- 055

tion of geometric primitives, e.g., points, lines, and 056

circles, and interpretation of implicit spatial rela- 057

tionships governed by geometric constraints. Addi- 058

tionally, effective PGPS demands embedding deep 059

geometric domain knowledge, applying geomet- 060

ric axioms and theorems during the reasoning that 061

are often implicitly assumed (Sachan et al., 2017; 062

Sachan and Xing, 2017; Lu et al., 2021). Thus, 063

integrating linguistic comprehension, visual anal- 064

ysis, and geometric reasoning continues to drive 065

the complexity and significance of research in au- 066

tomated PGPS. 067

Recently, numerous new benchmarks, large- 068

scale datasets, and model architectures have been 069

proposed to tackle the challenges of PGPS. How- 070

ever, despite this rapid progress, most existing sur- 071

veys on mathematical or multi-modal reasoning 072

address geometry problems only as part of broader 073

domains (Li et al., 2025; Yan et al., 2025; Yuan 074

et al., 2025) and thus fail to examine the unique 075

challenges of PGPS in depth. Consequently, the 076

literature still lacks a dedicated, up-to-date survey 077

centered on PGPS. The goal of this paper is to fill 078

the gap by providing the PGPS research community 079

with a structured overview of the latest benchmarks, 080

datasets, and multi-modal reasoning approaches tai- 081

lored specifically to PGPS. 082
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The structure of this paper is summarized as fol-083

lows: We first describe the definition of PGPS and084

relevant tasks (§2). We then introduce an over-085

all framework for solving PGPS problems as an086

encoder-decoder architecture with intermediate rep-087

resentations (§3). Next, we review the details of088

encoder (§4) and decoder (§5) structures. Some ad-089

ditional thoughts are provided from the data collec-090

tion perspective (Appendix A). Finally, we address091

the remaining challenges and promising future di-092

rections in automated PGPS (§6).093

2 Tasks and benchmarks094

In this section, we first define the PGPS and then095

introduce three tasks that are commonly tackled in096

the PGPS community, along with the benchmarks097

for each task.098

2.1 Definition of PGPS099

Euclidean plane geometry studies the properties100

and relationships among geometric primitives, e.g.,101

points, lines, and circles, in a flat, two-dimensional102

space (Fitzpatrick and Heiberg, 2007). PGPS in-103

volves inferring unknown geometric properties or104

relationships from a given set of primitives and105

their known relations, such as determining the106

length of an unknown side in a triangle given the107

lengths of two sides and the measure of the in-108

cluded angle.109

In real-world scenarios, plane geometry prob-110

lems usually present as diagram and textual de-111

scription pairs, as demonstrated in Fig. 1. The112

diagrams and accompanying textual descriptions113

typically complement each other in representing114

geometric primitives and relations. Diagrams usu-115

ally provide visual information about spatial rela-116

tionships, whereas textual descriptions explicitly117

mention properties or relational details. Due to118

this complementary nature, PGPS methods in real-119

world applications must not only infer unknown120

geometric facts but also accurately parse geometric121

information from these diagrams and text pairs.122

2.2 PGPS tasks123

We describe the three main tasks, along with the124

corresponding benchmarks, that are mainly tack-125

led via PGPS research. Fig. 1 illustrates three ex-126

amples for each task. For further details on the127

benchmarks from various perspectives, such as rea-128

soning complexity, diagram-text interdependency,129

and data collection methods, refer to Appendix A.130

2.2.1 Direct-answer and multiple-choice tasks 131

Task description Most PGPS works quantify the 132

capacity of a PGPS method to infer a single, well- 133

defined property of a geometric entity from a uni- 134

fied diagrammatic–textual problem statement. The 135

requested properties fall into two categories: i) 136

numerical targets, e.g., angle magnitude, segment 137

length, or area (Seo et al., 2015; Lu et al., 2021; 138

Chen et al., 2021), and ii) categorical targets, e.g., 139

the perpendicularity or parallelism of two lines (Xu 140

et al., 2025). 141

PGPS methods are also evaluated through 142

multiple-choice tasks (Lu et al., 2024; Zhang et al., 143

2025a). While these tasks use the same problems 144

as direct-answer tasks, each multiple-choice prob- 145

lem provides a fixed set of candidate responses. A 146

PGPS method must select the option that correctly 147

identifies the target property, or equivalently, pre- 148

dict a value matching one of the provided choices. 149

For example, in the scenario depicted in Fig. 1, the 150

correct response is the label "c" or its correspond- 151

ing value, "None." 152

Evaluation metrics In direct-answer tasks, per- 153

formance is reported as top-N accuracy: a PGPS 154

method is considered correct when the ground truth 155

answer appears within its N candidate answers. 156

For multiple-choice tasks, the metric depends on 157

the output representation of the method. If the 158

method predicts an option label, evaluation reduces 159

to standard top-1 accuracy. If it produces a value, 160

e.g., scalar, a modified version of top-N accuracy is 161

utilized: the N generated values are scanned in or- 162

der, and the attempt is scored correct once the first 163

value that coincides with any listed option matches 164

the ground truth. 165

Benchmarks Most PGPS benchmarks have been 166

proposed to evaluate model performance on direct- 167

answer and multiple-choice tasks. Some bench- 168

marks exclusively consist of plane geometry prob- 169

lems (Alvin et al., 2017; Seo et al., 2015; Lu et al., 170

2021; Chen et al., 2021; Cao and Xiao, 2022; 171

Zhang et al., 2023, 2024c; Fu et al., 2025; Kazemi 172

et al., 2024; Xu et al., 2025), while others include 173

plane geometry problems as part of broader bench- 174

marks designed for general multi-modal reasoning 175

evaluation (Lu et al., 2024; Zhang et al., 2025a; 176

Yue et al., 2024; Kamoi et al., 2024; Wang et al., 177

2024a; Zou et al., 2025; Gupta et al., 2024; Wang 178

et al., 2025). 179

2



Input diagram and text

In the diagram, trapezoid XWZY is given.

Direct-answer

Q) Find the degree of angle ∠𝑍.

A) 68

Multiple-choice

Q) What is the relationship between 𝑊𝑍
and 𝑋𝑌?
(a) Parallel  (b) Perpendicular (c) None

A) c: None 

Reasoning-step

Q) Prove that ∠𝑋𝑌𝑍 and ∠𝑌𝑍𝑊 are the 
same.

Proof)
• Let 𝐸 is a point on 𝑌𝑍 where ⊡𝑋𝑌𝐸𝑊

is a parallelogram.
• Because ⊡𝑋𝑌𝐸𝑊 is a parallelogram 

and 𝑊𝑋 ∥ 𝑍𝑌, 𝑋𝑌 = 𝑊𝐸 = 𝑋𝑍 and 
∠𝑍𝐸𝑊 = ∠𝐸𝑊𝑋 = ∠𝐸𝑌𝑋.

• Because 𝑊𝐸 = 𝑊𝑍, ∠𝑊𝐸𝑍 = ∠𝑊𝑍𝐸. 
• Because ∠𝑍𝐸𝑊 = ∠𝐸𝑊𝑋 = ∠𝐸𝑌𝑋,  
∠𝑊𝑍𝐸 = ∠𝑋𝑌𝐸.

• We can conclude that ∠𝑋𝑌𝑍 =
∠𝑌𝑍𝑊	∎.

Figure 1: Illustration of three PGPS tasks. The three tasks are commonly used to evaluate PGPS methods in existing
benchmarks: i) direct-answer, ii) multiple-choice, and iii) reasoning-step construction. In the direct-answer task, the
model must predict a single numerical value as the answer to the problem. In the multiple-choice task, the model
must select the correct label corresponding to the ground-truth option. In the reasoning-step construction task, the
model is asked to generate the complete sequence of reasoning steps that lead to the correct final answer.

2.2.2 Reasoning tasks180

Task description Some PGPS benchmarks as-181

sess methods not only on the correctness of the182

final answer but also on the soundness of the in-183

termediate reasoning (Chen et al., 2022; Jaiswal184

et al., 2024). In a widely adopted proving problem185

setting, a PGPS method must generate a sequence186

of geometric axioms and theorems that derive the187

target statement, e.g., two angles are congruent,188

directly from the given conditions.189

Evaluation metrics For reasoning-step construc-190

tion tasks, top-N accuracy is again adopted, grant-191

ing success when any of the N predicted reasoning192

steps exactly reproduces the ground-truth steps.193

Benchmarks UniGeo (Chen et al., 2022) is cur-194

rently the only benchmark designed explicitly to195

systematically measure reasoning capabilities. Re-196

cently, approaches leveraging LLMs have emerged197

to evaluate individual reasoning steps (Zhang et al.,198

2025a; Jaiswal et al., 2024). However, these meth-199

ods inherently rely on LLMs, posing significant200

limitations. Consequently, proposing diverse and201

systematic reasoning benchmarks remains an open202

research challenge.203

3 Overall approach204

PGPS models typically employ an encoder-decoder205

architecture, as demonstrated in Fig. 2. The en-206

coder jointly processes the diagram and textual de-207

scription to produce an intermediate representation208

that captures essential geometric information of the209

problem. The decoder then utilizes the extracted210

intermediate representation to generate a solution,211

presented as either a theorem sequence, a logic pro-212

gram, or a natural-language description. Finally, 213

the answer is obtained by post-processing the gen- 214

erated solution, e.g., by executing the logic pro- 215

gram or extracting the final result from the natural- 216

language description. 217

Before we discuss the detailed approach to con- 218

structing the encoder and decoder, we first review 219

the output formats of the encoder and decoder com- 220

monly used across different PGPS tasks. 221

3.1 Encoder outputs 222

The output of an encoder forms an intermediate 223

representation that can be further used as an input 224

to a decoder. We categorize the output format of 225

the encoder into i) formal-language description and 226

ii) embedding vectors. 227

Formal-language description Several studies 228

explicitly extract geometric primitives and relations 229

from given diagram-text pairs, converting them into 230

formal-language descriptions. A formal-language 231

description consists of an entity set and a predicate 232

set. The entity set contains geometric primitives, 233

e.g., elementary primitives such as points, lines, 234

and circles (Zhang et al., 2022, 2023), or higher- 235

level shapes such as triangles and squares (Seo 236

et al., 2015; Sachan et al., 2017; Sachan and Xing, 237

2017; Lu et al., 2021), along with non-geometric 238

tokens such as numbers and variable names. The 239

predicates define the relationships among the enti- 240

ties. For instance, an equality predicate binds two 241

entities ̸ ABC and 30◦ to represent the numerical 242

value of the angle, i.e., ̸ ABC = 30◦ or specify 243

geometric relations, such as segments AB and BC 244

being perpendicular, i.e., AB ⊥ BC. 245

In earlier studies, rule-based approaches (Koo 246
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Input diagram and text

line A B, line C B, line A C
Circle O lieson A B C
∠𝐵𝐴𝐶 = 48∘, 𝑚𝐴𝐶* = 110∘

Intermediate representation

Output representation

Direct Triangle Sum Theorem
Inscribed Angle Theorem

Multiple N0 C2 V0 
Sum N1 V0 V1 C360
Get V1

By the Inscribed Angle Theorem, arc BC is 
twice its subtended angle at A: 

𝑚𝐵𝐶$ = 2∠𝐵𝐴𝐶 = 96∘.
Hence, 𝑚𝐵𝐶$ = 96∘.

Theorem sequence

Logic program

Natural-language description

Formal-language description

Embedding vector
Find 	𝑚𝐵𝐶* .

Encoder Decoder

Figure 2: Visualization of the overall structure of PGPS methods. PGPS methods first encode the input diagram and
text into an intermediate representation. The encoded representation is then passed to the decoder, which generates
the final solution as a theorem sequence, a logic program, or a natural-language description.

et al., 2008; Bansal et al., 2014) and semantic247

parsers (Lewis et al., 2020) have been proposed to248

extract formal-language descriptions from textual249

descriptions without analyzing the diagram (Seo250

et al., 2015; Lu et al., 2021). Recent works extend251

these approaches to extract a formal language de-252

scription from a diagram-text pair. Consequently,253

many PGPS studies release datasets consisting of254

diagrams and formal-language description pairs255

to train diagram parsers in a supervised way (Seo256

et al., 2015; Sachan et al., 2017; Sachan and Xing,257

2017; Zhang et al., 2022; Lu et al., 2021; Zhang258

et al., 2023, 2024c)259

Embedding vectors Certain PGPS encoders rep-260

resent inputs as embedding vectors, typically uti-261

lizing one of three strategies: i) embedding dia-262

grams and textual descriptions separately and sub-263

sequently merging them (Chen et al., 2021; Cao264

and Xiao, 2022; Chen et al., 2022; Ning et al.,265

2023; Liang et al., 2023; Jian et al., 2023b), ii) em-266

bedding diagrams exclusively and then combining267

them with raw textual inputs (Xia et al., 2025; Cho268

et al., 2025; Shi et al., 2024; Zhang et al., 2025b;269

Gao et al., 2025; Zhang et al., 2025e; Peng et al.,270

2025; Xu et al., 2024), or iii) jointly processing di-271

agrams and texts through a unified encoder (Zhang272

et al., 2023; Li et al., 2024). Although these em-273

beddings are generally less interpretable compared274

to formal-language descriptions, they enable end-275

to-end training with the decoder.276

3.2 Decoder outputs277

Given the output of the encoder, the decoder gener-278

ates the solution from which the final answer can279

be derived. We classify decoder output formats280

into three types: i) theorem sequences, ii) logic281

programs, and iii) natural-language descriptions.282

A sequence of theorems Many PGPS works 283

represent the output of a PGPS problem as a se- 284

quence of theorem applications. This approach 285

naturally aligns with a reasoning process, in which 286

theorems are iteratively applied to given entities 287

and predicates to logically derive new geometric 288

facts, including the target predicate specified as a 289

goal (Trinh et al., 2024). Specifically, given geo- 290

metric entities and predicates extracted from the 291

original description, theorems from a predefined 292

library can be applied to the entities and predicates 293

to derive additional predicates not explicitly stated 294

in the original problem. Recent PGPS datasets 295

provide annotated triples consisting of the formal- 296

language description, the target predicate, and a 297

corresponding reference theorem sequence (Sachan 298

et al., 2017; Sachan and Xing, 2017; Lu et al., 2021; 299

Zhang et al., 2024c). 300

A logic program A logic program is commonly 301

adopted as an output representation for PGPS. 302

Specifically, inspired by the observation that the 303

reasoning process in PGPS typically involves ap- 304

plying a series of operations to numerical constants 305

and variables provided in the problem (Chen et al., 306

2021; Amini et al., 2019; Chen et al., 2023), a 307

logic program is defined as a sequence of triples, 308

each consisting of an operation and its operands, 309

such as numerical values and variable names. The 310

operations in these programs fall into two main 311

categories: i) arithmetic functions, ranging from 312

basic operations like addition and multiplication 313

to geometry-specific computations such as the 314

Pythagorean operation (Chen et al., 2021; Cao 315

and Xiao, 2022; Chen et al., 2022), and ii) equal- 316

ity assertions that establish identity between two 317

expressions (Zhang et al., 2023). Several PGPS 318

datasets provide paired examples, each consisting 319
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of a diagram-text problem and its corresponding320

logic program (Chen et al., 2021; Cao and Xiao,321

2022; Chen et al., 2022; Zhang et al., 2023).322

A natural-language description Recent PGPS323

methods generate solutions and answers in natural324

language without relying on a specific template.325

The inherent flexibility of natural language allows326

these models to easily provide outputs for a wide327

range of tasks, e.g., geometric diagram captioning,328

without being limited to fixed problem-solving for-329

mats. To train such methods, various types of PGPS330

datasets have been proposed. For tasks which focus331

on problem solving, the output, given a diagram332

and text, can either be the answer expressed in nat-333

ural language (Shi et al., 2024) or a reasoning path334

in the form of a chain-of-thought (Wei et al., 2022)335

to infer the answer (Zhang et al., 2025b; Gao et al.,336

2025). In addition to problem solving, datasets337

have also been proposed for tasks such as geomet-338

ric diagram captioning (Zhang et al., 2025b; Gao339

et al., 2025; Cho et al., 2025; Xia et al., 2025) and340

question answering (Gao et al., 2025).341

3.3 Encoder-decoder with desired outputs342

Once the intermediate representations and output343

representations are determined based on target344

problems or tasks, one can choose an appropriate345

encoder and decoder that can produce the desired346

outputs. Fig. 3 summarizes possible combinations347

of encoder-decoder architectures along with the348

desired outputs. A combination of encoder, inter-349

mediate representation, decoder, and output rep-350

resentation can lead to a specific architecture for351

PGPS. In the following two sections, we review the352

possible choices of encoder and decoder structures.353

4 Encoders354

The encoder extracts the relevant components from355

the given diagram and text that are necessary for356

PGPS. We review the encoders in the following357

aspects: i) rule-based and ii) neural network-based.358

4.1 Rule-based encoders359

Early PGPS methods relied on classical computer360

vision and text parsing techniques to independently361

extract geometric primitives and relations from dia-362

grams and text, merging them into formal-language363

descriptions. Most studies (Seo et al., 2015; Sachan364

et al., 2017; Sachan and Xing, 2017; Alvin et al.,365

2017; Gan et al., 2019) employed rule-based di-366

agram parsers, notably HoughGeo (Chen et al.,367

2015) or G-Aligner (Seo et al., 2014), which pre- 368

process diagrams to detect geometric primitives 369

using classical computer vision techniques, e.g., 370

Gaussian blur and Hough transforms, and then 371

match detected primitives to literal sets using ei- 372

ther handcrafted rules or optimization. For textual 373

extraction, many approaches (Wu et al., 2024b; 374

Zhao et al., 2025; Peng et al., 2023; Zhang et al., 375

2024b; Jian et al., 2023a; Zou et al., 2024) adopted 376

the InterGPS (Lu et al., 2021) parser, a rule-based 377

method utilizing regular expressions, which is reli- 378

able and effective even with limited data. 379

4.2 Neural network encoders 380

We review the neural network-based encoders 381

based on the desired output format. 382

4.2.1 Formal-language description generation 383

Recent PGPS approaches adopt neural encoders to 384

generate formal-language descriptions from diverse 385

diagrams and texts, typically training separate en- 386

coders for each modality. Neural diagram encoders 387

commonly operate in two stages: primitive detec- 388

tion using object detectors such as RetinaNet (Lin 389

et al., 2017b; Lu et al., 2021) and feature pyramid 390

networks (Lin et al., 2017a; Zhang et al., 2022), 391

followed by relation inference modeled either as a 392

constrained optimization problem (Lu et al., 2021) 393

or as a graph-learning task leveraging graph neural 394

networks (GNNs) (Zhang et al., 2022). For text 395

encoding, subsequent PGPS studies (Sachan et al., 396

2017; Sachan and Xing, 2017) commonly employ 397

logistic regression models, as originally introduced 398

by GEOS (Seo et al., 2015), to extract primitives 399

and relations from problem statements. 400

4.2.2 Embedding vector generation 401

To enable end-to-end learning, recent PGPS meth- 402

ods employ neural encoders that map both the di- 403

agram and text into a unified embedding space, 404

providing a joint vector representation for PGPS. 405

Here, we review the neural encoders based on their 406

training strategy. 407

Learning from scratch Early PGPS works train 408

joint diagram-text encoders and decoders end-to- 409

end from scratch on target PGPS datasets. Diagram 410

embeddings commonly utilize convolutional neural 411

networks (CNNs), including vanilla CNN (Zhang 412

et al., 2023), ResNet (He et al., 2016; Chen et al., 413

2021; Cao and Xiao, 2022), DenseNet (Huang 414

et al., 2017; Jian et al., 2023a), and VQ-VAE en- 415

coders (van den Oord et al., 2017; Liang et al., 416
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Rule-based

Encoder Intermediate
representation Decoder Output

representation

Neural 
network

Formal-language 
description

Embedding vector

Rule-based

GNN-based

Seq-to-seq

Theorem sequence

Natural language 
description

Logic program

Method

InterGPS

GeoDANO

MAVIS
E1

E2

I1

I2

D1

D2

D3

O1

O2

O3

Figure 3: Overview of the PGPS pipeline. PGPS methods can be categorized based on the combination of the
encoder, intermediate representation, decoder, and output representation. For example, the InterGPS can be
represented as a combination of E2, I1, D3, and O1. We summarize PGPS methods as a combination of these
components in Table A1.

2023), as well as Vision Transformers (ViT) (Doso-417

vitskiy et al., 2021; Ning et al., 2023). Text418

embeddings are typically produced by sequen-419

tial models like LSTMs (Hochreiter and Schmid-420

huber, 1997; Chen et al., 2021; Cao and Xiao,421

2022) or Transformer-based encoders (Vaswani422

et al., 2017), such as vanilla Transformer (Zhang423

et al., 2023; Ning et al., 2023; Li et al., 2024)424

and RoBERTa (Liu et al., 2019; Cao and Xiao,425

2022). Diagram and text embeddings are fused426

via co-attention networks (Yu et al., 2019; Chen427

et al., 2021; Ning et al., 2023), bi-directional428

GRUs (Chung et al., 2014; Zhang et al., 2023; Li429

et al., 2024), or Transformers (Chen et al., 2022).430

Besides direct optimization on PGPS tasks, joint431

encoders frequently employ auxiliary objectives432

for improved performance. Many approaches in-433

corporate self-supervised tasks, including jigsaw-434

location prediction (Chen et al., 2021; Cao and435

Xiao, 2022; Jian et al., 2023a), masked-token pre-436

diction in text (Devlin et al., 2019; Chen et al.,437

2022; Zhang et al., 2023; Li et al., 2024) or di-438

agrams (He et al., 2022; Ning et al., 2023), text-439

conditioned diagram-symbol classification (Ning440

et al., 2023), and VQ-VAE objective (Liang et al.,441

2023). Other studies leverage explicit labels, train-442

ing encoders for geometry-element or knowledge-443

point classification (Chen et al., 2021; Cao and444

Xiao, 2022), or contrastive learning between dia-445

gram patches and textual tokens (Li et al., 2024).446

Pre-trained encoders To leverage pretrained447

knowledge and enhance training efficiency, many448

recent PGPS methods employ neural encoders in-449

spired by the LLaVA architecture (Liu et al., 2023),450

which integrates a pretrained vision encoder to en-451

code diagrams. Specifically, diagrams are first452

transformed into visual embeddings using a pre- 453

trained vision encoder, followed by a lightweight 454

adapter consisting of a multi-layer perceptron. Dur- 455

ing training, only the adapter parameters are up- 456

dated, keeping the vision encoder frozen to pre- 457

serve general visual knowledge and reduce training 458

cost. While OpenCLIP (Radford et al., 2021) is the 459

most commonly used backbone (Shi et al., 2024; 460

Gao et al., 2025; Xu et al., 2024), other general- 461

purpose models such as SigLIP (Zhai et al., 2023; 462

Zhang et al., 2025e) and InternViT (Chen et al., 463

2024c; Peng et al., 2025), as well as the math- 464

specific Math-CLIP encoder (Zhang et al., 2025b; 465

Peng et al., 2025), have also been employed. 466

Fine-tuned encoders Most pretrained vision en- 467

coders perform poorly when applied to geometric 468

diagrams (Zhang et al., 2025b; Xia et al., 2025; 469

Cho et al., 2025). To address this limitation, 470

PGPS methods employing the LLaVA-style archi- 471

tecture typically fine-tune the vision encoders be- 472

fore integrating them into downstream pipelines. 473

Two main fine-tuning strategies are common: i) 474

self-supervised methods such as masked auto- 475

encoding (He et al., 2022; Xia et al., 2025), and ii) 476

weakly supervised methods such as CLIP (Zhang 477

et al., 2025b; Cho et al., 2025), direct preference 478

optimization (Rafailov et al., 2023; Huang et al., 479

2025), or grounding tasks (Li* et al., 2022; Zhang 480

et al., 2025c), which leverage synthetic geomet- 481

ric diagrams and labels pairs. Nevertheless, since 482

synthetic diagrams do not fully capture the charac- 483

teristics of real-world diagrams, GeoDANO (Cho 484

et al., 2025) further employs few-shot domain adap- 485

tation under the same CLIP training objective to 486

minimize the residual domain gap. 487
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5 Decoders488

Based on the representations produced by the en-489

coder, the decoder generates the solution to the490

problem. We survey the PGPS decoders using the491

following dimensions: i) input representation and492

ii) architectural design.493

5.1 Formal-language description decoder494

We first introduce the architectures of the decoders495

that receive a formal language description as input.496

Rule-based axiomatic decoders Several meth-497

ods that operate on formal-language descriptions498

determine the required theorem sequence with a499

rule-based decoder. GEOS++ (Sachan et al., 2017)500

employs an exhaustive brute-force search to locate501

a sequence of theorems whose application yields502

the target predicate. GeoShader (Alvin et al., 2017)503

specifies a deterministic set of composition rules504

that directly selects the relevant theorems without505

search. GEOS-OS (Sachan and Xing, 2017) trains506

a log-linear model to assign probabilities to can-507

didate theorems and then performs beam search,508

returning the highest-scoring theorem sequence.509

GNN-based decoders A formal-language de-510

scription, composed of geometric primitives and511

their relations, naturally corresponds to a graph512

structure. Exploiting this, several PGPS decoders513

first encode the formal description as a graph or hy-514

pergraph and then generate theorem-application515

sequences from the resulting graph representa-516

tion. Such encodings typically follow one of517

three schemes: i) primitives as nodes and pred-518

icates as edges (Peng et al., 2023), ii) primi-519

tives and predicates both as nodes connected via520

edges (Jian et al., 2023a), or iii) predicates as hyper-521

nodes and theorems as directed hyperedges form-522

ing a hypertree (Zhang et al., 2024b). These en-523

coded structures are subsequently fed into graph-524

to-sequence decoders, such as Graphormer (Zhang525

et al., 2024b), graph Transformer (Peng et al.,526

2023), or graph convolutional network (Kipf and527

Welling, 2017) followed by LSTM (Jian et al.,528

2023a), to produce the target theorem sequence.529

Sequence-to-sequence decoders Some ap-530

proaches treat formal-language descriptions as531

a flat token sequence and pass it directly to532

a sequence-to-sequence (seq-to-seq) model to533

generate the corresponding theorem sequence.534

Transformers are predominantly employed for535

these tasks by encoding the formal description di- 536

rectly (Lu et al., 2021; Wu et al., 2024b; Zou et al., 537

2024). A few studies instead utilize off-the-shelf 538

LLMs, e.g., o3-mini (OpenAI, 2025b), without 539

additional training (Zhao et al., 2025). 540

5.2 Seq-to-seq embedding decoders 541

Several PGPS studies feed either a joint dia- 542

gram–text embedding or a concatenation of dia- 543

gram embedding and raw text into a sequence- 544

to-sequence decoder. Early work primarily em- 545

ploys RNN-based decoders such as LSTMs or 546

GRUs (Chen et al., 2021; Cao and Xiao, 2022; 547

Zhang et al., 2023; Li et al., 2024; Ning et al., 548

2023; Jian et al., 2023b), while later studies com- 549

monly adopt encoder–decoder Transformers such 550

as T5 (Raffel et al., 2020; Liang et al., 2023; Chen 551

et al., 2022). The recent proliferation of LLMs 552

has motivated a shift toward fine-tuning encoder- 553

only Transformers, such as LLaMA (Touvron et al., 554

2023; Cho et al., 2025; Gao et al., 2025; Xu et al., 555

2024) and Vicuna (Vicuna, 2023; Shi et al., 2024), 556

specifically adapted for PGPS tasks. 557

6 Challenges and future directions 558

We examine the remaining challenges in PGPS and 559

propose potential directions for future work. 560

6.1 Hallucination in diagram perception 561

PGPS methods initially extract geometric primi- 562

tives and relations from diagrams and text, mak- 563

ing accurate perception crucial before reasoning. 564

However, studies indicate that PGPS methods fre- 565

quently misperceive these primitives and relations, 566

especially when generating natural-language de- 567

scriptions (Huang et al., 2025; Zhang et al., 2025a) 568

as depicted in Fig. A1. For example, Table A2 re- 569

veals that GPT-4.1 (OpenAI, 2025a) fails to capture 570

a fundamental geometric relation among the points 571

and lines and produces hallucinations. These hallu- 572

cinations not only degrade PGPS performance but 573

also diminish dataset quality. Computer vision stud- 574

ies report similar hallucination issues in datasets 575

produced by large VLMs (Zhang et al., 2025d; Sa- 576

hoo et al., 2024; Li et al., 2023; Chen et al., 2024b), 577

further evidenced in PGPS datasets as shown in 578

Table 1. Consequently, models trained on hallu- 579

cinated data suffer measurable performance de- 580

clines (Zhang et al., 2025d; Lai et al., 2025; Yu 581

et al., 2024; Hirota et al., 2024). 582

Visual prompting techniques, such as augment- 583

ing diagrams with bounding boxes, markers, or 584
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Example 1 Example 2 Example 3

Diagram

Question In the given figure, let’s denote
the area of triangle AOB as vari-
able x. Find the area of rectangle
ABCD in terms of x. Choices: A:
8 B: 10 C: 12 D: 16

Based on the image, what is the
measure of the interior angle at
vertex A? Choices: A. 90 degrees
B. More than 90 degrees C. Less
than 90 degrees D. Cannot be de-
termined

Does the diagram include any line
segments that are not perpendicu-
lar to each other?

Solution To determine the area of rectan-
gle ABCD, we can use the fact
that triangle AOB is half the area
of the rectangle. Therefore, the
area of rectangle ABCD is 2
times the area of triangle AOB,
which is 2x. Hence, the answer
is option B. Answer:D

Use the properties of the geomet-
ric shapes and theorems related
to angles to deduce the measure
of the interior angle at vertex
A based on the given image and
information. So the answer is B

Yes, in the diagram, line segment
YM is not perpendicular to line
segment MA.

Table 1: Examples of hallucinations in the natural-language description datasets annotated with L(V)LM. We
visualize the examples from the PGPS datasets, e.g., G-LLaVA and MAVIS, which contain hallucinations in the
question or response due to the L(V)LM annotation. We highlight the hallucinations with bold characters.

segmentation masks, have emerged as promising585

solutions for mitigating hallucinations (Wu et al.,586

2024a; Yang et al., 2023; Ma et al., 2025). These587

methods are especially beneficial for PGPS tasks,588

as they dynamically highlight relevant primitives589

and relations during reasoning and facilitate the590

critical step of drawing auxiliary lines. Augment-591

ing diagrams at test time (Muennighoff et al., 2025)592

by applying segmentation masks (Ravi et al., 2024)593

or adding auxiliary constructions aligned with the594

current reasoning step (Murphy et al., 2024; Hu595

et al., 2024b) offers a practical approach to enhance596

multi-modal reasoning performance in PGPS.597

6.2 Evaluation challenges in benchmarks598

Comprehensive PGPS benchmarks should evaluate599

perception across diverse, realistic diagrams, ensur-600

ing that visual processing is essential for solving601

each problem. However, as shown in Table A3,602

existing benchmarks do not satisfy these criteria603

simultaneously. Synthetic diagrams, while scal-604

able, often fail to represent the complexity of real-605

world scenarios (Zhong et al., 2025; Bates et al.,606

2025; Wang et al., 2024b), lacking elements such607

as parallel markers or placeholder objects, as illus-608

trated in Fig. A2. Conversely, manually collected609

benchmarks better reflect real-world complexity610

but frequently reuse diagrams from popular PGPS 611

datasets, introducing data leakage and compromis- 612

ing domain generalization evaluations (Hu et al., 613

2024a; Cao et al., 2024; Chen et al., 2024a). 614

Even manually curated benchmarks without 615

common PGPS dataset reuse often neglect cru- 616

cial diagram–text dependencies discussed in Ap- 617

pendix A.2. MathVerse addresses these depen- 618

dencies explicitly and avoids synthetic diagrams, 619

but still suffers from data leakage, limiting its 620

capability to assess genuine multi-modal reason- 621

ing. To overcome these issues, future research 622

should develop synthetic diagram generators that 623

closely replicate real-world complexity or create 624

new datasets that strictly require visual reasoning 625

while rigorously preventing data leakage. 626

7 Conclusion 627

In this paper, we examine the tasks, benchmarks, 628

and methods used in existing PGPS research. 629

We summarize the main PGPS approaches as an 630

encoder-decoder architecture, along with the inter- 631

mediate and output representations utilized across 632

different methods Through the analysis, we outline 633

future research directions addressing current chal- 634

lenges, particularly regarding diagram perception 635

and benchmark comprehensiveness. 636
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Limitations637

In this paper, we primarily survey studies related638

to PGPS. While our work offers a comprehensive639

review of the existing PGPS literature, it is limited640

to two-dimensional geometry. Consequently, we do641

not address research involving three-dimensional642

geometry, such as projective and solid geometry,643

which requires understanding spatial relationships644

in three-dimensional space.645
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A Additional axis on benchmark dataset1290

A.1 Reasoning complexity1291

We discuss the mathematical concepts and diffi-1292

culty levels encountered in plane geometry prob-1293

lems used by existing benchmarks and datasets.1294

Typical plane geometry problems involve calculat-1295

ing specific angle measures, arc measures, segment1296

or arc lengths, and areas of designated regions.1297

Computing these numerical values generally re-1298

quires basic arithmetic and root operations, but may1299

also involve trigonometric functions, such as sine1300

and cosine. Although no standardized quantitative1301

method currently exists to measure problem dif-1302

ficulty, problems can be qualitatively categorized1303

according to their original sources, such as SAT ex-1304

ams (Seo et al., 2015; Sachan et al., 2017; Sachan1305

and Xing, 2017), plane geometry curricula from1306

grades 6–12 American (Lu et al., 2021; Zhang et al.,1307

2023; Sun et al., 2024) or Chinese school (Chen1308

et al., 2021; Cao and Xiao, 2022; Xu et al., 2025),1309

college-level mathematics (Yue et al., 2024), or1310

mathematics competitions, e.g., AMC 8, 10, and1311

12 (Wang et al., 2024a).1312

A.2 Diagram-text redundancy1313

To serve as rigorous benchmarks and datasets for1314

multi-modal reasoning, the collected problems1315

must require simultaneous interpretation of both1316

diagrams and accompanying textual descriptions.1317

By contrast, PGPS problems that can be solved1318

using the text alone cannot effectively evaluate the1319

diagram-text integration capability of PGPS meth-1320

ods. Nevertheless, many existing benchmarks and1321

datasets still contain such problems, thereby inade-1322

quately assessing the perception abilities of PGPS1323

methods (Zhang et al., 2025a).1324

Recent PGPS benchmarks have addressed this1325

limitation by explicitly annotating problems with1326

modality-specific information and subsequently re-1327

moving redundant textual cues (Lu et al., 2021;1328

Zhang et al., 2023, 2025a). Several benchmarks1329

provide multiple variants of each problem for more1330

fine-grained analysis of diagram-text dependency.1331

For instance, MathVerse (Zhang et al., 2025a) re-1332

locates selected information from the text into the1333

diagram, while DynaMath (Zou et al., 2025) gen-1334

erates alternative diagrams and corresponding an-1335

swers based on a single textual description. Thus,1336

failure to solve certain variants of the same problem1337

indicates that the model is not genuinely utilizing1338

the diagram.1339

A.3 Data collection methods 1340

We summarize three data collection methods 1341

mainly used to construct PGPS datasets. 1342

Human annotation In most cases, datasets are 1343

constructed through human annotation based on 1344

problems sourced from textbooks, internet sites, 1345

or similar resources (Seo et al., 2015; Chen et al., 1346

2021; Lu et al., 2021, 2024; Sun et al., 2024; Yue 1347

et al., 2024). This involves manually collecting 1348

problems and having human annotators provide the 1349

corresponding outputs. Additionally, some studies 1350

apply text augmentation techniques, such as back- 1351

translation, to diversify the text style and enrich the 1352

dataset (Cao and Xiao, 2022). 1353

Synthetic annotation Several PGPS studies cre- 1354

ate synthetic benchmarks and datasets instead of 1355

collecting problems from textbooks or the inter- 1356

net. These studies typically implement synthetic en- 1357

gines to generate diagrams and corresponding struc- 1358

tured information. For example, synthetic engines 1359

can generate captions containing the geometric in- 1360

formation explicitly present in diagrams (Zhang 1361

et al., 2025b), or use symbolic reasoning engines 1362

to produce reasoning steps that derive the stated 1363

goals from diagram-text pairs (Zhang et al., 2025b; 1364

Kazemi et al., 2024; Fu et al., 2025). Such syn- 1365

thetic approaches offer clear advantages, including 1366

easy scalability and guaranteed completeness of an- 1367

notations. However, they often struggle to produce 1368

sufficiently diverse diagrams that accurately reflect 1369

the real-world problems. This limitation is further 1370

discussed in §6.2. 1371

L(V)LM-assisted annotation For certain 1372

datasets, particularly those with natural-language 1373

description as the output representation, LLMs 1374

and VLMs such as GPT (Brown et al., 2020) or 1375

GPT-4V (OpenAI, 2023) are employed for dataset 1376

construction. Specifically, problems and solutions 1377

are sourced from datasets like GeoQA+, UniGeo, 1378

or PGPS9K, and GPT or GPT-4V are used to 1379

augment these by generating multiple problem- 1380

solution pairs for a given problem scenario (Gao 1381

et al., 2025; Shi et al., 2024; Zhang et al., 2025b). 1382

Alternatively, some studies apply the same process 1383

to synthetic data, such as diagram-caption pairs 1384

generated by a synthetic data engine (Zhang et al., 1385

2025b; Kazemi et al., 2024). However, due to 1386

the poor perception ability of GPT-4V, several 1387

hallucinations occur in the augmented datasets. We 1388

discuss more details about the challenge in §6.1. 1389
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B PGPS Methods1390

B.1 Summary of PGPS methods1391

We summarize the PGPS methods in terms of the1392

encoder, intermediate representation, decoder, and1393

the output format at Table A1.1394

C Challenges and Future Directions1395

C.1 Error analysis on wrong responses1396

Figure A1: Error analysis on the response of GPT-4V
on MathVerse. We analyze the responses of GPT-4V on
MathVerse, reporting the average percentage for each
type of error across five MathVerse variants, Text Domi-
nant, Text Lite, Vision Intensive, Vision Dominant, and
Vision Only, which are reported in MathVerse. Our
analysis indicates that incorrect answers predominantly
result from visual perception and reasoning errors.

C.2 Examples of perception hallucinations1397

We provide examples of hallucinated responses by1398

GPT-4.1 in Table A2.1399

C.3 Comprehensivity of current PGPS 1400

benchmarks 1401

Methods Realistic styles
of diagrams

No data
leakage

Diagram–text
interdependence

MMMU ⃝ ⃝ ×
Math–V ⃝ ⃝ ×
MathVista ⃝ × ×
MathVerse ⃝ × ⃝
GeomVerse × ⃝ ×
VisOnlyQA × ⃝ ⃝
MM–Math ⃝ ⃝ ×
GeoEval × × ×
DynaMath ⃝ × ⃝

Table A3: Comprehensivity across existing PGPS
benchmarks. The table summarizes benchmark features
in terms of realistic diagram styles, absence of data leak-
age, and consideration of diagram-text interdependence.

C.4 Synthetic and real-world geometric 1402

diagrams 1403

(a) Synthetic diagrams (b) Real-world diagrams

Figure A2: Visualization of the synthetic and real-world
geometric diagrams. We compare the geometric dia-
grams, which are synthetically generated or manually
collected from existing sources. The synthetic diagrams
are from GeomVerse, VisOnlyQA, MAVIS, and Geo-
DANO. The real-world diagrams are from MathVerse.
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Encoder Intermediate Decoder Output Methods

E1 I1 – – HoughGeo (Chen et al., 2015), G-Aligner (Seo et al.,
2014), GEOS (Seo et al., 2015)

E2 I1 – – PGDPNet (Zhang et al., 2022), FGeo–Parser (Zhu
et al., 2025)

E1 I1 D1 O1 GEOS++ (Sachan et al., 2017), GEOS–OS (Sachan
and Xing, 2017), GeoShader (Alvin et al., 2017),
S2 (Gan et al., 2019)

E2 I1 D2 O1 FGeo–HyperGNet (Zhang et al., 2024b),
GCN–GPS (Jian et al., 2023a), GeoDRL (Peng
et al., 2023)

E2 I1 D3 O1 InterGPS (Lu et al., 2021), E–GPS (Wu
et al., 2024b), Pi–GPS (Zhao et al., 2025),
FGeo–DRL (Zou et al., 2024)

E2 I1 D1 O1 FGeo–SSS (Zhang et al., 2024a)
E2 I1 D2 O3 GOLD (Zhang and Moshfeghi, 2024)
E2 I2 D3 O2 NGS (Chen et al., 2021), DPE–NGS (Cao and

Xiao, 2022), Geoformer (Chen et al., 2022),
PGPSNet (Zhang et al., 2023), SCA–GPS (Ning
et al., 2023), UniMath (Liang et al., 2023),
FLCL–GPS (Jian et al., 2023b), LANS (Li et al.,
2024), GeoX (Xia et al., 2025), GeoDANO (Cho
et al., 2025)

E2 I2 D3 O3 Math–LLaVA (Shi et al., 2024), Visual SKETCH-
PAD (Hu et al., 2024b), MAVIS (Zhang
et al., 2025b), G–LLaVA (Gao et al., 2025),
DFE–GPS (Zhang et al., 2025e), Chimera (Peng
et al., 2025), Geo–LLaVA (Xu et al., 2024),
SVE-Math (Zhang et al., 2025c)

Table A1: Categorization of existing PGPS methods. We categorize the PGPS methods based on their encoder,
intermediate representation, decoder, and output format. The symbols come from Fig. 3.
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Example 1 Example 2

Input prompt In the given diagram, extend the segment SU to form an infinite straight line.
This line divides the two-dimensional plane into two half-planes. The points Q
and A are also shown in the diagram. Are the points Q and A located on the
same side of the line SU?

Input diagram

Response To determine if points Q and A are on
the same side of the line SU, observe the
diagram: extending SU clearly shows
that point Q is on one side of the line,
while point A is on the opposite side.
The quadrilateral QASU suggests A and
Q are separated by the segment SU
itself.

To determine whether points Q and A
are on the same side of the line SU, we
observe the diagram. The segment SU is
extended to form a straight line. Point Q
is above SU, while point A is on the op-
posite side, to the left of SU. Therefore,
the points Q and A are on opposite
sides of line SU.

Table A2: Examples of hallucinations occured in GPT-4.1 responses. We analyzed the diagram perception
performance of GPT-4.1 (OpenAI, 2025a), specifically determining whether two points are on the same side of
a given line. We generated 100 problems using the synthetic data engine from GeoDANO (Cho et al., 2025) and
tested them with GPT-4.1, observing a low accuracy of 59%. The examples above illustrate cases where GPT-4.1
hallucinated and provided incorrect answers. Hallucinated parts are highlighted in bold.
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