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ABSTRACT

Industrial Anomaly Detection (IAD) in low data regime is crucial for automating
industrial inspections in practice. Previous methods have primarily focused on
obtaining robust prototypes using only a few normal images per product. However,
these methods seldom account for transferring the characteristics of online query
images to enhance the representativeness of the original prototypes in a systematic
way. To address the pivot issue, we propose a prototype-oriented fast refinement
model for few-shot IAD. Given online query images, we formulate prototype
refinement as a nested optimization problem between transport probability for
anomaly suppression and transform matrix for characteristic transfer. Then we
present an Expectation Maximization (EM)-based algorithm to iteratively compute
the transport probability and transform matrix. In the E-step, we use entropy-
based optimal transport, known as the Sinkhorn algorithm, to learn the transport
probability. In the M-step, the transform matrix is updated via gradient descent.
Finally, we integrate our model with two popular and recently proposed few-shot
IAD methods, PatchCore and WinCLIP. Comprehensive experiments on three
widely used datasets including MVTec, ViSA, and MPDD verify the effectiveness
and efficiency of our proposed model in few-shot IAD applications.

1 INTRODUCTION

Industrial Anomaly Detection (IAD) aims to automatically identify defects on product surfaces
Liu et al. (2024) and has been attracting tremendous attention Zhao (2023); You et al. (2022); Lu
et al. (2023). However, the fragmented nature of industrial anomalies ranging from subtle bruises
to obvious breakages, with varying appearances and scales Roth et al. (2022) , making it difficult
for fully-supervised methods to detect them He et al. (2017); Kamat & Sugandhi (2020). Therefore,
unsupervised IAD methods, trained with massive normal product images, have been developed
recently Liu et al. (2023); Lu et al. (2024). In practice, it is not always possible to obtain a large
number of normal images for different products, making existing methods less effective due to their
inability to generalize across products in low-data regime at test time Huang et al. (2022).

To tackle this challenge, few-shot learning Snell et al. (2017); Sung et al. (2018); Wang et al. (2020)
has been introduced to unsupervised IAD, allowing the development of a common model shared
across multiple products and generalizing to new products with only a few normal training images,
such as 1-shot per product. This new paradiagm is known as few-shot (unsupervised) IAD Huang
et al. (2022), and primarily involves prototype-oriented methods Fang et al. (2023); Jeong et al.
(2023); Santos et al. (2023). At training time, these methods typically use the statistics of a few
normal training (support) images to construct a set of normal prototypes, also known as a memory
bank. During inference, anomaly scores are computed by measuring the differences between test
(query) images and normal prototypes using various distance functions. Anomalies are detected by
comparing the anomaly score against predefined thresholds. Especially, Fang et al. (2023) further
employ statistics of query images at test time to refine prototypes quickly. However, we find that
point-to-point regularization as in Fang et al. (2023) does significantly limits the ability to transfer
characteristics from query images to prototypes. Additionally, meta learning based few-shot IAD
methods Wu et al. (2021); Huang et al. (2022) have been introduced to achieve fast generalization,
whose performance is verified to be far behind of prototype-oriented methods Xie et al. (2023).
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Figure 1: Left: Pipeline of prototype-oriented few-shot IAD methods. Right: Our proposed
prototype-oriented fast refinement model for few-shot IAD. Our model leverages an EM-based
optimization algorithm to refine prototypes by iterating between suppressing anomalies in query
features and transferring characteristics from query features. In the E step, the refined prototypes are
aligned with a prior distribution expanded using a few normal training features. In the M step, the
refined prototypes are updated using both the old refined prototypes and query features.

Observing the fact that statistics of query images have not been fully explored at test time in
the previous methods Fang et al. (2023); Jeong et al. (2023); Santos et al. (2023) either from
data perspective Jeong et al. (2023); Santos et al. (2023) or optimization perspective Fang et al.
(2023), which may result in suboptimal prototype refinement and cause the query features to deviate
significantly from their normal prototypes, particularly when the available normal training images are
extremely limited. To address this problem, we propose a prototype-oriented fast refinement model to
transfer characteristics from query images to original prototypes while suppress anomalous features
potentially present in query images, which results in more precise and efficient refinement, making
the prototypes more generalizable. A comparison between our model and mainstream methods is
shown in Fig. 1. Specifically, we frame prototype refinement with online query images as a nested
optimization process balancing anomaly suppression and characteristic transfer, with a transport
probability and transform matrix capturing these behaviors, respectively. We then introduce an
EM-based algorithm to iteratively solve for the transport probability and transform matrix during
inference. In the E-step, we use an entropy-regularized optimal transport to align the distribution
between the original prototypes and the refined prototypes, ensuring the latter are unaffected by
anomalies. In the M-step, gradient descent is employed to maximize the transfer of characteristics
from query images to the refined prototypes. Finally, our model is integrated into two popular
and recently proposed few-shot IAD methods, PatchCore Roth et al. (2022) and WinCLIP Jeong
et al. (2023), to further enhance the representativeness of their prototypes. We find that our model
consistently improves the performance of the two existing methods by significant margins across
three widely used datasets including MVTec Bergmann et al. (2019), ViSA Zou et al. (2022), and
MPDD Jezek et al. (2021). The main contributions could be summarized as follows:

• We present a prototype-oriented fast refinement model that explores the characteristics of
query images and it can be integrated into existing methods like PatchCore and WinCLIP.

• We formulate prototype refinement as a nested optimization problem and introduce a novel
EM-based algorithm to solve it precisely and efficiently at test time.

• The experimental results confirm that our proposed model is effective and significantly
improves few-shot IAD performance on the MVTec, ViSA, and MPDD datasets.
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2 RELATED WORKS

2.1 ANOMALY DETECTION

Industrial anomaly detection (IAD) involves handling training images that exclusively consist of
normal data, primarily falling into two categories of reconstruction-based methods He et al. (2023);
Wyatt et al. (2022); Gong et al. (2019); You et al. (2022); Lu et al. (2023) and memory-based methods
Roth et al. (2022); Cohen & Hoshen (2020); Defard et al. (2021). Reconstruction-based methods
are trained exclusively with normal images on the premise that anomalies will yield significantly
higher reconstruction errors Gong et al. (2019). To address shortcut, Transformer-based architectures
You et al. (2022); Lu et al. (2023) and diffusion-based training strategies Wyatt et al. (2022); Roth
et al. (2022) have been developed concurrently. Memory-based methods take full advantages of
pre-trained features to improve detection performance. However, both approaches tend to overfit
when the number of normal training images per product is limited Huang et al. (2022).

2.2 FEW-SHOT ANOMALY DETECTION

Few-shot IAD has developed to address the demand for rapid manufacturing changeovers, with
research mainly divided into prototype-oriented methods Santos et al. (2023); Xie et al. (2023);
Fang et al. (2023); Jeong et al. (2023); Gu et al. (2024) and meta-learning based methods Wu et al.
(2021); Huang et al. (2022). Prototype-oriented methods usually use pre-trained features to construct
normal prototypes from only a few normal training images, with a focus on obtaining generalizable
prototypes. Xie et al. (2023) develop graph Swin-Transformer Liu et al. (2021) to extract isometric-
invariant visual features. Jeong et al. (2023); Li et al. (2024) turn to use Large Language Models
(LLMs) Radford et al. (2021) to create powerful prototypes. Fang et al. (2023) leverage query image
characteristics to enhance prototype representativeness. Although these methods efficiently build
generalizable prototypes, they still lack a systematic way for refining prototypes properly.

3 BACKGROUND

3.1 TASK FORMULATION

We formally define the one-class IAD task in a low data regime, adhering to the standard few-shot
learning. The model is fine-tuned using k normal support images xs

1:k and predicts whether the
t-th query image xq

t is anomalous at both the pixel and image levels. Notably, previous methods
rarely utilize the statistics of query images xq

t for systematic predictions, often leading to suboptimal
outcomes. In this paper, we fully leverage the pre-trained backbone fθ∗ , parameterized by θ∗, to
extract features from both support and query images, computed as follows:

f s
1:k×h×w = flatten[fθ∗(xs

1:k)], fq
t = fθ∗(xq

t ) (1)

where flatten[·] is an operation that converts a 2-D feature map into a 1-D vector. Let f s
l ∈ Rc,

where l = 1, ..., k× h× w, and fq
t ∈ Rh×w×c. In practice, normal features tend to be redundant, so

compression techniques like Coreset Sener & Savarese (2017) are commonly employed to construct
prototypes Ms ∈ Rα×k×h×w by selecting the most representative normal features from f s

1:k×h×w

with a downsampling ratio α ∈ (0, 1). For simplicity and conciseness, we denote m = h× w and
n = α× k × h× w for the reminder of this paper.

3.2 OPTIMAL TRANSPORT

Although Optimal Transport (OT) has a rich theory, we limit our discussion to OT for discrete
distributions and refer the readers to Peyré et al. (2019) for more details. Let us consider p and q as
two discrete probability distributions on the arbitrary space X,Y ⊂ Rd, which can be formulated
as p =

∑n
i=1 aiδxi

, and q =
∑m

j=1 bjδyj
. In this case, a ∈ Σn and b ∈ Σm, where Σn denotes the

probability simplex of Rn. The OT distance between a and b is defined as:

OT(p, q) = minT∈U(p,q) ⟨T ,C⟩ (2)

where ⟨·, ·⟩ denotes the Frobenius dot-product, C ∈ Rn×m
≥0 is the transport cost function with ele-

ment Ci,j = C(xi,yj), T ∈ Rn×m
>0 is the doubly stochastic transport probability matrix such that

3
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Figure 2: Overview of our proposed prototype-oriented fast refinement model. Support and query
images are processed through a pre-trained backbone to extract normal and query features, respectively.
Original prototypes are created by compressing normal features using Coreset Sener & Savarese
(2017). We then employ EM-based optimization to refine prototypes by transferring characteristics
while suppressing anomalies in the query features, where transport probability and transform matrix
are iteratively updated until reaching the optimal values T ∗ and W ∗. Anomaly detection is performed
by comparing the differences between query features and the refined prototypes. Notably, our model
can be friendly integrated with other prototype-oriented methods, as discussed in Sec. 5.

U(p, q) := {T |
∑n

i Ti,j = bj,
∑m

j Ti,j = ai}. To relax the time-consuming problem when optimiz-
ing the OT distance, Cuturi (2013) introduced the entropic regularization, H = −

∑
i,j Ti,jlnTi,j,

leading to the widely-used Sinkhorn algorithm for discrete OT problems.

4 METHOD

We present our proposed model from the following perspectives: In Sec. 4.1, we formulate prototype
refinement as a nested optimization problem. In Sec. 4.2, we introduce an EM algorithm to derive
the refined prototypes. Finally, in Sec. 4.3, we implement anomaly detection through reconstruction
using query images and the refined prototypes. An overview of our model is illustrated in Fig. 2.

4.1 A NESTED PROCESS FOR MODELLING PROTOTYPE REFINEMENT

We aim to improve the representativeness of prototypes by transferring characteristics while sup-
pressing anomalies from query images. To achieve this, we propose a nested process to model these
behaviors by:

W ∗,T ∗ := argminW ,T dis(f
q
t ,WMs) + λOT(ps, qs) (3)

where dis(·, ·) represents the distance between the two sets, with its form dependent on specific
integrated methods discussed in Sec. 5. W ∈ Rm×n is the transform matrix used to transfer
characteristics from the query features fq

t to the original prototypes Ms, resulting in the refined
prototypes M̃s = WMs , where M̃s ∈ Rm×c. Ms and M̃s are sampled from distributions
of ps and qs, respectively. Unlike the common assumption that refinement should occur along the
feature dimension, in this work, it takes place along the sample dimension. We refer to the former
as transform refinement and the latter as composition refinement. OT(·, ·) represents the optimal
transport distance described in Sec. 3.2 and can be viewed as a metric for suppressing anomalies
potentially present in query images, as it ensures that the refined prototypes M̃s are positioned in the
high probability density region defined by the normal prototypes Ms. Importantly, our proposed
regularization using the OT distance does not rely on a Gaussian distribution assumption, making
it more adaptable for real-world few-shot IAD applications. λ is the balanced coefficient. For
optimization, we must further clarify the parsed formula for the OT distance in Eq. 3. Specifically,
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given Ms ∼ ps and M̃s ∼ qs, we can represent each feature in ps and qs as empirical distributions
over the corresponding n and m features in their respective data spaces as follows:

ps =

n∑
i=1

1

n
δMs,i

, Ms,i ∈ Rc; qs =

m∑
j=1

1

m
δM̃s,j

, M̃s,j ∈ Rc (4)

Moreover, we utilize an entropy-based OT distance Cuturi (2013) and formulate the optimization
problem for the second term in Eq. 3 as follows:

OTϵ(ps, qs) :=

n,m∑
i,j

Ci,jTi,j − ϵ

n,m∑
i,j

−Ti,jlnTi,j (5)

where ϵ > 0, C ∈ Rn×m
≥0 is the cost matrix, which is typically formulated using simple distance

functions dis(·, ·), such as Euclidean or cosine. The specific form of C should align with the distance
function used in the first term of Eq. 3, which we will discuss in Sec. 5. Importantly, the transport
probability T ∈ Rn×m

>0 must satisfy U(ps, qs) := {
∑n

i Ti,j =
1
m ,

∑m
j Ti,j =

1
n}, where Ti,j denotes

the transport probability between the i-th prototypes and the j-th refined prototypes, serving as an
upper-bounded positive metric. Consequently, Ti,j naturally weights the importance of each refined
prototype in relation the set of original (normal) prototypes.

4.2 AN EM ALGORITHM FOR SOLVING PROTOTYPE REFINEMENT

Observing the nested optimization problem in Eq. 3, it is clear that the optimal parameters for the
transport probability T ∗ and the transform matrix W ∗ are interdependent. This motivates us to
leverage the EM algorithm for iterative solving, as illustrated in Fig. 2. For the t-th iteration, in the
E-step, we keep the transform matrix Wt fixed and update the transport probability Tt by minimizing
the second term of Eq. 3 using Sinkhorn algorithm Cuturi (2013) to derive Tt+1. In the M-step,
we keep the transport probability Tt+1 fixed and update transform matrix Wt by minimizing Eq. 3,
denoted as L(fq

t ,Ms;W ,T ), using gradient descent as Wt+1 = Wt+β
∂L(fq

t ,Ms;Wt,Tt+1)
∂Wt

. After

N steps, the optimal refined prototypes can be expressed as M̃
∗
s = W ∗Ms, where W ∗ = WN

and T ∗ = TN. We find that N = 10 yields promising anomaly detection results, indicating that
the optimization of our model is efficient. Additionally, we initialize the transform matrix with
W0 = (fq

t MT
s )(M

T
s Ms)

−1 for fast convergence.

4.3 ANOMALY DETECTION WITH RECONSTRUCTION

Once the optimal refined prototypes M̃
∗
s are obtained, the anomaly score map s for the t-th query

image xq
t can be defined by calculating the similarities between M̃

∗
s and xq

t as follows:

sj := minr∈M∗
s
dis(fq

t,j, r), j = 1, ...,m (6)

For image-level anomaly detection, we represent the maximum score s∗ among all values in s ∈ Rm

as s∗ = maxj∈[1,m]sj. For pixel-level localization, we first upscale the anomaly score map s using
bi-linear interpolation to match the original input resolution. Next, we smooth the score map with a
Gaussian kernel of fixed width equal to 4, rather than optimizing this parameter.

5 INTEGRATION WITH PROTOTYPE-ORIENTED FEW-SHOT IAD METHODS

5.1 PATCHCORE+: INTEGRATION WITH PATCHCORE

PatchCore Roth et al. (2022) is originally introduced for one-class IAD with a large number of normal
images. Recently, however, it has also been applied to few-shot IAD tasks, thanks to its flexible
prototype-oriented design Santos et al. (2023). A notable drawback of PatchCore is that its prototypes
remain fixed during inference, which causes it to overlook statistics in query images. To address
this issue, we propose PatchCore+ by incorporating our prototype refinement model to enhance the
representativeness of the original prototypes in PatchCore by effectively exploring the characteristics

5
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Figure 3: Qualitative results of pixel-level anomaly localization under 4-shots.

of query images. We use Euclidean distance in line with PatchCore and substitute it into Eq. 3 and
Eq. 6, allowing us to rewrite the nested optimization problem and anomaly score map as follows:

W ∗,T ∗ := argminW ,T ∥f
q
t −WMs∥2 + λOT(ps, qs)

sj := minr∈M∗
s
∥fq

t,j −W ∗r∥2, j = 1, ...,m
(7)

Once we have anomaly score map s, anomaly detection can be carried out as described in Sec. 4.3.

5.2 WINCLIP+: INTEGRATION WITH WINCLIP

Unlike PatchCore whose support and query features are extracted from ResNet Zagoruyko & Ko-
modakis (2016) or Efficient Tan (2019), WinCLIP Jeong et al. (2023) introduces a fine-tuning free
large visual-language model based on the pre-trained CLIP model Radford et al. (2021). Although
it demonstrates superior performance in few-shot IAD applications, it neglects the importance of
efficiently transferring statistics from query images. To address this, we propose WinCLIP+ by
integrating our prototype refinement model as a plug-and-play extension to WinCLIP, using consine
distance to reformulate Eq. 3 and Eq. 6 as follows:

W ∗,T ∗ := argminW ,T

1

2
[1− cos(fq

t ,WMs)] + λOT(ps, qs)

sj := minr∈M∗
s

1

2
[1− cos(fq

t,j, r)], j = 1, ...,m

(8)

To conduct anomaly detection, we combine the maximum value of s with the WinCLIP zero-shot
anomaly score s0 : Rc → [0, 1] for query features fq

t . These two scores provide complementary
information, one from few-shot visual references and the other from CLIP knowledge by:

s∗ =
1

2
[s0(f

q
t ) + maxj∈[1,m]sj ] (9)

6 EXPERIMENTS

We conduct comprehensive experiments on our proposed Patchcore+ and WinCLIP+ under 1-shot,
2-shots and 4-shots. We evaluate both image-level and pixel-level performances to demonstrate the

6
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Table 1: Few-shot IAD performance averaged across on each dataset of MVTec, VisA and MPDD.
Results of image-level and pixel-level are reported in AUROC/F1-max. The best results are in bold.

Setup Method MVTec VisA MPDD

Image Pixel Image Pixel Image Pixel

1-shot

PaDiM (ICPR’21) 76.6/88.2 89.3/40.3 62.8/75.3 89.9/17.4 57.5/73.4 73.9/12.0
RegAD (ECCV’22) 82.9/89.6 92.5/46.5 — / — — / — 60.9/74.6 92.6/13.4

FastRecon (ICCV’23) 85.7/91.2 93.2/48.6 76.2/78.8 96.7/36.7 74.1/83.9 96.3/25.3
PromptAD (CVPR’24) 92.9/ — 95.1/ — 86.5/ — 96.2/ — — / — — / —

PatchCore (CVPR’22) 84.1/91.1 92.3/44.1 71.0/76.0 96.1/32.6 71.0/79.5 96.3/22.6
PatchCore+ (Ours) 85.9/92.0 93.7/50.4 78.3/79.6 97.1/37.6 74.9/84.3 96.6/26.0

WinCLIP (CVPR’23) 93.5/93.7 93.6/43.2 83.4/81.9 94.7/22.9 70.5/81.2 96.3/31.4
WinCLIP+ (Ours) 93.8/94.0 95.7/48.2 83.9/82.4 95.8/25.3 72.5/82.6 96.9/31.6

2-shot

PaDiM (ICPR’21) 78.9/89.2 91.3/43.7 67.4/75.7 92.0/21.1 58.0/74.3 75.4/14.0
RegAD (ECCV’22) 85.7/91.5 94.6/49.9 — / — — / — 63.4/76.8 93.2/16.8

FastRecon (ICCV’23) 88.3/92.5 94.5/51.9 86.1/82.3 97.6/42.8 76.4/83.8 96.7/29.5
PromptAD (CVPR’24) 93.4/ — 95.4/ — 86.7/ — 96.5/ — — / — — / —

PatchCore (CVPR’22) 87.1/92.2 93.3/46.4 80.0/79.1 96.9/36.8 71.4/80.7 96.5/24.8
PatchCore+ (Ours) 88.8/93.4 94.7/52.5 87.1/83.0 98.0/43.0 78.2/85.4 96.9/31.5

WinCLIP (CVPR’23) 93.7/94.5 93.8/43.8 83.8/82.3 95.1/23.9 72.5/82.1 96.5/33.2
WinCLIP+ (Ours) 93.9/94.8 96.2/49.9 84.1/82.9 96.4/26.9 76.0/83.3 97.3/34.4

4-shot

PaDiM (ICPR’21) 80.4/90.2 92.6/46.1 72.8/78.0 93.2/24.6 58.3/75.3 75.9/16.0
RegAD (ECCV’22) 88.2/92.3 95.8/51.7 — / — — / — 68.3/79.5 93.9/24.3

FastRecon (ICCV’23) 91.3/93.8 96.1/53.8 88.2/83.1 98.0/44.6 79.7/85.9 95.2/33.7
PromptAD (CVPR’24) 95.5/ — 96.3/ — 88.8/ — 96.8/ — — / — — / —

PatchCore (CVPR’22) 90.0/93.4 95.1/49.9 84.2/80.7 97.5/38.1 76.2/84.1 97.2/28.5
PatchCore+ (Ours) 92.1/94.4 96.1/54.1 90.4/85.4 98.2/45.0 80.3/87.4 97.2/35.7

WinCLIP (CVPR’23) 95.3/94.9 94.2/45.9 84.1/82.5 95.4/25.3 75.0/83.4 96.8/34.8
WinCLIP+ (Ours) 95.5/95.1 96.7/53.2 85.0/83.0 96.6/28.4 82.0/84.1 97.6/35.0

effectiveness of the our proposed prototype refinement model in few-shot IAD. Ablation studies are
performed to validate the improvements brought about by the characteristics transfer and anomalies
suppression. Finally, we analyzed the impact of various hyperparameters.
6.1 EXPERIMENT SETUP

Datasets. We conduct experiments on MVTec Bergmann et al. (2019), VisA Zou et al. (2022), and
MPDD Jezek et al. (2021) datasets. The MVTec dataset consists of 3,629 training images and 1,725
test images across 15 categories, covering 5 types of textures and 10 types of objects, with each
category exhibiting an average of five distinct defect types. Image resolutions ranging from 700×700
to 1,024×1,024. The VisA dataset contains 9,621 normal images and 1,200 anomaly images featuring
78 types of anomalies. It is divided into 12 subsets, each representing a distinct object, with an
average of 6.5 defect types per subset. Image resolutions are around 1,500×1,000. The MPDD dataset
includes 888 normal training images and 458 test images, including 176 normal and 282 abnormal
images, spanning 6 classes of metal products with a resolution of 1,024×1,024.

Competing Methods. We compare our model against several recently proposed few-shot IAD
methods or those applicable in low-data regimes, including PaDiM Defard et al. (2021), RegAD
Huang et al. (2022), PatchCore Roth et al. (2022), FastRecon Fang et al. (2023), WinCLIP Jeong
et al. (2023), and PromptAD Li et al. (2024). PaDiM, PatchCore and FastRecon are CNN-based
methods. RegAD is meta-learning based model. WinCLIP and PromptAD are CLIP-driven methods.
For fairness, we use the performance of PatchCore, FastRecon, WinCLIP and PromptAD using the
same support images and official or reproduced code implementations.

Evaluation Protocols. Following previous methods Jeong et al. (2023), we evaluate the performance
of anomaly detection and localization using image/pixel-level AUROC and image/pixel-level F1-max.
Additionally, we assess real-time efficiency by measuring the running time per image.

Implementation Details. For PatchCore+, we use a pre-trained WRN-50 Zagoruyko & Komodakis
(2016) to extract features from intermediate layers, following Roth et al. (2022). All images from the
MVTec-AD, VisA, and MPDD datasets are resized to 256×256. Balanced coefficient λ = 0.3 and
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Table 2: Ablation studies of WinCLIP+ with image-level and
pixel-level AUROCs under 2-shots. The best results are in bold.

W ∗ T ∗ MVTec VisA MPDD

Image Pixel Image Pixel Image Pixel

× × 93.1 93.8 83.4 95.1 72.5 96.2
✓ × 93.7 94.7 83.7 96.2 74.9 96.4
✓ ✓ 93.9 96.2 84.1 96.4 76.0 97.3

Table 3: Comparisons of infer-
ence time in seconds on MVTec.

Methods Inference time

PromptAD 3.54
PatchCore 0.21

PatchCore+ 0.49
WinCLIP 0.50

WinCLIP+ 0.81

WinCLIP+Anomaly GT w.o T* W*w.o T* WinCLIP+Anomaly GT w.o T* W*w.o T*

(a) VisA 2-shots (b) MPDD 2-shots

Figure 4: Qualitative ablation studies of 2-shots anomaly localization on MVTec and VisA datasets.

Coreset sampling ratio α = 0.05. For WinCLIP+, we set the image resolution to 240×240 and
use the pre-trained CLIP model with ViT-B/16+ to extract image features for anomaly detection,
following Jeong et al. (2023). In this case, λ = 0.1 and α = 0.5, 0.3, 0.2 for MVTec-AD, VisA, and
MPDD datasets, respectively. All experiments are conducted on a single NVIDIA GTX 3090 GPU.

6.2 COMPARISONS WITH SOTA METHODS

Image-level Comparison Results. We present image-level anomaly detection results in Table 4.
PaDiM Defard et al. (2021) and PatchCore Santos et al. (2023) are adapted from traditional full-shot
methods to few-shot settings. Comparing the results of RegAD Huang et al. (2022), PatchCore Santos
et al. (2023), and FastRecon Fang et al. (2023), the following observations are evident: i) Prototype-
oriented methods outperform the meta-learning based model, demonstrating the superior flexibility
and generalizability of their feature representations; ii) FastRecon significantly outperforms Patch-
Core, highlighting the importance of incorporating statistics from query images. Notably, PatchCore
and FastRecon use CNN-based pre-trained features for few-shot IAD. When comparing PatchCore
and FasRecon to WinCLIP Jeong et al. (2023), WinCLIP achieves a substantial performance gain
except on the MPDD dataset. We attribute this to two factors: i) Generally, the representations from
pre-trained CLIP models are more powerful than those from CNNs; ii) Unlike MVTec and VisA,
MPDD is a metal dataset with rotation variations that may not be well-represented during CLIP
pre-training. This discrepancy motivates us to demonstrate the effectiveness of our model using both
CNN-based and CLIP-based pre-trained models. By comparing the results of PatchCore/WinCLIP
with PatchCore+/WinCLIP+, we observe that PatchCore+/WinCLIP+ consistently delivers superior
IAD performance, indicating that our prototype refinement model effectively addresses the challenges
in few-shot IAD. For example, WinCLIP+ achieves a 7% improvement in AUROC on the MPDD
dataset under 4-shots. Furthermore, the improvement delivered by our model surpasses that of
the point-to-point regularization approach used in FastRecon Fang et al. (2023), underscoring the
importance of refining prototypes in a more systematic way.

Pixel-level Comparison Results. Pixel-level anomaly localization results are presented in Table 4.
When comparing PatchCore+ and WinCLIP+ with other competitive methods, we observe that the
trends in pixel-level AUROC and F1-max are consistent with the image-level results. This consistency
suggests that our model not only effectively detects anomalous images but also accurately localizes
the anomalous regions. Once again, we attribute these performance gains to our well-designed
prototype refinement model.
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Figure 5: Hyper-parameters analysis on MVTec dataset under 4-shots.

Qualitative results. Visualization results for all three datasets are shown in Fig. 3. As demonstrated,
our model (WinCLIP+) achieves more precise anomaly localization, particularly for subtle anomalies
that are challenging to detect. This further validate the effectiveness of our approach.

6.3 ABLATIVE ANALYSIS

We utilize WinCLIP+ to assess the impact of each module in our prototype-oriented fast refinement
model, including anomaly suppression via the optimal transport probability T ∗ and characteristic
transfer through the optimal transform matrix W ∗ under 2-shots on all three datasets. The results are
reported in Table 2, with visualizations for the MVTec and VisA datasets shown in Fig. 4.

Impact of Anomaly Suppression by T ∗. Anomalies in query images negatively affect robust
anomaly detection due to the limited diversity and representativeness of normal prototypes. Therefore,
leveraging query images through effective anomaly suppression is crucial. As shown in Table 2, there
is a notable performance decline in image/pixel level results when T ∗ is not applied. Specifically,
anomaly suppression yields improvements of over 1% on both the MVTec and MPDD datasets.

Impact of Characteristic Transfer W ∗. According to Table 2, W ∗ consistently improves detection
and localization performance across all three datasets. However, in same cases we observe that
the gains from using T ∗ are more pronounced than those from W ∗. For example, in the case of
pixel-level localization on the MPDD dataset, the gain from using W ∗ is 0.2%, whereas further
using T ∗ results in a 0.9% improvement. This suggests that relying solely on W ∗ may introduce
additional anomalies, thereby limiting overall performance improvements.

6.4 REAL-TIME EFFICIENCY

The running time per image during testing is compared in Table 3. PromptAD is the most time-
consuming due to its complex prompt learning process. Overall, our proposed prototype refinement
model adds only 0.3 s compared to its base models, PatchCore and WinCLIP.

6.5 HYPER-PARAMETERS ANALYSIS

In Fig. 8, we present results of the hyperparameters’ impact under 4-shots on MVTec dataset ,
including the Coreset sampling ratio α, the balanced coefficient λ, and the number of iteration N.

Impact of CoreSet sampling ratio α. We observe that the Coreset sampling ratio α is crucial in
determining IAD performance, as it controls the initial representativeness of the prototypes.

Impact of the balanced coefficient λ. We observe a similar trend as in α that the performance first
improves and then declines as λ changes. This phenomenon suggests that characteristic transfer
should dominate the success of prototype refinement, aligning with our design.

Impact of the iteration number N . To obtain optimal refined prototypes, we need to update transport
probability T and transform matrix W iteratively following an EM-based algorithm described in Sec.
4.2. Naturally, the iteration number N is crucial for robust few-shot IAD. Results reported in Fig. 8
(c) indicate that the WinCLIP+, enhanced by our proposed prototype refinement model, achieves
strong IAD performance with N = 10, demonstrating that our model is efficient in practice. This also
echoes the real-time efficiency discussed in Sec. 6.4.
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A APPENDIX

Table 4: Few-shot IAD performance averaged across on each dataset of MVTec, VisA, MPDD, and
RealIAD. Results of image-level and pixel-level are reported in AUROC. The values in parentheses
represent the improvements of our method compared to the original method. The best and the second
best results are bold with black and blue, respectively.

Setup Method MVTec VisA MPDD RealIAD

Image Pixel Image Pixel Image Pixel Image Pixel

1-shot

GraphCore (ICLR’23) 89.9 95.6 — — 84.7 95.2 — —

PatchCore (CVPR’22) 84.1 92.3 71.0 96.1 71.0 96.3 71.2 95.7
PatchCore+ (Ours) 85.9(+1.8) 93.7(+1.4) 78.3(+7.3) 97.1(+1) 74.9(+3.9) 96.6(+0.3) 75.9(+4.7) 96.3(+0.6)

WinCLIP (CVPR’23) 93.5 93.6 83.4 94.7 70.5 96.3 73.8 94.3
WinCLIP+ (Ours) 93.8(+0.3) 95.7(+2.1) 83.9(+0.5) 95.8(+1.1) 72.5(+2.0) 96.9(+0.6) 74.4(+0.6) 94.8(+0.5)

2-shot

GraphCore (ICLR’23) 91.9 96.9 — — 85.4 95.4 — —

PatchCore (CVPR’22) 87.1 93.3 80.0 96.9 71.4 96.5 72.5 95.9
PatchCore+ (Ours) 88.8(+1.7) 94.7(+1.4) 87.1(+7.1) 98.0(+1.1) 78.2(+6.8) 96.9(+0.4) 76.9(+4.4) 96.5(+0.6)

WinCLIP (CVPR’23) 93.7 93.8 83.8 95.1 72.5 96.5 75.0 94.6
WinCLIP+ (Ours) 93.9(+0.2) 96.2(+2.4) 84.1(+0.3) 96.4(+1.3) 76.0(+3.5) 97.3(+0.8) 75.9(+0.9) 95.2(+0.6)

4-shot

GraphCore (ICLR’23) 92.9 97.4 — — 85.7 95.7

PatchCore (CVPR’22) 90.0 95.1 84.2 97.5 76.2 97.2 73.2 96.0
PatchCore+ (Ours) 92.1(+2.1) 96.1(+1) 90.4(+6.2) 98.2(+0.7) 80.3(+4.1) 97.2(+0) 77.4(+4.2) 96.7(+0.7)

WinCLIP (CVPR’23) 95.3 94.2 84.1 95.4 75.0 96.8 76.4 94.8
WinCLIP+ (Ours) 95.5(+0.2) 96.7(+2.5) 85.0(+0.9) 96.6(+1.2) 82.0(+7) 97.6(+0.8) 77.3(+0.9) 95.3(+0.5)

Table 5: Ablation studies of WinCLIP+ with AU-
ROC under 2-shot. The best results are in bold.

W ∗ T ∗ MVTec VisA MPDD

Image Pixel Image Pixel Image Pixel

× × 93.7 93.8 83.8 95.1 72.5 96.5
✓ × 93.7 94.7 83.7 96.2 74.9 96.4
✓ ✓ 93.9 96.2 84.1 96.4 76.0 97.3

Table 6: Results of incorporating refined proto-
types into the memory bank on MPDD.

Method 1-shot 2-shot

Image Pixel Image Pixel

PatchCore 71.0 96.3 71.4 96.5
PatchCore+ 74.9 96.6 78.2 96.9

Online PatchCore+ 75.2 97.1 78.5 97.2

Algorithm 1 Inference Process

Require: Initial transform matrix W0, original
prototypes Ms, the t-th query features f q

t
1: Calculating ps using Ms

2: For m = 0 to M − 1 do
3: Calculate qs using WmMs

4: For e = 0 to E − 1 do
5: Update Tm+1 from Tm by minimizing
6: OT(ps, qs) while fix Wm

7: Update Wm+1 from Wm by minimizing
8: L(f q

t ,Ms;W ,T ) while fix Tm+1

9: Set W ∗ = WM , M∗
s = W ∗Ms

10: Implement few-shot IAD as follows:
11: sj := minr∈M∗

s
dis(fq

t,j, r), j = 1, ...,m

(a) MVTec 4-shot (b) ViSA 4-shot (c) MPDD 4-shot
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Figure 6: Qualitative results of pixel-level
anomaly localization under 4-shot.

(a) Bottle (b) Weight matrix (c) Memory distribution

Figure 7: The learned weight matrix in (b) corre-
sponding to the bottle in (a). (c) shows the Top-3
selected items in the memory according to (b) for
different patches of query image in (a).
Table 7: Image/pixel level AUROC and per image
inference time (s) on MPDD under 2-shot.

Method Image Pixel Inference time

PatchCore 71.4 96.5 0.20
PatchCore+ 78.2 96.9 0.50

Closed PatchCore+ 78.0 97.0 0.36
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(a) Bottle (b) Weight matrix (c) Memory distribution

Figure 8: The learned weight matrix in (b) corresponding to the bottle in (a). (c) shows the Top-3
selected items in the memory according to (b) for different patches of query image in (a).
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