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ABSTRACT

Offline Reinforcement Learning (RL) extracts effective policies from historical
data without the need to interact with the environment. However, the learned pol-
icy often suffers large generalization errors in the online environment due to the
distributional shift. While existing work mostly focuses on learning a generaliz-
able policy, we propose to adapt the learned policy to fit the online environment
with limited queries. The goals include querying reasonable actions with lim-
ited chances and efficiently modifying the policy. Our insight is to unify these
two goals via a proper pseudometric. Intuitively, the metric can compare online
and offline states to infer optimal query actions. Additionally, efficient policy
updates require good knowledge of the similarity between query results and his-
torical data. Therefore, we propose a unified framework, denoted Pseudometric
Guided Offline-to-Online RL (PGO2). Specifically, in deep Q learning, PGO2

has a structural design between the Q-neural network and the Siamese network,
which guarantees simultaneous Q-network updating and pseudometric learning,
promoting Q-network fine-tuning. In the inference phase, PGO2 solves convex
optimizations to identify optimal query actions. We also show that PGO2 training
converges to the so-called bisimulation metric with strong theoretical guarantees.
Finally, we demonstrate the superiority of PGO2 on diversified datasets.

1 INTRODUCTION

Offline Reinforcement Learning (RL) leverages large historical data to learn the behavior policy,
which seeks the optimality for sequential decision-making without any costs from interacting with
the environments (Lange et al., 2012; Levine et al., 2020). This promising feature significantly
promotes real-world RL applications, especially when explorative actions are costly. Thus, advances
for offline RL have been made in robotic control (Lee et al., 2022), healthcare (Tang & Wiens, 2021),
dialogue model (Jaques et al., 2020), recommendation (Xiao & Wang, 2021), and E-commerce
(Zhang et al., 2021), etc.

Despite the achievement, the learned policy in offline RL may still suffer large extrapolation errors
in online implementations (Dadashi et al., 2021; Fujimoto et al., 2019; Lee et al., 2022). The central
reason is the data distributional shift between the offline and online environments. To address this
issue, most solutions improve the algorithmic model, like adding constraints in the learning proce-
dure (Fujimoto et al., 2019; Wang et al., 2020), designing ensemble models (Agarwal et al., 2020;
Lee et al., 2022; An et al., 2021), or providing better value function estimation (Kumar et al., 2020;
Dadashi et al., 2021; Rezaeifar et al., 2022). While these methods provide appealing results, further
improvements can be made when the agent can obtain online data. A classic setting is off-policy RL
(Levine et al., 2020; Munos et al., 2016) where a data buffer continuously memorizes online data to
update the policy.

In many cases, it is often unacceptable to obtain large online samples based on the offline policy
or some random explorations. This is because the poor generalization of offline policy may cause
high costs for online implementations, let alone random explorations. Therefore, we propose to
actively produce query actions to the environment for online states. Subsequently, the environment
can evaluate the query and provide feedback (i.e., rewards), which facilitates adapting the offline
policy. The general goal is to utilize limited queries to achieve efficient policy adaptation.

More specifically, one needs to (1) produce proper query actions and (2) accurately modify the
offline policy according to limited query results. Basically, the state distributional shift challenges
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goal (1). In addition, limited query results challenge goal (2). For example, for deep Q-learning, it
is hard to adjust a huge parameter set in the Q-neural network with few samples. To address these
issues, one principled approach is to find a proper similarity measure for the state-action pairs in a
Markov Decision Process (MDP). Then, for goal (1), we can infer query actions based on similar
states and actions in the historical dataset. For goal (2), the differences between each online query
with all the historical samples provide rich information that can be intelligently employed to update
the Q-network. In general, we demand a good pseudometric (Dadashi et al., 2021) to link offline
datasets with online queries.

In particular, the well-defined pseudometric should guarantee that similar states must have a small
difference between the expected rewards. In an MDP, the above definition is known as the bisimu-
lation metric (Ferns & Precup, 2014; Dadashi et al., 2021). To approximate the bisimulation metric,
(Dadashi et al., 2021) has developed a pseudometric learning model that takes in the historical data
and outputs the pseudometric, a modified bisimulation metric in the state-action space. Although
this model benefits goal (1), goal (2) is still unreachable since the pseudometric learning and the
Q-network updating are decoupled.

Therefore, we propose PGO2: Pseudometric Guided Offline-to-Online RL. PGO2 is a unified frame-
work to learn the pseudometric, update the Q-network, and infer query actions. Specifically, PGO2

employs Siamese networks to learn the similarity of the state-action pairs (Bromley et al., 1993;
Dadashi et al., 2021). More importantly, we restrict the Q-network and the Siamese network to shar-
ing parameters. Consequently, learning the pseudometric between each query result and all historical
data updates the parameters of the Q-network. This updating scheme provides sufficient evaluations
from limited query results, which enables the offline policy to quickly adapt to the online environ-
ment. Moreover, the Q-network in PGO2 is designated as Partially Input Convex Neural Network
(PICNN) (Amos et al., 2017a). Thus, the inference of the action query has optimality by solving
convex optimizations. For theoretical guarantees, we also show the theorems of convergence to the
bisimulation metric and the global optimality for the query process. Finally, we observe significant
improvements of PGO2 in multiple RL tasks under the offline-to-online setting.

2 RELATED WORK

Offline RL. In the Introduction, we have presented a review of different models to optimize the
sequential decisions using offline data. In addition, some other works view the offline RL as a
supervised learning model to generate sequences. (Janner et al., 2021) employs a trajectory Trans-
former to predict the sequence of states, actions, and rewards. (Chen et al., 2021) also builds these
sequences by a masked Transformer. Finally, (Schweighofer et al., 2021; Sinha et al., 2022) study
how the historical data can impact the learned policy in offline RL. However, these studies do not
provide a reasonable approach for online queries and updates.

Online Implementations to Improve Offline RL. We categorize existing studies into the following
groups. The first group requires the historical data to be informative so that they can abstract prior
knowledge, e.g., skills (Pertsch et al., 2020), primitive behaviors (Ajay et al., 2020), and behavioral
priors (Singh et al., 2020), for online implementations. However, we may not have enough high-
quality offline data. The second group admits imperfect data and employs online data to update
the learned policy. (Nair et al., 2020) proposes to restrict Kullback–Leibler (KL) divergence of the
policy for both offline and online learning, which requires a certain amount of online data. (Lee
et al., 2022) weighs the offline and online data based on the density ratio so that the offline Q-
network can be fine-tuned. Similarly, enough online samples are required to accurately estimate the
density ratio. We make significant contributions by showing how a generalized pseudometric can
guide the online action query and policy update, even with limited query opportunities.

State-action Similarity Metric for MDPs. The bisimulation metric uses rewards to determine the
similarity of two states and/or actions (Ferns & Precup, 2014). Another similarity definition is the
MDP homomorphism by considering both the reward and the transition probability (Ravindran &
Barto, 2003). Many studies have been done to approximate these metrics (Castro, 2020; Dadashi
et al., 2021; van der Pol et al., 2020). Our pseudometric learning is similar to (Dadashi et al., 2021) to
approximate the bisimulation metric in the state-action space with theoretical guarantees. However,
we have a unique structural design with convex optimizations to infer optimal queries and conduct
sufficient policy updating.
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3 METHODS

3.1 BACKGROUND AND PROBLEM FORMULATION

An MDP can be formalized as a tuple (S,A, r, P, γ), where S is the state space, A is the action
space, r : S ×A×S → R is the reward function, P (sk+1|sk,ak) is the state transition function to
measure the probability from sk to sk+1 with a given action ak, and γ ∈ [0, 1) is a discount factor.
The agent can follow a policy π : S → A to determine an action for a given state. In the optimization
of RL, the general goal is to find an optimal policy to maximize Eπ

[∑∞
k=0 γ

kr(sk,ak, sk+1)
]
.

Q-learning can solve the optimization in an iterative manner. For each policy π, the Q-function is a
value function for the state-action pair: Qπ(s,a) = E

[∑∞
k=0 γ

kr(sk,ak, sk+1|s0 = s,a0 = a)
]
.

Then, the optimal policy is to solve the optimization maxπ Q
π(s,a) to obtain the policy function for

all states. With advances in deep learning, neural networks are used to approximate the Q-function,
e.g., Deep Q-network (Mnih et al., 2013). To obtain the optimal policy, one can iteratively update
the Q-network:

Qt+1(sk,ak) = Qt(sk,ak) + α
(
r(sk,ak) + γmax

a
Qt(sk+1,a)−Qt(sk,ak)

)
, (1)

where t and k are the indices for the episode and state-action pair, respectively. α is the learning
rate. This updating can happen both offline and online. For example, in the offline RL, we can
compute equation 1 using state transition sample

(
sk,ak, sk+1, rk

)
∈ D, where we denote rk =

r(sk,ak, sk+1) and the set of N samples as D =
{(

si,ai, si+1, ri
)}N

i=1
.

In this paper, we focus on offline training and online queries with a start state s̃1 that may be dis-
similar to the states in D, e.g., an unseen block in the grid world (Crook & Hayes, 2003). We add
the notation ·̃ to indicate online data and formally define the problem as follows.

• Input: historical dataset D and an online start state s̃1.
• Query Task: use D to learn an offline Q-network Q(·). Then, use D, Q(·), and s̃1 to

generate sequential and optimal query actions {ã1, · · · , ãM}, where M is a small integer.
Note that repetitions can happen for the query action sequence.

• Update Task: use D and the query results D̃ =
{(

s̃i, ãi, s̃i+1, r̃i
)}M

i=1
to update the offline

Q(·) and produce an online Q̃(·).
• Output: D̃ and Q̃(·) for online implementations.

We will illustrate how to use limited resources to achieve optimal queries and updates, shown in the
left part of Fig. 1. We term the framework as Pseudometric Guided Offline-to-Online RL (PGO2).

3.2 PGO2 ARCHITECTURE AND OFFLINE TRAINING

(Dadashi et al., 2021) proposes a pesudometric learning framework to approximate the modified
bisimulation metric (i.e., a pseudometric) in the state-action space. Specifically, they introduce a
Siamese neural network Φ to learn the pesudometric dΦ(si,ai; sj ,aj) =

∣∣∣∣Φ(si,ai)−Φ(sj ,aj)
∣∣∣∣,

where || · || is the Euclidean distance. By the definition of the proposed bisimulation metric in
(Dadashi et al., 2021) (see also in Section 4), they design another Siamese network Ψ to compute the
bootstrapped estimate of the state bisimulation metric. This metric measures the similarity between
states with randomly selected actions from U(A), i.e., a uniform distribution over the action space.
Then, they propose a concurrent learning scheme to optimize the following loss functions:

LΦ = E
(∣∣∣∣Φ(si,ai)− Φ(sj ,aj)

∣∣∣∣− |ri − rj | − γ
∣∣∣∣Ψ(si+1)−Ψ(sj+1)

∣∣∣∣)2

,

LΨ = E
(∣∣∣∣Ψ(si)−Ψ(sj)

∣∣∣∣− 1

n

n∑
uk∼U(A),k=1

∣∣∣∣Φ(si,uk)− Φ(sj ,uk)
∣∣∣∣)2

,

(2)

where (si,ai, ri, si+1) ∼ D, (sj ,aj , rj , sj+1) ∼ D. The pseudometric dΦ is trained by D, which
does not require Q-network for the offline RL.
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Figure 1: The proposed framework.

We improve the above learning process by coupling the pseudometric learning and the Q-network
training in a parameter-sharing manner. The intuition is that Q(s,a) and Φ(s,a) both serve as
evaluations of the state-action pair (s,a), although Q(s,a) is the value function and Φ(s,a) is
an feature embedding related to the reward differences. Therefore, we restrict the Q(·) and Φ(·)
to share some common features. In general, parameter-sharing enjoys two benefits. First, training
each network improves the convergence of the other network as they have similar outputs. Second,
updating the Φ network is cheap in the online mode. For example, one online query result can help
to largely re-train the Φ network by comparing the query sample with all samples in D.

To elaborate on the architecture of the two networks, we note that their output differences are due
to the different policy distributions. Q(·) considers the policy by the learned Q-function while Φ(·)
considers a uniform distribution over the action space. Thus, we consider policy-dependent and
policy-independent features for both networks. The policy-independent features are common to
evaluate the state-action pair no matter what the subsequent policy is taken, e.g., the instant reward.
Thus, we make these features common with shared parameters, as shown in the blue block at the
bottom of Fig. 1. Correspondingly, the policy-dependent features have different parameters, as
shown in the orange blocks at the bottom of Fig. 1. Finally, these two features are summed to jointly
output the final values. The summation is due to the weighted summation formula to evaluate the
state-action pairs, e.g., equation 1.

In the offline training of PGO2, due to the parameter-sharing design, Φ(·), Ψ(·), and Q(·) should be
trained concurrently to guarantee efficient updating. We demonstrate the specific training process
as follows. First, in each iteration, the three networks are updated via random samples from D,
like experience replay (Mnih et al., 2015) for off-policy RL. Second, with the selected samples,
parameters of Φ(·) and Ψ(·) can be directly trained by minimizing the loss in equation 2. Third,
we train Q(·) according to the temporal difference in equation 1. In particular, we need to solve the
optimization maxa Qt(sk+1,a) to seek the optimal actions for sk+1.

In vanilla Deep Q-network (Mnih et al., 2013), the optimization can be easily solved since the
output of the Q-network is the action-Q pairs, which helps to do maximization by comparison.
However, in our PGO2, the action is treated as the input for the Q(·). Thus, maxa Qt(sk+1,a)
is the optimization with respect to the input of a neural network. We employ the Partially Input
Convex Neural Network (PICNN) (Amos et al., 2017b) to model −Q(s,a). Specifically, with non-
negative weight and Rectified Linear Unit (ReLU) activations, we can make −Q(s,a), a PICNN,
to be convex in a. Then, we can utilize the gradient-based method or the Projected Newton method
(Bertsekas, 1982) to solve the convex optimization maxa Qt(sk+1,a).

The above optimization is an inference problem for PICNN (Amos et al., 2017b). Similarly, query-
ing an action online is another inference process. Specifically, to seek optimal query action, we
compare the online state with state-action pairs in D to find the optimal query action. Thus, the
inference is related to not only Q(·) but also Φ(·). To guarantee to find the optimal query action, we
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propose a bundle of PICNNs to model −Φ(·) such that each output neuron of −Φ(s,a) is convex
in input action a, shown in the bottom part of Fig. 1. In Section 3.3, we show the PICNN-bundle
brings convex optimization for online inference.

Algorithm 1 PGO2 Offline Training

Input: training dataset D.
Initialize: discount factor γ ∈ [0, 1), maximum episode T , PICNN for Q-network −Q(s,a),
target network Q

′
(·) = Q(·), PICNN bundle for −Φ(s,a), a neural network for Ψ(a), and

update interval T0 for Q
′
(·),Φ(·), and Ψ(·).

while t ≤ T do
Sample a random minibatch B ⊂ D
for (sm,am, rm, sm+1) ∈ B do ▷ Experience replay.

Solve the optimization maxa Q
′
(sm+1,a) to obtain am+1.

ym = rm + γQ
′
(sm+1,am+1).

Train Q(·) using training data {sm+1,am+1, ym}m, where {sm+1,am+1}m are the input
and {ym}m are the output.

Stack the minibatch B1 = {B1,B}.
if t mod T0 = 0 then

Q
′
(·) = Q(·) ▷ Update Q

′
(·).

Use (sm,am, rm, sm+1) ∈ B1 to train Φ(·) and Ψ(·) by solving the optimization in
equation 2. ▷ Update Φ(·) and Ψ(·).
Output: trained neural networks Q(·), Φ(·), and Ψ(·).

Finally, training instability, a common issue for Deep Q-Learning, also exists in our training pro-
cess. In particular, one needs to guarantee a stable policy for several training episodes to improve
convergence. In PGO2, the policy instability comes from the continuous update of both Q(·) and
Φ(·) with common parameters. To address this issue, we follow (Fan et al., 2020) and employ a
target Q-network that is a copy of the Q-network but updated occasionally. This guarantees a stable
policy before the target Q-network is updated. Similarly, we restrict Φ(·) and Ψ(·) to be updated
as frequently as the target Q-network to achieve a stable policy. In general, we propose the offline
training algorithm for PGO2 in Algorithm 1.

3.3 PGO2 ONLINE INFERENCE FOR OPTIMAL QUERIES

In an online mode, PGO2 needs to infer a reasonable query action for a given online state s̃1. Since
s̃1 may be an Out-Of-Distribution (OOD) sample, one cannot directly infer the query action by Q(·).
Consequently, our strategy is to find the closest state-action pair (sc,ac) in D based on the learned
metric dΦ. By Dadashi et al. (2021), learning dΦ has good convergence to the unique fixed point
pseudometric to measure the bisimulation of state-action pairs in MDPs. Thus, it is reasonable to
utilize dΦ as an optimization objective to infer good online actions. Specifically, we propose the
following optimization:

ac = argmax
a

Q(sc,a), ãc = argmin
(sc,ac)∈D,ã

dΦ(sc,ac; s̃1, ã), (3)

where ãc is our target query action. The first optimization in equation 3 can be easily solved as
convex optimization. Then, we can input each (sc,ac) pairs and the online initial state s̃1 to dΦ(·; ·)
to solve the second optimization. With the PICNN-bundle to model Φ(·), We prove the second
optimization is also convex for each state-action pair in D in Proposition 2. Then, we can also
utilize the gradient-based method to solve the optimization and find ãc. For example, the bottom
right of Fig. 1 visualizes the gradient-based optimization in the 2-dimensional space. After the
optimization, we set ã1 = ãc as the first query action for s̃1.

After performing the query action ã1, the agent will move to s̃2. The online environment will
evaluate (s̃1, ã1, s̃2) and produce the reward r̃1. The online sample (s̃1, ã1, s̃2, r̃1) can facilitate to
update Φ(·), Ψ(·), and Q(·), discussed in Section 3.4. Based on the updated networks and s̃2, we
can continue the optimization in equation 3 and produce ã2. Iteratively, we can obtain the query
dataset D̃ =

{(
s̃i, ãi, s̃i+1, r̃i

)}M

i=1
, accomplishing the Query Task.
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3.4 PGO2 ONLINE TRAINING FOR EFFICIENT POLICY UPDATES

To efficiently update the Q-network, we start from the decomposed architecture in Fig. 1. Specifi-
cally, the policy-independent features play a key role to evaluate the instant online rewards that may
be completely different from the offline rewards. Therefore, we need to significantly and frequently
update the corresponding parameters. Next, the update is cheap as one can train one query result
versus all samples in D, bringing accurate and stable function approximation. Thus, we update the
related parameters each time after an online query.

Basically, we only enable the parameters Φ(·) and Ψ(·) trainable, which include the policy-
independent parameters for Q(·) due to the parameter-sharing. Then, we retrain PGO2 by using
the query result (e.g.,

(
s̃i, ãi, s̃i+1, r̃i

)
for the ith query) versus all the samples in D, which is

beneficial for the next action query.

The parameters of policy-dependent features for Q(·), however, should not be frequently updated to
maintain stability. Thus, after obtaining D̃, we utilize all samples in D̃ to retrain the parameters for
policy-dependent features. This fine-tunes Q(·) to make it applicable for online implementations.
We summarize the online algorithm for PGO2 in Algorithm 2, which ends the Update Task.

Algorithm 2 PGO2 Online Inference and Update

Input: training dataset D, trained neural networks Q(·), Φ(·), and Ψ(·), and an online start state
s̃1.
Initialize: maximum number of query actions M .
while m ≤ M do

For online state s̃m, use gradient-based method to solve the convex optimization in equation 3
and obtain ãm.

Perform the online action ãm and obtain the reward r̃m and the next state s̃m+1.
Retrain Φ(·) and Ψ(·) in PGO2 by

(
s̃m, ãm, s̃m+1, r̃m

)
and all the samples in D.

s̃m = s̃m+1.
D̃ = {D̃,

(
s̃m, ãm, s̃m+1, r̃m

)
}

Enable the policy-dependent parameters trainable in Q(·). Retrain Q(·) using all the data in D̃.
Output: trained neural networks Q̃(·), Φ̃(·), and Ψ̃(·) for online environments.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical support for pseudometric learning and online inference. First,
Dadashi et al. (2021) provides that iterative calculations from samples can converge to the fixed
point of the pseudometric. Let d(·; ·) be a pseudometric defined over the state-action space and F
be an operator for the pseudometric such that:

F(d)(s1,a1; s2,a2) =

{
|ri − rj |+ γEu∼U(A)d(si+1u; sj+1,u) if s1,a1, s2,a2 = si,ai, sj ,aj

d(s1,a1; s2,a2) otherwise,
(4)

where (si,ai, si+1, ri) and (sj ,aj , sj+1, rj) are samples from D. Then, Dadashi et al. (2021)
introduces the following proposition to show the convergence.
Proposition 1. Suppose sufficient coverage of the state-action space: ∃ϵ > 0 such that for any state-
action pairs (si,ai), (sj ,aj) ∈ (S × A) × (S × A), (si,ai), (sj ,aj) are sampled with at least
probability ϵ, then the repeated application of F converges to the fixed point d∗, i.e., the bisimulation
metric over the state-action space.

Proposition 1 guarantees to learn a good pseudometric in the iterative manner in Section 3.2, an
approximate version of the operator F . Notably, our pseudometric learning is consistent between
offline and online environments. Thus, if the offline data samples are not sufficient as required in
Proposition 1, the online queries further improve the convergence. Secondly, we show that our query
mechanism can produce optimal query action based on our PICNN-bundle model for Φ(·).
Proposition 2. Assume Q(·), Φ(·), and dΦ(·; ·) are defined in Section 3.2. Let si be an arbi-
trary state from D, ai = argmaxa Q(si,a), and s̃j be an online state. Then, the optimization
minã dΦ(si,ai; s̃j , ã) is convex in ã ∈ Ã, where Ã is defined in the proof.
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Proof. In the optimization minã dΦ(si,ai; s̃j , ã), the inputs si, ai, and s̃j are fixed to the Siamese
neural network. Then, we simplify the objective as L(ã) =

∑K
k

(
fk(ã) − ck

)2
, where K is the

number of dimension for Φ(·), fk is output the kth entry in Φ(s̃j , ã), and ck is the kth constant
entry in Φ(si,ai). Let h be a perturbation direction of ã and t be a small step size. Then, we can
calculate the second-order derivative based on the chain rule:

d2

dt2
∣∣
t=0

L(ã+ th) =
d

dt

∣∣
t=0

2

K∑
k

(
fk(ã+ th)− ck

) d

dt
fk(ã+ th),

= 2

K∑
k

( d

dt

∣∣
t=0

fk(ã+ th)
)2

+
(
fk(ã)− ck

) d2

dt2
∣∣
t=0

fk(ã+ th).

Then, we define Ã = {ã|∀1 ≤ k ≤ K, fk(ã) ≤ ck}. Since we utilize PICNN to model
−fk(·),∀1 ≤ k ≤ K, the concavity leads to d2

dt2

∣∣
t=0

fk(ã + th) < 0. Thus, ∀ã ∈ Ã,
d2

dt2

∣∣
t=0

L(ã+ th) > 0 and the convexity is proved.

The global optimal solution to minimize L(ã) lies in the boundary of Ã, i.e., ∂Ã = {ã|∀1 ≤ k ≤
K, fk(ã) = ck}. Although it is hard to quantify the region of Ã in Proposition 2, we can initialize
ã0 = 0. The reason is that we can easily make sure ∀1 ≤ k ≤ K, fk(0) = 0 and ck = fk(ai) > 0

as long as ai ̸= 0 due to the weight positivity in PICNN. Thus, ã0 ∈ Ã. Consequently, we can
utilize the gradient-based method to iteratively search the global optimal solution from ã0 to the
boundary point in ∂Ã, as shown in the bottom right part of Fig. 1. Finally, the above optimization is
solved multiple times, and each time we input one offline state-action pair to the second optimization
in equation 3. Thus, the inference procedure brings optimal query actions.

5 EXPERIMENTS
5.1 SETTINGS

Datasets. We use the following datasets for testing. (1) Grid world. We simulate a 20 × 20 grid
and let the agent search for the correct path to the target grid. Further, in the offline setting, we
restrict the bottom right region of the grids to unseen states that the agent never explores, shown as
the black region in Fig. 2a. Subsequently, in the online scenario, the start state s̃1 lies in one of the
unseen grids. PGO2 then helps to generate action queries that enable the agent to quickly move to
the target grid. (2) Maze2D (Fu et al., 2020). Similarly, Maze2D is an environment that requires the
agent to navigate to the target location. We conduct the same treatment as grid world to restrict the
unexplored areas in the offline dataset. Then, the agent starts at the unexplored location in the online
phase. (3) Gym domain (Fujimoto et al., 2019). The data is gathered from OpenAI Gym benchmark
tasks (Walker environments). We randomly delete 20% of the historical benchmark data and use the
state in the deleted dataset as the start state for online testing. (4) Atari games (Bellemare et al.,
2013). We evaluate the performance of the agent for the image-based Atari game (Breakout). We
conduct the same treatment as gym domain for the offline data and the online state initialization.
(5) Electric system (Li et al., 2022). Electric systems transmit electricity from generators to loads.
Proper controls are essential to guarantee system stability. Offline RL provides a chance to learn a
sub-optimal policy with changing system states. We conduct the simulation for the 200-node system
(Engineering Texas A&M University, 2016) based on a set of system states. For the online testing,
we start at an out-of-sample state to evaluate the learned policy.

Benchmark methods. We introduce the following benchmark methods for comparisons. (1) Q-
Learning with Bootstrapping Error Accumulation Reduction (Kumar et al., 2019) (BEAR).
BEAR reduces the bootstrapping error and enables stable training that is robust to data distributional
shifts. (2) Conservative Q-Learning (CQL) (Kumar et al., 2020). CQL estimates a conservative Q
value that is a lower bound of the true value. Thus, CQL prevents the overestimation of the Q values
and increases the generalizability of the learned policy to online implementation. (3) Pseudometric
Learning Offline RL (PLOFF) (Dadashi et al., 2021). PLOFF proposes to learn pseudometric with
the historical dataset. Then, the pseudometric works as a bonus term to restrict the state-action pairs
to always stay close to the support of the historical data. (4) Offline-to-Online RL with Balanced
Experienced Replay and Pessimistic Q-Ensemble (O2RL) (Lee et al., 2022). O2RL reweights the
offline and online samples and utilizes Q-value ensemble to reduce overfitting.
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Metric. We utilize the normalized score (Fu et al., 2020) between 0 and 100 to evaluate the perfor-
mance of different methods. The normalization facilitates the comparison across tasks. The normal-
ized score is evaluated in the online implementation after the offline training and online querying.
Specifically, we consider M ∈ {20, 40, 60, 80, 100} query actions in the query phase. In addition,
we report the average results over 4 seeds to guarantee a robust performance.

5.2 PSEUDOMETRIC GUARANTEES OPTIMAL QUERY ACTIONS

In this subsection, we use the grid world data to demonstrate the effectiveness of the learned pseu-
dometric for online queries. Specifically, we need to validate the optimality of the query action for
an unseen grid in the online phase. Therefore, we plot the query actions for 3 different methods in
Fig. 2. The rest 2 methods have similar performance to the CQL method. With multiple trials, the
color of the grid implies the frequency of states in the online testing.

(a) The 20× 20 grid world dataset. (b) The offline and online policy of PGO2.

(c) The offline and online policy of CQL. (d) The offline and online policy of PLOFF.

Figure 2: Results of 3 different methods for the grid world dataset.
The results imply that starting from an unseen state, the proposed PGO2 can successfully find the
target grid (i.e., the green block) while CQL and PLOFF cannot. The key reason is that PGO2 can
produce the optimal query action based on the comparison to the states in the historical dataset. For
the first start state (8, 0), the query mechanism in PGO2 will find the closest state (7, 0) and infer
the query action “left” that is the optimal action for (7, 0). This action helps the agent to go out
of the unexplored region and find the known path to the target grid. Similarly, when the start state
is (14, 9), PGO2 will find the state-action pair, (14, 13) and “up”, in the historical dataset, which
guides the agent to the target grid. However, for CQL and PLOFF, we directly apply the offline
trained policy network to find the action, which eventually fails due to the overfitting of the neural
network-based approximator.

5.3 OPTIMAL QUERIES AND FAST UPDATES BRING THE BEST ONLINE POLICY

In this subsection, we conduct comprehensive tests for different tasks and methods. Specifically, we
restrict M = 60 and report the performance of the online policy obtained after the offline training
and the online query. Fig. 3 illustrates the results of the normalized scores. Generally, PGO2 has
the best performance in the online environment. For grid world data, Section 5.2 shows that PGO2

can find correct query actions based on the most similar state-action pairs in the historical dataset.
For other methods, however, their agents will get stuck in the unexplored region. For more complex
tasks, PGO2 is still better since it can efficiently use online information. Finally, O2RL also has the
mechanism to largely make use of the online query results. However, since our query number M is
limited compared to the historical dataset, O2RL does not have significant improvement.

8
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Figure 3: Results of different methods for online tests in different datasets.

5.4 SENSITIVITY ANALYSIS: A SMALL NUMBER OF ONLINE QUERIES IS ENOUGH

We further study the problem of how many queries are needed to produce a high-level online policy.
Thus, we vary M and test different datasets. Fig. 4 demonstrates the results. We have the fol-
lowing observations. First, as M increases, PGO2 and O2RL have significant improvements while
the rest methods only have slight improvements. This is because PGO2 and O2RL have effective
mechanisms to update the policy based on the online data. However, the improvement for PGO2 is
much higher since PGO2 can better use the online queries results based on our unique designs of
parameter-sharing between the Q-network and the pseudometic learning network. Second, when M
is small, PGO2 still brings relatively large scores, which further validates the model’s effectiveness.

(a) The result for Maze2D. (b) The result for Gym. (c) The result for Atari. (d) The result for Electric.

Figure 4: Results of sensitivity analysis for different datasets.

5.5 COMPARISONS TO PRE-TRAINING-BASED OFFLINE TO ONLINE RL

In this subsection, we treat the pure offline RL models as pre-training for online implementations.
Then, we continue the model updates in the online phase using query results. We fix M = 100 and
the results are shown in Table 1. Although different models have the post-training process after the
online results, our PGO2 still achieves the best performance due to its efficient utilization of online
query results.
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Table 1: Results of different methods for offline pre-training and online post-training.

DATASET PGO2 BEAR CQL PLOFF O2RL
MAZE2D 92.3 66.4 85.2 79.7 85.2
GYM 88.2 72.3 73.5 73.8 78.9
ATARI 83.2 75.6 67.8 74.5 73.8
ELECTRIC 94.2 78.6 76.2 88.6 82.3

6 CONCLUSION AND FUTURE WORK
We propose PGO2: Pseudometric Guided Offline-to-Online Reinforcement Learning. PGO2 is
effective with (1) optimal online action queries and (2) efficient online Q-network updates. We
demonstrate that the effectiveness comes from the coupling between pseudometric learning and pol-
icy network learning. In addition, we enforce input convexity to the framework to guarantee query
optimality. Finally, we test different datasets to demonstrate the superiority of PGO2. Possible fu-
ture directions may include (1) the development of evaluations on the transferability from offline to
online after the online query and (2) model improvement in the face of sparse rewards.
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