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Abstract

Plane geometry problem solving (PGPS) has
recently gained significant attention as a bench-
mark to assess the multi-modal reasoning ca-
pabilities of large vision-language models. De-
spite the growing interest in PGPS, the re-
search community still lacks a comprehensive
overview that systematically synthesizes recent
work in PGPS. To fill this gap, we present a
survey of existing PGPS studies. We first cate-
gorize PGPS methods into an encoder-decoder
framework and summarize the corresponding
output formats used by their encoders and de-
coders. Subsequently, we classify and analyze
these encoders and decoders according to their
architectural designs. Finally, we outline major
challenges and promising directions for future
research. In particular, we discuss the halluci-
nation issues arising during the encoding phase
within encoder-decoder architectures, as well
as the problem of data leakage in current PGPS
benchmarks.

1 Introduction

Automated plane geometry problem solving
(PGPS) has emerged as an important benchmark
in artificial intelligence research due to its unique
requirement for multi-modal reasoning with math-
ematical rigor (Seo et al., 2015; Chen et al., 2021).
Typically, geometry problems combine textual de-
scriptions with visual diagrams, each providing es-
sential complementary information. The inherent
necessity to integrate linguistic and visual modal-
ities makes plane geometry a compelling testbed
for advancing the multi-modal understanding ca-
pabilities of Al systems. Furthermore, practical
motivations such as developing intelligent tutoring
systems (Ritter et al., 2010; Aleven and Koedinger,
2002; Lee et al., 2025) and standardized bench-
marks for evaluating Al reasoning (Chen et al.,
2021; Cao and Xiao, 2022) highlight the impor-
tance of continued research in this area.

Nevertheless, substantial challenges persist in
achieving full automation. Foremost among these
is the complexity arising from the multi-modal na-
ture of geometry problems, requiring precise align-
ment between textual statements and correspond-
ing diagram elements (Seo et al., 2014). Resolving
ambiguities in textual descriptions through visual
references and accurately mapping entities between
text and diagrams pose significant hurdles (Sachan
et al., 2017; Zhang et al., 2022). Geometric dia-
grams also introduce unique challenges absent in
natural images and other types of diagrams, includ-
ing precise recognition of abstract symbols, e.g.,
angle markers and length indicators, accurate detec-
tion of geometric primitives, e.g., points, lines, and
circles, and interpretation of implicit spatial rela-
tionships governed by geometric constraints. Addi-
tionally, effective PGPS demands embedding deep
geometric domain knowledge, applying geomet-
ric axioms and theorems during the reasoning that
are often implicitly assumed (Sachan et al., 2017;
Sachan and Xing, 2017; Lu et al., 2021). Thus,
integrating linguistic comprehension, visual anal-
ysis, and geometric reasoning continues to drive
the complexity and significance of research in au-
tomated PGPS.

Recently, numerous new benchmarks, large-
scale datasets, and model architectures have been
proposed to tackle the challenges of PGPS. How-
ever, despite this rapid progress, most existing sur-
veys on mathematical or multi-modal reasoning
address geometry problems only as part of broader
domains (Li et al., 2025; Yan et al., 2025; Yuan
et al., 2025) and thus fail to examine the unique
challenges of PGPS in depth. Consequently, the
literature still lacks a dedicated, up-to-date survey
centered on PGPS. The goal of this paper is to fill
the gap by providing the PGPS research community
with a structured overview of the latest benchmarks,
datasets, and multi-modal reasoning approaches tai-
lored specifically to PGPS.



The structure of this paper is summarized as fol-
lows: We first describe the definition of PGPS and
relevant tasks (§2). We then introduce an over-
all framework for solving PGPS problems as an
encoder-decoder architecture with intermediate rep-
resentations (§3). Next, we review the details of
encoder (§4) and decoder (§5) structures. Some ad-
ditional thoughts are provided from the data collec-
tion perspective (Appendix A). Finally, we address
the remaining challenges and promising future di-
rections in automated PGPS (§6).

2 Tasks and benchmarks

In this section, we first define the PGPS and then
introduce three tasks that are commonly tackled in
the PGPS community, along with the benchmarks
for each task.

2.1 Definition of PGPS

Euclidean plane geometry studies the properties
and relationships among geometric primitives, e.g.,
points, lines, and circles, in a flat, two-dimensional
space (Fitzpatrick and Heiberg, 2007). PGPS in-
volves inferring unknown geometric properties or
relationships from a given set of primitives and
their known relations, such as determining the
length of an unknown side in a triangle given the
lengths of two sides and the measure of the in-
cluded angle.

In real-world scenarios, plane geometry prob-
lems usually present as diagram and textual de-
scription pairs, as demonstrated in Fig. 1. The
diagrams and accompanying textual descriptions
typically complement each other in representing
geometric primitives and relations. Diagrams usu-
ally provide visual information about spatial rela-
tionships, whereas textual descriptions explicitly
mention properties or relational details. Due to
this complementary nature, PGPS methods in real-
world applications must not only infer unknown
geometric facts but also accurately parse geometric
information from these diagrams and text pairs.

2.2 PGPS tasks

We describe the three main tasks, along with the
corresponding benchmarks, that are mainly tack-
led via PGPS research. Fig. 1 illustrates three ex-
amples for each task. For further details on the
benchmarks from various perspectives, such as rea-
soning complexity, diagram-text interdependency,
and data collection methods, refer to Appendix A.

2.2.1 Direct-answer and multiple-choice tasks

Task description Most PGPS works quantify the
capacity of a PGPS method to infer a single, well-
defined property of a geometric entity from a uni-
fied diagrammatic—textual problem statement. The
requested properties fall into two categories: 1)
numerical targets, e.g., angle magnitude, segment
length, or area (Seo et al., 2015; Lu et al., 2021;
Chen et al., 2021), and ii) categorical targets, e.g.,
the perpendicularity or parallelism of two lines (Xu
et al., 2025).

PGPS methods are also evaluated through
multiple-choice tasks (Lu et al., 2024; Zhang et al.,
2025a). While these tasks use the same problems
as direct-answer tasks, each multiple-choice prob-
lem provides a fixed set of candidate responses. A
PGPS method must select the option that correctly
identifies the target property, or equivalently, pre-
dict a value matching one of the provided choices.
For example, in the scenario depicted in Fig. 1, the
correct response is the label "c" or its correspond-
ing value, "None."

Evaluation metrics In direct-answer tasks, per-
formance is reported as top-/V accuracy: a PGPS
method is considered correct when the ground truth
answer appears within its N candidate answers.
For multiple-choice tasks, the metric depends on
the output representation of the method. If the
method predicts an option label, evaluation reduces
to standard top-1 accuracy. If it produces a value,
e.g., scalar, a modified version of top-N accuracy is
utilized: the IV generated values are scanned in or-
der, and the attempt is scored correct once the first
value that coincides with any listed option matches
the ground truth.

Benchmarks Most PGPS benchmarks have been
proposed to evaluate model performance on direct-
answer and multiple-choice tasks. Some bench-
marks exclusively consist of plane geometry prob-
lems (Alvin et al., 2017; Seo et al., 2015; Lu et al.,
2021; Chen et al., 2021; Cao and Xiao, 2022;
Zhang et al., 2023, 2024c; Fu et al., 2025; Kazemi
et al., 2024; Xu et al., 2025), while others include
plane geometry problems as part of broader bench-
marks designed for general multi-modal reasoning
evaluation (Lu et al., 2024; Zhang et al., 2025a;
Yue et al., 2024; Kamoi et al., 2024; Wang et al.,
2024a; Zou et al., 2025; Gupta et al., 2024; Wang
et al., 2025).



Direct-answer

Input diagram and text

Reasoning-step

Q) Find the degree of angle 2Z. In the diagram, trapezoid XWZY is given. Q) Prove that £XYZ and £YZW are the
same.
A) 68 Z
23 Proof)
w « Let E is a point on YZ where [[] XYEW
= o is a parallelogram.
MUItlple_Ch°|ce * Because [ XYEW is a parallelogram
and WX || ZY, XY = WE = XZ and
o LZEW = LEWX = LEYX.
Q) Vﬁat is the relationship between WZ X « Because WE = WZ, LWEZ = tWZE.
and XY? 23 * Because £ZEW = LEWX = EYX,
(a) Parallel (b) Perpendicular (c) None Y LWZE = ¢XYE.
* We can conclude that £ZXYZ =
A) c: None LYW m.

Figure 1: Ilustration of three PGPS tasks. The three tasks are commonly used to evaluate PGPS methods in existing
benchmarks: 1) direct-answer, ii) multiple-choice, and iii) reasoning-step construction. In the direct-answer task, the
model must predict a single numerical value as the answer to the problem. In the multiple-choice task, the model
must select the correct label corresponding to the ground-truth option. In the reasoning-step construction task, the
model is asked to generate the complete sequence of reasoning steps that lead to the correct final answer.

2.2.2 Reasoning tasks

Task description Some PGPS benchmarks as-
sess methods not only on the correctness of the
final answer but also on the soundness of the in-
termediate reasoning (Chen et al., 2022; Jaiswal
et al., 2024). In a widely adopted proving problem
setting, a PGPS method must generate a sequence
of geometric axioms and theorems that derive the
target statement, e.g., two angles are congruent,
directly from the given conditions.

Evaluation metrics For reasoning-step construc-
tion tasks, top-N accuracy is again adopted, grant-
ing success when any of the NV predicted reasoning
steps exactly reproduces the ground-truth steps.

Benchmarks UniGeo (Chen et al., 2022) is cur-
rently the only benchmark designed explicitly to
systematically measure reasoning capabilities. Re-
cently, approaches leveraging LLMs have emerged
to evaluate individual reasoning steps (Zhang et al.,
2025a; Jaiswal et al., 2024). However, these meth-
ods inherently rely on LLMs, posing significant
limitations. Consequently, proposing diverse and
systematic reasoning benchmarks remains an open
research challenge.

3 Overall approach

PGPS models typically employ an encoder-decoder
architecture, as demonstrated in Fig. 2. The en-
coder jointly processes the diagram and textual de-
scription to produce an intermediate representation
that captures essential geometric information of the
problem. The decoder then utilizes the extracted
intermediate representation to generate a solution,
presented as either a theorem sequence, a logic pro-

gram, or a natural-language description. Finally,
the answer is obtained by post-processing the gen-
erated solution, e.g., by executing the logic pro-
gram or extracting the final result from the natural-
language description.

Before we discuss the detailed approach to con-
structing the encoder and decoder, we first review
the output formats of the encoder and decoder com-
monly used across different PGPS tasks.

3.1 Encoder outputs

The output of an encoder forms an intermediate
representation that can be further used as an input
to a decoder. We categorize the output format of
the encoder into i) formal-language description and
ii) embedding vectors.

Formal-language description Several studies
explicitly extract geometric primitives and relations
from given diagram-text pairs, converting them into
formal-language descriptions. A formal-language
description consists of an entity set and a predicate
set. The entity set contains geometric primitives,
e.g., elementary primitives such as points, lines,
and circles (Zhang et al., 2022, 2023), or higher-
level shapes such as triangles and squares (Seo
et al., 2015; Sachan et al., 2017; Sachan and Xing,
2017; Lu et al., 2021), along with non-geometric
tokens such as numbers and variable names. The
predicates define the relationships among the enti-
ties. For instance, an equality predicate binds two
entities /ABC and 30° to represent the numerical
value of the angle, i.e., ZABC = 30° or specify
geometric relations, such as segments AB and BC'
being perpendicular, i.e., AB L BC.

In earlier studies, rule-based approaches (Koo
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Figure 2: Visualization of the overall structure of PGPS methods. PGPS methods first encode the input diagram and
text into an intermediate representation. The encoded representation is then passed to the decoder, which generates
the final solution as a theorem sequence, a logic program, or a natural-language description.

et al., 2008; Bansal et al., 2014) and semantic
parsers (Lewis et al., 2020) have been proposed to
extract formal-language descriptions from textual
descriptions without analyzing the diagram (Seo
etal., 2015; Lu et al., 2021). Recent works extend
these approaches to extract a formal language de-
scription from a diagram-text pair. Consequently,
many PGPS studies release datasets consisting of
diagrams and formal-language description pairs
to train diagram parsers in a supervised way (Seo
et al., 2015; Sachan et al., 2017; Sachan and Xing,
2017; Zhang et al., 2022; Lu et al., 2021; Zhang
et al., 2023, 2024c)

Embedding vectors Certain PGPS encoders rep-
resent inputs as embedding vectors, typically uti-
lizing one of three strategies: i) embedding dia-
grams and textual descriptions separately and sub-
sequently merging them (Chen et al., 2021; Cao
and Xiao, 2022; Chen et al., 2022; Ning et al.,
2023; Liang et al., 2023; Jian et al., 2023b), ii) em-
bedding diagrams exclusively and then combining
them with raw textual inputs (Xia et al., 2025; Cho
et al., 2025; Shi et al., 2024; Zhang et al., 2025b;
Gao et al., 2025; Zhang et al., 2025¢e; Peng et al.,
2025; Xu et al., 2024), or iii) jointly processing di-
agrams and texts through a unified encoder (Zhang
et al., 2023; Li et al., 2024). Although these em-
beddings are generally less interpretable compared
to formal-language descriptions, they enable end-
to-end training with the decoder.

3.2 Decoder outputs

Given the output of the encoder, the decoder gener-
ates the solution from which the final answer can
be derived. We classify decoder output formats
into three types: i) theorem sequences, ii) logic
programs, and iii) natural-language descriptions.

A sequence of theorems Many PGPS works
represent the output of a PGPS problem as a se-
quence of theorem applications. This approach
naturally aligns with a reasoning process, in which
theorems are iteratively applied to given entities
and predicates to logically derive new geometric
facts, including the target predicate specified as a
goal (Trinh et al., 2024). Specifically, given geo-
metric entities and predicates extracted from the
original description, theorems from a predefined
library can be applied to the entities and predicates
to derive additional predicates not explicitly stated
in the original problem. Recent PGPS datasets
provide annotated triples consisting of the formal-
language description, the target predicate, and a
corresponding reference theorem sequence (Sachan
etal., 2017; Sachan and Xing, 2017; Lu et al., 2021;
Zhang et al., 2024c).

A logic program A logic program is commonly
adopted as an output representation for PGPS.
Specifically, inspired by the observation that the
reasoning process in PGPS typically involves ap-
plying a series of operations to numerical constants
and variables provided in the problem (Chen et al.,
2021; Amini et al., 2019; Chen et al., 2023), a
logic program is defined as a sequence of triples,
each consisting of an operation and its operands,
such as numerical values and variable names. The
operations in these programs fall into two main
categories: 1) arithmetic functions, ranging from
basic operations like addition and multiplication
to geometry-specific computations such as the
Pythagorean operation (Chen et al., 2021; Cao
and Xiao, 2022; Chen et al., 2022), and ii) equal-
ity assertions that establish identity between two
expressions (Zhang et al., 2023). Several PGPS
datasets provide paired examples, each consisting



of a diagram-text problem and its corresponding
logic program (Chen et al., 2021; Cao and Xiao,
2022; Chen et al., 2022; Zhang et al., 2023).

A natural-language description Recent PGPS
methods generate solutions and answers in natural
language without relying on a specific template.
The inherent flexibility of natural language allows
these models to easily provide outputs for a wide
range of tasks, e.g., geometric diagram captioning,
without being limited to fixed problem-solving for-
mats. To train such methods, various types of PGPS
datasets have been proposed. For tasks which focus
on problem solving, the output, given a diagram
and text, can either be the answer expressed in nat-
ural language (Shi et al., 2024) or a reasoning path
in the form of a chain-of-thought (Wei et al., 2022)
to infer the answer (Zhang et al., 2025b; Gao et al.,
2025). In addition to problem solving, datasets
have also been proposed for tasks such as geomet-
ric diagram captioning (Zhang et al., 2025b; Gao
et al., 2025; Cho et al., 2025; Xia et al., 2025) and
question answering (Gao et al., 2025).

3.3 Encoder-decoder with desired outputs

Once the intermediate representations and output
representations are determined based on target
problems or tasks, one can choose an appropriate
encoder and decoder that can produce the desired
outputs. Fig. 3 summarizes possible combinations
of encoder-decoder architectures along with the
desired outputs. A combination of encoder, inter-
mediate representation, decoder, and output rep-
resentation can lead to a specific architecture for
PGPS. In the following two sections, we review the
possible choices of encoder and decoder structures.

4 Encoders

The encoder extracts the relevant components from
the given diagram and text that are necessary for
PGPS. We review the encoders in the following
aspects: 1) rule-based and ii) neural network-based.

4.1 Rule-based encoders

Early PGPS methods relied on classical computer
vision and text parsing techniques to independently
extract geometric primitives and relations from dia-
grams and text, merging them into formal-language
descriptions. Most studies (Seo et al., 2015; Sachan
et al., 2017; Sachan and Xing, 2017; Alvin et al.,
2017; Gan et al., 2019) employed rule-based di-
agram parsers, notably HoughGeo (Chen et al.,

2015) or G-Aligner (Seo et al., 2014), which pre-
process diagrams to detect geometric primitives
using classical computer vision techniques, e.g.,
Gaussian blur and Hough transforms, and then
match detected primitives to literal sets using ei-
ther handcrafted rules or optimization. For textual
extraction, many approaches (Wu et al., 2024b;
Zhao et al., 2025; Peng et al., 2023; Zhang et al.,
2024b; Jian et al., 2023a; Zou et al., 2024) adopted
the InterGPS (Lu et al., 2021) parser, a rule-based
method utilizing regular expressions, which is reli-
able and effective even with limited data.

4.2 Neural network encoders

We review the neural network-based encoders
based on the desired output format.

4.2.1 Formal-language description generation

Recent PGPS approaches adopt neural encoders to
generate formal-language descriptions from diverse
diagrams and texts, typically training separate en-
coders for each modality. Neural diagram encoders
commonly operate in two stages: primitive detec-
tion using object detectors such as RetinaNet (Lin
et al., 2017b; Lu et al., 2021) and feature pyramid
networks (Lin et al., 2017a; Zhang et al., 2022),
followed by relation inference modeled either as a
constrained optimization problem (Lu et al., 2021)
or as a graph-learning task leveraging graph neural
networks (GNNs) (Zhang et al., 2022). For text
encoding, subsequent PGPS studies (Sachan et al.,
2017; Sachan and Xing, 2017) commonly employ
logistic regression models, as originally introduced
by GEOS (Seo et al., 2015), to extract primitives
and relations from problem statements.

4.2.2 Embedding vector generation

To enable end-to-end learning, recent PGPS meth-
ods employ neural encoders that map both the di-
agram and text into a unified embedding space,
providing a joint vector representation for PGPS.
Here, we review the neural encoders based on their
training strategy.

Learning from scratch Early PGPS works train
joint diagram-text encoders and decoders end-to-
end from scratch on target PGPS datasets. Diagram
embeddings commonly utilize convolutional neural
networks (CNNs), including vanilla CNN (Zhang
et al., 2023), ResNet (He et al., 2016; Chen et al.,
2021; Cao and Xiao, 2022), DenseNet (Huang
et al., 2017; Jian et al., 2023a), and VQ-VAE en-
coders (van den Oord et al., 2017; Liang et al.,
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Figure 3: Overview of the PGPS pipeline. PGPS methods can be categorized based on the combination of the
encoder, intermediate representation, decoder, and output representation. For example, the InterGPS can be
represented as a combination of E2, I1, D3, and O1. We summarize PGPS methods as a combination of these

components in Table Al.

2023), as well as Vision Transformers (ViT) (Doso-
vitskiy et al., 2021; Ning et al., 2023). Text
embeddings are typically produced by sequen-
tial models like LSTMs (Hochreiter and Schmid-
huber, 1997; Chen et al., 2021; Cao and Xiao,
2022) or Transformer-based encoders (Vaswani
et al., 2017), such as vanilla Transformer (Zhang
et al., 2023; Ning et al., 2023; Li et al., 2024)
and RoBERTa (Liu et al., 2019; Cao and Xiao,
2022). Diagram and text embeddings are fused
via co-attention networks (Yu et al., 2019; Chen
et al.,, 2021; Ning et al., 2023), bi-directional
GRUs (Chung et al., 2014; Zhang et al., 2023; Li
et al., 2024), or Transformers (Chen et al., 2022).

Besides direct optimization on PGPS tasks, joint
encoders frequently employ auxiliary objectives
for improved performance. Many approaches in-
corporate self-supervised tasks, including jigsaw-
location prediction (Chen et al., 2021; Cao and
Xiao, 2022; Jian et al., 2023a), masked-token pre-
diction in text (Devlin et al., 2019; Chen et al.,
2022; Zhang et al., 2023; Li et al., 2024) or di-
agrams (He et al., 2022; Ning et al., 2023), text-
conditioned diagram-symbol classification (Ning
et al., 2023), and VQ-VAE objective (Liang et al.,
2023). Other studies leverage explicit labels, train-
ing encoders for geometry-element or knowledge-
point classification (Chen et al., 2021; Cao and
Xiao, 2022), or contrastive learning between dia-
gram patches and textual tokens (Li et al., 2024).

Pre-trained encoders To leverage pretrained
knowledge and enhance training efficiency, many
recent PGPS methods employ neural encoders in-
spired by the LLaVA architecture (Liu et al., 2023),
which integrates a pretrained vision encoder to en-
code diagrams. Specifically, diagrams are first

transformed into visual embeddings using a pre-
trained vision encoder, followed by a lightweight
adapter consisting of a multi-layer perceptron. Dur-
ing training, only the adapter parameters are up-
dated, keeping the vision encoder frozen to pre-
serve general visual knowledge and reduce training
cost. While OpenCLIP (Radford et al., 2021) is the
most commonly used backbone (Shi et al., 2024;
Gao et al., 2025; Xu et al., 2024), other general-
purpose models such as SigLLIP (Zhai et al., 2023;
Zhang et al., 2025¢e) and InternViT (Chen et al.,
2024c; Peng et al., 2025), as well as the math-
specific Math-CLIP encoder (Zhang et al., 2025b;
Peng et al., 2025), have also been employed.

Fine-tuned encoders Most pretrained vision en-
coders perform poorly when applied to geometric
diagrams (Zhang et al., 2025b; Xia et al., 2025;
Cho et al., 2025). To address this limitation,
PGPS methods employing the LLaVA-style archi-
tecture typically fine-tune the vision encoders be-
fore integrating them into downstream pipelines.
Two main fine-tuning strategies are common: i)
self-supervised methods such as masked auto-
encoding (He et al., 2022; Xia et al., 2025), and ii)
weakly supervised methods such as CLIP (Zhang
et al., 2025b; Cho et al., 2025), direct preference
optimization (Rafailov et al., 2023; Huang et al.,
2025), or grounding tasks (Li* et al., 2022; Zhang
et al., 2025¢c), which leverage synthetic geomet-
ric diagrams and labels pairs. Nevertheless, since
synthetic diagrams do not fully capture the charac-
teristics of real-world diagrams, GeoDANO (Cho
et al., 2025) further employs few-shot domain adap-
tation under the same CLIP training objective to
minimize the residual domain gap.



5 Decoders

Based on the representations produced by the en-
coder, the decoder generates the solution to the
problem. We survey the PGPS decoders using the
following dimensions: i) input representation and
ii) architectural design.

5.1 Formal-language description decoder

We first introduce the architectures of the decoders
that receive a formal language description as input.

Rule-based axiomatic decoders Several meth-
ods that operate on formal-language descriptions
determine the required theorem sequence with a
rule-based decoder. GEOS++ (Sachan et al., 2017)
employs an exhaustive brute-force search to locate
a sequence of theorems whose application yields
the target predicate. GeoShader (Alvin et al., 2017)
specifies a deterministic set of composition rules
that directly selects the relevant theorems without
search. GEOS-OS (Sachan and Xing, 2017) trains
a log-linear model to assign probabilities to can-
didate theorems and then performs beam search,
returning the highest-scoring theorem sequence.

GNN-based decoders A formal-language de-
scription, composed of geometric primitives and
their relations, naturally corresponds to a graph
structure. Exploiting this, several PGPS decoders
first encode the formal description as a graph or hy-
pergraph and then generate theorem-application
sequences from the resulting graph representa-
tion. Such encodings typically follow one of
three schemes: i) primitives as nodes and pred-
icates as edges (Peng et al.,, 2023), ii) primi-
tives and predicates both as nodes connected via
edges (Jian et al., 2023a), or iii) predicates as hyper-
nodes and theorems as directed hyperedges form-
ing a hypertree (Zhang et al., 2024b). These en-
coded structures are subsequently fed into graph-
to-sequence decoders, such as Graphormer (Zhang
et al.,, 2024b), graph Transformer (Peng et al.,
2023), or graph convolutional network (Kipf and
Welling, 2017) followed by LSTM (Jian et al.,
2023a), to produce the target theorem sequence.

Sequence-to-sequence decoders Some ap-
proaches treat formal-language descriptions as
a flat token sequence and pass it directly to
a sequence-to-sequence (seq-to-seq) model to
generate the corresponding theorem sequence.
Transformers are predominantly employed for

these tasks by encoding the formal description di-
rectly (Lu et al., 2021; Wu et al., 2024b; Zou et al.,
2024). A few studies instead utilize off-the-shelf
LLMs, e.g., 03-mini (OpenAl, 2025b), without
additional training (Zhao et al., 2025).

5.2 Seq-to-seq embedding decoders

Several PGPS studies feed either a joint dia-
gram—text embedding or a concatenation of dia-
gram embedding and raw text into a sequence-
to-sequence decoder. Early work primarily em-
ploys RNN-based decoders such as LSTMs or
GRUs (Chen et al., 2021; Cao and Xiao, 2022;
Zhang et al., 2023; Li et al., 2024; Ning et al.,
2023; Jian et al., 2023b), while later studies com-
monly adopt encoder—decoder Transformers such
as TS5 (Raffel et al., 2020; Liang et al., 2023; Chen
et al., 2022). The recent proliferation of LLMs
has motivated a shift toward fine-tuning encoder-
only Transformers, such as LLaMA (Touvron et al.,
2023; Cho et al., 2025; Gao et al., 2025; Xu et al.,
2024) and Vicuna (Vicuna, 2023; Shi et al., 2024),
specifically adapted for PGPS tasks.

6 Challenges and future directions

We examine the remaining challenges in PGPS and
propose potential directions for future work.

6.1 Hallucination in diagram perception

PGPS methods initially extract geometric primi-
tives and relations from diagrams and text, mak-
ing accurate perception crucial before reasoning.
However, studies indicate that PGPS methods fre-
quently misperceive these primitives and relations,
especially when generating natural-language de-
scriptions (Huang et al., 2025; Zhang et al., 2025a)
as depicted in Fig. Al. For example, Table A2 re-
veals that GPT-4.1 (OpenAl, 2025a) fails to capture
a fundamental geometric relation among the points
and lines and produces hallucinations. These hallu-
cinations not only degrade PGPS performance but
also diminish dataset quality. Computer vision stud-
ies report similar hallucination issues in datasets
produced by large VLMs (Zhang et al., 2025d; Sa-
hoo et al., 2024; Li et al., 2023; Chen et al., 2024b),
further evidenced in PGPS datasets as shown in
Table 1. Consequently, models trained on hallu-
cinated data suffer measurable performance de-
clines (Zhang et al., 2025d; Lai et al., 2025; Yu
et al., 2024; Hirota et al., 2024).

Visual prompting techniques, such as augment-
ing diagrams with bounding boxes, markers, or
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Diagram

A D

B C

Question

In the given figure, let’s denote
the area of triangle AOB as vari-
able x. Find the area of rectangle
ABCD in terms of x. Choices: A:
8§B:10C:12D: 16

Based on the image, what is the
measure of the interior angle at
vertex A? Choices: A. 90 degrees
B. More than 90 degrees C. Less
than 90 degrees D. Cannot be de-
termined

Does the diagram include any line
segments that are not perpendicu-
lar to each other?

Solution

To determine the area of rectan-
gle ABCD, we can use the fact
that triangle AOB is half the area
of the rectangle. Therefore, the
area of rectangle ABCD is 2
times the area of triangle AOB,

Use the properties of the geomet-
ric shapes and theorems related
to angles to deduce the measure
of the interior angle at vertex
A based on the given image and
information. So the answer is B

Yes, in the diagram, line segment
YM is not perpendicular to line
segment MA.

which is 2x. Hence, the answer
is option B. Answer:D

Table 1: Examples of hallucinations in the natural-language description datasets annotated with L(V)LM. We
visualize the examples from the PGPS datasets, e.g., G-LLaVA and MAVIS, which contain hallucinations in the
question or response due to the L(V)LM annotation. We highlight the hallucinations with bold characters.

segmentation masks, have emerged as promising
solutions for mitigating hallucinations (Wu et al.,
2024a; Yang et al., 2023; Ma et al., 2025). These
methods are especially beneficial for PGPS tasks,
as they dynamically highlight relevant primitives
and relations during reasoning and facilitate the
critical step of drawing auxiliary lines. Augment-
ing diagrams at test time (Muennighoff et al., 2025)
by applying segmentation masks (Ravi et al., 2024)
or adding auxiliary constructions aligned with the
current reasoning step (Murphy et al., 2024; Hu
et al., 2024b) offers a practical approach to enhance
multi-modal reasoning performance in PGPS.

6.2 Evaluation challenges in benchmarks

Comprehensive PGPS benchmarks should evaluate
perception across diverse, realistic diagrams, ensur-
ing that visual processing is essential for solving
each problem. However, as shown in Table A3,
existing benchmarks do not satisfy these criteria
simultaneously. Synthetic diagrams, while scal-
able, often fail to represent the complexity of real-
world scenarios (Zhong et al., 2025; Bates et al.,
2025; Wang et al., 2024b), lacking elements such
as parallel markers or placeholder objects, as illus-
trated in Fig. A2. Conversely, manually collected
benchmarks better reflect real-world complexity

but frequently reuse diagrams from popular PGPS
datasets, introducing data leakage and compromis-
ing domain generalization evaluations (Hu et al.,
2024a; Cao et al., 2024; Chen et al., 2024a).

Even manually curated benchmarks without
common PGPS dataset reuse often neglect cru-
cial diagram—text dependencies discussed in Ap-
pendix A.2. MathVerse addresses these depen-
dencies explicitly and avoids synthetic diagrams,
but still suffers from data leakage, limiting its
capability to assess genuine multi-modal reason-
ing. To overcome these issues, future research
should develop synthetic diagram generators that
closely replicate real-world complexity or create
new datasets that strictly require visual reasoning
while rigorously preventing data leakage.

7 Conclusion

In this paper, we examine the tasks, benchmarks,
and methods used in existing PGPS research.
We summarize the main PGPS approaches as an
encoder-decoder architecture, along with the inter-
mediate and output representations utilized across
different methods Through the analysis, we outline
future research directions addressing current chal-
lenges, particularly regarding diagram perception
and benchmark comprehensiveness.



Limitations

In this paper, we primarily survey studies related
to PGPS. While our work offers a comprehensive
review of the existing PGPS literature, it is limited
to two-dimensional geometry. Consequently, we do
not address research involving three-dimensional
geometry, such as projective and solid geometry,
which requires understanding spatial relationships
in three-dimensional space.

References

Vincent A.W.M.M. Aleven and Kenneth R. Koedinger.
2002. An effective metacognitive strategy: learn-
ing by doing and explaining with a computer-based
cognitive tutor. Cognitive Science, 26(2):147—-179.

Chris Alvin, Sumit Gulwani, Rupak Majumdar, and
Supratik Mukhopadhyay. 2017. Synthesis of prob-
lems for shaded area geometry reasoning. In Artifi-
cial Intelligence in Education, pages 455-458, Cham.
Springer International Publishing.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357-2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014.
Tailoring continuous word representations for depen-
dency parsing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 809-815,
Baltimore, Maryland. Association for Computational
Linguistics.

Averi Bates, Ryan Vavricka, Shane Carleton, Ruosi
Shao, and Chongle Pan. 2025. Unified modeling lan-
guage code generation from diagram images using
multimodal large language models. Machine Learn-
ing with Applications, 20:100660.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. Preprint,
arXiv:2005.14165.

Jie Cao and Jing Xiao. 2022. An augmented benchmark
dataset for geometric question answering through
dual parallel text encoding. In Proceedings of the

29th International Conference on Computational Lin-
guistics, pages 1511-1520, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Lele Cao, Valentin Buchner, Zineb Senane, and Fangkai
Yang. 2024. Introducing GenCeption for multimodal
LLM benchmarking: You may bypass annotations.
In Proceedings of the 4th Workshop on Trustwor-
thy Natural Language Processing (TrustNLP 2024),
pages 196-201, Mexico City, Mexico. Association
for Computational Linguistics.

Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin,
Chongyu Chen, and Xiaodan Liang. 2022. UniGeo:
Unifying geometry logical reasoning via reformu-
lating mathematical expression. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3313-3323, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang,
Lingbo Liu, Eric Xing, and Liang Lin. 2021. GeoQA:
A geometric question answering benchmark towards
multimodal numerical reasoning. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 513-523, Online. Association
for Computational Linguistics.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, and 1 others. 2024a. Are we
on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Xiaoyu Chen, Dan Song, and Dongming Wang. 2015.
Automated generation of geometric theorems from
images of diagrams. Annals of Mathematics and
Artificial Intelligence, 74(3):333-358.

Xuweiyi Chen, Zigiao Ma, Xuejun Zhang, Sihan Xu,
Jianing Yang, David F. Fouhey, Joyce Chai, and
Shengyi Qian. 2024b. Multi-object hallucination
in vision language models. In Advances in Neural
Information Processing Systems, volume 37, pages
44393-44418. Curran Associates, Inc.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2024c. Internvl: Scal-
ing up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 24185-24198.

Seunghyuk Cho, Zhenyue Qin, Yang Liu, Youngbin
Choi, Seungbeom Lee, and Dongwoo Kim. 2025.
Geodano: Geometric vilm with domain agnostic vi-
sion encoder. Preprint, arXiv:2502.11360.


https://doi.org/10.1016/S0364-0213(02)00061-7
https://doi.org/10.1016/S0364-0213(02)00061-7
https://doi.org/10.1016/S0364-0213(02)00061-7
https://doi.org/10.1016/S0364-0213(02)00061-7
https://doi.org/10.1016/S0364-0213(02)00061-7
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.3115/v1/P14-2131
https://doi.org/10.3115/v1/P14-2131
https://doi.org/10.3115/v1/P14-2131
https://doi.org/10.1016/j.mlwa.2025.100660
https://doi.org/10.1016/j.mlwa.2025.100660
https://doi.org/10.1016/j.mlwa.2025.100660
https://doi.org/10.1016/j.mlwa.2025.100660
https://doi.org/10.1016/j.mlwa.2025.100660
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.coling-1.130/
https://aclanthology.org/2022.coling-1.130/
https://aclanthology.org/2022.coling-1.130/
https://aclanthology.org/2022.coling-1.130/
https://aclanthology.org/2022.coling-1.130/
https://doi.org/10.18653/v1/2024.trustnlp-1.16
https://doi.org/10.18653/v1/2024.trustnlp-1.16
https://doi.org/10.18653/v1/2024.trustnlp-1.16
https://doi.org/10.18653/v1/2022.emnlp-main.218
https://doi.org/10.18653/v1/2022.emnlp-main.218
https://doi.org/10.18653/v1/2022.emnlp-main.218
https://doi.org/10.18653/v1/2022.emnlp-main.218
https://doi.org/10.18653/v1/2022.emnlp-main.218
https://doi.org/10.18653/v1/2021.findings-acl.46
https://doi.org/10.18653/v1/2021.findings-acl.46
https://doi.org/10.18653/v1/2021.findings-acl.46
https://doi.org/10.18653/v1/2021.findings-acl.46
https://doi.org/10.18653/v1/2021.findings-acl.46
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.1007/s10472-014-9433-7
https://doi.org/10.1007/s10472-014-9433-7
https://doi.org/10.1007/s10472-014-9433-7
https://proceedings.neurips.cc/paper_files/paper/2024/file/4ea4a1ea4d9ff273688c8e92bd087112-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4ea4a1ea4d9ff273688c8e92bd087112-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4ea4a1ea4d9ff273688c8e92bd087112-Paper-Conference.pdf
https://arxiv.org/abs/2502.11360
https://arxiv.org/abs/2502.11360
https://arxiv.org/abs/2502.11360

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. Preprint, arXiv:1412.3555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

R. Fitzpatrick and J.L. Heiberg. 2007. Euclid’s Ele-
ments. University of Texas at Austin, Institute for
Fusion Studies Department of Physics.

Daocheng Fu, Zijun Chen, Renqiu Xia, Qi Liu, Yuan
Feng, Hongbin Zhou, Renrui Zhang, Shiyang Feng,
Peng Gao, Junchi Yan, Botian Shi, Bo Zhang, and
Yu Qiao. 2025. Trustgeogen: Scalable and formal-
verified data engine for trustworthy multi-modal geo-
metric problem solving. Preprint, arXiv:2504.15780.

Wenbin Gan, Xinguo Yu, Ting Zhang, and Mingshu
Wang. 2019. Automatically proving plane geometry
theorems stated by text and diagram. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 33(07):1940003.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wan-
jun Zhong, Yufei Wang, Lanqing HONG, Jianhua
Han, Hang Xu, Zhenguo Li, and Lingpeng Kong.
2025. G-LLaVA: Solving geometric problem with
multi-modal large language model. In The Thirteenth
International Conference on Learning Representa-
tions.

Himanshu Gupta, Shreyas Verma, Ujjwala Anan-
theswaran, Kevin Scaria, Mihir Parmar, Swaroop
Mishra, and Chitta Baral. 2024. Polymath: A chal-
lenging multi-modal mathematical reasoning bench-
mark. Preprint, arXiv:2410.14702.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi-
otr Dollar, and Ross Girshick. 2022. Masked autoen-
coders are scalable vision learners. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 16000-16009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

10

Yusuke Hirota, Ryo Hachiuma, Chao-Han Huck Yang,
and Yuta Nakashima. 2024. From descriptive rich-
ness to bias: Unveiling the dark side of generative
image caption enrichment. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 17807-17816, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735—
1780.

Xuhao Hu, Dongrui Liu, Hao Li, Xuanjing Huang,
and Jing Shao. 2024a. Vlsbench: Unveiling vi-
sual leakage in multimodal safety. arXiv preprint
arXiv:2411.19939.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Os-
tendorf, Luke Zettlemoyer, Noah A. Smith, and Ran-
jay Krishna. 2024b. Visual sketchpad: Sketching as
a visual chain of thought for multimodal language
models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Kung-Hsiang Huang, Can Qin, Haoyi Qiu, Philippe
Laban, Shafiq Joty, Caiming Xiong, and Chien-
Sheng Wu. 2025. Why vision language mod-
els struggle with visual arithmetic? towards en-
hanced chart and geometry understanding. Preprint,
arXiv:2502.11492.

Raj Jaiswal, Avinash Anand, and Rajiv Ratn Shah. 2024.
Advancing multimodal llms: A focus on geometry
problem solving reasoning and sequential scoring. In
Proceedings of the 6th ACM International Confer-
ence on Multimedia in Asia, MMAsia *24, New York,
NY, USA. Association for Computing Machinery.

Pengpeng Jian, Fucheng Guo, Cong Pan, Yanli Wang,
Yangrui Yang, and Yang Li. 2023a. Interpretable ge-
ometry problem solving using improved retinanet and
graph convolutional network. Electronics, 12(22).

Pengpeng Jian, Fucheng Guo, Yanli Wang, and Yang
Li. 2023b. Solving geometry problems via fea-
ture learning and contrastive learning of multimodal
data. Computer Modeling in Engineering & Sciences,
136(2):1707-1728.

Ryo Kamoi, Yusen Zhang, Sarkar Snigdha Sarathi Das,
Ranran Haoran Zhang, and Rui Zhang. 2024. Vison-
lyga: Large vision language models still struggle with
visual perception of geometric information. arXiv
preprint arXiv:2412.00947.

Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin
Wu, Xi Chen, and Radu Soricut. 2024. Geomverse:
A systematic evaluation of large models for geomet-
ric reasoning. In Al for Math Workshop @ ICML
2024.


https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://books.google.co.kr/books?id=7HDWIOoBZUAC
https://books.google.co.kr/books?id=7HDWIOoBZUAC
https://books.google.co.kr/books?id=7HDWIOoBZUAC
https://arxiv.org/abs/2504.15780
https://arxiv.org/abs/2504.15780
https://arxiv.org/abs/2504.15780
https://arxiv.org/abs/2504.15780
https://arxiv.org/abs/2504.15780
https://doi.org/10.1142/S0218001419400032
https://doi.org/10.1142/S0218001419400032
https://doi.org/10.1142/S0218001419400032
https://openreview.net/forum?id=px1674Wp3C
https://openreview.net/forum?id=px1674Wp3C
https://openreview.net/forum?id=px1674Wp3C
https://arxiv.org/abs/2410.14702
https://arxiv.org/abs/2410.14702
https://arxiv.org/abs/2410.14702
https://arxiv.org/abs/2410.14702
https://arxiv.org/abs/2410.14702
https://doi.org/10.18653/v1/2024.emnlp-main.986
https://doi.org/10.18653/v1/2024.emnlp-main.986
https://doi.org/10.18653/v1/2024.emnlp-main.986
https://doi.org/10.18653/v1/2024.emnlp-main.986
https://doi.org/10.18653/v1/2024.emnlp-main.986
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://openreview.net/forum?id=GNSMl1P5VR
https://arxiv.org/abs/2502.11492
https://arxiv.org/abs/2502.11492
https://arxiv.org/abs/2502.11492
https://arxiv.org/abs/2502.11492
https://arxiv.org/abs/2502.11492
https://doi.org/10.1145/3696409.3700262
https://doi.org/10.1145/3696409.3700262
https://doi.org/10.1145/3696409.3700262
https://doi.org/10.3390/electronics12224578
https://doi.org/10.3390/electronics12224578
https://doi.org/10.3390/electronics12224578
https://doi.org/10.3390/electronics12224578
https://doi.org/10.3390/electronics12224578
https://doi.org/10.32604/cmes.2023.023243
https://doi.org/10.32604/cmes.2023.023243
https://doi.org/10.32604/cmes.2023.023243
https://doi.org/10.32604/cmes.2023.023243
https://doi.org/10.32604/cmes.2023.023243
https://openreview.net/forum?id=1AUbiBrOF1
https://openreview.net/forum?id=1AUbiBrOF1
https://openreview.net/forum?id=1AUbiBrOF1
https://openreview.net/forum?id=1AUbiBrOF1
https://openreview.net/forum?id=1AUbiBrOF1

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. Preprint, arXiv:1609.02907.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In Pro-
ceedings of ACL-08: HLT, pages 595-603, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Zhengfeng Lai, Vasileios Saveris, Chen Chen, Hong-
You Chen, Haotian Zhang, Bowen Zhang, Wenze Hu,
Juan Lao Tebar, Zhe Gan, Peter Grasch, Meng Cao,
and Yinfei Yang. 2025. Revisit large-scale image-
caption data in pre-training multimodal foundation
models. In The Thirteenth International Conference
on Learning Representations.

Jimin Lee, Steven-Shine Chen, and Paul Pu Liang. 2025.
Interactive sketchpad: A multimodal tutoring system
for collaborative, visual problem-solving. In Pro-
ceedings of the Extended Abstracts of the CHI Con-
ference on Human Factors in Computing Systems,

pages 1-14.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Liunian Harold Li*, Pengchuan Zhang*, Haotian
Zhang*, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng
Hwang, Kai-Wei Chang, and Jianfeng Gao. 2022.
Grounded language-image pre-training. In CVPR.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao,
and Ji-Rong Wen. 2023. Evaluating object hallucina-
tion in large vision-language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 292-305, Sin-
gapore. Association for Computational Linguistics.

Yunxin Li, Zhenyu Liu, Zitao Li, Xuanyu Zhang, Zhen-
ran Xu, Xinyu Chen, Haoyuan Shi, Shenyuan Jiang,
Xintong Wang, Jifang Wang, Shouzheng Huang, Xin-
ping Zhao, Borui Jiang, Lanqing Hong, Longyue
Wang, Zhuotao Tian, Baoxing Huai, Wenhan Luo,
Weihua Luo, and 3 others. 2025. Perception, rea-
son, think, and plan: A survey on large multimodal
reasoning models. Preprint, arXiv:2505.04921.

Zhong-Zhi Li, Ming-Liang Zhang, Fei Yin, and Cheng-
Lin Liu. 2024. LANS: A layout-aware neural solver
for plane geometry problem. In Findings of the As-
sociation for Computational Linguistics: ACL 2024,
pages 25962608, Bangkok, Thailand. Association
for Computational Linguistics.

Zhenwen Liang, Tianyu Yang, Jipeng Zhang, and Xi-
angliang Zhang. 2023. UniMath: A foundational

11

and multimodal mathematical reasoner. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 71267133,
Singapore. Association for Computational Linguis-
tics.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming
He, Bharath Hariharan, and Serge Belongie. 2017a.
Feature pyramid networks for object detection. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. 2017b. Focal loss for dense object
detection. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2999-3007.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2024.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In The Twelfth
International Conference on Learning Representa-
tions.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021.
Inter-GPS: Interpretable geometry problem solving
with formal language and symbolic reasoning. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6774—
6786, Online. Association for Computational Lin-
guistics.

Huan Ma, Yan Zhu, Changqing Zhang, Peilin Zhao,
Baoyuan Wu, Long-Kai Huang, Qinghua Hu, and
Bingzhe Wu. 2025. Spurious feature eraser: Stabiliz-
ing test-time adaptation for vision-language founda-
tion model. Proceedings of the AAAI Conference on
Artificial Intelligence, 39(18):19296-19304.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li,
Anima Anandkumar, and Xujie Si. 2024. Autofor-
malizing euclidean geometry. In Proceedings of the
41st International Conference on Machine Learning,
ICML’24. JMLR.org.


https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://aclanthology.org/P08-1068/
https://openreview.net/forum?id=TWnUgSAWNw
https://openreview.net/forum?id=TWnUgSAWNw
https://openreview.net/forum?id=TWnUgSAWNw
https://openreview.net/forum?id=TWnUgSAWNw
https://openreview.net/forum?id=TWnUgSAWNw
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2023.emnlp-main.20
https://doi.org/10.18653/v1/2023.emnlp-main.20
https://doi.org/10.18653/v1/2023.emnlp-main.20
https://arxiv.org/abs/2505.04921
https://arxiv.org/abs/2505.04921
https://arxiv.org/abs/2505.04921
https://arxiv.org/abs/2505.04921
https://arxiv.org/abs/2505.04921
https://doi.org/10.18653/v1/2024.findings-acl.153
https://doi.org/10.18653/v1/2024.findings-acl.153
https://doi.org/10.18653/v1/2024.findings-acl.153
https://doi.org/10.18653/v1/2023.emnlp-main.440
https://doi.org/10.18653/v1/2023.emnlp-main.440
https://doi.org/10.18653/v1/2023.emnlp-main.440
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://openreview.net/forum?id=w0H2xGHlkw
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=KUNzEQMWU7
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.18653/v1/2021.acl-long.528
https://doi.org/10.1609/aaai.v39i18.34124
https://doi.org/10.1609/aaai.v39i18.34124
https://doi.org/10.1609/aaai.v39i18.34124
https://doi.org/10.1609/aaai.v39i18.34124
https://doi.org/10.1609/aaai.v39i18.34124
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393

Maizhen Ning, Qiu-Feng Wang, Kaizhu Huang, and
Xiaowei Huang. 2023. A symbolic characters aware
model for solving geometry problems. In Proceed-
ings of the 31st ACM International Conference on
Multimedia, MM °23, page 7767-7775, New York,
NY, USA. Association for Computing Machinery.

OpenAl. 2023. Gpt-4v(ision) system card. https://
openai.com/index/gpt-4v-system-card.

OpenAl. 2025a. Introducing gpt-4.1 in the api. https:
//openai.com/index/gpt-4-1/.

OpenAl. 2025b. Openai 03-mini. https://openai.
com/index/openai-o3-mini.

Shuai Peng, Di Fu, Yijun Liang, Liangcai Gao, and Zhi
Tang. 2023. GeoDRL: A self-learning framework for
geometry problem solving using reinforcement learn-
ing in deductive reasoning. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 13468-13480, Toronto, Canada. Association
for Computational Linguistics.

Tianshuo Peng, Mingsheng Li, Hongbin Zhou, Rengiu
Xia, Renrui Zhang, Lei Bai, Song Mao, Bin Wang,
Conghui He, Aojun Zhou, Botian Shi, Tao Chen,
Bo Zhang, and Xiangyu Yue. 2025. Chimera: Im-
proving generalist model with domain-specific ex-
perts. Preprint, arXiv:2412.05983.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748-8763. PMLR.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Rong-
hang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Réadle, Chloe Rolland, Laura
Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross
Girshick, Piotr Dollar, and Christoph Feichtenhofer.
2024. Sam 2: Segment anything in images and
videos. arXiv preprint arXiv:2408.00714.

Steven Ritter, Brendon Towle, R. Charles Murray,
Robert G M. Hausmann, and John Connelly. 2010. A
cognitive tutor for geometric proof. In Proceedings

12

of the 10th International Conference on Intelligent
Tutoring Systems - Volume Part 11, ITS’ 10, page 453,
Berlin, Heidelberg. Springer-Verlag.

Mrinmaya Sachan, Kumar Dubey, and Eric Xing. 2017.
From textbooks to knowledge: A case study in har-
vesting axiomatic knowledge from textbooks to solve
geometry problems. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 773-784, Copenhagen, Denmark.
Association for Computational Linguistics.

Mrinmaya Sachan and Eric Xing. 2017. Learning
to solve geometry problems from natural language
demonstrations in textbooks. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics (*SEM 2017), pages 251-261, Vancouver,
Canada. Association for Computational Linguistics.

Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sri-
parna Saha, Vinija Jain, and Aman Chadha. 2024. A
comprehensive survey of hallucination in large lan-
guage, image, video and audio foundation models.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 11709-11724, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and
Oren Etzioni. 2014. Diagram understanding in geom-
etry questions. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, AAAT’ 14,
page 2831-2838. AAAI Press.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geome-
try problems: Combining text and diagram interpre-
tation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 14661476, Lisbon, Portugal. Association for
Computational Linguistics.

Wenhao Shi, Zhigiang Hu, Yi Bin, Junhua Liu, Yang
Yang, See-Kiong Ng, Lidong Bing, and Roy Ka-Wei
Lee. 2024. Math-LLaVA: Bootstrapping mathemati-
cal reasoning for multimodal large language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 4663—4680, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. 2024.
MM-MATH: Advancing multimodal math evaluation
with process evaluation and fine-grained classifica-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 1358-1375,
Miami, Florida, USA. Association for Computational
Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.


https://doi.org/10.1145/3581783.3612570
https://doi.org/10.1145/3581783.3612570
https://doi.org/10.1145/3581783.3612570
https://openai.com/index/gpt-4v-system-card
https://openai.com/index/gpt-4v-system-card
https://openai.com/index/gpt-4v-system-card
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/openai-o3-mini
https://openai.com/index/openai-o3-mini
https://openai.com/index/openai-o3-mini
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850
https://doi.org/10.18653/v1/2023.findings-acl.850
https://arxiv.org/abs/2412.05983
https://arxiv.org/abs/2412.05983
https://arxiv.org/abs/2412.05983
https://arxiv.org/abs/2412.05983
https://arxiv.org/abs/2412.05983
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://doi.org/10.1007/978-3-642-13437-1_110
https://doi.org/10.1007/978-3-642-13437-1_110
https://doi.org/10.1007/978-3-642-13437-1_110
https://doi.org/10.18653/v1/D17-1081
https://doi.org/10.18653/v1/D17-1081
https://doi.org/10.18653/v1/D17-1081
https://doi.org/10.18653/v1/D17-1081
https://doi.org/10.18653/v1/D17-1081
https://doi.org/10.18653/v1/S17-1029
https://doi.org/10.18653/v1/S17-1029
https://doi.org/10.18653/v1/S17-1029
https://doi.org/10.18653/v1/S17-1029
https://doi.org/10.18653/v1/S17-1029
https://doi.org/10.18653/v1/2024.findings-emnlp.685
https://doi.org/10.18653/v1/2024.findings-emnlp.685
https://doi.org/10.18653/v1/2024.findings-emnlp.685
https://doi.org/10.18653/v1/2024.findings-emnlp.685
https://doi.org/10.18653/v1/2024.findings-emnlp.685
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/D15-1171
https://doi.org/10.18653/v1/2024.findings-emnlp.268
https://doi.org/10.18653/v1/2024.findings-emnlp.268
https://doi.org/10.18653/v1/2024.findings-emnlp.268
https://doi.org/10.18653/v1/2024.findings-emnlp.73
https://doi.org/10.18653/v1/2024.findings-emnlp.73
https://doi.org/10.18653/v1/2024.findings-emnlp.73
https://doi.org/10.18653/v1/2024.findings-emnlp.73
https://doi.org/10.18653/v1/2024.findings-emnlp.73
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476-482.

Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6309-6318, Red Hook, NY,
USA. Curran Associates Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

Vicuna. 2023. Vicuna: An open-source chatbot im-
pressing gpt-4 with 90 https://1lmsys.org/blog/
2023-03-30-vicuna/.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing
Ren, Aojun Zhou, Mingjie Zhan, and Hongsheng Li.
2024a. Measuring multimodal mathematical reason-
ing with MATH-vision dataset. In The Thirty-eight
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Zhikai Wang, Jiashuo Sun, Wenqi Zhang, Zhigiang Hu,
Xin Li, Fan Wang, and Deli Zhao. 2025. Benchmark-
ing multimodal mathematical reasoning with explicit
visual dependency. Preprint, arXiv:2504.18589.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen,
Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, Hao-
tian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev
Arora, and Danqi Chen. 2024b. Charxiv: Charting
gaps in realistic chart understanding in multimodal
LLMs. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS *22,
Red Hook, NY, USA. Curran Associates Inc.

Junda Wu, Zhehao Zhang, Yu Xia, Xintong Li,
Zhaoyang Xia, Aaron Chang, Tong Yu, Sungchul
Kim, Ryan A. Rossi, Ruiyi Zhang, Subrata Mitra,
Dimitris N. Metaxas, Lina Yao, Jingbo Shang, and
Julian McAuley. 2024a. Visual prompting in multi-
modal large language models: A survey. Preprint,
arXiv:2409.15310.

Wenjun Wu, Lingling Zhang, Jun Liu, Xi Tang, Yaxian
Wang, Shaowei Wang, and Qianying Wang. 2024b.
E-gps: Explainable geometry problem solving via
top-down solver and bottom-up generator. In 2024
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 13828—13837.

13

Rengqiu Xia, Mingsheng Li, Hancheng Ye, Wenjie Wu,
Hongbin Zhou, Jiakang Yuan, Tianshuo Peng, Xinyu
Cai, Xiangchao Yan, Bin Wang, Conghui He, Bo-
tian Shi, Tao Chen, Junchi Yan, and Bo Zhang. 2025.
Geox: Geometric problem solving through unified
formalized vision-language pre-training. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Liangyu Xu, Yingxiu Zhao, Jingyun Wang, Yingyao
Wang, Bu Pi, Chen Wang, Mingliang Zhang, Ji-
hao Gu, Xiang Li, Xiaoyong Zhu, Jun Song, and
Bo Zheng. 2025. Geosense: Evaluating identification
and application of geometric principles in multimodal
reasoning. Preprint, arXiv:2504.12597.

Shihao Xu, Yiyang Luo, and Wei Shi. 2024. Geo-llava:
A large multi-modal model for solving geometry
math problems with meta in-context learning. In
Proceedings of the 2nd Workshop on Large Genera-
tive Models Meet Multimodal Applications, LGM3A
’24, page 11-15, New York, NY, USA. Association
for Computing Machinery.

Yibo Yan, Jiamin Su, Jianxiang He, Fangteng Fu,
Xu Zheng, Yuanhuiyi Lyu, Kun Wang, Shen Wang,
Qingsong Wen, and Xuming Hu. 2025. A survey
of mathematical reasoning in the era of multimodal
large language model: Benchmark, method & chal-
lenges. Preprint, arXiv:2412.11936.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v. Preprint, arXiv:2310.11441.

Weichen Yu, Ziyan Yang, Shanchuan Lin, Qi Zhao,
Jianyi Wang, Liangke Gui, Matt Fredrikson, and
Lu Jiang. 2024. Is your text-to-image model robust
to caption noise? Preprint, arXiv:2412.19531.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian.
2019. Deep modular co-attention networks for visual
question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Yuan Yuan, Zhaojian Li, and Bin Zhao. 2025. A survey
of multimodal learning: Methods, applications, and
future. ACM Comput. Surv., 57(7).

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, and
3 others. 2024. Mmmu: A massive multi-discipline
multimodal understanding and reasoning benchmark
for expert agi. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 9556-9567.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023. Sigmoid loss for lan-
guage image pre-training. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 11975-11986.


https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=QWTCcxMpPA
https://openreview.net/forum?id=QWTCcxMpPA
https://openreview.net/forum?id=QWTCcxMpPA
https://arxiv.org/abs/2504.18589
https://arxiv.org/abs/2504.18589
https://arxiv.org/abs/2504.18589
https://arxiv.org/abs/2504.18589
https://arxiv.org/abs/2504.18589
https://openreview.net/forum?id=cy8mq7QYae
https://openreview.net/forum?id=cy8mq7QYae
https://openreview.net/forum?id=cy8mq7QYae
https://openreview.net/forum?id=cy8mq7QYae
https://openreview.net/forum?id=cy8mq7QYae
https://arxiv.org/abs/2409.15310
https://arxiv.org/abs/2409.15310
https://arxiv.org/abs/2409.15310
https://doi.org/10.1109/CVPR52733.2024.01312
https://doi.org/10.1109/CVPR52733.2024.01312
https://doi.org/10.1109/CVPR52733.2024.01312
https://openreview.net/forum?id=6RiBl5sCDF
https://openreview.net/forum?id=6RiBl5sCDF
https://openreview.net/forum?id=6RiBl5sCDF
https://arxiv.org/abs/2504.12597
https://arxiv.org/abs/2504.12597
https://arxiv.org/abs/2504.12597
https://arxiv.org/abs/2504.12597
https://arxiv.org/abs/2504.12597
https://doi.org/10.1145/3688866.3689124
https://doi.org/10.1145/3688866.3689124
https://doi.org/10.1145/3688866.3689124
https://doi.org/10.1145/3688866.3689124
https://doi.org/10.1145/3688866.3689124
https://arxiv.org/abs/2412.11936
https://arxiv.org/abs/2412.11936
https://arxiv.org/abs/2412.11936
https://arxiv.org/abs/2412.11936
https://arxiv.org/abs/2412.11936
https://arxiv.org/abs/2412.11936
https://arxiv.org/abs/2412.11936
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2412.19531
https://arxiv.org/abs/2412.19531
https://arxiv.org/abs/2412.19531
https://doi.org/10.1145/3713070
https://doi.org/10.1145/3713070
https://doi.org/10.1145/3713070
https://doi.org/10.1145/3713070
https://doi.org/10.1145/3713070

Jiaxin Zhang and Yashar Moshfeghi. 2024. GOLD:
Geometry problem solver with natural language de-
scription. In Findings of the Association for Compu-
tational Linguistics: NAACL 2024, pages 263-278,
Mexico City, Mexico. Association for Computational
Linguistics.

Ming-Liang Zhang, Fei Yin, Yi-Han Hao, and Cheng-
Lin Liu. 2022. Plane geometry diagram parsing.
In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22,
pages 1636—-1643. International Joint Conferences on
Artificial Intelligence Organization. Main Track.

Ming-Liang Zhang, Fei yin, and Cheng-Lin Liu. 2023.
A multi-modal neural geometric solver with textual
clauses parsed from diagram. In Proceedings of the
Thirty-Second International Joint Conference on Arti-
ficial Intelligence, IJCAI-23, pages 3374-3382. Inter-
national Joint Conferences on Artificial Intelligence
Organization. Main Track.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun
Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
Lu, Kai-Wei Chang, Yu Qiao, Peng Gao, and Hong-
sheng Li. 2025a. Mathverse: Does your multi-modal
IIm truly see the diagrams in visual math problems?
In Computer Vision — ECCV 2024, pages 169-186,
Cham. Springer Nature Switzerland.

Renrui Zhang, Xinyu Wei, Dongzhi Jiang, Ziyu Guo,
Yichi Zhang, Chengzhuo Tong, Jiaming Liu, Aojun
Zhou, Shanghang Zhang, Peng Gao, and Hongsheng
Li. 2025b. MAVIS: Mathematical visual instruction
tuning with an automatic data engine. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Shan Zhang, Aotian Chen, Yanpeng Sun, Jindong Gu,
Yi-Yu Zheng, Piotr Koniusz, Kai Zou, Anton van den
Hengel, and Yuan Xue. 2025c. Open eyes, then rea-
son: Fine-grained visual mathematical understanding
in mllms. Preprint, arXiv:2501.06430.

Xiaokai Zhang, Na Zhu, Yiming He, Jia Zou, Cheng
Qin, Yang Li, and Tuo Leng. 2024a. Fgeo-sss: A
search-based symbolic solver for human-like auto-
mated geometric reasoning. Symmetry, 16(4).

Xiaokai Zhang, Na Zhu, Cheng Qin, Yang Li, Zhenbing
Zeng, and Tuo Leng. 2024b. Fgeo-hypergnet: Geo-
metric problem solving integrating formal symbolic
system and hypergraph neural network. Preprint,
arXiv:2402.11461.

Xiaokai Zhang, Na Zhu, Cheng Qin, LI Yang, Zhenbing
Zeng, and Tuo Leng. 2024c. Formal representation
and solution of plane geometric problems. In The
4th Workshop on Mathematical Reasoning and Al at
NeurIPS’24.

Xinsong Zhang, Yarong Zeng, Xinting Huang, Hu Hu,
Runquan Xie, Han Hu, and Zhanhui Kang. 2025d.
Low-hallucination synthetic captions for large-scale
vision-language model pre-training. Preprint,
arXiv:2504.13123.

14

Zeren Zhang, Jo-Ku Cheng, Jingyang Deng, Lu Tian,
Jinwen Ma, Ziran Qin, Xiaokai Zhang, Na Zhu,
and Tuo Leng. 2025e. Diagram formalization en-
hanced multi-modal geometry problem solver. In
ICASSP 2025 - 2025 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 1-5.

Junbo Zhao, Ting Zhang, Jiayu Sun, Mi Tian, and Hua
Huang. 2025. Pi-gps: Enhancing geometry problem
solving by unleashing the power of diagrammatic
information. Preprint, arXiv:2503.05543.

Ling Zhong, Yujing Lu, Jing Yang, Weiming Li, Peng
Wei, Yongheng Wang, Manni Duan, and Qing Zhang.
2025. Domaincqa: Crafting expert-level gqa from
domain-specific charts. Preprint, arXiv:2503.19498.

Na Zhu, Xiaokai Zhang, Qike Huang, Fangzhen Zhu,
Zhenbing Zeng, and Tuo Leng. 2025. Fgeo-parser:
Autoformalization and solution of plane geometric
problems. Symmetry, 17(1).

Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang,
Bin Hu, and Huan Zhang. 2025. Dynamath: A dy-
namic visual benchmark for evaluating mathematical
reasoning robustness of vision language models. In
The Thirteenth International Conference on Learning
Representations.

Jia Zou, Xiaokai Zhang, Yiming He, Na Zhu, and Tuo
Leng. 2024. Fgeo-drl: Deductive reasoning for geo-
metric problems through deep reinforcement learning.
Symmetry, 16(4).


https://doi.org/10.18653/v1/2024.findings-naacl.19
https://doi.org/10.18653/v1/2024.findings-naacl.19
https://doi.org/10.18653/v1/2024.findings-naacl.19
https://doi.org/10.18653/v1/2024.findings-naacl.19
https://doi.org/10.18653/v1/2024.findings-naacl.19
https://doi.org/10.24963/ijcai.2022/228
https://doi.org/10.24963/ijcai.2023/376
https://doi.org/10.24963/ijcai.2023/376
https://doi.org/10.24963/ijcai.2023/376
https://openreview.net/forum?id=MnJzJ2gvuf
https://openreview.net/forum?id=MnJzJ2gvuf
https://openreview.net/forum?id=MnJzJ2gvuf
https://arxiv.org/abs/2501.06430
https://arxiv.org/abs/2501.06430
https://arxiv.org/abs/2501.06430
https://arxiv.org/abs/2501.06430
https://arxiv.org/abs/2501.06430
https://doi.org/10.3390/sym16040404
https://doi.org/10.3390/sym16040404
https://doi.org/10.3390/sym16040404
https://doi.org/10.3390/sym16040404
https://doi.org/10.3390/sym16040404
https://arxiv.org/abs/2402.11461
https://arxiv.org/abs/2402.11461
https://arxiv.org/abs/2402.11461
https://arxiv.org/abs/2402.11461
https://arxiv.org/abs/2402.11461
https://openreview.net/forum?id=8wDSfs1W3w
https://openreview.net/forum?id=8wDSfs1W3w
https://openreview.net/forum?id=8wDSfs1W3w
https://arxiv.org/abs/2504.13123
https://arxiv.org/abs/2504.13123
https://arxiv.org/abs/2504.13123
https://doi.org/10.1109/ICASSP49660.2025.10889286
https://doi.org/10.1109/ICASSP49660.2025.10889286
https://doi.org/10.1109/ICASSP49660.2025.10889286
https://arxiv.org/abs/2503.05543
https://arxiv.org/abs/2503.05543
https://arxiv.org/abs/2503.05543
https://arxiv.org/abs/2503.05543
https://arxiv.org/abs/2503.05543
https://arxiv.org/abs/2503.19498
https://arxiv.org/abs/2503.19498
https://arxiv.org/abs/2503.19498
https://doi.org/10.3390/sym17010008
https://doi.org/10.3390/sym17010008
https://doi.org/10.3390/sym17010008
https://doi.org/10.3390/sym17010008
https://doi.org/10.3390/sym17010008
https://openreview.net/forum?id=VOAMTA8jKu
https://openreview.net/forum?id=VOAMTA8jKu
https://openreview.net/forum?id=VOAMTA8jKu
https://openreview.net/forum?id=VOAMTA8jKu
https://openreview.net/forum?id=VOAMTA8jKu
https://doi.org/10.3390/sym16040437
https://doi.org/10.3390/sym16040437
https://doi.org/10.3390/sym16040437

A Additional axis on benchmark dataset

A.1 Reasoning complexity

We discuss the mathematical concepts and diffi-
culty levels encountered in plane geometry prob-
lems used by existing benchmarks and datasets.
Typical plane geometry problems involve calculat-
ing specific angle measures, arc measures, segment
or arc lengths, and areas of designated regions.
Computing these numerical values generally re-
quires basic arithmetic and root operations, but may
also involve trigonometric functions, such as sine
and cosine. Although no standardized quantitative
method currently exists to measure problem dif-
ficulty, problems can be qualitatively categorized
according to their original sources, such as SAT ex-
ams (Seo et al., 2015; Sachan et al., 2017; Sachan
and Xing, 2017), plane geometry curricula from
grades 6—12 American (Lu et al., 2021; Zhang et al.,
2023; Sun et al., 2024) or Chinese school (Chen
et al., 2021; Cao and Xiao, 2022; Xu et al., 2025),
college-level mathematics (Yue et al., 2024), or
mathematics competitions, e.g., AMC 8, 10, and
12 (Wang et al., 2024a).

A.2 Diagram-text redundancy

To serve as rigorous benchmarks and datasets for
multi-modal reasoning, the collected problems
must require simultaneous interpretation of both
diagrams and accompanying textual descriptions.
By contrast, PGPS problems that can be solved
using the text alone cannot effectively evaluate the
diagram-text integration capability of PGPS meth-
ods. Nevertheless, many existing benchmarks and
datasets still contain such problems, thereby inade-
quately assessing the perception abilities of PGPS
methods (Zhang et al., 2025a).

Recent PGPS benchmarks have addressed this
limitation by explicitly annotating problems with
modality-specific information and subsequently re-
moving redundant textual cues (Lu et al., 2021;
Zhang et al., 2023, 2025a). Several benchmarks
provide multiple variants of each problem for more
fine-grained analysis of diagram-text dependency.
For instance, MathVerse (Zhang et al., 2025a) re-
locates selected information from the text into the
diagram, while DynaMath (Zou et al., 2025) gen-
erates alternative diagrams and corresponding an-
swers based on a single textual description. Thus,
failure to solve certain variants of the same problem
indicates that the model is not genuinely utilizing
the diagram.
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A.3 Data collection methods

We summarize three data collection methods
mainly used to construct PGPS datasets.

Human annotation In most cases, datasets are
constructed through human annotation based on
problems sourced from textbooks, internet sites,
or similar resources (Seo et al., 2015; Chen et al.,
2021; Lu et al., 2021, 2024; Sun et al., 2024; Yue
et al., 2024). This involves manually collecting
problems and having human annotators provide the
corresponding outputs. Additionally, some studies
apply text augmentation techniques, such as back-
translation, to diversify the text style and enrich the
dataset (Cao and Xiao, 2022).

Synthetic annotation Several PGPS studies cre-
ate synthetic benchmarks and datasets instead of
collecting problems from textbooks or the inter-
net. These studies typically implement synthetic en-
gines to generate diagrams and corresponding struc-
tured information. For example, synthetic engines
can generate captions containing the geometric in-
formation explicitly present in diagrams (Zhang
et al., 2025b), or use symbolic reasoning engines
to produce reasoning steps that derive the stated
goals from diagram-text pairs (Zhang et al., 2025b;
Kazemi et al., 2024; Fu et al., 2025). Such syn-
thetic approaches offer clear advantages, including
easy scalability and guaranteed completeness of an-
notations. However, they often struggle to produce
sufficiently diverse diagrams that accurately reflect
the real-world problems. This limitation is further
discussed in §6.2.

L(V)LM-assisted annotation For certain
datasets, particularly those with natural-language
description as the output representation, LLMs
and VLMs such as GPT (Brown et al., 2020) or
GPT-4V (OpenAl, 2023) are employed for dataset
construction. Specifically, problems and solutions
are sourced from datasets like GeoQA+, UniGeo,
or PGPS9K, and GPT or GPT-4V are used to
augment these by generating multiple problem-
solution pairs for a given problem scenario (Gao
et al., 2025; Shi et al., 2024; Zhang et al., 2025b).
Alternatively, some studies apply the same process
to synthetic data, such as diagram-caption pairs
generated by a synthetic data engine (Zhang et al.,
2025b; Kazemi et al., 2024). However, due to
the poor perception ability of GPT-4V, several
hallucinations occur in the augmented datasets. We
discuss more details about the challenge in §6.1.



B PGPS Methods
B.1 Summary of PGPS methods

We summarize the PGPS methods in terms of the
encoder, intermediate representation, decoder, and
the output format at Table A1l.

C Challenges and Future Directions

C.1 Error analysis on wrong responses

42.3%

5
&

33.9%
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8
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16.4%

Average Percentage
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Error

Calculation Visual Perception Reasoning
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Figure A1: Error analysis on the response of GPT-4V
on MathVerse. We analyze the responses of GPT-4V on
MathVerse, reporting the average percentage for each
type of error across five MathVerse variants, Text Domi-
nant, Text Lite, Vision Intensive, Vision Dominant, and
Vision Only, which are reported in MathVerse. Our
analysis indicates that incorrect answers predominantly
result from visual perception and reasoning errors.

C.2 Examples of perception hallucinations

We provide examples of hallucinated responses by
GPT-4.1 in Table A2.
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C.3 Comprehensivity of current PGPS

benchmarks
Methods Reali.stic styles No data . Diagram—text
of diagrams  leakage interdependence
MMMU @) O %
Math-V O 0) %
MathVista O x «
MathVerse O % O
GeomVerse X O M
VisOnlyQA X O O
MM-Math @) 0 %
GeoEval X x %
DynaMath O % 0O

Table A3: Comprehensivity across existing PGPS
benchmarks. The table summarizes benchmark features
in terms of realistic diagram styles, absence of data leak-
age, and consideration of diagram-text interdependence.

C.4 Synthetic and real-world geometric
diagrams

(a) Synthetic diagrams

(b) Real-world diagrams

Figure A2: Visualization of the synthetic and real-world
geometric diagrams. We compare the geometric dia-
grams, which are synthetically generated or manually
collected from existing sources. The synthetic diagrams
are from GeomVerse, VisOnlyQA, MAVIS, and Geo-
DANO. The real-world diagrams are from MathVerse.



Encoder Intermediate Decoder Output Methods

El I1 - - HoughGeo (Chen et al., 2015), G-Aligner (Seo et al.,
2014), GEOS (Seo et al., 2015)

E2 11 - - PGDPNet (Zhang et al., 2022), FGeo—Parser (Zhu
et al., 2025)

El 11 D1 01 GEOS++ (Sachan et al., 2017), GEOS-OS (Sachan

and Xing, 2017), GeoShader (Alvin et al., 2017),
S2 (Gan et al., 2019)

E2 11 D2 01 FGeo—HyperGNet (Zhang et al, 2024b),
GCN-GPS (Jian et al., 2023a), GeoDRL (Peng
et al., 2023)

E2 I1 D3 01 InterGPS (Lu et al., 2021), E-GPS (Wu

et al.,, 2024b), Pi-GPS (Zhao et al.,, 2025),
FGeo-DRL (Zou et al., 2024)

E2 11 D1 01 FGeo—SSS (Zhang et al., 2024a)
E2 I1 D2 03 GOLD (Zhang and Moshfeghi, 2024)
E2 12 D3 02 NGS (Chen et al., 2021), DPE-NGS (Cao and

Xiao, 2022), Geoformer (Chen et al., 2022),
PGPSNet (Zhang et al., 2023), SCA-GPS (Ning
et al., 2023), UniMath (Liang et al., 2023),
FLCL-GPS (Jian et al., 2023b), LANS (Li et al.,
2024), GeoX (Xia et al., 2025), GeoDANO (Cho
et al., 2025)

E2 12 D3 03 Math-LLaVA (Shi et al., 2024), Visual SKETCH-
PAD (Hu et al, 2024b), MAVIS (Zhang
et al.,, 2025b), G-LLaVA (Gao et al.,, 2025),
DFE-GPS (Zhang et al., 2025¢), Chimera (Peng
et al.,, 2025), Geo-LLaVA (Xu et al., 2024),
SVE-Math (Zhang et al., 2025¢)

Table Al: Categorization of existing PGPS methods. We categorize the PGPS methods based on their encoder,
intermediate representation, decoder, and output format. The symbols come from Fig. 3.
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Example 1 Example 2

Input prompt In the given diagram, extend the segment SU to form an infinite straight line.
This line divides the two-dimensional plane into two half-planes. The points Q
and A are also shown in the diagram. Are the points Q and A located on the
same side of the line SU?

Input diagram

v S

Response To determine if points Q and A are on To determine whether points Q and A
the same side of the line SU, observe the are on the same side of the line SU, we
diagram: extending SU clearly shows observe the diagram. The segment SU is
that point Q is on one side of the line, extended to form a straight line. Point Q
while point A is on the opposite side. is above SU, while point A is on the op-
The quadrilateral QASU suggests A and  posite side, to the left of SU. Therefore,
Q are separated by the segment SU the points Q and A are on opposite
itself. sides of line SU.

Table A2: Examples of hallucinations occured in GPT-4.1 responses. We analyzed the diagram perception
performance of GPT-4.1 (OpenAl, 2025a), specifically determining whether two points are on the same side of
a given line. We generated 100 problems using the synthetic data engine from GeoDANO (Cho et al., 2025) and
tested them with GPT-4.1, observing a low accuracy of 59%. The examples above illustrate cases where GPT-4.1
hallucinated and provided incorrect answers. Hallucinated parts are highlighted in bold.
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