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ABSTRACT

We study generalization properties of random features (RF) regression in high dimensions optimized
by stochastic gradient descent (SGD). In this regime, we derive precise non-asymptotic error bounds
of RF regression under both constant and adaptive step-size SGD setting, and observe the double
descent phenomenon both theoretically and empirically. Our analysis shows how to cope with
multiple randomness sources of initialization, label noise, and data sampling (as well as stochastic
gradients) with no closed-form solution, and also goes beyond the commonly-used Gaussian/spherical
data assumption. Our theoretical results demonstrate that, with SGD training, RF regression still
generalizes well in the interpolation setting, and is able to characterize the double descent behavior by
the unimodality of variance and monotonic decrease of bias. Besides, we also prove that the constant
step-size SGD setting incurs no loss in convergence rate when compared to the exact minimal-norm
interpolator, as a theoretical justification of using SGD in practice.

1 INTRODUCTION

Harmless interpolation or benign overfitting of over-parameterized neural network (NN) models has received significant
attention in the literature (Zhang et al., 2016; Hastie et al., 2019; Bartlett et al., 2020). This important phenomenon is
also inherently tied to the discovery of the double descent learning curve (Belkin et al., 2019) in deep learning.

Indeed, many key machine learning models, including but not limited to kernel regression (Wu & Xu, 2020; Mei &
Montanari, 2019; Liu et al., 2021b) and neural networks (Nakkiran et al., 2019; Yang et al., 2020; Ju et al., 2020)) first
decrease the test error with increasing number of model parameters in the under-parameterized regime. They then yield
large error when they can first interpolate the data, which is called the interpolation threshold. Finally, the test error
begins to decrease again in the over-parameterized regime in stark contrast to the conventional learning theory results.

Our work partakes in this research vein and studies the random features (RF) model (Rahimi & Recht, 2007) in
the context of double descent phenomenon.1 Briefly, RF model samples random features {ωi}mi=1 from a specific
distribution, corresponding to a kernel function. We then construct an explicit map: x ∈ Rd 7→ σ(Wx) ∈ Rm, where
W = [ω1, · · · ,ωm]> ∈ Rm×d is the random features matrix and σ(·) is the nonlinear (activation) function determined
by the kernel. As a result, the RF model training can be viewed as training a two-layer neural network where the
weights in the first layer are chosen randomly and then fixed (a.k.a. the random features) and only the output layer is
optimized, striking a trade-off between practical performance and accessibility to analysis.

An RF model becomes an over-parameterized model if we take the number of random features m larger than that of
training data n. The literature on RF under the over-parameterized regime can be split into various camps according to
different assumptions on the formulation of target function, data distribution, and activation functions (Mei & Montanari,
2019; Ba et al., 2020; d’Ascoli et al., 2020b; Liao et al., 2020; Gerace et al., 2020; Lin & Dobriban, 2021). The existing
theoretical results demonstrate that the excess risk curve exhibits double descent.

Nevertheless, the analysis framework of (most) previous work on RF regression assumes the data to be Gaussian or
uniformly spread on a sphere, and largely relies on the least-squares closed-form solution, including minimal-norm
interpolator and ridge regressor (see comparisons in Table 1 in Appendix A). Such specific data distribution and
dependency on the closed-form solution in fact mismatch practical neural networks optimized by stochastic gradient
descent (SGD) based algorithms on general data distribution.

Our work precisely bridges this gap: We provide a new analysis framework for the generalization properties of RF
models trained with SGD, also accommodating adaptive step-size selection, and provide non-asymptotic results in

1Relevant work on random features model has received the Test-of-Time Award in NeurIPS2017 (Rahimi & Recht, 2007) and
best paper finalist in ICML2019 (Li et al., 2019). Refer to a recent survey (Liu et al., 2021a) for details.
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under-/over-parameterized regimes on (relatively) general data distribution and activation functions. We make the
following findings and contributions:

• We characterize statistical properties of several covariance operators/matrices in RF, including Σm :=
1
mEx[σ(Wx/

√
d)σ(Wx/

√
d)>] and its expectation version Σ̃m := EW [Σm]. We demonstrate that, under

Gaussian initialization, Tr(Σm) is a sub-exponential random variable with O(1) sub-exponential norm; Σ̃m
has only two distinct eigenvalues at O(1) and O(1/m) order, respectively. Such analysis on the spectra of Σm
and Σ̃m (without spectral decay assumption) is helpful to obtain sharp error bounds for excess risk.

• Based on the bias-variance decomposition in stochastic approximation, we further take into account multiple
randomness sources of initialization, label noise, and data sampling as well as stochastic gradients. We also
derive non-asymptotic error bounds under the adaptive-size SGD setting: the error bounds for bias and variance
as a function of the radio m/n are monotonic decreasing and unimodal, respectively. Importantly, our analysis
holds for both constant and adaptive step-size SGD setting, and is valid under general assumptions on data
distribution and activation functions.

• Our non-asymptotic results show that, RF regression with SGD still generalizes well for interpolation learning,
and is able to capture the double descent behavior. In addition, we demonstrate that the constant step-size SGD
setting incurs no loss on the convergence rate of excess risk when compared to the exact least-squares closed
form solution. Our empirical evaluations support our theoretical results and findings.

Our analysis sheds light on the effect of SGD on high dimensional RF models in under-/over-parameterized regimes,
and bridges the gap between the minimal-norm solution and numerical iteration solution in terms of optimization and
generalization on double descent. Hence, looking forward to analysis of modern (deep) neural networks under the
realistic setting where m, n, d are all large and comparable is important (and indeed difficult), e.g., (Hu et al., 2020;
Ju et al., 2020) on two-layer neural networks. We expect that our analysis would be helpful for understanding large
dimensional machine learning and neural network models more generally.

2 RELATED WORK AND PROBLEM SETTING

This section reviews relevant works while formally introducing our problem setting of RF regression with SGD.

2.1 RELATED WORKS

A flurry of research papers are devoted to analysis of over-parameterized models on optimization (Kawaguchi & Huang,
2019; Allen-Zhu et al., 2019; Zou & Gu, 2019), generalization (or their combination) under neural tangent kernel
(Jacot et al., 2018; Arora et al., 2019; Chizat et al., 2019) and mean-field analysis regime (Mei et al., 2019; Chizat
& Bach, 2020). We take a unified perspective on optimization and generalization but work in the high-dimensional
setting to fully capture the double descent behavior. By high-dimensional setting, we mean that m, n, and d increase
proportionally, large and comparable (Mei & Montanari, 2019; Ba et al., 2020; Liao et al., 2020; d’Ascoli et al., 2020b).

Random features model and double descent: Characterizing the double descent of the RF model is first due to Belkin
et al. (2020) under the one-dimensional setting. Other perspectives derive from random matrix theory (RMT) in high
dimensional statistics (Hastie et al., 2019; Mei & Montanari, 2019; Ba et al., 2020; Liao et al., 2020; Li et al., 2021) and
from the replica method (d’Ascoli et al., 2020b; Rocks & Mehta, 2020; Gerace et al., 2020). Under specific assumptions
on data distribution, activation functions, target function, and initialization, these results show that the generalization
error/excess risk increase when m/n < 1, diverge when m/n→ 1, and then decrease when m/n > 1.

Leveraging the bias-variance decomposition analysis in d’Ascoli et al. (2020b); Rocks & Mehta (2020), Adlam &
Pennington (2020); Lin & Dobriban (2021) refine these results by focusing on the analysis of variance due to multiple
randomness sources. (Ba et al., 2020) on RF optimized by gradient descent exhibits the double descent behavior under
the Gaussian data assumption. We refer to comparisons in Table 1 in Appendix A for further details.

Technically speaking, since RF (least-squares) regression involves with inverse random matrices, these two classes
of methods attempt to achieve a similar target: how to disentangle the nonlinear activation function by the Gaussian
equivalence conjecture. RMT utilizes calculus of deterministic equivalents (or resolvents) for random matrices and
replica methods focus on some specific scalar parameters that allows for circumventing the expectation computation. In
fact, most of the above methods can be asymptotically equivalent to the Gaussian covariate model (Hu & Lu, 2020).

Non-asymptotic stochastic approximation: A series of papers on linear/kernel least-squares regression with con-
stant/adaptive step-size SGD often work in the under-parameterized regime, where d is finite and much smaller than n.
For linear least-squares regression (Bach & Moulines, 2013; Jain et al., 2018) and kernel regression (without explicit
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regularization) (Dieuleveut & Bach, 2016; Dieuleveut et al., 2017), averaged SGD offers a sub-linear rate on bias, while
achieving minimax rates on variance, which leads to a certain O(1/n) convergence rate for excess risk.

Carratino et al. (2018) focus on regularized RF (least-squares) regression with SGD in the under-parameterized
regime. Their analysis largely relies on the Tikhonov regularization in an approximation theory view, which provides a
convergence rate of O(n−

2r
α+2r ) under the regularity condition r ∈ [0, 1] and capacity condition α ∈ [0, 1].

In the over-parameterized regime, the excess risk in (Chen et al., 2020b) on least squares in high dimensions with
averaged constant step-size SGD can be independent of d, and is further improved to converge with n in (Zou et al.,
2021). Berthier et al. (2020); Varre et al. (2021) also demonstrate this convergence result under min or last-iterate
setting for noiseless least squares. Besides, the existence of multiple descent (Chen et al., 2020a; Liang et al., 2019)
beyond double descent and SGD as implicit regularizer (Neyshabur et al., 2017; Smith et al., 2020) can be traced to the
above two lines of work. Our work shares some similar technical tools with (Dieuleveut & Bach, 2016) and (Zou et al.,
2021) but differs from them in several aspects. We detail the differences in Section 4.

2.2 THE PROBLEM SETTING

We study the standard problem setting for RF least-squares regression and adopt the relevant terminologies from
learning theory: cf., (Cucker & Zhou, 2007; Dieuleveut & Bach, 2016; Carratino et al., 2018; Li et al., 2021) for
details. Let X ⊆ Rd be a metric space and Y ⊆ R. The training data {(xi, yi)}ni=1 is assumed to be independently
drawn from a non-degenerate unknown Borel probability measure ρ on X × Y . The target function of ρ is defined by
fρ(x) =

∫
Y
y dρ(y | x), where ρ(· | x) is the conditional distribution of ρ at x ∈ X .

RF least squares regression: We study the RF regression problem with the squared loss as follows:

min
f∈H
E(f), E(f) :=

∫
(f(x)− y)2ρ(x, y) = ‖f − fρ‖2L2

ρX

,with f(x) = 〈θ, ϕ(x)〉Rm ,

where the optimization vector θ ∈ Rm and the feature mapping ϕ(x) is defined as

ϕ(x) :=
1√
m

[
σ(ω>1x/

√
d), · · · , σ(ω>mx/

√
d)
]>

:=
1√
m
σ(Wx/

√
d) ∈ Rm , (1)

whereW = [ω1,ω2, · · · ,ωm]> ∈ Rm×d withWij ∼ N (0, 1) corresponds to such two-layer neural network initialized
with random Gaussian weights. Then, the corresponding hypothesis spaceH is a reproducing kernel Hilbert space

H :=

{
f ∈ L2

ρX

∣∣∣ f(x) =
1√
m
〈θ, σ(Wx/

√
d)〉,θ ∈ Rm, Wij ∼ N (0, 1)

}
, (2)

with ‖f‖2L2
ρX

=
∫
X
|f(x)|2dρX(x) = 〈f,Σmf〉H with the covariance operator Σm : Rm → Rm

Σm =

∫
X

ϕ(x)⊗ ϕ(x)dρX(x) , (3)

which is the usually (uncentered) covariance matrix in finite dimensions,2 i.e., Σm = Ex[ϕ(x)⊗ ϕ(x)]. Clearly, Σm
is random with respect to W , and thus its deterministic version is defined as Σ̃m = Ex,W [ϕ(x) ⊗ ϕ(x)]. Define
Jm : Rm → L2

ρX such that
(Jmv)(·) = 〈v, ϕ(·)〉,∀v ∈ Rm ,

we have Σm = J∗mJm, where J∗m denotes the adjoint operator of Jm.

SGD with averaging: Regarding the stochastic approximation, we consider the adaptive step-size SGD with iterate
averaging (Dieuleveut & Bach, 2016; Zou et al., 2021; Nitanda & Suzuki, 2020): at each iteration t, after a training
sample (xt, yt) ∼ ρ is observed, we update the decision variable as

θt = θt−1 + γt[yt − 〈θt−1, ϕ(xt)〉]ϕ(xt), t = 1, 2, . . . (4)

initialized at θ0. Here the step-size is given by γt := γ0t
−ζ with ζ ∈ [0, 1), which naturally holds for the constant

step-size case by taking ζ = 0. The final output is defined as the average of the iterates3:

θ̄n :=
1

n

n−1∑
t=0

θt .

2In this paper, we do not distinguish Σm and Σm. This is also suitable to other operators/matrices, e.g., Σ̃m.
3We sum up {θt}n−1

t=0 with n terms for notational simplicity instead of summarizing {θt}nt=0 with n+ 1 terms.
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The optimality condition for Eq. 4 implies E(x,y)∼ρ[(y − 〈θ∗, ϕ(x)〉)ϕ(x)] = 0, which corresponds to f∗ = Jmθ
∗ if

we assume that f∗ = arg minf∈H E(f) exists (see Assumption 1). Likewise, we have ft = Jmθt and f̄n = Jmθ̄n.

In this paper, we study the excess risk E‖f̄n − f∗‖2L2
ρX

instead of E‖f̄n − fρ‖2L2
ρX

, that follows (Dieuleveut & Bach,
2016; Rudi & Rosasco, 2017; Carratino et al., 2018; Li et al., 2021), as f∗ is the best possible solution inH and the
mis-specification error ‖f∗ − fρ‖2L2

ρX

pales into insignificance. Note that the expectation used here is considered with

respect to the random features matrixW , and the distribution of the training data {(xt, yt)}nt=1 (note that ‖f̄n−f∗‖2L2
ρX

is itself a different expectation over ρX ).

Notation: For two operators/matrices, A 4 B means B − A is positive semi-definite (PSD). For any two positive
sequences {at}st=1 and {bt}st=1, the notation at . bt means that there exists a positive constant C independent of s
such that at ≤ Cbt, and analogously for ∼, &, and -. For any a, b ∈ R, a ∧ b denotes the minimum of a and b.

3 MAIN RESULTS

In this section, we present our main theoretical results on the generalization properties employing error bounds for bias
and variance of RF regression in high dimensions optimized by averaged SGD.

3.1 ASSUMPTIONS

Before we present our result, we list the assumptions used in this paper.
Assumption 1. (existence of f∗) There exists f∗ ∈ H such that

f∗ = arg min
f∈H

E(f) ,

Remark: This is a standard assumption in learning theory, e.g., (Rudi & Rosasco, 2017; Carratino et al., 2018).
Assuming the existence of f∗ ∈ H implies that ‖f‖H is bounded in Eq. 2, which is in fact indispensable and standard.
Assumption 2. (high dimensional assumption) We work in the high dimensional regime for some large d, n with
c 6 {d/n,m/n} 6 C for some constants c, C > 0 such that m,n, d are large and comparable. The data point x ∈ Rd
is assumed to satisfy ‖x‖22 ∼ O(d) and the covariance operator Σd := Ex[x⊗ x] with bounded spectral norm ‖Σd‖2
(finite and independent of d).

Remark: This is common and standard in high dimensional statistics (El Karoui, 2010; Hastie et al., 2019).
Assumption 3. The activation function σ(·) is assumed to be Lipschitz continuous.

Remark: This assumption is quite general to cover commonly-used activation functions used in random features and
neural networks, e.g., ReLU, Sigmoid, sin / cos. Under Assumption 2 and 3, ExV[σ(z)] ∼ O(1) naturally holds as σ(z)
is sub-Gaussian withO(1) norm (Wainwright, 2019, Theorem 2.26) and its finite second moment, i.e., V[σ(z)] ∼ O(1).

Recall Σm := Ex[ϕ(x)⊗ ϕ(x)] in Eq. 3 and its expectation Σ̃m := EW [Σm], we make the following fourth moment
assumption.
Assumption 4 (Fourth moment condition). Assume there exists some positive constants r′, r > 1, such that for any
PSD operator A, it holds that

EW [ΣmAΣm] 4 EW

(
Ex

(
[ϕ(x)⊗ ϕ(x)]A[ϕ(x)⊗ ϕ(x)]

))
4 r′EW [Tr(ΣmA)Σm] 4 rTr(Σ̃mA)Σ̃m.

Remark: This assumption follows (Zou et al., 2021) that requires the data are drawn from some not-too-heavy-tailed
distribution, e.g., Σ

− 1
2

m x has sub-Gaussian, or sub-exponential tails. We make the following remarks:
1) The special case for A := I is proved by Lemma 4 (introduced in the next subsection) and thus this assumption is a
natural extension. In fact, there is no need to require that this assumption holds for any PSD operator A (this is just for
description simplicity). Validation on some specific PSD operators A is enough in our proof.
2) Assuming Σ

− 1
2

m x to be sub-Gaussian/exponential is common in high dimensional statistics (Bartlett et al., 2020).
This condition is much weaker than most previous work on double descent that requires the data to be Gaussian (Hastie
et al., 2019; d’Ascoli et al., 2020b; Adlam & Pennington, 2020; Ba et al., 2020), or uniformly spread on a sphere (Mei
& Montanari, 2019; Ghorbani et al., 2021), see comparisons in Table 1 in Appendix A. In stochastic approximation, the
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boundeness of the fourth moment is also needed, see (Bach & Moulines, 2013; Dieuleveut & Bach, 2016; Jain et al.,
2018; Berthier et al., 2020; Varre et al., 2021) for details.
Assumption 5 (Noise condition). There exists τ > 0 such that

Ξ := Ex[ε2ϕ(x)⊗ ϕ(x)] 4 τ2Σm ,

where the noise ε := y − f∗(x).

Remark: This noise assumption is standard in (Dieuleveut & Bach, 2016; Zou et al., 2021) and holds for the standard
noise model y = f∗(x) + ε with E[ε] = 0 and V[ε] <∞ (Hastie et al., 2019). For proof simplicity, we consider the
well-specified case E[ε|x] = 0 (can be extended to the model mis-specified case E[ε|x] 6= 0) and thus y − f∗(X) is
independent ofX .

3.2 PROPERTIES OF COVARIANCE OPERATORS

Before we present the main results, we study statistical properties of Σm and Σ̃m by the following lemmas (with proof
deferred to Appendix B), that will be needed for our main result.

Lemma 1. Under Assumption 2,and 3, the covariance operator Σ̃m := Ex,W [ϕ(x)⊗ ϕ(x)] has the same diagonal
elements

(Σ̃m)ii =
1

m
ExEz∼N (0,‖x‖22/d)[σ(z)]2 ∼ O(1/m), i = 1, 2, . . . ,m ,

and the same non-diagonal elements

(Σ̃m)ij =
1

m
Ex

(
Ez∼N (0,‖x‖22/d)[σ(z)]

)2

∼ O(1/m), i, j = 1, 2, . . . ,m with i 6= j .

Accordingly, Σ̃m has only two distinct eigenvalues

λ̃1 = (Σ̃m)ii + (m− 1)(Σ̃m)ij ∼ O(1) , λ̃2 = · · · = λ̃m = (Σ̃m)ii − (Σ̃m)ij =
1

m
ExV[σ(z)] ∼ O

(
1

m

)
.

Remark: Lemma 1 implies tr(Σ̃m) <∞. In fact, ExV[σ(z)] > 0 holds almost surely as σ(·) is not a constant, and
thus Σ̃m is positive definite. Our error bounds will largely depend on λ̃2 = 1

mExV[σ(z)].

Here we take several examples by taking various activation functions σ(·) for demonstration.

1) If we choose σ(x) = [cos(x), sin(x)]>, RF actually approximates the Gaussian kernel with ϕ(x) ∈ R2m in Eq. 1.
In this case, (Σ̃m)ii = 1/m, and the non-diagonal element admits (Σ̃m)ij = 1

mEx exp
(
−‖x‖

2
2

d

)
. 2) If we choose

the ReLU activation σ(x) = max{x, 0}, RF actually approximates the first-order arc-cosine kernel (Cho & Saul,
2009) with ϕ(x) ∈ Rm. We have (Σ̃m)ii = 1

2mdTr(Σd) and (Σ̃m)ij = 1
2mdπTr(Σd) (recall Σd := Ex[xx>]). The

calculation of the above two cases can be found in Appendix B.1.

Lemma 2. Under Assumption 2,and 3, random variables ‖Σm‖2, ‖Σm − Σ̃m‖2, and Tr(Σm) are sub-exponential,
and have sub-exponential norm at O(1) order.

Lemma 3. Under Assumption 2,and 3, we have
∥∥∥Σ̃−2

m EW (Σ2
m)
∥∥∥

2
∼ O(1).

Lemma 4. Under Assumption 2,and 3, there exists a constant r > 0 such that EW

(
Σ2
m

)
4 Ex,W [ϕ(x)⊗ ϕ(x)⊗

ϕ(x)⊗ ϕ(x)] 4 rTr(Σ̃m)Σ̃m.

Remark: Lemma 4 is a special case of Assumption 4 if we take A := I and r := 1 +O
(

1
m

)
.

3.3 RESULTS FOR ERROR BOUNDS

Recall the definition of the noise ε = [ε1, · · · , εn]> with εt = yt − f∗(xt), t = 1, 2, . . . , n, the averaged excess risk
can be expressed as

E‖f̄n − f∗‖2L2
ρX

:= EX,W ,ε‖f̄n − f∗‖2L2
ρX

= EX,W ,ε〈f̄n − f∗,Σm(f̄n − f∗)〉 = EX,W ,ε〈η̄n,Σmη̄n〉 ,

where η̄n := 1
n

∑n−1
t=0 ηt with the centered SGD iterate ηt := ft − f∗. Following the standard bias-variance decompo-

sition in stochastic approximation (Dieuleveut & Bach, 2016; Jain et al., 2018; Zou et al., 2021), it admits

ηt = ft − f∗ = [I − γtϕ(xt)⊗ ϕ(xt)](ft−1 − f∗) + γtεtϕ(xt) ,
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where the first term corresponds to the bias by taking yt := f∗(xt)

ηbiast = [I − γtϕ(xt)⊗ ϕ(xt)]η
bias
t−1 , ηbias0 = f∗ , (5)

and the second term corresponds to the variance

ηvart = [I − γtϕ(xt)⊗ ϕ(xt)]η
var
t−1 + γtεtϕ(xt), ηvar0 = 0 . (6)

Accordingly, we have ft = ηbiast + ηvart + f∗ due to Eεf̄n = η̄biasn + f∗ and ‖f‖2L2
ρX

= 〈f,Σmf〉.

Proposition 1. Based on the above setting, the averaged excess risk admits the following bias-variance decomposition

EX,W ,ε‖f̄n − f∗‖2L2
ρX

=EX,W ,ε‖f̄n − Eεf̄n + Eεf̄n − f∗‖2L2
ρX

= EX,W 〈η̄biasn ,Σmη̄
bias
n 〉︸ ︷︷ ︸

:=Bias

+EX,W ,ε〈η̄varn ,Σmη̄
var
n 〉︸ ︷︷ ︸

:=Variance

.

By decoupling the multiple randomness sources of initialization, label noise, and data sampling (as well as stochastic
gradients), we give precise non-asymptotic error bounds for bias and variance as below.

Theorem 1. (Error bound for bias) Under Assumptions 1, 2, 3, 4 with r′ > 1, if the step-size γt := γ0t
−ζ with

ζ ∈ [0, 1) satisfies

γ0 < min

{
1

Tr(Σ̃m)
,

1

r′Tr(Σm)
,

1

2Tr(Σm)

}
∼ O(1) , (7)

the Bias defined in Proposition 1 holds

Bias .
γ0r
′nζ−1√

E[1− γ0r′Tr(Σm)]4
‖f∗‖2 ∼ O

(
nζ−1

)
. (8)

Remark: In our paper, I − γtΣm (t = 1, 2, . . . , n) is required to be a contraction map by taking γ0 < 1/Tr(Σm).
Though Tr(Σm) is a random variable, the condition γ0 < 1/Tr(Σm) can be equivalently substituted by γ0 <

1/[cTr(Σ̃m)] for some large c (independent of n, m, d) with exponentially high probability. This is because, Tr(Σm)
is a sub-exponential random variable with O(1) norm in Lemma 2, which makes the constant c unnecessary to be
quite large. For example, the probability with exp(−10) < 10−4 and exp(−100) < 10−43 by taking c = 10, or 100 is
enough small in practice. Accordingly, the condition in Eq. 7 can be equivalently substituted by γ0 <

1

cr′Tr(Σ̃m)
for

some large c. This is also suitable for estimating Variance.

Theorem 2. (Error bound for variance) Under Assumptions 2, 3, 4 with r′ > 1, and Assumption 5 with τ > 0, if the
step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies Eq. 7, the Variance defined in Proposition 1 holds

Variance .
γ0r
′τ2√

E[1− γ0r′Tr(Σm)]2

{
mnζ−1, if m 6 n
γ0τ

2, if m > n
∼
{
O
(
mnζ−1

)
, if m 6 n

O (1) , if m > n .
(9)

Remark: The error bound for Variance is demonstrated to be unimodal, and converges to O(1) in the over-
parameterized regimes, which matches recent results relying on closed-form solution on (refined) variance, e.g.,
(d’Ascoli et al., 2020b; Adlam & Pennington, 2020; Lin & Dobriban, 2021).

4 PROOF OUTLINE AND DISCUSSION

In this section, we first introduce the structure of the proofs with high level ideas, and then discuss our work with
previous literature in terms of the used techniques and the obtained results.

4.1 PROOF OUTLINE

We (partly) disentangle the multiple randomness sources on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators Σm and Σ̃m in Section 3.2, and provide the respective
(bias and variance) upper bounds in terms of multiple randomness sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗, with Σm = Ex[ϕ(x)⊗ ϕ(x)] . (10)
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excess risk EX,W ,ε〈η̄n,Σmη̄n〉

Bias EX,W 〈η̄biasn ,Σmη̄
bias
n 〉

B3: η̄bXWn
O(nζ−1)

B2: η̄bXn − η̄bXWn
O(nζ−1)

‖ηbXt − ηbXWt ‖2
in Lem. 6

B1: η̄biasn − η̄bXn
O(nζ−1)

decomposition
in Lem. 7:

‖ηbiast − η̄bXt ‖2 +Ht

‖Ht‖22
in Lem. 9

‖ηbiast − η̄bXt ‖22
in Lem. 8

Variance EX,W ,ε〈η̄varn ,Σmη̄
var
n 〉

V3: η̄vXWn{
O(nζ−1m)

O(nζ−1 + n
m

)

CvXW
t in Lem. 10

V2: η̄vXn − η̄vXWn{
O(nζ−1m)

O(1)

CvX−W
t in Lem. 11

V1: η̄varn − η̄vXn{
O(nζ−1m) if m 6 n

O(1) if m > n

Cv−X
t in Lem. 12

Cv−X
t with ζ = 0

in Lem. 5

Figure 1: The roadmap of proofs.

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗, with Σ̃m = Ex,W [ϕ(x)⊗ ϕ(x)] , (11)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn := 1

n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "deterministic"

version of ηbiast : we omit the randomness onX (data sampling, stochastic gradients) by replacing [ϕ(x)ϕ(x)>] with its
expectation Σm. Likewise, ηbXWt is a deterministic version of ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Bias can be decomposed as Bias . B1+B2+B3, where B1 := EX,W

[
〈η̄biasn −

η̄bXn ,Σm(η̄biasn − η̄bXn )〉
]

and B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 := 〈η̄bXWn , Σ̃mη̄

bXW
n 〉. Here B3 is a

deterministic quantity that is closely connected to model (intrinsic) bias without any randomness; while B1 and B2
evaluate the effect of randomness fromX andW on the bias, respectively. The error bounds (convergence rates) for
them can be directly found in Figure 1.

To bound B3, we directly focus on its formulation by virtue of spectrum decomposition and integral estimation. To
bound B2, we need study ‖ηbXt −ηbXWt ‖2 . ‖Σm‖2‖f∗‖ in Lemma 6. To bound B1, it can be further decomposed as (here
we use inaccurate expression for description simplicity) B1 .

∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm − ϕ(xt)⊗ ϕ(xt)]η
bX
t−1. The first term can be upper bounded by

∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 . Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0, with Σm = Ex[ϕ(x)⊗ ϕ(x)] . (12)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0, with Σ̃m = Ex,W [ϕ(x)⊗ ϕ(x)] , (13)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn := 1

n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a

"semi-stochastic" version of ηvart : we keep the randomness due to the noise εt but omit the randomness on X (data
sampling) by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηvXWt can be regarded as a "semi-stochastic"
version of ηvXt by replacing Σm with its expectation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Variance can be decomposed as Variance . V1 + V2 + V3, where
V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
, V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact the multiple randomness, V1 disentangles some random-

ness on data sampling, V2 discards some randomness on initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covariance operator CvXW
t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and the

statistical properties of Σ̃m and Σm. To bound V2, we need study the covariance operatorCvX−W
t := EX,ε[(ηvXt −ηvXWt )⊗

7
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(ηvXt − ηvXWt )] admitting ‖CvX−W
t ‖ . ‖I + Σ̃−2

m Σ2
m‖2Tr(Σm) in Lemma 11. To bound V1, we need study the covariance

operator Cv−X
t := EX,ε[(ηvart −ηvXt )⊗(ηvart −ηvXt )], as a function of ζ ∈ [0, 1), admitting Tr[Cv−X

t (ζ)] 6 Tr[Cv−X
t (0)]

in Lemma 5, and further Cv−X
t - Tr(Σm)I in Lemma 12.

4.2 DISCUSSION WITH PREVIOUS WORK

Difference in techniques: Our proof framework follows (Dieuleveut & Bach, 2016) that focuses on kernel regression
with stochastic approximation in the under-parameterized regimes (d is regarded as finite and much smaller than n).
Nevertheless, even in the under-parameterized regime, their results can not be directly extended to random features
model due to the extra randomness onW , coupling with other randomness sources on noise and data sampling, which
makes their proof framework invalid on some points. To be specific, their results depend on (Bach & Moulines, 2013,
Lemma 1) by taking conditional expectation to bridge the connection between E(‖αt‖2) and E〈αt,Σmαt〉. This is
valid for B1 but expires on other quantities. Besides, the results in (Carratino et al., 2018) on RF with SGD in the
under-parameterized regimes depend on Tikhonov regularization in an approximation theory view, which appears
invalid for our interpolation learning without any (explicit) regularization.

Some technical tools used in this paper follow (Zou et al., 2021) that focuses on linear regression with constant step-size
SGD in over-parameterized regime, e.g., PSD operators and boundedness of Cv−X

t when ζ = 0 in Lemma 12. However,
coupling with multiple randomness sources and adaptive step-size setting (no longer a homogeneous markov chain)
make our analysis intractable. Besides, their results demonstrate that linear regression with SGD generalizes well
(converges with n) but has few findings on double descent. Instead, our result depends on n and m (where d is implicitly
included in m), and is able to explain double descent.

Comparison with previous work: Compared to (Ba et al., 2020) on RF optimized by gradient descent under the
Gaussian data in an asymptotic view, our non-asymptotic result holds for more general data distribution under the
SGD setting. In fact, our data assumption is weaker than most previous work assuming the data to be Gaussian,
uniformly spread on a sphere, or isotropic/correlated features (with spectral decay assumption), except (Liao et al.,
2020). Nevertheless, we extend their asymptotic results relying on the least-squares closed-form solution to non-
asymptotic results under the SGD setting. Compared to (Li et al., 2021) relying on closed-form solution with correlated
features, our result for bias achieves O(1/n) rate under the constant step-size SGD setting, which is better than their
O(
√

log n/n) rate. Their result on variance requires m 6 O(nd) to generalize well while our result does not need this
condition. Besides, our result coincides several findings with refined variance decomposition in (d’Ascoli et al., 2020b;
Adlam & Pennington, 2020; Lin & Dobriban, 2021): the interaction effect can dominate the variance (between samples
and initialization); the unimodality of variance is a prevalent phenomenon.

5 NUMERICAL VALIDATION

In this section, we provide some numerical experiments in Figure 2 to support our theoretical results and findings. Note
that our results go beyond Gaussian data assumption and can be empirically validated on real-world datasets.

(a) SGD vs. min-norm solution (b) step-size (c) Bias (d) Variance

Figure 2: Test MSE (mean±std.) of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7)
across the Gaussian kernel, for d = 784 and n = 600 in (a) and (b). The interpolation threshold occurs at 2m = n due
to σ(Wx) ∈ R2m. Under this setting, the trends of Bias and Variance are empirically given in (c) and (d).

5.1 BEHAVIOR OF RF FOR INTERPOLATION LEARNING

Here we evaluate the test mean square error (MSE) of RF regression on the MNIST data set (Lecun et al., 1998) with
minimal-norm solution and adaptive step-size SGD to study its generalization properties, see Figure 2(a) and 2(b).
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Experimental settings: We take digit 3 vs. 7 as an example, and randomly select 300 training data in these two classes,
resulting in n = 600 for training. Hence, our setting with n = 600 and d = 784 satisfies our realistic high dimensional
assumption. The Gaussian kernel k(x,x′) = exp(−‖x− x′‖22/(2σ2

0)) is used, where the kernel width σ0 is chosen
as σ2

0 = d in high dimensional settings such that ‖x‖22/d ∼ O(1) in Assumption 2. In our experiment, each sample
is normalized to zero-mean with deviations to 1. The initial step-size is set to γ0 = 1 and the initial optimization
parameter θ0 is set to the min-norm solution4 corrupted with zero-mean, unit-variance Gaussian noise, which is used to
evaluate their difference on test error. The experiments are repeated 10 times and the test MSE (mean±std.) can be
regarded as a function of the ratio m/n by tuning m.

SGD vs. minimal-norm solution: Figure 2(a) shows the test MSE of RF regression with averaged SGD (we take
ζ = 0.5 as an example; red line) and minimal-norm solution (blue line). First, we observe the double descent
phenomenon: a phase transition on the two sides of the interpolation threshold at 2m = n when these two optimization
algorithms are employed. Second, in terms of test error, RF with averaged SGD is slightly inferior to that with min-norm
solution, but still generalizes well.

Different step-size: Figure 2(b) shows the test error of RF regression with averaged SGD under three different step-size
settings, i.e., ζ = 0 (red line), ζ = 0.5 (blue line), and ζ = 0.9 (green line). It is not surprising to observe the double
descent phenomenon on these three settings. The constant step-size setting (i.e., ζ = 0) achieves the best generalization
performance in the over-parameterized regime, narrowly followed by the other two adaptive step-size settings, which
experimentally validates the effectiveness of averaged SGD for interpolation learning.

5.2 BEHAVIOR OF OUR ERROR BOUNDS

We have experimentally validate the phase transition and corresponding double descent in the previous section, and
here we aim to semi-quantitatively assess our derived bounds for Bias and Variance, see Figure 2(c) and 2(d).

Experimental settings: Since the target function f∗, the covariance operators Σd, Σm, and the noise ε are unknown on
the MNIST data set, we need some extra assumptions/settings to calculate Bias and Variance for our experimental
evaluation. First, we assume the label noise ε ∼ N (0, 1), which can in turn obtain f∗(x) on both training and test data
due to f∗(x) = y − ε. Second, the covariance matrices Σd and Σm are estimated by the related sample covariance
matrices. When using the Gaussian kernel, the covariance matrix Σ̃m can be directly computed, i.e., (Σ̃m)ii = 1/m

and (Σ̃m)ij = 1
mEx exp

(
−‖x‖

2
2

d

)
, where the expectation is approximated by Monte Carlo sampling with n training

samples. Accordingly, based on the above results, we are ready to calculate ηbiast in Eq. 5, ηbXt in Eq. 10, and ηbXWt in
Eq. 11, respectively, which is further used to approximately compute B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
(red line) and B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
(blue line) and B3 := 〈η̄bXWn , Σ̃mη̄

bXW
n 〉 (green line). The

(approximate) computation for Variance can be similar achieved by this process.

Error bounds for bias: Figure 2(c) shows the trends of (scaled) B1, B2, and B3. Recall our error bound: B1, B2,
B3 ∼ O(nζ−1) with ζ = 0.5 in our experiment. We find that, all of them monotonically decreases when m increases
from the under-parameterized regime to the over-parameterized regime. These experimental results coincide with our
error bound on them, i.e., converging with n at some certain rate (m and n are in the same order in our experiment).

Error bounds for variance: Figure 2(d) shows the trends of (scaled) V1, V2, and V3. Recall our error bound: in the
under-parameterized regime, V1, V2, and V3 increases withm at a certainO(nζ−1m) rate; and in the over-parameterized
regime, V1 and V2 are in O(1) order while V3 decreases with m. Figure 2(d) shows that, when 2m < n, V1 and V2
monotonically increases with m and then remain unchanged when 2m > n. Besides, V3 is observed to be unimodal:
firstly increasing when 2m < n, reaching to the peak at 2m = n, and then decreasing when 2m > n, which admits the
phase transition at 2m = n. Accordingly, these findings accord with our theoretical results, and also matches refined
results in (d’Ascoli et al., 2020b; Adlam & Pennington, 2020; Lin & Dobriban, 2021): the unimodality of variance is a
prevalent phenomenon.

6 CONCLUSION

We present the non-asymptotic results for RF regression under the averaged SGD setting for understanding benign
overfitting. Our theoretical and empirical results demonstrate that, the error bounds for variance and bias can be
unimodal and monotonically decreasing, respectively, which is able to recover the double descent phenomenon.
Regarding to constant/adaptive step-size setting, there is no difference between the constant step-size case and the exact
minimal-norm solution on the convergence rate; while the adaptive step-size case will slow down the learning rate, but
does not change the error bound for variance in over-parameterized regime that remains O(1) order.

4In our numerical experiments, we take the regularization parameter fixed with 10−8 to avoid non-singular.
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ETHICS STATEMENT

In this paper, we focus on generalization properties of random features models trained with SGD, working in a
practical setting where n, m, d are large and comparable. The derived theoretical results in terms of optimization and
generalization would have an important positive impact on over-parameterized models, e.g., deep neural networks. Our
theoretical framework presents fair and non-offensive societal consequence.

REPRODUCIBILITY STATEMENT

We derived exact non-asymptotic error bounds for high dimensional RF regression trained with SGD in under/over-
parameterized regimes. To support our theoretical results, in our main text, we have discussed that the assumptions used
in this paper are fair and attainable; provided a proof roadmap of our proof framework; and detailed the experimental
settings, e.g., data processing, training/test split, and parameter selection. In the appendix, we have provided the
complete proof of our theoretical claims.
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APPENDIX

The outline of the appendix is stated as follows.

• Section A summarizes representative results on random features regarding to double descent under various
settings.

• Section B provides the proofs of lemmas in Section 3.2 on statistical properties of Σm and Σ̃m.
• Appendix C introduces preliminaries on PSD operators in stochastic approximation.
• Section D provides estimation for several typical integrals that are needed for our proof.
• Section E gives error bounds for Bias.
• In Section F, we provide the error bounds for Variance.

A COMPARISONS WITH PREVIOUS WORK

According to the used data assumption, the type of solution, and the derived results, we summarize various representative
approaches in Table 1.

Table 1: Comparison of problem settings on analysis of high dimensional random features on double descent.

data assumption solution result

(Hastie et al., 2019) Gaussian closed-form variance↗↘
(Ba et al., 2020) Gaussian GD variance↗↘

Mei & Montanari (2019) i.i.d on sphere closed-form variance, bias↗↘

(d’Ascoli et al., 2020b) Gaussian closed-form refined 2

(Gerace et al., 2020) Gaussian closed-form ↗↘
(Adlam & Pennington, 2020) Gaussian closed-form refined

(Dhifallah & Lu, 2020) Gaussian closed-form ↗↘
Hu & Lu (2020) Gaussian closed-form ↗↘

(Liao et al., 2020) general closed-form ↗↘
(Lin & Dobriban, 2021) isotropic features with finite moments closed form refined

(Li et al., 2021) correlated features with polynomial decay on Σd closed form interpolation learning

Ours (at least) sub-exponential data SGD variance↗↘, bias↘
1 A refined decomposition on variance is conducted by sources of randomness on data sampling, initialization, label noise to

possess each term d’Ascoli et al. (2020a) or their full decomposition in Adlam & Pennington (2020); Lin & Dobriban (2021).

We mainly discuss the used assumption on data distribution here. It can be found that, most papers assume the data to
be Gaussian or uniformly distributed on the sphere. The following papers admit weaker assumption on data. Given a
correlated features model that is commonly used in high dimensional statistics (Hastie et al., 2019):

x = Σ
1
2

d t , E[ti] = 0,V[ti] = 1, with Σd := Ex[xx>] , (14)

where t ∈ Rd has i.i.d entries ti (i = 1, 2, . . . , d) with zero mean and unit variance. In (Li et al., 2021), they further
require that each entry is i.i.d sub-Gaussian and Σd admits polynomial decay on eigenvalues. Lin & Dobriban (2021)
consider isotropic features with finite moment, i.e., taking Σd := I in Eq. 14 and E[t8+η

i ] < ∞ for any arbitrary
positive constant η > 0. Our model holds for sub-Gaussian and sub-exponential data (at least), and thus the used data
assumption 4 is weaker than them. In (Liao et al., 2020), it makes no assumption on data distribution but requires that
test data “behave" statistically like the training data by concentrated random vectors. Indeed, their data assumption is
weaker than ours, but their analysis framework builds on the exact closed-form solution from random matrix theory.
Instead, we focus on the SGD setting and thus take a unified perspective on optimization and generalization.

B RESULTS ON COVARIANCE OPERATORS

In this section, we present the proofs of Lemma 1, 2, 3, 4 on statistical properties of Σm and Σ̃m.

14
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B.1 PROOF OF LEMMA 1

Here we present the proof of Lemma 1 and then give two examples by taking different activation functions.

Proof. Recall the definition of Σ̃m, we have

Σ̃m := Ex,W [ϕ(x)⊗ ϕ(x)] =
1

m
Ex,Wij∼N (0,1)

[
σ

(
Wx√
d

)
σ
(Wx√

d

)>]
∈ Rm×m .

We consider the diagonal and non-diagonal elements of Σ̃m separately. Here we assume σ(·) : R→ R with single-output
for description simplicity, and the results can be easily extended to multiple-output cases, e.g., σ(x) = [cos(x), sin(x)]>

corresponding to the Gaussian kernel.

Diagonal element: The diagonal entry (Σ̃m)ii = 1
mEx,ωi [σ(

ω>i x√
d

)σ(
ω>i x√
d

)>] = 1
mExEω[σ(ω>x√

d
)]2 is the same. In fact,

Eω

[
σ
(

ω>x√
d

)]2
is actually a one-dimensional integration by considering the basis (e1, e2, · · · , ed) with e1 = x/‖x‖2,

and e2, · · · , ed any completion of the basis. This technique is commonly used in (Williams, 1998; Louart et al., 2018).
The random feature ω admits the coordinate representation ω = ω̄1e1 + ω̄2e2 + · · ·+ ω̄ded, and thus

ω>x = (ω̄1e1 + ω̄2e2 + · · ·+ ω̄ded)
>(‖x‖e1) = ‖x‖ω̄1 ,

which implies

Eω

[
σ

(
ω>x√
d

)]2

= (2π)−
d
2

∫
Rd

[
σ

(
ω>x√
d

)]2

exp

(
−1

2
‖ω‖22

)
dω =

1√
2π

∫
R

[
σ

(
z‖x‖√
d

)]2

exp(−z2)dz

= Ez∼N (0,‖x‖22/d)[σ(z)]2 .

That means, (Σ̃m)ii = 1
mExEz∼N (0,‖x‖22/d)[σ(z)]2.

Non-diagonal element: The non-diagonal entry (Σ̃m)ij = 1
mEx,ωi,ωj [σ(

ω>i x√
d

)σ(
ω>j x√
d

)>] = 1
mEx[Eωσ(ω>x√

d
)]2 is the

same due to the independence between ωi and ωj . Likewise, it can be represented as a one-dimensional integration

(Σ̃m)ij =
1

m
Ex

[
Eωσ

(
ω>x√
d

)]2

=
1

m
Ex

[
Ez∼N (0,1)σ

(
z‖x‖√
d

)]2

=
1

m
Ex

(
Ez∼N (0,‖x‖22/d)[σ(z)]

)2

.

Accordingly, by denoting a := (Σ̃m)ii and b := (Σ̃m)ij , the covariance operator Σ̃m can be represented as

Σ̃m = (a− b)Im + b11> ∈ Rm×m , (15)

with its determinant det(Σ̃m) = (1 + mb
a−b )(a− b)

m. Hence, the eigenvalues of Σ̃m can be naturally obtained by the

matrix determinant lemma: λ̃1(Σ̃m) = a − b + bm and the remaining eigenvalues are a − b, which concludes the
proof.

Here we give the calculation details for the Gaussian kernel that corresponds to the sin / cos activation function
σ(x) = [cos(x), sin(x)]> and arc-cosine kernel that corresponds to the ReLU function σ(x) = max{0, x}.
Regarding to the Gaussian kernel, by virtue of E[cos(a>z)] = cos(µ>z) exp(− 1

2z
>Az) for a ∼ N (µ,A) and

ωi − ωj ∼ N (0, 2Id), we have (for the non-diagonal element)

(Σ̃m)ij =
1

m
Ex,ωi,ωj

[
σ(
ω>i x√
d

)σ(
ω>j x√
d

)>

]
=

1

m
ExEωi,ωj

[
cos(

x>(ωi − ωj)√
d

)

]
=

1

m
Ex exp

(
−‖x‖

2
2

d

)
.

The diagonal element admits (Σ̃m)ii = 1/m.

Regarding to the first-order arc-cosine kernel, denote z̃ := max{0, z} with z ∼ N (0, ‖x‖22/d), it is subject to the
Rectified Gaussian distribution admitting (Li et al. (2021) also present this)

E[z̃] =
‖x‖2√

2dπ
, E[z̃]2 =

‖x‖22
2d

, V[z̃] =
‖x‖22
2d

(
1− 1

π

)
.

15



Under review as a conference paper at ICLR 2022

Accordingly, the diagonal element is

(Σ̃m)ii = Ez∼N (0,‖x‖22/d)[σ(z)]2 =
1

2md
Ex‖x‖22 =

1

2md
Tr(Σd) ,

and the non-diagonal element is

(Σ̃m)ij =
1

m
Ex

(
Ez∼N (0,‖x‖22/d)[σ(z)]

)2

=
1

2mdπ
Tr(Σd) ,

with the covariance operator Σd := Ex[xx>].

B.2 PROOF OF LEMMA 2

Proof. According to (Wainwright, 2019, Theorem 2.26), by virtue of the Lipschitz function σ(·) of Gaussian variables,
we have

P
[∣∣∣∣σ(ω>x√d

)
− Eω∼N (0,Id)σ

(
ω>x√
d

) ∣∣∣∣ > t

]
6 c exp(−t2), ∀t > 0 ,

which implies that σ
(
ω>x√
d

)
is a sub-Gaussian random variable due to its expectation in the O(1) order. Accordingly,

‖Σm − Σ̃m‖2 is a sub-exponential random variable with

‖Σm − Σ̃m‖2 6 ‖Σm‖2 + ‖Σ̃m‖2 =
1

m

∥∥∥∥∥Ex

[
σ

(
Wx√
d

)
σ

(
Wx√
d

)> ]∥∥∥∥∥
2

+O(1)

6
1

m
Ex

∥∥∥∥σ(Wx√
d

)∥∥∥∥2

2

+O(1) [Jensen’s inequality]

.
1

m

(
Ex‖σ(0m)‖22 + Ex

∥∥∥∥Wx√
d

∥∥∥∥2

2

)
+O(1) [σ: Lipschitz continuous]

. O(1) +
1

md

m∑
i=1

ω>i Ex[xx>]ωi [using ‖Σd‖2 <∞]

.
1

d
‖ω‖22 [here ω ∼ N (0, Id)] ,

where ‖ω‖22 is a χ2(d) random variable, and thus ‖Σm − Σ̃m‖2 has sub-exponential norm O(1). Accordingly, the high
moment E‖Σm‖p2 <∞ holds for finite p. Following the above derivation, we can also conclude that Tr(Σm) has the
sub-exponential norm O(1), i.e.

Tr(Σm) =
1

m
ExTr

[
σ

(
Wx√
d

)
σ

(
Wx√
d

)>]
=

1

m
Ex

∥∥∥∥σ(Wx√
d

)∥∥∥∥2

2

.
1

d
‖ω‖22 .

Likewise, we can derive Tr(Σ2
m) <∞ in the similar fashion. Besides, our work needs the error bound for the smallest

eigenvalue of Σm, i.e., λm. By virtue of Schur–Horn theorem (Horn, 1954), λm admits

λm 6 min
i∈{1,2,...,m}

(Σm)ii ∼ O
(

1

m

)
.

B.3 PROOF OF LEMMA 3

Proof. The remark in Lemma 1 demonstrates that Σ̃m is positive definite and thus Σ̃−1
m exists. Recall the formulation

of Σ̃m in Eq. 15 with a := (Σ̃m)ii and b := (Σ̃m)ij , by virtue of Sherman–Morrison formula, the inverse of Σ̃m is

(Σ̃m)−1 =
1

a− b

(
Im −

b

a− b+ bm
11>

)
=

1

λ̃2

(
Im −

b

λ̃1

11>
)
.
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Accordingly, we have∥∥∥Σ̃−2
m EW (Σ2

m)
∥∥∥

2
=
∥∥∥EW [Σ̃−2

m Σ2
m]
∥∥∥

2
6 EW

∥∥∥Σ̃−1
m Σm

∥∥∥2

2

= EW

∥∥∥∥∥ 1

mλ̃2

(
Im −

b

λ̃1

11>
)
Ex

[
σ

(
Wx√
d

)
σ

(
Wx√
d

)> ]∥∥∥∥∥
2

2

.

∥∥∥∥Im − b

λ̃1

11>
∥∥∥∥2

2

EW

∥∥∥∥∥Ex

[
σ

(
Wx√
d

)
σ

(
Wx√
d

)> ]∥∥∥∥∥
2

2

[using λ̃2 ∼ O( 1
m ) in Lemma 1]

.

∥∥∥∥Im − b

λ̃1

11>
∥∥∥∥2

2

EW

(
‖ω‖22
d

)2

[here ω ∼ N (0, Id) in Lemma 2]

6 EW

(
‖ω‖22
d

)2

∼ O(1) ,

due to b ∼ O(1/m), λ̃1 ∼ O(1) in Lemma 1, and ‖ω‖22 ∼ χ2(d).

B.4 PROOF OF LEMMA 4

Proof. The first inequality naturally holds, and so we focus on the second inequality. Denote Φ := Ex,W [ϕ(x) ⊗
ϕ(x)⊗ ϕ(x)⊗ ϕ(x)], its diagonal elements are the same

Φii =
m− 1

m2
Ex

(
Ez∼N (0,‖x‖22/d)[σ(z)]2

)2

+
1

m2
ExEz∼N (0,‖x‖22/d)[σ(z)]4 ∼ O

(
1

m

)
.

Its non-diagonal elements Φij with i 6= j are the same

Φij =
m− 3

m2
Ex

[(
Ez∼N (0,‖x‖22/d)[σ(z)]

)2

Ez∼N (0,‖x‖22/d)[σ(z)]2
]

+
2

m2
Ex

[
Ez∼N (0,‖x‖22/d)[σ(z)]3Ez∼N (0,‖x‖22/d)[σ(z)]

]
,

where the first term is in O( 1
m ) order and the second term is in O( 1

m2 ) order. By denoting a := (Σ̃m)ii, b := (Σ̃m)ij

as given by Lemma 1, A := Φii, and B := Φij , the operator rTr(Σ̃m)Σ̃m − Φ can be represented as

rTr(Σ̃m)Σm − Φ = [rm(a− b)−A+B] Im + (rmab−B)11> ,

of which the smallest eigenvalue is rma(a − b) − A + B. Accordingly, to ensure the positive definiteness of

rTr(Σ̃m)Σ̃m−Φ, which implies EW

(
Ex

(
[ϕ(x)⊗ϕ(x)]A[ϕ(x)⊗ϕ(x)]

))
4 rTr(Σ̃m)Σ̃m, we require its smallest

eigenvalue is non-negative, i.e., rma(a− b)−A+B > 0. That means, r should satisfies

r >
A−B

ma(a− b)
=

A−B
1
mExEz∼N (0,‖x‖22/d)[σ(z)]2ExV[σ(z)]

. (16)

Since A−B admits

A−B 6
1

m
ExEz[σ(z)]2ExV[σ(z)] +O

(
1

m2

)
,

then by taking r := 1 +O
(

1
m

)
, the condition in Eq. 16 satisfies, and thus rTr(Σ̃m)Σ̃m − Φ is positive definite, which

concludes the proof.

C PRELIMINARIES ON PSD OPERATORS

In this section, we first define some stochastic/deterministic PSD operators that follow (Jain et al., 2017; Zou et al.,
2021) in stochastic approximation, and then present Lemma 5 that is based on PSD operators and is needed to estimate
B1 and V1. Note that, the PSD operators will make the notation in our proof simple and clarity but do not change the
proof itself.
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Following (Jain et al., 2017; Zou et al., 2021), we define several stochastic PSD operators as below. Given the random
features matrixW , define (for any PSD operator A)

SW := Ex[ϕ(x)⊗ ϕ(x)⊗ ϕ(x)⊗ ϕ(x)], S̃W := Σm ⊗ Σm ,

SW ◦A := Ex

[
ϕ(x)>ϕ(x)Aϕ(x)⊗ ϕ(x)

]
, S̃W ◦A := ΣmAΣm .

Besides, for any γt (t = 1, 2, . . . , n), define the following operators

(I − γtT W) ◦A := Ex[I − γtϕ(x)⊗ ϕ(x)]A[I − γtϕ(x)⊗ ϕ(x)], (I − γtT̃ W) ◦A := (I − γtΣm)A(I − γtΣm) ,

associated with two corresponding operators (that depend on γt)

T W := Σm ⊗ I + I ⊗ Σm − γtSW, T̃ W := Σm ⊗ I + I ⊗ Σm − γtS̃W .

Clearly, the above operators SW, S̃W, (I − γtT W), (I − γtT̃ W), T W, and T̃ W are PSD, and SW < S̃W. The proof is similar
to (Zou et al., 2021, Lemma B.1) and thus we omit it here.

Further, if γ0 < 1/Tr(Σm), I − γiΣm (i = 1, 2, . . . , n) is a contraction map, and thus for any PSD operator A and
step-size γi, the following exists

∞∑
t=0

(I − γiT̃ W)t ◦A =

∞∑
t=0

(I − γiΣm)tA(I − γiΣm)t .

Hence, (T̃ W)−1 := γi
∑∞
t=0(I − γiT̃ W)t exists and PSD.

Based on the above stochastic operators, we define several deterministic PSD ones by taking the expectation overW as
below. For any given γi (i = 1, 2, . . . , n), we have the following PSD operators

S := EW [Σm ⊗ Σm], S̃ := Σ̃m ⊗ Σ̃m ,

T := Σ̃m ⊗ I + I ⊗ Σ̃m − γiS, T̃ := Σ̃m ⊗ I + I ⊗ Σ̃m − γiS̃ ,
S ◦A := EW [ΣmAΣm], S̃ ◦A := Σ̃mAΣ̃m ,

(I − γiT ) ◦A := EW [(I − γiΣm)A(I − γΣm)], (I − γiT̃ ) ◦A := (I − γiΣ̃m)A(I − γiΣ̃m) ,

which implies T̃ − T = γi(S − S̃).

Based on the above PSD operators, we present a lemma here that is used to estimate B1 and V1.5

Lemma 5. Under Assumptions 1, 2, 3, 4 with r′ > 1, denote

Dv−X
t :=

t∑
s=1

t∏
i=s+1

(I − γiT W) ◦ γ2
sBΣm , (17)

with a scalar B independent of k, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

2Tr(Σm)

}
,

then Dv−X
t can be upper bounded by

Dv−X
t 4

γ0B

1− γ0r′Tr(Σm)
I .

Remark: The PSD operator I − γiT W cannot be guaranteed as a contraction map since we cannot directly choose
γ0 <

1
Tr[ϕ(x)ϕ(x)>]

for general data x. However, its summation in Eq. 17 can be still bounded by our lemma. In our
work, we set B := r′Tr(Σm) for estimate B1, and B := τ2r′γ0[Tr(Σm) + γ0Tr(Σ2

m)] to bound V1, respectively.

Proof. Our proof can be divided into two parts: one part is to prove Tr[Dv−X
t ] 6 Tr[Dv−X

t (0)] for any ζ ∈ [0, 1); the
other part is to provide the upper bound of Dv−X

t (0). We focus on the first part and the proof in the second part follows
(Jain et al., 2017, Lemmas 3 and 5) and (Zou et al., 2021, Lemma B.4).

5Our proofs on the remaining quantities including V2, V3, B2, B3 do not use PSD operators.
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Denote the constant step-size setting (special case) with ζ = 0 for Dv−X
t as

Dv−X
t (0) :=

t∑
s=1

(I − γ0T
W)t−s ◦ γ2

0BΣm .

The quantity Tr[Dv−X
t ] admits the following representation by the definition of I − γiT W

Tr[Dv−X
t ] =

t∑
s=1

t∏
i=s+1

Tr
[
(I − γiT W) ◦ γ2

sBΣm
]

=

t∑
s=1

Bγ2
s

t∏
i=s+1

Tr

(
Ex[I − γiϕ(x)⊗ ϕ(x)]Σm[I − γiϕ(x)⊗ ϕ(x)]

)

= B

t∑
s=1

γ2
s

t∏
i=s+1

Tr

(
Σm − 2γiΣ

2
m + γ2

i ΣmEx [ϕ(x)⊗ ϕ(x)⊗ ϕ(x)⊗ ϕ(x)]

)
.

Based on the above results, we have

Tr[Dv−X
t (0)]− Tr[Dv−X

t ] = B

t∑
s=1

t∏
i=s+1

Tr

(
Σm

[
(γ2

0 − γ2
s )I − 2(γ3

0 − γ2
sγi)Σm

+ (γ4
0 − γ2

i γ
2
s )Ex [ϕ(x)⊗ ϕ(x)⊗ ϕ(x)⊗ ϕ(x)]

])
> B

t∑
s=1

t∏
i=s+1

Tr

(
Σm

[
(γ2

0 − γ2
s )I − 2(γ3

0 − γ2
sγi)Σm + (γ4

0 − γ2
i γ

2
s )Σ2

m

])

= B

t∑
s=1

t∏
i=s+1

m∑
j=1

(
λj

[
(γ2

0 − γ2
s )− 2(γ3

0 − γ2
sγi)λj + (γ4

0 − γ2
i γ

2
s )λ2

j

])

= B

t∑
s=1

t∏
i=s+1

m∑
j=1

(
λj

[
(γ4

0 − γ2
i γ

2
s )

(
λj −

γ3
0 − γ2

sγi
γ4

0 − γ2
i γ

2
s

)2

− γ2
0γ

2
s (γ0 − γi)2

γ4
0 − γ2

i γ
2
s

])
.

Accordingly, Tr[Dv−X
t (0)]− Tr[Dv−X

t ] > 0 holds if λi 6
γ3
0−γ

2
sγi−γ

2
0γs+γ0γ

2
s

γ4
0−γ2

sγ
2
i

. This condition can be satisfied by

λi 6 Tr(Σm) 6
1

2γ0
6
γ3

0 − γ2
sγi − γ2

0γs + γ0γ
2
s

γ4
0 − γ2

sγ
2
i

,

where the second inequality holds by γ0 6 1
2Tr(Σm) .

In the next, we give the upper bound for Dv−X
t (0). The proof follows (Jain et al., 2017, Lemmas 3 and 5) and (Zou

et al., 2021, Lemma B.4). We just present it here for completeness. We firstly demonstrate that Dv−X
t (0) is increasing

and bounded, which implies that the limit Dv−X
∞ (0) exists, and then we seek for the upper bound of this limit. To be

specific, Dv−X
t (0) admits the following expression

Dv−X
t (0) :=

t−1∑
k=1

(I − γ0T
W)k ◦ γ2

0BΣm = Dv−X
t−1 (0) + (I − γ0T

W)t−1 ◦ γ2
0BΣm < Dv−X

t−1 (0) ,

which implies that Dv−X
t (0) is increasing.

Let At := (I − γ0T
W)t−1 ◦BΣm, and then At = (I − γ0T

W) ◦At−1. We have

Tr(At) = Tr[(I − γ0T
W) ◦At−1] = Tr(At−1)− 2γ0Tr(ΣmAt−1) + γ2

0Tr(SW ◦At−1)

6 Tr(At−1)− 2γ0Tr(ΣmAt−1) + γ2
0r
′Tr(ΣmAt−1)Tr(Σm) [using Assumption 4]

6 Tr[(I − γ0Σm)At−1] 6 (1− γ0λm)Tr(At−1) , [using γ0 6 1
r′Tr(Σm) ]

which implies

Tr[Dv−X
t (0)] 6 γ2

0

∞∑
t=0

Tr
(
(I − γ0T

W)t ◦BΣm
)
6 Tr(BΣm)

∞∑
t=0

(1− γ0λm)t 6
γ0Tr(BΣm)

λm
<∞ .
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Accordingly, the monotonicity and boundedness of {Dv−X
t (0)}∞t=0 implies that the limit exists, denoted as Dv−X

∞ (0)
with

Dv−X
∞ (0) = (I − γ0T

W) ◦Dv−X
∞ (0) + γ2

0BΣm ,

which implies Dv−X
∞ (0) = γ0(T W)−1 ◦BΣm Accordingly, we have

T̃ W ◦Dv−X
∞ (0) = T W ◦Dv−X

∞ (0) + γ0S
W ◦Dv−X

∞ (0)− γ0S̃
W ◦Dv−X

∞ (0) [definition of T̃ W]

= γ0BΣm + γ0S
W ◦Dv−X

∞ (0)− γ0S̃
W ◦Dv−X

∞ (0)

4 γ0BΣm + γ0S
W ◦Dv−X

∞ (0) . [using SW < S̃W]

(18)

Besides, (T̃ W)−1 ◦ Σm can be bounded by

(T̃ W)−1 ◦ Σm = γ0

∞∑
t=0

(I − γ0T̃
W) ◦ Σm = γ0

∞∑
t=0

(I − γ0Σm)tΣm(I − γ0Σm)t

4 γ0

∞∑
t=0

(I − γ0Σm)tΣm = I . [using γ0 6 1/Tr(Σm)]

(19)

Therefore, Dv−X
∞ (0) can be further upper bounded by

Dv−X
∞ (0) 4 γ0(T̃ W)−1 ◦BΣm + γ0(T̃ W)−1 ◦ SW ◦Dv−X

∞ (0) [using Eq. 18]

4 γ0B + γ0(T̃ W)−1 ◦ SW ◦Dv−X
∞ (0) [using Eq. 19]

= γ0B

∞∑
t=0

[γ0(T̃ W)−1 ◦ SW]t ◦ I [using telescopic sum]

4 γ0B

∞∑
t=0

(
γ0(T̃ W)−1 ◦ SW

)t−1

◦ γ0(T̃ W)−1 ◦ SW ◦ I

4 γ0B

∞∑
t=0

(
γ0(T̃ W)−1 ◦ SW

)t−1

◦ γ0(T̃ W)−1 ◦ Tr(Σm)Σm [using Assumption 4]

4 γ0B

∞∑
t=0

[γ0r
′Tr(Σm)]

t ◦ I [using Eq. 19]

4
γ0B

1− γ0r′Tr(Σm)
I . [using γ0 <

1
r′tr(Σm) ]

(20)

Hence, based on the above results, Dv−X
t (0) can be further upper bounded by

Dv−X
t (0) = (I − γ0T

W) ◦Dv−X
t−1 (0) + γ2

0BΣm

= (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0(SW − S̃W) ◦Dv−X

t−1 + γ2
0BΣm

4 (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0S

W ◦Dv−X
∞ (0) + γ2

0BΣm

4 (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0r
′Tr[Dv−X

∞ (0)]Tr(Σm)Σm + γ2
0BΣm [using Assumption 4]

4 (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0BΣm

(
Tr(Σm)r′γ0

1− γ0r′Tr(Σm)
+ 1

)
4 γ2

0B

(
Tr(Σm)r′γ0

1− γ0r′Tr(Σm)
+ 1

) ∞∑
k=0

(I − γ0Σm)kΣm

4 γ0B

(
Tr(Σm)r′γ0

1− γ0r′Tr(Σm)
+ 1

)
I ,

(21)

which concludes the proof.

D SOME USEFUL INTEGRALS ESTIMATION

In this section, we present the estimation for the following integrals that will be needed in our proof by denoting
κ := 1− ζ ∈ (0, 1].
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Integral 1: the following integral admits∫ t

1

u−ζ exp

(
− cu

1−ζ − 1

1− ζ

)
du =

1

c

∫ [ cκ (tκ−1)]
1
κ

0

u−ζu1−κκvκ−1 exp(−vκ)dv

6
1

c

∫ ∞
0

exp(−x)dx =

(
1

c
∧ t
)
,

(22)

where we directly obtain an exact estimation t. Here we change the integral variable vκ := cu
1−ζ−1
1−ζ and

dv

du
= u1−κ

(κ
c

) 1
κ

(uκ − 1)
κ−1
κ =

1

c
u1−κκvκ−1 .

Accordingly, if we take ζ = 0 in Eq. 22, we have∫ t

1

exp

(
− cu

1−ζ − 1

1− ζ

)
du 6

(
1

c
tζ ∧ t

)
. (23)

Similar to Eq. 23, we have ∫ n

t

exp

(
− λ̃iγ0

u1−ζ − t1−ζ

1− ζ

)
du 6 (n− t) ∧ nζ

λ̃iγ0

. (24)

Integral 2: we consider the following integral∫ t

1

u−ζ exp

(
− c (t+ 1)1−ζ − (u+ 1)1−ζ

1− ζ

)
du

=
(t+ 1)1−κ

c

∫ C

0

[(t+ 1)(1− x)
1
κ − 1]κ−1(1− x)

1−κ
κ κvκ−1 exp(−vκ)dv with x := (

v

t+ 1
)κ
κ

c

6
2ζ

c

∫ ∞
0

κvκ−1 exp(−vκ)dv

=

(
2ζ

c
∧ t
)
,

(25)

where we change the integral variable vκ := c (t+1)1−ζ−(u+1)1−ζ

1−ζ with κ := 1− ζ such that

du = −κ
1/κ

c1/κ
(u+ 1

t+ 1

)1−κ [
1−

(u+ 1

t+ 1

)κ]1− 1
κ

dv = −κ
c

[
1−

( v

t+ 1

)κκ
c

] 1−κ
κ
(

v

t+ 1

)κ−1

dv ,

with (u+1
t+1 )κ = 1 − (v/(t + 1))κκ/c and the upper limit of integral is C := c1/κ[(t + 1)κ − (u + 1)κ]1/κ. Due to

u = (t+ 1)(1− x)
1
κ − 1 ∈ [1, t], we have (1− x)

1
κ ∈ [2/(t+ 1), 1] and accordingly

g(x) := [(t+ 1)(1− x)
1
κ − 1]κ−1(1− x)

1−κ
κ 6 21−κ(t+ 1)κ−1 with x ∈

[
0, 1−

(
2

t+ 1

)κ]
,

as an increasing function of x.

Similar to Eq. 25, we have the following estimation∫ t

1

γ2
0u
−2ζ exp

(
− 2λ̃iγ0

(t+ 1)1−ζ − (u+ 1)1−ζ

1− ζ

)
du .

(
γ0

λ̃i
∧ γ2

0t

)
. (26)

E PROOFS FOR Bias

In this section, we present the error bound for Bias. By virtue of Minkowski inequality, we have(
EX,W

[
〈η̄biasn ,Σmη̄

bias
n 〉

]) 1
2

6
(
EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]︸ ︷︷ ︸
,B1

) 1
2

+
(
EW

[
〈η̄bXn ,Σmη̄bXn 〉

]) 1
2

6(B1)
1
2 +
(
EW

[
〈η̄bXn −η̄bXWn ,Σm(η̄bXn −η̄bXWn )〉

]︸ ︷︷ ︸
,B2

) 1
2

+[〈η̄bXWn , Σ̃mη̄
bXW
n 〉︸ ︷︷ ︸

,B3

]
1
2 .

(27)

In the next, we give the error bounds for B3, B2, and B1, respectively.
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E.1 BOUND FOR B3

In this section, we aim to bound B3 := 〈η̄bXWn , Σ̃mη̄
bXW
n 〉.

Proposition 2. Under Assumption 1, 2, 3, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies γ0 6 1

Tr(Σ̃m)
, then B3

can be bounded by

B3 .
nζ−1

γ0
‖f∗‖2 .

Proof. Due to γ0 6 1

Tr(Σ̃m)
, the operator I−γtΣ̃m is a contraction map for t = 1, 2, . . . , n. Take spectral decomposition

Σ̃m = Ũ Λ̃Ũ> where Ũ is an orthogonal matrix and Λ̃ is a diagonal matrix with (Λ̃)11 = λ̃1 and (Λ̃)ii = λ̃2

(i = 2, 3, . . . ,m) as Σ̃m has only two distinct eigenvalues in Lemma 1. Accordingly, we have

〈η̄bXWn , Σ̃mη̄
bXW
n 〉 =

1

n2

〈
n−1∑
t=0

t∏
i=1

(I − γiΣ̃m)f∗, Σ̃m

n−1∑
t=0

t∏
i=1

(I − γiΣ̃m)f∗

〉

=
1

n2

∥∥∥∥∥
n−1∑
t=0

t∏
i=1

(I − γiΣ̃m)Σ̃
1
2
mf
∗

∥∥∥∥∥
2

6
1

n2

∥∥∥∥∥
n−1∑
t=0

t∏
i=1

(I − γiΛ̃)tΛ̃
1
2

∥∥∥∥∥
2

2

‖f∗‖2 [using Σ̃m = Ũ Λ̃Ũ>]

6
1

n
max
k=1,2

n−1∑
t=0

t∏
i=1

(1− γiλ̃k)2λ̃k‖f∗‖2

6
1

n

n−1∑
t=0

t∏
i=1

(1− γiλ̃1)2λ̃1‖f∗‖2 +
1

n

n−1∑
t=0

t∏
i=1

(1− γiλ̃2)2λ̃2‖f∗‖2 .

(28)

Note that
n−1∑
t=0

t∏
i=1

(1− γiλ̃j)2 6
n−1∑
t=0

exp

(
−2γ0λ̃j

t∑
i=1

i−ζ

)
6
n−1∑
t=0

exp

(
−2γ0λ̃j

∫ t+1

1

1

xζ
dx

)

=

n−1∑
t=0

exp

(
−2γ0λ̃j

(t+ 1)1−ζ − 1

1− ζ

)
6 1 +

∫ n

0

exp

(
−2γ0λ̃j

(t+ 1)1−ζ − 1

1− ζ

)
dx

6 1 +

(
nζ

2γ0λ̃j
∧ n

)
, [using Eq. 23]

(29)

here according to Lemma 1, for λ̃1, the upper bound nζ

2γ0λ̃1
is tighter than n due to λ̃1 ∼ O(1); while this conclusion

might not hold for λ̃2 due to λ̃2 ∼ O(1/m). Then, taking Eq. 29 back to Eq. 28, we have

〈η̄bXWn , Σ̃mη̄
bXW
n 〉 .

nζ−1

γ0
‖f∗‖2 +

λ̃2

n

(
nζ

γ0λ̃2

∧ n
)
‖f∗‖2

.
nζ−1

γ0
‖f∗‖2 ∼ O(nζ−1) ,

(30)

which concludes the proof.

E.2 BOUND FOR B2

Here we aim to bound B2 := EW

[
〈η̄bXn −η̄bXWn ,Σm(η̄bXn −η̄bXWn )〉

]
:= EW

[
〈ᾱW
n,Σmᾱ

W
n〉
]

αW
t := ηbXt − ηbXWt = (I − γtΣm)(ηbXt−1 − ηbXWt−1) + γt(Σ̃m − Σm)ηbXWt−1 , (31)
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with αW
0 = 0. Accordingly, αW

t under the adaptive step-size setting can be formulated as

αW
t =

t∑
k=1

γk

t∏
j=k+1

(I − γjΣm)(Σ̃m − Σm)

k−1∏
s=1

(I − γsΣ̃m)f∗ , (32)

where we use the recursion

At := (I − γtΣm)At−1 +Bt =

t∑
s=1

t∏
i=s+1

(I − γiΣm)Bs .

Note that EW [αW
t |αW

t−1] = (I − γtΣ̃m)αW
t−1, following (Zou et al., 2021, Lemma B.3), we can rewrite B2 as a

double-sum formulation

B2 := EW

[
〈ᾱW
n,Σmᾱ

W
n〉
]

= EW

[
〈Σm, ᾱW

n ⊗ ᾱW
n〉
]

= Tr
(
EW

[
Σmᾱ

W
n ⊗ ᾱW

n

])
6 Tr

(
Σ̃mEW

[
ᾱW
n ⊗ ᾱW

n

])
= EW

[
〈Σ̃m, ᾱW

n ⊗ ᾱW
n〉
]

=
1

n2
EW

〈Σ̃m,
∑

06k6t6n−1

EW [αW
t ⊗ αW

k] +
∑

06k<t6n−1

EW [αW
t ⊗ αW

k]

〉
6

1

n2
EW

〈Σ̃m,
∑

06k6t6n−1

EW [αW
t ⊗ αW

k] +
∑

06k6t6n−1

EW [αW
t ⊗ αW

k]

〉
=

2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σ̃m,EW [αW
t ⊗ αW

t ]︸ ︷︷ ︸
:=CbW

t

〉
,

(33)

and thus we have the following error bound for B2.
Proposition 3. Under Assumption 1, 2, 3, if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies

γ0 6 min

{
1

Tr(Σm)
,

1

Tr(Σ̃m)

}
,

then B2 can be bounded by

B2 . γ0n
ζ−1‖f∗‖2 .

To bound B2, we first show the error bound for ‖αW
t‖2 for Tr[CbW

t ] = ‖αW
t‖22 by the following lemma.

Lemma 6. Based on the definition of αW
t in Eq. 32, under Assumption 1, 2, 3„ if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1)
satisfies

γ0 6 min

{
1

Tr(Σm)
,

1

Tr(Σ̃m)

}
, (34)

we have
‖αW

t‖2 . γ0‖Σm‖2‖f∗‖ .

Proof. According to Eq. 32, we have

‖αW
t‖2 6

∥∥∥∥ t∑
k=1

γk

t∏
j=k+1

(I − γjΣm)Σ̃m

k−1∏
s=1

(I − γsΣ̃m)f∗
∥∥∥∥+

∥∥∥∥ t∑
k=1

γk

t∏
j=k+1

(I − γjΣm)Σm

k−1∏
s=1

(I − γsΣ̃m)f∗
∥∥∥∥

6

∥∥∥∥ t∑
k=1

γk

k−1∏
s=1

(I − γsΣ̃m)Σ̃m

∥∥∥∥‖f∗‖+

∥∥∥∥ t∑
k=1

γk

t∏
j=k+1

(I − γjΣm)Σm

∥∥∥∥‖f∗‖
6

t∑
k=1

γk

∥∥∥∥∥
k−1∏
s=1

(I − γsΣ̃m)Σ̃m

∥∥∥∥∥
2

‖f∗‖+

t∑
k=1

γk

∥∥∥∥ t∏
j=k+1

(I − γjΣm)Σm

∥∥∥∥
2

‖f∗‖ ,

(35)
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where I − γiΣm and I − γiΣ̃m are contraction maps for i = 1, 2, . . . , n under our condition in Eq. 34.

For the first term
∑t
k=1 γk

∥∥∥∏k−1
s=1 (I − γsΣ̃m)Σ̃m

∥∥∥
2

= maxi=1,2

(
t∑

k=1

γk
∏k−1
j=1 (1− γj λ̃i)λ̃i

)
, we have

Ii :=

t∑
k=1

γk

k−1∏
j=1

(1− γj λ̃i)λ̃i 6 λ̃i

t∑
k=1

γk exp

(
−
k−1∑
j=1

γj λ̃i

)

6 λ̃iγ0

∫ t+1

1

u−ζ exp

(
− λ̃iγ0

u1−ζ − 1

1− ζ

)
du

6
∫ ∞

0

exp(−x)dx = 1 . [using Eq. 22]

Similarly, for the second term
∑t
k=1 γk

∥∥∥∥∏t
j=k+1(I − γjΣm)Σm

∥∥∥∥
2

, we have

Ii :=

t∑
k=1

γk

t∏
j=k+1

(1− γjλi)λi 6 λi

t∑
k=1

γk exp

(
−

t∑
j=k+1

γjλi

)

6 λi

t∑
k=1

γ0k
−ζ exp

(
− λiγ0

(t+ 1)1−ζ − (k + 1)1−ζ

1− ζ

)
6 λiγ0t

−ζ + λiγ0

∫ t

1

u−ζ exp

(
− λiγ0

(t+ 1)1−ζ − (u+ 1)1−ζ

1− ζ

)
du .

(36)

Due to ‖Σm‖2 ∼ O(1) in Lemma 2, we have

max
i∈{1,2,...,m}

Ii 6 λ1γ0t
−ζ + 21−κ

∫ ∞
0

κvκ−1 exp(−vκ)dv [using Eq. 25]

6 γ0‖Σm‖2 + 21−κ .

Accordingly, we have

‖αW
t‖2 6 ‖f∗‖+

t∑
k=1

γk

∥∥∥∥∥∥
t∏

j=k+1

(I − γjΣm)Σm

∥∥∥∥∥∥
2

‖f∗‖ = ‖f∗‖+ max
i=1,2,...m

 t∑
k=1

γk

t∏
j=k+1

(1− γjλi)λi

 ‖f∗‖
. γ0‖Σm‖2‖f∗‖ . [using ‖Σm‖2 ∼ O(1) by Lemma 2]
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Proof of Proposition 3. Based on the above results, B2 can be bounded by

B2 := EW

[
〈ᾱW
n,Σmᾱ

W
n〉
]
6 Tr

(
EW

[
Σmᾱ

W
n ⊗ ᾱW

n

])
6

2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σ̃m,EW [αW
t ⊗ αW

t ]︸ ︷︷ ︸
:=CbW

t

〉
[using Eq. 33]

.
γ2

0

n2
EW [‖Σm‖22]‖f∗‖2

n−1∑
t=0

n−1∑
k=t

∥∥∥∥∥∥
k−1∏
j=t

(I − γjΣ̃m)Σ̃m

∥∥∥∥∥∥
2

[using Lemma 6]

.
γ2

0

n2
‖f∗‖2

n−1∑
t=0

n−1∑
k=t

max
i∈{1,2,...,m}

λi exp

−λi k−1∑
j=t

γj

 [using Lemma 2]

6
γ2

0

n2
‖f∗‖2 max

i∈{1,2,...,m}

n−1∑
t=0

n−1∑
k=t

λi exp

(
−λiγ0

k1−ζ − t1−ζ

1− ζ

)
[using

∑k−1
j=t γj 6 γ0

∫ k
t

1
xζ

dx]

6
γ2

0

n2
‖f∗‖2 max

i∈{1,2,...,m}

n−1∑
t=0

λi

∫ n

t

exp

(
−λiγ0

u1−ζ − t1−ζ

1− ζ

)
du

6
γ2

0

n2
‖f∗‖2 max

i∈{1,2,...,m}

n−1∑
t=0

λi

[
nζ

λiγ0
∧ (n− t)

]
[using Eq. 24]

6 γ0n
ζ−1‖f∗‖2 ,

where in the last inequality we choose nζ

λiγ0
instead of n− t for a tight error bound. Finally, we conclude our proof.

E.3 BOUND FOR B1

Here we aim to bound B1 := EX,W

[
〈η̄biasn −η̄bXn ,Σm(η̄biasn −η̄bXn )〉

]
. Define αX

t := ηbiast − ηbXt , we have

αX
t = [I − γtϕ(xt)⊗ ϕ(xt)]α

X
t−1 + γt[Σm − ϕ(xt)⊗ ϕ(xt)]η

bX
t−1 , (37)

with αX
0 = 0 and ηbXt−1 =

∏t−1
j=1(I − γjΣm)f∗. Accordingly, we have

B1 := EX,W

[
〈η̄biasn −η̄bXn ,Σm(η̄biasn −η̄bXn )〉

]
= EW

(
EX [〈ᾱX

n,Σmᾱ
X
n〉]
)
.

Proposition 4. Under Assumption 1, 2, 3, 4 with r′ > 1, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

2Tr(Σm)

}
,

then B1 can be bounded by

B1 .
γ0r
′nζ−1√

E[1− γ0r′Tr(Σm)]4
‖f∗‖2 ∼ O

(
nζ−1

)
.

To prove Proposition 4, we need a lemma on stochastic recursions based on E[αX
t |αX

t−1] = (I − γtΣm)αX
t−1, that shares

the similar proof fashion with (Bach & Moulines, 2013, Lemma 1) and (Dieuleveut & Bach, 2016, Lemma 11).

Lemma 7. Under Assumption 1, 2, 3, 4 with r′ > 1, denoting Ht−1 := [Σm − ϕ(xt)⊗ ϕ(xt)]η
bX
t−1, if the step-size

γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 <
1

r′Tr(Σm)
,

we have

EX [〈ᾱX
n,Σmᾱ

X
n〉] 6

1

2n[1− γ0r′Tr(Σm)]

(
n−1∑
k=1

E‖αX
k‖2(

1

γk+1
− 1

γk
) + 2

n−1∑
t=0

γt+1EX‖Ht‖2
)
.
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Remark: We require ‖Σm‖2 6= 1
r′γ0

to avoid the denominator to be zero, which naturally holds as the probability
measure of the continuous random variable ‖Σm‖2 at a point is zero.

Proof. According to the definition of αX
t in Eq. 37, define Ht−1 := [Σm − ϕ(xt)⊗ ϕ(xt)]η

bX
t−1, we have

‖αX
t‖2 = ‖αX

t−1 − γt([ϕ(xt)⊗ ϕ(xt)]α
W
t−1 −Ht−1)‖2

= ‖αX
t−1‖2 + γ2

t ‖Ht−1 − [ϕ(xt)⊗ ϕ(xt)]α
X
t−1‖2 + 2γt〈αW

t−1, Ht−1 − [ϕ(xt)⊗ ϕ(xt)]α
X
t−1〉

6 ‖αX
t−1‖2 + 2γ2

t

(
‖Ht−1‖2 + ‖[ϕ(xt)⊗ ϕ(xt)]α

X
t−1‖2

)
+ 2γt〈αX

t−1, Ht−1 − [ϕ(xt)⊗ ϕ(xt)]α
X
t−1〉 ,

which implies (by taking the conditional expectation)

EX [‖αW
t‖2|αW

t−1] 6 ‖αX
t−1‖2 + 2γ2

t ‖Ht−1‖2 + 2γ2
t 〈αX

t−1,EX [ϕ(xt)⊗ ϕ(xt)⊗ ϕ(xt)⊗ ϕ(xt)]α
X
t−1〉

− 2γt〈αX
t−1,Σmα

X
t−1〉

6 ‖αX
t−1‖2 + 2γ2

t ‖Ht−1‖2 + 2γ2
t r
′Tr(Σm)〈αX

t−1,Σmα
X
t−1〉 − 2γt〈αX

t−1,Σmα
X
t−1〉

= ‖αX
t−1‖2 + 2γ2

t ‖Ht−1‖2 − 2γt[1− γtr′Tr(Σm)]〈αX
t−1,Σmα

X
t−1〉 .

(38)

where the first inequality holds by EX [Ht−1] = 0, and the second inequality satisfies by Assumption 4.

By taking the expectation of Eq. 38, we have

EX [‖αX
t‖2] 6 EX [‖αX

t−1‖2] + 2γ2
t EX [‖Ht−1‖2]− 2γt[1− γtr′Tr(Σm)]EX〈αX

t−1,Σmα
X
t−1〉 ,

which indicates that

EX

[
〈ᾱX
n,Σmᾱ

X
n〉
]
〉 6 1

n

n−1∑
t=0

EX〈αW
t ,Σmα

W
t 〉 6

1

2n[1− γ0r′Tr(Σm)]

(
n−1∑
k=1

EX‖αX
k‖2(

1

γk+1
− 1

γk
)

+
1

2γ1
EX‖αX

0‖2 −
1

2γt
EX‖αX

t‖2 +

n−1∑
t=0

γt+1EX‖Ht‖2
)

6
1

2n[1− γ0r′Tr(Σm)]

(
n−1∑
k=1

EX‖αX
k‖2(

1

γk+1
− 1

γk
) + 2

n−1∑
t=0

γt+1EX‖Ht‖2
)
,

due to αW
0 = 0.

In the next, we present the error bounds for two respective terms in Lemma 7.

Lemma 8. Based on the definition of αX
t in Eq. 39, under Assumption 1, 2, 3, 4 with r′ > 1, if the step-size γt := γ0t

−ζ

with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

2Tr(Σm)

}
,

we have
n−1∑
k=1

E‖αX
k‖2(

1

γk+1
− 1

γk
) .

γ0r
′Tr(Σm)

1− γ0r′Tr(Σm)
(nζ − 1)‖f∗‖2 .

Proof. Based on the definition of αX
t in Eq. 37, it can be reformulated as

αX
t = [I − γtϕ(xt)⊗ ϕ(xt)]α

X
t−1 + γt[Σm − ϕ(xt)⊗ ϕ(xt)]

k−1∏
s=1

(I − γsΣm)f∗

=

t∑
k=1

γk

t∏
j=k+1

[I − γjϕ(xt)⊗ ϕ(xt)][Σm − ϕ(xt)⊗ ϕ(xt)]

k−1∏
s=1

(I − γsΣm)f∗ .

(39)
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and accordingly

Cb−X
t := EX [αX

t ⊗ αX
t ] = (I − γtT W) ◦ Cb−X

t−1 + γ2
t (SW − S̃W) ◦ [ηbXt−1 ⊗ ηbXt−1]

4 (I − γtT W) ◦ Cb−X
t−1 + γ2

t S
W ◦ [ηbXt−1 ⊗ ηbXt−1]

4 (I − γtT W) ◦ Cb−X
t−1 + γ2

t r
′Tr

[
t−1∏
s=1

(I − γsΣm)2Σm

]
Σm(f∗ ⊗ f∗) [using Assumption 4]

4 (I − γtT W) ◦ Cb−X
t−1 + γ2

t r
′Tr(Σm)Σm(f∗ ⊗ f∗) [following Eq. 36: exp(−2λiγ0

t1−ζ−1
1−ζ ) 6 1]

= r′Tr(Σm)

t∑
s=1

t∏
i=s+1

(
I − γiT W

)
◦ γ2

sΣm(f∗ ⊗ f∗)

4
γ0r
′Tr(Σm)

1− γ0r′Tr(Σm)
(f∗ ⊗ f∗) . [using Lemma 5]

(40)

Accordingly, we have

n−1∑
t=1

EX‖αX
t‖2(

1

γt+1
− 1

γt
) =

n−1∑
t=1

‖Cb−X
t ‖2

(
1

γt+1
− 1

γt

)
[using Eq. 40]

6
n−1∑
t=1

γ0r
′Tr(Σm)

1− γ0r′Tr(Σm)
[(t+ 1)ζ − tζ ]‖f∗‖2

.
γ0r
′Tr(Σm)

1− γ0r′Tr(Σm)
(nζ − 1)‖f∗‖2 ,

which concludes the proof.

Lemma 9. Denote Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1, Assumption 1, 2, 3, 4 with r′ > 1, if the step-size γt := γ0t

−ζ

with ζ ∈ [0, 1) satisfies

γ0 6
1

Tr(Σm)
,

we have
n−1∑
t=0

γt+1EX‖Ht‖2 6
1

2
‖f∗‖2r′Tr(Σm) .

Proof.

n−1∑
t=0

γt+1EX‖Ht‖2 =

n−1∑
t=0

γt+1

〈
f∗,

t−1∏
j=1

(I − γjΣm)EX [Σm − ϕ(xt)⊗ ϕ(xt)]
2
t−1∏
j=1

(I − γjΣm)

〉

6
n−1∑
t=0

γt+1

〈
f∗, r′Tr(Σm)

[ t−1∏
j=1

(I − γjΣm)
]2

Σm

〉
[using Assumption 4]

6 ‖f∗‖2r′Tr(Σm)

∥∥∥∥∥∥
n−1∑
t=0

γt+1

[ t−1∏
j=1

(I − γjΣm)
]2

Σm

∥∥∥∥∥∥
6 ‖f∗‖2r′Tr(Σm) max

i∈{1,2,...,m}

n−1∑
t=0

γt+1

t−1∏
j=1

(1− γjλi)2λi

6 ‖f∗‖2r′Tr(Σm) max
i∈{1,2,...,m}

γ0λi

∫ n

0

u−ζ exp

(
−2γ0λi

u1−ζ − 1

1− ζ

)
du

6
1

2
‖f∗‖2r′Tr(Σm) [using Eq. 22]

which concludes the proof.
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Based on the above results, we are ready to prove Proposition 4.

Proof. According to Lemma 8, we have

EW

∑n−1
k=1 E‖αX

k‖2( 1
γk+1

− 1
γk

)

2n[1− γ0r′Tr(Σm)]
. EW

γ0r
′Tr(Σm)

2n[1− γ0r′Tr(Σm)]2
(nζ − 1)‖f∗‖2

6 γ0r
′nζ−1

√
E[Tr(Σm)]2

1√
E[1− γ0r′Tr(Σm)]4

‖f∗‖2

.
γ0r
′nζ−1√

E[1− γ0r′Tr(Σm)]4
‖f∗‖2

∼ O(nζ−1) ,

where the second inequality holds by Cauchy–Schwarz inequality and the last inequality holds by Lemma 2.

According to Lemma 9, we have

EW
2
∑n−1
t=0 γt+1EX‖Ht‖2

2n[1− γ0r′Tr(Σm)]
6 EW

r′Tr(Σm)

2n[1− γ0r′Tr(Σm)]
‖f∗‖2

.
r′

n

√
E[Tr(Σm)]2

1√
E[1− γ0r′Tr(Σm)]2

‖f∗‖2

.
r′

n
√

E[1− γ0r′Tr(Σm)]2
‖f∗‖2 [using Lemma 2]

∼ O
(

1

n

)
.

Accordingly, combining the above two equations, we have

B1 := EWEX [〈ᾱX
n,Σmᾱ

X
n〉] 6

1

2n[1− γ0r′Tr(Σm)]
EW

(
n−1∑
k=1

E‖αX
k‖2(

1

γk+1
− 1

γk
) + 2

n−1∑
t=0

γt+1EX‖Ht‖2
)

.
γ0r
′nζ−1√

E[1− γ0r′Tr(Σm)]4
‖f∗‖2 ,

which concludes the proof.

E.4 PROOF OF THEOREM 1

Proof. Combining the above results for three terms B1, B2, B3, the Bias can be upper bounded by

Bias 6
(√

B1 +
√
B2 +

√
B3
)2

6
√

3(B1 + B2 + B3)

.
γ0r
′nζ−1√

E[1− γ0r′Tr(Σm)]4
‖f∗‖2 .

F PROOF FOR VARIANCE

In this section, we present the error bound for Variance. Recall the definition of ηvXt in Eq. 12 and ηvXWt in Eq. 13, and

η̄vXn :=
1

n

n−1∑
t=0

η̄vXt , η̄vXWn :=
1

n

n−1∑
t=0

η̄vXWt ,
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by virtue of Minkowski inequality, Variance can be further decomposed as(
EX,W ,ε

[
〈η̄varn ,Σmη̄

var
n 〉

]) 1
2

6
(
EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]︸ ︷︷ ︸
,V1

) 1
2

+
(
EX,W ,ε

[
〈η̄vXn ,Σmη̄vXn 〉

]) 1
2

6(V1)
1
2 +
(
EX,W ,ε

[
〈η̄vXn −η̄vXWn ,Σm(η̄vXn −η̄vXWn )〉

]︸ ︷︷ ︸
,V2

) 1
2

+[EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉︸ ︷︷ ︸

,V3

]
1
2 .

(41)

F.1 BOUND FOR V3

In this section, we aim to bound V3 := EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Note that EX,ε[ηvXWt |ηvXWt−1] = (I − γtΣ̃m)ηvXWt−1, similar

to Eq. 33 for B2, we have the following expression for V3

V3 := EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉 = EW [EX,ε〈Σm, η̄vXWn ⊗ η̄vXWn 〉]

=
1

n2
EW

〈Σm,
∑

06k6t6n−1

EX,ε[ηvXWt ⊗ ηvXWk ] +
∑

06k<t6n−1

EX,ε[ηvXWt ⊗ ηvXWk ]

〉
6

1

n2
EW

〈Σm,
∑

06k6t6n−1

EX,ε[ηvXWt ⊗ ηvXWk ] +
∑

06k6t6n−1

EX,ε[ηvXWt ⊗ ηvXWk ]

〉
=

2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σm,EX,ε[ηvXWt ⊗ ηvXWt ]︸ ︷︷ ︸
:=CvXW

t

〉
,

(42)

and thus we have the following error bound for V3.

Proposition 5. Under Assumption 2, 3, 5 with τ > 0, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies γ0 6 1

Tr(Σ̃m)
,

then V3 can be bounded by

V3 .

 γ0τ
2 m

n1−ζ , if m 6 n

γ0τ
2
(
n−1+ζ +

n

m

)
, if m > n .

To prove Proposition 5, we need the following lemma.

Lemma 10. Denote CvXW
t := EX,ε[ηvXWt ⊗ ηvXWt ], under Assumptions 2, 3, 5 with τ > 0, if γ0 6 1/Tr(Σ̃m), we have

CvXW
t 4 τ2

t∑
k=1

γ2
k

t∏
j=k+1

[I − γjΣ̃m]Σm .

Proof. Recall the definition of ηvXWt in Eq. 13, it can be further represented as

ηvXWt = (I − γtΣ̃m)ηvXWt−1 + γtεkϕ(xk) =

t∑
k=1

t∏
j=k+1

(I − γjΣ̃m)γkεkϕ(xk) with ηvXW0 = 0 .

Accordingly, CvXW
t admits (with CvXW

0 = 0)

CvXW
t =

t∑
k=1

t∏
j=k+1

(I − γjΣ̃m)2γ2
kΞ 4 τ2

t∑
k=1

γ2
k

t∏
j=k+1

(I − γjΣ̃m)2Σm [using Assumption 5]

where we use E[εiεj ] = 0 for i 6= j.

In the next, we are ready to bound V3 in Proposition 5.
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Proof of Proposition 5. Note that λ̃1 ∼ O(1) and λ̃2 ∼ O(1/m) in Lemma 2, we take the upper bound of the integral
in Eq. 24 to nζ

λ̃1γ0
for λ̃1. However, according to the order of λ̃2, if λ̃2 . 1/n, the exact upper bound is tight. Based on

this, we first consider that m 6 n case such that λ̃2 & 1/n, and then focus on the m > n case. Taking nζ

λ̃iγ0
in Eq. 24

and γ0
λ̃i

in Eq. 26, we have

V3 := EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉 = EX,W ,ε〈Σm, η̄vXWn ⊗ η̄vXWn 〉

6
2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σm,EX,ε[η̄vXWt ⊗ η̄vXWt ]︸ ︷︷ ︸
:=CvXW

t

〉
[using Eq. 42]

6
2τ2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σm,

t∑
s=1

γ2
s

t∏
j=s+1

(I − γjΣ̃m)2Σm

〉
[using Lemma 10]

6
2τ2

n2

n−1∑
t=0

n−1∑
k=t

Tr

k−1∏
j=t

(I − γjΣ̃m)Σ̃m

t∑
s=1

γ2
s

t∏
j=s+1

(I − γjΣ̃m)2Σ̃m

∥∥∥EW [Σ2
mΣ̃−2

m ]
∥∥∥

2

.
2τ2

n2

n−1∑
t=0

n−1∑
k=t

m∑
i=1

k−1∏
j=t

(1− γj λ̃i)λ̃i
t∑

s=1

γ2
s

t∏
j=s+1

(1− γj λ̃i)2λ̃i

 [using Lemma 3]

6
2τ2

n2

n−1∑
t=0

n−1∑
k=t

m∑
i=1

[
λ̃2
i exp

(
−λ̃iγ0

k1−ζ − t1−ζ

1− ζ

) t∑
s=1

γ2
s exp

(
−2λ̃iγ0

(t+ 1)1−ζ − (s+ 1)1−ζ

1− ζ

)]

.
τ2

n2

n−1∑
t=0

m∑
i=1

[
λ̃2
i

nζ

λ̃iγ0

(
γ0

λ̃i
+ γ2

t

)]
[using Eqs. 24, 26]

6
τ2

n2

[
n1+ζm+ nζTr(Σ̃m)γ0

∫ n

0

t−2ζdt

]
. γ0τ

2 m

n1−ζ , [using Lemma 2]

(43)

where the last equality holds that
∫ n

0
t−2ζdt 6 n for any ζ ∈ [0, 1).

If λ̃2 . 1/n, that means, m > n in the over-parameterized regime, we have

V3 .
2τ2

n2

n−1∑
t=0

[
λ̃2

1

nζ

λ̃1γ0

(
γ0

λ̃1

+ γ2
t

)
+ (m− 1)λ̃2

2(n− t)t
]

.
2τ2

n2

(
γ0n

1+ζ + (m− 1)γ2
0 λ̃

2
2

n(n− 1)(n+ 1)

6

)
[since λ1 ∼ O(1)]

. γ0τ
2
(
n−1+ζ +

n

m

)
,

which concludes the proof.

F.2 BOUND FOR V2

Here we aim to bound V2

V2 := EX,W ,ε

[
〈η̄vXn −η̄vXWn ,Σm(η̄vXn −η̄vXWn )〉

]
.

Recall the definition of ηvXt and ηvXWt in Eqs. 12 and 13, we have

ηvXWt = (I − γtΣ̃m)ηvXWt−1 + γtεkϕ(xk) =

t∑
k=1

t∏
j=k+1

(I − γjΣ̃m)γkεkϕ(xk) with ηvXW0 = 0 ,
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and accordingly, we define

αvX−W
t := ηvXt − ηvXWt = (I − γtΣm)αvX−W

t−1 + γt(Σ̃m − Σm)ηvXWt−1 , with αvX−W
0 = 0

=

t∑
s=1

t∏
i=s+1

(I − γiΣm)γs(Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)γkεkϕ(xk) .

Proposition 6. Under Assumptions 2, 3, 5 with τ > 0, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 6
1

Tr(Σm)
, (44)

then V2 can be bounded by

V2 .

{
γ0τ

2 m

n1−ζ , if m 6 n

γ0τ
2, if m > n .

To prove Proposition 6, we need the following lemma.

Lemma 11. DenoteCvX−W
t := EX,ε[αvX−W

t ⊗αvX−W
t ], under Assumptions 2, 3, 5 with τ > 0, if the step-size γt := γ0t

−ζ

with ζ ∈ [0, 1) satisfies

γ0 6 min

{
1

Tr(Σm)
,

1

Tr(Σ̃m)

}
,

we have
‖CvX−W

t ‖2 . τ2
∥∥∥I + Σ̃−2

m Σ2
m

∥∥∥
2

Tr(Σ̃m)γ2
0 [Tr(Σm)γ0 + 1] .

Proof. According to the definition of CvX−W
t , it admits the following expression

CvX−W
t =

t∑
s=1

t∏
i=s+1

(I − γiΣm)γ2
s (Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)2γ2
kΞ(Σ̃m − Σm)(I − γiΣm)

4
t∑

s=1

t∏
i=s+1

(I − γiΣm)γ2
s (Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)2γ2
kΞ(Σ̃m − Σm)(I − γiΣm)

4 τ2
t∑

s=1

t∏
i=s+1

(I − γiΣm)γ2
s (Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)2γ2
kΣm(Σ̃m − Σm)(I − γiΣm) ,

where the first equality holds by E[εiεj ] = 0 for i 6= j and the second inequality holds by Assumption 5.

Accordingly, ‖CvX−W
t ‖2 can be upper bounded by

‖CvX−W
t ‖2 6 τ2

t∑
s=1

γ2
s

∥∥∥∥∥∥
t∏

i=s+1

(I − γiΣm)2Σm(Σ̃m − Σm)2
s−1∑
k=1

γ2
k

s−1∏
j=k+1

(I − γjΣ̃m)2

∥∥∥∥∥∥
2

6 τ2
t∑

s=1

γ2
s

∥∥∥∥∥
t∏

i=s+1

(I − γiΣm)2Σm

∥∥∥∥∥
2

∥∥∥∥∥∥
s−1∑
k=1

γ2
k

s−1∏
j=k+1

(I − γjΣ̃m)2Σ̃2
m

∥∥∥∥∥∥
2

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2

6 τ2
t∑

s=1

max
q∈{1,2,...,m}

γ2
s exp

(
−2λq

t∑
i=s+1

γi

)
λq

s−1∑
k=1

γ2
k max
p∈{1,2}

exp

−2λ̃p

s−1∑
j=k+1

γj

 λ̃2
p

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2
,

where the second inequality holds by Σ̃m � 0 and Σm < 0 such that

(Σ̃m − Σm)2 = Σ̃2
m(I − Σ̃−1

m Σm)2 4 Σ̃2
m(I + Σ̃−2

m Σ2
m) ,

and Tr(AB) 6 ‖A‖2Tr(B) for any two PSD operators A and B.
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Similar to Eq. 25, we have the following estimation
s−1∑
k=1

γ2
k

s−1∏
j=k+1

(1− γj λ̃p)2 6
s−1∑
k=1

γ2
k exp

−2λ̃p

s−1∑
j=k+1

γj


6 γ2

s−1 + γ2
0

∫ s−1

1

u−2ζ exp

(
− 2λ̃pγ0

s1−ζ − (u+ 1)1−ζ

1− ζ

)
du

6 γ2
0 +

(
γ0

λ̃p
∧ γ2

0s

)
,

which implies

max
p=1,2

λ̃2
p

s−1∑
k=1

γ2
k

s−1∏
j=k+1

(1− γj λ̃p)2 6 γ2
0 λ̃

2
1 + γ0λ̃1 6 2γ0λ̃1 = 2γ0‖Σ̃m‖2 , (45)

where we use our condition on the step-size γ0 6 1

Tr(Σ̃m)
.

Similar to Eq. 25, we have the following estimation
t∑

s=1

γ2
s exp

(
−2λq

t∑
i=s+1

γi

)
6

t∑
s=1

γ2
s exp

(
− 2λqγ0

(t+ 1)1−ζ − (s+ 1)1−ζ

1− ζ

)

6 γ2
t + γ2

0

∫ t

1

u−2ζ exp

(
− 2λqγ0

(t+ 1)1−ζ − (u+ 1)1−ζ

1− ζ

)
du

6 γ2
0 +

(
γ0

λq
∧ γ2

0t

)
,

which implies

max
q∈{1,2,...,m}

t∑
s=1

γ2
sλq exp

(
−2λq

t∑
i=s+1

γi

)
= γ2

0‖Σm‖2 + γ0 . (46)

Take the above two equations 45 and 46 back to Eq. 45

‖CvX−W
t ‖2 . τ2

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2

(
γ2

0‖Σm‖2 + γ0

) (
γ0‖Σ̃m‖2

)
= τ2γ2

0

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2

(γ0‖Σm‖2 + 1) ‖Σ̃m‖2 .

Proof of Proposition 6. By virtue of EX,ε[αvX−W
t |αvX−W

t−1 ] = (I − γtΣm)αvX−W
t−1 and Lemma 11, V2 can be bounded by

V2 = EX,W ,ε

[
〈η̄vXn −η̄vXWn ,Σm(η̄vXn −η̄vXWn )〉

]
= EW 〈Σm,EX,ε[ᾱvX−W

n ⊗ ᾱvX−W
n ]〉

6
2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣm)Σm,EX,ε[η̄vX−Wt ⊗ η̄vX−Wt ]︸ ︷︷ ︸
:=CvX−W

t

〉

.
τ2γ2

0

n2
‖Σ̃m‖2EW

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2

[‖Σm‖2γ0 + 1] Tr

n−1∑
t=0

n−1∑
k=t

k−1∏
j=t

(I − γjΣm)Σm


.
τ2γ2

0

n2
‖Σ̃m‖2EW

[
‖Σm‖2

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2

m∑
i=1

n−1∑
t=0

λi

(
nζ

λiγ0
∧ (n− t)

)]
. [using Eq. 24]

In the m 6 n case, we choose nζ/(λiγ0), and thus

V2 .
τ2mγ2

0

n2
‖Σ̃m‖2EW

[
‖Σm‖2

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2

] n1+ζ

γ0

6 τ2γ0
m‖Σ̃m‖2
n1−ζ

√
EW ‖Σm‖22

√
EW

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥2

2
[using Cauchy–Schwarz inequality]

. τ2γ0
m

n1−ζ . [using Lemma 2 and 3]
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If m > n, we have

V2 .
2τ2γ2

0

n2
‖Σ̃m‖2EW

(
[Tr(Σm)]2

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥
2

) n−1∑
t=0

t

6 τ2γ0‖Σ̃m‖2
√
EW [Tr(Σm)]2

√
EW

∥∥∥I + Σ̃−2
m Σ2

m

∥∥∥2

2
[using Cauchy–Schwarz inequality]

. τ2γ0 , [using Lemma 2 and 3]

which concludes the proof.

F.3 BOUND FOR V1

Here we aim to bound V1

V1 := EX,W ,ε

[
〈η̄varn −η̄vXn ,Σm(η̄varn −η̄vXn )〉

]
.

Recall the definition of ηvart in Eq. 6 and ηvXt in Eq. 12, we define

αv−X
t := ηvart − ηvXt = [I − γtϕ(xt)⊗ ϕ(xt)]α

v−X
t−1 + γt[Σm − ϕ(xt)⊗ ϕ(xt)]η

vX
t−1 , with αv−X

0 = 0 .

= [I − γtϕ(xt)⊗ ϕ(xt)]α
v−X
t−1 + γt[Σm − ϕ(xt)⊗ ϕ(xt)]

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)γkεkϕ(xk)

=

t∑
s=1

t∏
i=s+1

γs[I − γiϕ(xi)⊗ ϕ(xi)][Σm − ϕ(xt)⊗ ϕ(xt)]

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣm)γkεkϕ(xk) ,

and thus the error bound for V1 is given by the following proposition.

Proposition 7. Under Assumption 1, 2, 3, 4 with r′ > 1, and Assumption 5 with τ > 0, if the step-size γt := γ0t
−ζ

with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

2Tr(Σm)

}
,

then V1 can be bounded by

V1 .
τ2r′γ2

0√
E[1− γ0r′Tr(Σm)]2

{ m

n1−ζ , if m 6 n

1, if m > n .

To prove Proposition 7, we need the following lemma. Define Cv−X
t := EX,ε[αv−X

t ⊗ αv−X
t ], we have the following

lemma that is useful to bound Cv−X
t .

Lemma 12. Denote Cv−X
t := EX,ε[αv−X

t ⊗ αv−X
t ], under Assumptions 1, 2, 3, 4 with r′ > 1, and Assumption 5 with

τ > 0, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

2Tr(Σm)

}
,

we have

Cv−X
t 4

γ2
0r
′τ2[Tr(Σm) + γ0Tr(Σ2

m)]

1− γ0r′Tr(Σm)
I .
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Proof. According to the definition of Cv−X
t , it admits the following expression

Cv−X
t =

t∑
s=1

t∏
i=s+1

γ2
sEx[I − γiϕ(xi)⊗ ϕ(xi)]

2Ex[Σm − ϕ(xt)⊗ ϕ(xt)]
2
s−1∑
k=1

s−1∏
j=k+1

(I − γjΣm)2γ2
kΞ

= (I − γtT W) ◦ Cv−X
t−1 + γ2

t (SW − S̃W) ◦
t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΞ [using PSD operators]

4 (I − γtT W) ◦ Cv−X
t−1 + γ2

t S
W ◦

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΞ [using SW < S̃W]

4 (I − γtT W) ◦ Cv−X
t−1 + τ2γ2

t S
W ◦

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΣm [using Assumption 5]

4 (I − γtT W) ◦ Cv−X
t−1 + τ2γ2

t r
′Tr

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΣ2

m

Σm . [using Assumption 4]

(47)

Similar to Eq. 25, we have the following estimation

Tr

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2Σ2
mγ

2
k

 =

m∑
i=1

λ2
i

t−1∑
k=1

γ2
k

t−1∏
j=k+1

(1− γjλi)2 6
m∑
i=1

λ2
i

t−1∑
k=1

γ2
k exp

−2λi

s−1∑
j=k+1

γj


6 γ2

0

m∑
i=1

λ2
i

[
1 +

∫ t−1

1

u−2ζ exp

(
− 2λiγ0

t1−ζ − (u+ 1)1−ζ

1− ζ

)
du

]

6 γ2
0Tr(Σ2

m) +

m∑
i=1

λ2
i

(
γ0

λi
∧ γ2

0t

)
[using Eq. 26]

6 γ2
0Tr(Σ2

m) + γ0Tr(Σm) ,

where we use the error bound γ0
λi

instead of the exact one γ2
0t for tight estimation.

Taking the above equation back to Eq. 47, we have

Cv−X
t 4 (I − γtT W) ◦ Cv−X

t−1 + γ2
t τ

2r′γ0[Tr(Σm) + γ0Tr(Σ2
m)]Σm

4 τ2r′γ0[Tr(Σm) + γ0Tr(Σ2
m)]

t∑
s=1

t∏
i=s+1

(I − γiT W) ◦ γ2
sΣm

4
γ2

0r
′τ2[Tr(Σm) + γ0Tr(Σ2

m)]

1− γ0r′Tr(Σm)
I , [using Lemma 5]

which concludes the proof.

Proof of Proposition 7. Accordingly, by virtue of EX,ε[αv−X
t |αv−X

t−1 ] = (I − γtΣm)αv−X
t−1 and Lemma 12, V1 can be

bounded by

V1 = EX,W ,ε

[
〈η̄varn −η̄v−Xn ,Σm(η̄varn −η̄v−Xn )〉

]
= EW 〈Σm,EX,ε[ᾱv−X

n ⊗ ᾱv−X
n ]〉

6
2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣm)Σm,EX,ε[η̄v−Xt ⊗ η̄v−Xt ]︸ ︷︷ ︸
:=Cv−X

t

〉

.
τ2γ2

0r
′

n2
EW

[
[Tr(Σm) + γ0Tr(Σ2

m)]

1− γ0r′Tr(Σm)

m∑
i=1

n−1∑
t=0

λi

(
nζ

λiγ0
∧ (n− t)

)]
, [using Lemma 12]

where the last inequality follows the integral estimation in Eq. 24.
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For m 6 n, we use nζ

λiγ0
, and thus

V1 .
τ2γ0r

′m

n1−ζ EW

[
[Tr(Σm) + γ0Tr(Σ2

m)]

1− γ0r′Tr(Σm)

]
.

τ2r′γ0√
E[1− γ0r′Tr(Σm)]2

m

n1−ζ ,

where we use the Cauchy–Schwarz inequality and Tr(Σm) as a nonnegative sub-exponential random variable with the
sub-exponential norm O(1) in Lemma 2.

For m > n, we use n− t, and thus

V1 . τ2γ2
0r
′EW

[
[Tr(Σm) + γ0Tr(Σ2

m)]

1− γ0r′Tr(Σm)

]
.

τ2r′γ2
0√

E[1− γ0r′Tr(Σm)]2
∼ O(1) .

F.4 PROOF OF THEOREM 2

Proof. Combining the above results for three terms V1, V2, V3, we can directly obtain the result for Variance.

Variance 6
(√

V1 +
√
V2 +

√
V3
)2

6
√

3(V1 + V2 + V3)

.
γ0r
′τ2√

E[1− γ0r′Tr(Σm)]2

{
mnζ−1, if m 6 n

nζ−1 +
n

m
, if m > n

∼

{
O
(
mnζ−1

)
, if m 6 n

O
(
nζ−1 +

n

m

)
, if m > n

35


	Introduction
	Related Work and Problem Setting
	Related works
	The problem setting

	Main results
	Assumptions
	Properties of covariance operators
	Results for error bounds

	Proof Outline and Discussion
	Proof outline
	Discussion with previous work

	Numerical Validation
	Behavior of RF for interpolation learning
	Behavior of our error bounds

	Conclusion
	Comparisons with previous work
	Results on covariance operators
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Preliminaries on PSD operators
	Some useful integrals estimation
	Proofs for Bias
	Bound for B3
	Bound for B2
	Bound for B1
	Proof of Theorem 1

	Proof for Variance
	Bound for V3
	Bound for V2
	Bound for V1
	Proof of Theorem 2


