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Link Recommendation to Augment Influence Diffusion with
Provable Guarantees

Anonymous Author(s)
ABSTRACT
Link recommendation systems in online social networks (OSNs),
such as Facebook’s “People You May Know”, Twitter’s “Who to Fol-
low”, and Instagram’s “Suggested Accounts”, facilitate the formation
of new connections among users. This paper addresses the chal-
lenge of link recommendation for the purpose of social influence
maximization. In particular, given a graph𝐺 and the seed set 𝑆 , our
objective is to select 𝑘 edges that connect seed nodes and ordinary
nodes to optimize the influence dissemination of the seed set. This
problem, referred to as influence maximization with augmentation
(IMA), has been proven to be NP-hard. In this paper, we propose an
algorithm, namely AIS, consisting of an efficient estimator for aug-
mented influence estimation and an accelerated sampling approach.
AIS provides a (1− 1/e− 𝜀)-approximate solution with a high prob-
ability of 1− 𝛿 , and runs in𝑂 (𝑘2 (𝑚 +𝑛) log(𝑛/𝛿)/𝜀2 +𝑘 |𝐸C |) time
assuming that the influence of any singleton node is smaller than
that of the seed set. To the best of our knowledge, this is the first
algorithm that can be implemented on large graphs containing
millions of nodes while preserving strong theoretical guarantees.
We conduct extensive experiments to demonstrate the effectiveness
and efficiency of our proposed algorithm.
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1 INTRODUCTION
Online social networks (OSNs) are becoming an increasingly power-
ful medium for disseminating useful content. Nowadays, individuals
are seamlessly connected, forming intricate webs of relationships
that facilitate the exchange of information, ideas, and opinions on an
unprecedented scale. As a result, understanding and harnessing the
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mechanisms behind influence spread have become crucial for vari-
ous domains [13], ranging from political campaigns to marketing
[10]. Viral marketing, in particular, has gained substantial traction
in recent years as a cost-effective and efficient strategy to promote
products, services, and ideas, which leverages the interconnected-
ness of social networks to facilitate one-to-one or many-to-many
communication, enabling messages to spread rapidly and organi-
cally. By harnessing the power of social influence, viral marketing
campaigns aim to create a cascade of user engagements through
the word-of-mouth effect, leading to exponential growth in reach
and impact.

An important scientific problem related to that is influence max-
imization (IM) [18], which aims to select a set of nodes in a social
network as the sources of influence spread to maximize the ex-
pected number of influenced nodes. The seminal work of Kempe
et al. [18] formulates this problem as a submodular optimization
problem. Their results have sparked a whole line of research on
the IM problem [2, 5–7, 11, 14, 15, 23, 31–33]. Such work normally
assumes that the topology structure of the network does not change.

Another way to boost the influence spread in an OSN is by in-
creasing the connectivity among users. Some OSN platforms like
Twitter already use “people recommendations” to increase con-
nectivity. However, most recommendation systems mainly focus
on making relevant recommendations without an explicit effort
towards augmenting information spread. For example, the “People
You May Know” feature employs the Friend-of-Friend (FoF) algo-
rithm [25], recommending the users that have the highest common
friends with the target user receiving the recommendation. Other
recommendation algorithms may recommend users whose profiles
have substantial overlap with the receiver. However, simply rec-
ommending connections based on the number of mutual friends
or similarity may not maximize the influence spread in a social
network. The combination of link recommendation with informa-
tion diffusion in OSNs opens up new opportunities for product
marketing.

Recommending links allows us to tap into the network’s inherent
structure and dynamics, enabling us to identify meaningful connec-
tions that can facilitate influence diffusion specifically within the
desired audience. Furthermore, combining the selection of influen-
tial users with link recommendations creates a synergistic effect.
The influential users can initiate the spread of influence, while the
recommended links enhance and amplify the diffusion process of
the target group. In addition, selecting seed users usually bring high
costs in both expense and time. Thus, adding new connections into
the network is a more economic approach to amplify the influence
spread than selecting new seed users.

In contrast to the previous works of influence maximization
where the network topology remains unchanged, we are interested
in recommending links that can augment the social influence of a
target group of users. More specifically, we aim to suggest a fixed
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number of new connections to a subset of users to maximize the ex-
pected influence spread of them. This problem is known as influence
maximization with augmentation (IMA), which is first proposed
by D’Angelo et al. [9]. They show that this problem is NP-hard
and the objective function is submodular under the Independent
Cascade (IC) model. As a solution, they utilize a greedy approach
with (1−1/e−𝜀)-approximations [27], which unfortunately suffers
from a serious scalability issue.

Specifically, an important element of the greedy algorithm is to
compute the influence spread for the seed set, which is #P-hard
[5]. D’Angelo et al. [9] propose to estimate the influence spread via
Monte-Carlo simulations, where the resultant algorithm is called
MC-Greedy. To obtain accurate estimation of the influence spread,
a large number of Monte-Carlo simulations are needed, incurring
significant computational overheads. Inspired by the groundbreak-
ing reverse influence sampling (RIS) method [2], we propose a
RIS-based algorithm with two newly developed innovative tech-
niques, including an efficient estimator and an accelerated sampling
approach tailored for the IMA problem. To the best of our knowl-
edge, this is the first algorithm that can be applied to large-scale
networks with theoretical guarantees.

Contributions. In this paper, we study the IMA problem and
present AIS that overcomes the deficiencies of MC-Greedy. We
illustrate the connection between the influence estimation problem
and the IMA problem, which helps us to compute the marginal
gain of a given candidate edge more efficiently by RIS. With this
important observation, we propose an approximation algorithm for
the IMA problem with two acceleration techniques based on the
nature of the IMA problem. Theoretically, our algorithm achieves
an approximation ratio of (1 − 1/e − 𝜀) with a high probability of
1 − 𝛿 and runs in 𝑂 ( 𝑘2 (𝑚+𝑛) log(𝑘𝑛/𝛿 )

𝜀2
+ 𝑘 |𝐸C |) time when every

singleton node’s influence is smaller than the seed set. Practically,
with extensive experiments on various datasets, our algorithm out-
performs the baselines, and is the first method that can be applied
to large datasets without any compromise of theoretical assurance.
In summary, our contributions are as follows:

(1) We develop an efficient estimator for augmented influence
estimation by building an connection between the IMA
problem and the influence estimation problem, and propose
novel techniques for accelerating sampling process.

(2) We propose AIS based on our sampling approach that re-
turns a (1 − 1/e − 𝜀)-approximate solution with proba-
bility 1 − 𝛿 for the IMA problem, and runs in 𝑂 (𝑘2 (𝑚 +
𝑛) log(𝑘𝑛/𝛿)/𝜀2 + 𝑘 |𝐸C |) time if any singleton node’s in-
fluence is less than that of the seed set.

(3) We perform extensive experiments on various real-world
datasets with up to millions of nodes and billions of edges
and demonstrate the effectiveness and efficiency of our
algorithm.

Organization. The rest of the paper is organized as follows. Section
2 reviews the related work. Section 3 gives the problem definition
and introduces some necessary preliminaries. Section 4 devises the
design of the AIS algorithm. Section 5 provides theoretical analysis.
Section 6 evaluates the effectiveness and efficiency of our method.
Finally, Section 7 concludes this work.

Table 1: Frequently used notations

Notation Description
𝐺 A social network
𝑉 , 𝐸 The set of nodes and edges, respectively
𝑛,𝑚 The number of nodes and edges in G
𝐸C Candidate edges set
𝑘 The number of edges to be selected
𝑆,𝐴 The seed set, and the edge set

𝜎 (𝐴, 𝑆) The augmented influence spread of 𝑆
after adding the edge set 𝐴

𝑅,R A random RR set, a collection of RR sets
ΛR (𝑆) The number of RR sets in R that intersects with 𝑆

2 RELATEDWORK
2.1 Influence Maximization
In 2003, Kempe et al. [18] publish the first algorithmic study on
the influence maximization problem. They show that this problem
under the independent cascade (IC) model is NP-hard, and propose
a greedy algorithm to approximate the solution with a factor of
(1 − 1/e − 𝜀). The key idea is to selects the node that gives the
most significant increment of expected influence spread estimated
via Monte-Carlo simulations [26]. Later, there have been several
attempts [1, 5–7, 11, 12, 17, 23, 28] to improve the efficiency.

In 2014, Borgs et al. [2] make a significant breakthrough by pre-
senting a near-linear time algorithm under the IC model. They
introduce the concept of reverse influence sampling (RIS), which
transforms the IM problem into a maximum coverage problem and
provides a (1− 1/e− 𝜀)-approximate solution with high probability.
Subsequently, Tang et al. [33] point out the shortcomings of Borgs’s
algorithm and then propose TIM to enhance the efficiency of RIS
in practice. Tang et al. [32] propose IMM by adopting a martingale
approach, which reduces the number of RR sets to deliver a guar-
anteed result. Later, [31] develop an RIS-based online processing
algorithm and a novel approach to compute empirical guarantees,
enabling early stopping of the RIS-based algorithms. In addition to
the number of RR sets, researchers have also endeavored to design
more sophisticated sampling techniques. Guo et al. [14] employ sub-
set sampling to reduce the time complexity, referred to as SUBSIM.
Zhu et al. [36] propose 2-hop+ sampling to boost estimation.

2.2 Diffusion-Aware Link Manipulation
There has been a plethora of research on diffusion-aware link ma-
nipulation in social networks [3, 8, 9, 16, 20, 21, 30]. This category
of work aims to optimize information diffusion-related functions by
adding or removing a limited number of edges in the social network.
For instance, Khalil et al. [20] consider two optimization problems,
i.e., adding edges to maximize influence spread and deleting edges
to minimize influence spread. Yang et al. [34, 35] investigate how
to add a limited number of edges from a candidate set to maximize
the seed’s influence in a directed acyclic graph under the IC model.
Huang et al. [16] examine the problem of selecting edges from the
original network to maximize the influence of specific seeds via
these edges. Sun et al. [30] propose algorithms to identify fragile
nodes and edges to attack to reduce the influence spread.

2
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Different from these problems, we are interested in the IMA prob-
lem under the IC model proposed by D’Angelo et al. [9], which aims
to select 𝑘 edges incident to the seed set to maximize the influence
of the seed set 𝑆 . The objective function is a monotone and submod-
ular [9], and a Monte-Carlo-simulation-based greedy approach can
achieve an approximation ratio of (1 − 1/e − 𝜀) [27]. Coró et al. [8]
study the IMA problem under the LTmodel and show that the objec-
tive function is modular, indicating that a Monte-Carlo-simulation-
based greedy approach provides (1−𝜀)-approximate solution. How-
ever, suchMonte-Carlo-simulation-based methods [8, 9] suffer from
prohibitive computation overheads to provide theoretical guaran-
tees. We tackle this issue via a non-trivial adoption of RIS.

3 PRELIMINARIES
In this section, we give a formal definition of the influence max-
imization with augmentation (IMA) problem, and introduce the
greedy framework as well as the technique of reverse influence
sampling (RIS). Notations that are frequently used in this paper are
given in Table 1 for ease of reference.

3.1 Problem Definition
Let 𝐺 be a social network with a node set 𝑉 (representing users)
and a directed edge set 𝐸 (representing connections among users),
with |𝑉 | = 𝑛 and |𝐸 | = 𝑚. Each directed edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 of 𝐺 is
associated with a propagation probability 𝑝𝑢,𝑣 ∈ [0, 1], representing
the probability that 𝑢 can influence 𝑣 .

In this paper, we study the basic and widely adopted indepen-
dent cascade (IC) model. Initially, at timestamp 0, the selected seed
nodes are activated, while all others are inactive. When a node
first becomes activated at timestamp 𝑖 , it has one single chance to
activate its inactive neighbors with probability 𝑝𝑢,𝑣 at timestamp
𝑖 +1, and this node will remain active till the end of the propagation
process. The diffusion process terminates when no more nodes in
the graph can be activated.

Let 𝜎 (𝑆) denote the expected number of nodes activated by a
seed set 𝑆 in graph 𝐺 , which is also called the expected spread of 𝑆 .
The traditional IM problem asks for a set 𝑆 of seed nodes with the
largest expected spread 𝜎 (𝑆). In this paper, we study the influence
maximization with augmentation (IMA) problem [9] that aims to
add 𝑘 edges from a candidate edge set 𝐸C to the original edge set 𝐸
to augment the expected spread of a given seed set 𝑆 as much as
possible. Denote by𝐺 (𝐴) the augmented graphwith a set𝐴 of edges
added to the base graph𝐺 , and by 𝜎 (𝐴, 𝑆) the augmented influence
spread of 𝑆 on 𝐺 (𝐴). For notational simplicity, let 𝜎 (𝑆) = 𝜎 (∅, 𝑆).
The IMA problem is formally defined as follows.

Definition 3.1 (IMA [9]). Given a graph𝐺 = (𝑉 , 𝐸), a seed set 𝑆 ,
a candidate edge set 𝐸C ⊆ (𝑆 ×𝑉 )\𝐸, and a budget 𝑘 , the influence
maximization with augmentation (IMA) problem asks for 𝑘 edges in
𝐸C that maximizes the augmented influence spread of 𝑆 . That is,

𝐴∗ = argmax
𝐴⊆𝐸C , |𝐴 | ≤𝑘

𝜎 (𝐴, 𝑆). (1)

In what follows, we show that the IMA problem under the IC
model is NP-hard to approximate within a factor greater than 1−1/e.
For a graph 𝐺 , we consider an isolated node 𝑢 as the seed set and
𝑝𝑢,𝑣 = 1 for each 𝑣 ∈ 𝑉 \ {𝑢}. Then, selecting 𝑘 edges to maximize

Algorithm 1 Greedy

Input: 𝐺, 𝑆, 𝐸C, 𝑘 ;
Output: An size-𝑘 edge set 𝐴;
1: 𝐴← ∅;
2: for 𝑖 ← 1 to 𝑘 do
3: 𝑒∗ ← argmax𝑒∈𝐸C\𝐴 𝜎 (𝐴 ∪ {𝑒}, 𝑆);
4: 𝐴← 𝐴 ∪ {𝑒∗};
5: return 𝐴;

𝜎 (𝐴, {𝑢}) is equivalent to selecting a set 𝑇 of 𝑘 nodes in 𝑉 \ {𝑢}
to maximize 𝜎 (𝑇 ), i.e., the IM problem. It is known that the IM
problem is NP-hard to approximate within a factor of (1 − 1/e + 𝜀)
for any 𝜀 under the IC model [18, 19, 29]. As a consequence, such a
hardness result also applies to the IMA problem.

3.2 Greedy Framework
D’Angelo et al. [9] show that the objective function 𝜎 (𝐴, 𝑆) is sub-
modular with respect to the edge set 𝐴. Therefore, the greedy
algorithm can achieve an approximation ratio of (1 − 1/e) [27].
Moreover, the computation of influence spread is #P-hard [5]. Chen
et al. [4] show that the greedy algorithm on an accurate estimate of
a monotone submodular function achieves an approximation ratio
of (1 − 1/e − 𝜀).

Lemma 3.2 ([4]). Let𝐴∗ = argmax |𝐴 | ≤𝑘 𝑓 (𝐴) be the set maximiz-
ing 𝑓 (𝐴) among all sets with size at most 𝑘 , where 𝑓 is monotone and
submodular, and 𝑓 (∅) = 0. For any 𝜀 > 0 and any 0 < 𝜆 ≤ 𝜀/𝑘

2+𝜀/𝑘 , if
a set function 𝑓 is a multiplicative 𝜆-error estimate of set function 𝑓 ,
the output 𝐴𝑔 of the greedy algorithm on 𝑓 guarantees

𝑓 (𝐴𝑔) ≥ (1 − 1/e − 𝜀) 𝑓 (𝐴∗) . (2)

By Lemma 3.2, if 𝜎 (𝐴, 𝑆) is a multiplicative 𝜆-error estimate of
𝜎 (𝐴, 𝑆),Greedy (i.e., Algorithm 1) returns a (1−1/e−𝜀)-approximate
solution for the IMA problem. A naive way is to instantiate Greedy
using Monte-Carlo simulations for estimating 𝜎 (𝐴, 𝑆), referred to
asMC-Greedy. However, as analyzed in Section 5,MC-Greedy has
a high time complexity of𝑂 ( 𝑘3𝑚𝑛 |𝐸C | log( |𝐸C |/𝛿 )

𝜀2
), where 𝛿 ∈ (0, 1)

is a predefined threshold on failure probability.

3.3 Reverse Influence Sampling
Borgs et al. [2] propose a novel idea of reverse sampling for the
IM problem, referred to as reverse influence sampling (RIS). It uses
sketch samples called random reverse reachable (RR) sets to esti-
mate the expected spread of a seed set. A random RR set can be
constructed in two steps.

(1) Select a node 𝑣 from 𝑉 uniformly at random.
(2) Collect a sample set 𝑅 of the nodes in 𝑉 , such that for

any 𝑢 ∈ 𝑉 , the probability that it appears in 𝑅 equals the
probability that𝑢 can activate 𝑣 in an influence propagation
process.

A key observation is established as follows.

Lemma 3.3 ([2]). For any seed set 𝑆 ∈ 𝑉 and a random RR set 𝑅,

𝜎 (𝑆) = 𝑛 · Pr[𝑆 ∩ 𝑅 ≠ ∅] .
3
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According to Lemma 3.3, the expected spread of any seed set 𝑆
can be estimated by random RR sets. Specifically, given a set R of
random RR sets, we say that a RR set 𝑅 ∈ R is covered by a node
set 𝑆 if 𝑅 ∩ 𝑆 ≠ ∅. Denote by ΛR (𝑆) the number of RR sets that are
covered by 𝑆 , referred to as the coverage of 𝑆 in R. Then, 𝑛

| R |ΛR (𝑆)
is an unbiased estimate of 𝜎 (𝑆). On the basis of RIS, Borgs et al. [2]
propose a general framework for IM consisting of two steps. That is,
we first (i) generate a set R of random RR sets, and then (ii) identify
a node set 𝑆∗ with the maximum coverage in R (via a standard
greedy method). Utilizing the RIS technique, the state-of-the-art
IM algorithms [14, 15, 31, 32] with reduced computation overheads
have been proposed that ensure (1 − 1/e − 𝜀)-approximations.

Intuitively, we may leverage the power of RIS for IMA. In partic-
ular, addressing IMA requires an effective and efficient estimation
of 𝜎 (𝐴, 𝑆) for various edge sets 𝐴’s under a given node set 𝑆 . Note
that for IM, a random RR set is constructed independently from
𝑆 for estimating the expected spread 𝜎 (𝑆), since graph 𝐺 is static.
In contrast, for IMA, generating a random RR set for estimating
the augmented influence spread 𝜎 (𝐴, 𝑆) relies on the newly added
edge set 𝐴, as the augmented graph 𝐺 (𝐴) changes. Therefore, the
key challenge for IMA via RIS lies in an efficient way to generate
random RR sets that can estimate 𝜎 (𝐴, 𝑆) accurately with respect
to different 𝐴.

4 AN EFFICIENT APPROXIMATION
ALGORITHM FOR IMA

We leverage the greedy framework, i.e., Algorithm 1, that achieves
the best approximation ratio for the IMA problem. The core pro-
cedure of Algorithm 1 is to select the edge 𝑒 with the largest esti-
mated 𝜎 (𝐴∪{𝑒}, 𝑆) of the augmented influence spread 𝜎 (𝐴∪{𝑒}, 𝑆)
(Line 3). In this section, we first propose an efficient estimator built
upon RR sets that can estimate 𝜎 (𝐴 ∪ {𝑒}, 𝑆) with sufficient accu-
racy considering all 𝑒’s simultaneously. Based on such an estimator,
we devise a scalable algorithm, namely AIS, that provides an ap-
proximation of (1 − 1/e − 𝜀) for IMA.

4.1 An Efficient Estimator via RR Sets
When examining each edge 𝑒 in the greedy selection procedure,
since the augmented graph 𝐺 (𝐴 ∪ {𝑒}) varies, we should generate
distinct RR sets for estimating 𝜎 (𝐴 ∪ {𝑒}, 𝑆) as mentioned in Sec-
tion 3.3, incurring prohibitive overheads. To tackle this issue, we
propose a novel unbiased estimate of 𝜎 (𝐴 ∪ {𝑒}, 𝑆) that can break
the dependency between RR sets generation and the candidate edge
𝑒 to be examined. Specifically, we express 𝜎 (𝐴 ∪ {𝑒}, 𝑆) as a com-
bination of 𝜎 (𝐴, 𝑆 ∪ {𝑣}) and 𝜎 (𝐴, 𝑆). Since the augmented graph
𝐺 (𝐴) is independent of 𝑒 , the RR sets for estimating 𝜎 (𝐴, 𝑆 ∪ {𝑣})
and 𝜎 (𝐴, 𝑆) can be generated independently from 𝑒 .

Lemma 4.1. Under the IC model, for any edge 𝑒 = ⟨𝑢, 𝑣⟩ ∈ 𝐸C \𝐴
associated with a propagation probability 𝑝𝑢,𝑣 , we have

𝜎 (𝐴 ∪ {𝑒}, 𝑆) = 𝑝𝑢,𝑣 · 𝜎 (𝐴, 𝑆 ∪ {𝑣}) + (1 − 𝑝𝑢,𝑣) · 𝜎 (𝐴, 𝑆) .

Proof. Consider the live-edge graph expression 𝑔 of 𝐺 such
that 𝑔 is generated by independently flipping a coin of bias 𝑝𝑢,𝑣 for
each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 to decide whether the edge is live or blocked,
referred to as 𝑔 ∼ 𝐺 . Let 𝐼𝑔 (𝑆) be the influence spread of 𝑆 on 𝑔,

i.e., the number of nodes that are reachable from 𝑆 on the sample
outcome 𝑔. Then, the expected spread 𝜎 (𝐴, 𝑆) can be written as

𝜎 (𝐴, 𝑆) =
∑︁

𝑔∼𝐺 (𝐴)

(
Pr[𝑔] · 𝐼𝑔 (𝑆)

)
.

Similarly,

𝜎 (𝐴 ∪ {𝑒}, 𝑆) =
∑︁

𝑔′∼𝐺 (𝐴∪{𝑒 })

(
Pr[𝑔′] · 𝐼𝑔′ (𝑆)

)
.

According to the distribution of 𝑔 and 𝑔′, let

𝑔′ =

{
𝑔 ∪ {𝑒}, if 𝑒 is live with a probability of 𝑝𝑢,𝑣,
𝑔, if 𝑒 is blocked with a probability of 1 − 𝑝𝑢,𝑣 .

Then, we can rewrite 𝜎 (𝐴 ∪ {𝑒}, 𝑆) as
𝜎 (𝐴∪ {𝑒}, 𝑆) =

∑︁
𝑔∼𝐺 (𝐴)

Pr[𝑔] · (𝑝𝑢,𝑣 · 𝐼𝑔∪{𝑒 } (𝑆) + (1− 𝑝𝑢,𝑣) · 𝐼𝑔 (𝑆)) .
When edge 𝑒 is live in 𝑔′, 𝑣 is activated by 𝑆 , which can be viewed
as a seed node, indicating that 𝐼𝑔∪{𝑒 } (𝑆) = 𝐼𝑔 (𝑆 ∪ {𝑣}). Therefore,
𝜎 (𝐴 ∪ {𝑒}, 𝑆) =

∑︁
𝑔∼𝐺 (𝐴)

Pr[𝑔] · (𝑝𝑢,𝑣 · 𝐼𝑔 (𝑆 ∪ {𝑣}) + (1 − 𝑝𝑢,𝑣) · 𝐼𝑔 (𝑆))
= 𝑝𝑢,𝑣 · 𝜎 (𝐴, 𝑆 ∪ {𝑣}) + (1 − 𝑝𝑢,𝑣) · 𝜎 (𝐴, 𝑆) .

This completes the proof. □

Based on Lemma 4.1, to perform greedy selection, we can esti-
mate 𝜎 (𝐴 ∪ {𝑒}, 𝑆) via a combination of 𝜎 (𝐴, 𝑆 ∪ {𝑣}) and 𝜎 (𝐴, 𝑆).
Note that under given𝐴 and 𝑆 , an edge 𝑒 maximizing 𝑝𝑢,𝑣 ·

(
𝜎 (𝐴, 𝑆∪

{𝑣})−𝜎 (𝐴, 𝑆)) also maximizes 𝑝𝑢,𝑣 ·𝜎 (𝐴, 𝑆∪{𝑣})+(1−𝑝𝑢,𝑣) ·𝜎 (𝐴, 𝑆),
since the additive term 𝜎 (𝐴, 𝑆) in the latter is independent of 𝑒 . For
convenience, in each iteration, we select the edge with the largest
value of 𝑝𝑢,𝑣 ·

(
𝜎 (𝐴, 𝑆 ∪ {𝑣}) − 𝜎 (𝐴, 𝑆)) . Given a fixed node set 𝑆 ,

for any node 𝑣 and any RR set 𝑅, let I𝑅 (𝑣) be an indicator function
such that

I𝑅 (𝑣) =
{
1, 𝑅 is covered by 𝑣 but not by 𝑆 ,
0, otherwise.

(3)

In addition, given a set R of random RR sets, denote by ΔR (𝑣)
the number of RR sets in R covered by 𝑣 but not covered by 𝑆 ,
i.e., ΔR (𝑣) =

∑
𝑅∈R I𝑅 (𝑣) = ΛR (𝑆 ∪ {𝑣}) − ΛR (𝑆). Then, for a

set R of random RR sets generated on the augmented graph 𝐺 (𝐴),
𝑛
| R | ΔR (𝑣) is an unbiased estimate of 𝜎 (𝐴, 𝑆∪{𝑣})−𝜎 (𝐴, 𝑆). Putting
it together yields that 𝑛𝑝𝑢,𝑣

| R | ΔR (𝑣) is an unbiased estimate of 𝜎 (𝐴∪
{𝑒}, 𝑆) − 𝜎 (𝐴, 𝑆).

4.2 Accelerating RR Sets Generation
For each RR set 𝑅, by definition, I𝑅 (·) = 0 if 𝑅 is covered by 𝑆 . This
implies that during the generation process of 𝑅, if any node in 𝑆
is added to 𝑅, we can stop the process immediately to produce a
truncated RR set 𝑅′. Apparently, 𝑅′ is also covered by 𝑆 . As a result,
we still have I𝑅′ (·) = I𝑅 (·) = 0 while generating 𝑅′ accelerates the
sampling process.

Moreover, in each iteration, RR sets are generated based on
current augmented graph𝐺 (𝐴). After selecting a new edge 𝑒 , the
graph is further augmented from 𝐺 (𝐴) to 𝐺 (𝐴 ∪ {𝑒}). A naive
way is to generate new RR sets from scratch for each iteration,
which is time consuming. Instead, we propose to update the RR sets
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Algorithm 2 AIS

Input: 𝐺, 𝑆, 𝐸C, 𝑘, 𝜀, 𝛿 ;
Output: An size-𝑘 edge set 𝐴;
1: 𝛿 ← 𝛿

𝑘 |𝐸C | , 𝜆 ←
𝜀/𝑘
2+𝜀/𝑘 ;

2: Generate random RR sets until ΛR (𝑆) ≥ 2(1+𝜆) (1+ 𝜆3 ) log(2/𝛿 )
𝜆2

;
3: Initialize ΔR (𝑣) ← 0 for each 𝑣 ∈ 𝑉 ;
4: for each 𝑅 ∈ R do
5: Π(𝑅) ← 1; ⊲ Indicate whether 𝑅 is covered by 𝑆
6: if 𝑅 is not covered by 𝑆 then
7: Π(𝑅) ← 0;
8: for each 𝑣 ∈ 𝑅 do
9: ΔR (𝑣) ← ΔR (𝑣) + 1;
10: 𝐴← ∅;
11: for 𝑖 ← 1 to 𝑘 do
12: 𝑒∗ ← argmax𝑒∈𝐸C\𝐴 𝑝𝑢,𝑣 · ΔR (𝑣); ⊲ Denote 𝑒∗ = ⟨𝑢∗, 𝑣∗⟩
13: 𝐴← 𝐴 ∪ {𝑒∗};
14: for each 𝑅 ∈ R do ⊲ Update RR sets in a soft way
15: if Π(𝑅) = 0 & 𝑣∗ ∈ 𝑅 & 𝑈 (0, 1) ≤ 𝑝𝑢∗,𝑣∗ then
16: Π(𝑅) ← 1;
17: for each 𝑣 ∈ 𝑅 do
18: ΔR (𝑣) ← ΔR (𝑣) − 1;
19: return 𝐴;

incrementally that can save overheads significantly. Specifically, for
each RR set 𝑅 generated on 𝐺 (𝐴), we just need to check whether
𝑢 should be inserted into 𝑅 after selecting a new edge 𝑒 = ⟨𝑢, 𝑣⟩,
which suffices a correct update of I𝑅 (·). That is, we insert 𝑢 into 𝑅
if all of the following three conditions are met.

(1) 𝑅 is not covered by 𝑆 ;
(2) 𝑣 is in 𝑅;
(3) 𝑒 = ⟨𝑢, 𝑣⟩ is live with a probability of 𝑝𝑢,𝑣 .

Otherwise, we simply retain the RR set 𝑅 with no changes. To
explain, if all the aforementioned conditions are met, 𝑢 ∈ 𝑆 with
reach 𝑣 ∈ 𝑅 after adding 𝑒 = ⟨𝑢, 𝑣⟩. Since the current 𝑅 is not
covered by 𝑆 before adding 𝑒 , we should insert 𝑢 into 𝑅 to ensure
that 𝑅 is covered by 𝑆 after adding 𝑒 . On the other hand, if 𝑅 is
already covered by 𝑆 , no further actions are needed as it always
hold that I𝑅 (·) = 0. Meanwhile, if 𝑣 ∉ 𝑅 and 𝑅 is not covered by 𝑆 , 𝑢
still cannot reach any nodes in 𝑅 after adding 𝑒 . Finally, if 𝑒 = ⟨𝑢, 𝑣⟩
is blocked with a probability of 1−𝑝𝑢,𝑣 , the live-edge graph remains
unchanged, so as to the RR set 𝑅.

4.3 Putting It Together
We instantiate Greedy with our newly developed estimator via RR
sets in an accelerated generation way, namely Augmenting the
Influence of Seeds (AIS) with psudocode given in Algorithm 2.

To obtain a multiplicative 𝜆-error estimate 𝜎 (𝐴, 𝑆) of 𝜎 (𝐴, 𝑆), we
employ the generalized stopping rule proposed by Zhu et al. [36].
That is, we keep generating a set R of random RR sets on 𝐺 until
the coverage ΛR (𝑆) of 𝑆 in R exceeds 2(1+𝜆) (1+ 𝜆3 ) log(2/𝛿 )

𝜆2
(Line 2),

where 𝛿 ∈ (0, 1) is a predefined threshold on failure probability.
Then, according to the result derived by Zhu et al. [36], 𝑛

| R |ΛR (𝑆)

is a (𝜆, 𝛿)-estimate of 𝜎 (𝑆), i.e.,
Pr

[(1 − 𝜆)𝜎 (𝑆) ≤ 𝑛
| R |ΛR (𝑆) ≤ (1 + 𝜆)𝜎 (𝑆)

] ≥ 1 − 𝛿. (4)

Meanwhile, due to the law of large numbers, 𝑛
| R |ΛR (𝑆∪{𝑣}) is also

a (𝜆, 𝛿)-estimate of 𝜎 (𝑆 ∪ {𝑣}) as ΛR (𝑆 ∪ {𝑣}) ≥ ΛR (𝑆) for any 𝑣 .
Similarly, when we update RR sets incrementally, since ΛR (𝑆) in-
creases, we can also produce a (𝜆, 𝛿)-estimate 𝜎 (𝐴, 𝑆) of 𝜎 (𝐴, 𝑆) for
any𝐴 via the updated R. As a consequence, with a high probability,
we have

𝜎 (𝐴 ∪ {𝑒}, 𝑆) = 𝑝𝑢,𝑣𝜎 (𝐴, 𝑆 ∪ {𝑣}) + (1 − 𝑝𝑢,𝑣)𝜎 (𝐴, 𝑆)
≤ (1 + 𝜆) (𝑝𝑢,𝑣𝜎 (𝐴, 𝑆 ∪ {𝑣}) + (1 − 𝑝𝑢,𝑣)𝜎 (𝐴, 𝑆))
= (1 + 𝜆)𝜎 (𝐴 ∪ {𝑒}, 𝑆) .

Using an analogous analysis, with a high probability, we can get
that 𝜎 (𝐴 ∪ {𝑒}, 𝑆) ≥ (1 − 𝜆)𝜎 (𝐴 ∪ {𝑒}, 𝑆). Now, we can devise an
desired estimate 𝜎 (𝐴 ∪ {𝑒}, 𝑆) of 𝜎 (𝐴 ∪ {𝑒}, 𝑆).

TheGreedy algorithm selects edge 𝑒 with the largest𝜎 (𝐴∪{𝑒}, 𝑆)
in each iteration. By definition,

𝜎 (𝐴 ∪ {𝑒}, 𝑆) = 𝑛𝑝𝑢,𝑣

|R | ΔR (𝑣) + 𝜎 (𝐴, 𝑆) .

Therefore, it is equivalent to choose 𝑒 that maximizes 𝑝𝑢,𝑣ΔR (𝑣)
(Line 12). Before we select any edges, we compute ΔR (𝑣) for each 𝑣
on the original RR sets (Lines 4–9). In each iteration, after selecting
an edge 𝑒∗ = ⟨𝑢∗, 𝑣∗⟩, for each 𝑅 ∈ R, we perform a soft update if
all the three conditions given in Section 4.2 are met (Lines 14–18).
That is, instead of physically inserting 𝑢∗ into 𝑅, we set the value
of the indicator function Π(𝑅) to 1 that indicates 𝑅 is now covered
by 𝑆 , and reduce ΔR (𝑣) by 1 for every 𝑣 ∈ 𝑅. Finally, after a subset
𝐴 of 𝑘 edges are selected, we terminate the algorithm and return 𝐴.

5 THEORETICAL ANALYSIS
In this section, we conduct a theoretical analysis of the proposed
AIS algorithm, and make a comparison withMC-Greedy.

5.1 Analysis of AIS
We present the main theoretical result of AIS as follows.

Theorem 5.1. Algorithm 2 returns a (1 − 1/e − 𝜀)-approximate
solution to the IMA problem with a probability of at least 1 − 𝛿 , and
runs in 𝑂

(𝑘2 (𝑚+𝑛) log(𝑛/𝛿 )𝜎 ({𝑣◦ })
𝜀2𝜎 (𝑆 ) + 𝑘 |𝐸C |

)
time, where 𝑣◦ is the

most influential node in 𝐺 .

In what follows, we show the approximation guarantee and time
complexity separately.

Approximation Guarantee. As shown in Section 4.3, AIS greedily
selects the edge 𝑒 with the largest 𝜎 (𝐴 ∪ {𝑒}, 𝑆) that is a mul-
tiplicative 𝜆-error estimate of the augmented influence spread
𝜎 (𝐴∪{𝑒}, 𝑆) with a probability of at least 1−𝛿 . We examine at most
|𝐸C | edges in each iteration and there are 𝑘 iterations. By union
bound, with a probability of at lest 1−𝑘 |𝐸C | 𝛿 , all 𝜎 (𝐴∪{𝑒}, 𝑆)’s are
multiplicative 𝜆-error estimates. Therefore, by scaling 𝛿 to 𝛿

𝑘 |𝐸C |
(Line 1 of Algorithm 2), according to Lemma 3.2, Algorithm 2 re-
turns a (1− 1/e− 𝜀)-approximate solution to the IMA problem with
a probability of at least 1 − 𝛿 .
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Table 2: Datasets (𝐾 = 103,𝑀 = 106, 𝐵 = 109)

Name 𝑛 𝑚 Avg. Degree
GRQC 5.2K 14.5K 5.58

NetHEPT 15.2K 31.4K 4.1
Epinions 75.9K 508.8K 13.4
DBLP 317K 1.05M 6.1
Orkut 3.1M 234.2M 76.3
Twitter 41.7M 1.5B 70.5

TimeComplexity. For the generation of RR sets, according to (4), a
total of 𝑂

(𝑘2𝑛 log(𝑛/𝛿 )
𝜀2𝜎 (𝑆 )

)
RR sets are generated, and generating each

RR set takes𝑂
(𝑚
𝑛 𝜎 ({𝑣◦})

)
time [33]. Thus, the time complexity for

generating RR sets is 𝑂
(𝑘2 (𝑚+𝑛) log(𝑛/𝛿 )𝜎 ({𝑣◦ })

𝜀2𝜎 (𝑆 )
)
. For the selection

of edge, a total of 𝑂 (𝑘 |𝐸C |) edges are examined. For the update of
ΔR (𝑣), the number of updates is upper bounded by the total size of
the initially generated RR sets which is𝑂

(𝑘2 (𝑚+𝑛) log(𝑛/𝛿 )𝜎 ({𝑣◦ })
𝜀2𝜎 (𝑆 )

)
.

Therefore, AIS runs in 𝑂
(𝑘2 (𝑚+𝑛) log(𝑛/𝛿 )𝜎 ({𝑣◦ })

𝜀2𝜎 (𝑆 ) + 𝑘 |𝐸C |
)
time.

With a reasonable assumption that the influence of any singleton
node is smaller than that of the seed set 𝑆 , i.e., 𝜎 ({𝑣◦)} ≤ 𝜎 (𝑆), AIS
runs in 𝑂

(𝑘2 (𝑚+𝑛) log(𝑛/𝛿 )
𝜀2

+ 𝑘 |𝐸C |
)
time.

Remark. The state-of-the-art sampling method proposed by Guo
et al. [14] takes𝑂

((1+ 𝜇
𝑛 )𝜎 ({𝑣◦})

)
time for generating one random

RR set, where 𝜇 =
∑
⟨𝑢,𝑣⟩∈𝐸 𝑝𝑢,𝑣 is that total propagation prob-

ability of 𝑚 edges. Applying it to the IMA problem, AIS runs in
𝑂
(𝑘2 (𝜇+𝑛) log(𝑛/𝛿 )𝜎 ({𝑣◦ })

𝜀2𝜎 (𝑆 ) +𝑘 |𝐸C |
)
time. Assuming that 𝜎 ({𝑣◦)} ≤

𝜎 (𝑆), AIS runs in 𝑂
(𝑘2 (𝜇+𝑛) log(𝑛/𝛿 )

𝜀2
+ 𝑘 |𝐸C |

)
time.

5.2 Comparison with MC-Greedy
Similar to the analysis for AIS, when generating 𝑂

(𝑘2𝑛 log(𝑛/𝛿 )
𝜀2𝜎 (𝑆 )

)
Monte-Carlo simulations for estimating𝜎 (𝐴, 𝑆),MC-Greedy achieves
an approximation ratio of (1−1/e−𝜀) with a high probability of 1−𝛿 .
For each Monte-Carlo simulation, it takes 𝑂 (𝑚) time. Meanwhile,
a total number 𝑂 (𝑘 |𝐸C |) of estimations are needed. Therefore,
the time complexity of MC-Greedy is 𝑂

(𝑘3𝑚𝑛 |𝐸C | log(𝑛/𝛿 )
𝜀2𝜎 (𝑆 )

)
. This

implies that our AIS algorithm improves the time complexity of
MC-Greedy by a multiplicative factor of 𝑘𝑛 |𝐸C |

𝜎 ({𝑣◦ }) . Notice that |𝐸C |
can be as large as 𝑂 ( |𝑆 | 𝑛), which means we can improve the time
complexity by a factor of 𝑘 |𝑆 |𝑛2

𝜎 ({𝑣◦ }) .

6 EXPERIMENTS
6.1 Experiment Settings
This section evaluates the empirical performance of the proposed
algorithm. All experiments are conducted on a linux machine with
Intel Xeon(R) 8377C@3.0GHz and 512GB RAM. All algorithms are
implemented by C++ with O3 optimization.

Datasets. We conduct our experiments on 6 datasets, the infor-
mation of which is presented in Table 2. All datasets are publicly
available [22, 24]. Among them, Twitter is one of the largest dataset

used in the field of influence maximization with up to millions of
nodes and billions of edges.

Parameters. The number of seed users |𝑆 | and the number of target
edge set 𝑘 is both fixed as 50. The failure probability 𝛿 is 0.001. As
this manuscript is targeted at the IC model, we use the IC model as
the diffusion model. The propagation probability 𝑝𝑢,𝑣 of each edge
is set to be the inverse of 𝑣 ’s in-degree, which is a widely-adopted
setting [5, 15, 18, 31–33]. To compare the quality of the solution sets,
the expected influence spread is computed by the RR sets sampled
in our algorithm, which guarantees a (𝜀/𝑘, 𝛿)-estimation. In each
of our experiments, we run each method for 5 times and report the
average results.

In the first set of experiments, we randomly select 10000 edges
to construct the candidate set 𝐸C and the seed set is selected at
random. This setting brings convenience for the implementation of
MC-Greedy, since when |𝐸C | is large,MC-Greedy needs to traverse
them all and simulate the diffusion process, which is prohibitive.

In the rest of experiments for larger datasets, to demonstrate
the scalability of the proposed algorithm, the candidate edge set
𝐸C contains all possible edges, which means that the size of 𝐸C is
𝑂 ( |𝑆 | 𝑛). And the seed set is selected by the IMM [32] algorithm,
conforming the real scenario where we will select influential nodes
as seed users.

Candidate Edges Generation. Every candidate edge 𝑒 = ⟨𝑢, 𝑣⟩
contains a seed node 𝑢 ∈ 𝑆 and an ordinary node 𝑣 ∈ 𝑉 \𝑆 . Consid-
ering both the probability of 𝑢 activating its out-neighbors and the
probability of 𝑣 being activated, we heuristically assign the propa-
gation probability 𝑝𝑢,𝑣 as the mean value of 𝑢’s average out-degree
and 𝑣 ’s average in-degree.

Baselines.We compare AIS with the following 7 baselines.

• RAND. Choose 𝑘 edges from 𝐸C uniformly at random.
• OUTDEG. Choose the edges that connect to the nodes with

highest out-degree.
• PROB. Choose 𝑘 edges with highest probability.
• SINF. Using the RR sets generated by Algorithm 2, find

top-𝑘 nodes with highest marginal coverage, and select the
edges pointing to them. The RR sets will not be updated
after selection.

• AIS\P. AIS\P means AIS without considering the probabil-
ity. Using the RR sets generated by Algorithm 2, for every
round, select the edge pointing to the node with the high-
est marginal coverage. The RR sets are updated after each
selection.

• AIS\U. AIS\U means AIS without updating the RR sets. Us-
ing the RR sets generated by Algorithm 2, for every round,
compute the marginal gain by line 12 of Algorithm 2 but
the RR sets will not be updated after each selection.

• MC-Greedy. The algorithm proposed in [9]. This algorithm
is implemented with CELF [23] in our experiments.

6.2 Comparison with MC-Greedy
The first experiment set focuses on the comparison with baselines
includingMC-Greedy. Here we choose two relatively small datasets
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Figure 1: Results on GRQC and NetHEPT (𝜀 = 0.5).
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Figure 2: Running time on GRQC and NetHEPT

GRQC and NetHEPT to implement the algorithms. As the MC-
Greedy algorithm suffers from high computation cost, if we tra-
verse all 𝑂 ( |𝑆 | 𝑛) candidate edges, the time cost is unacceptable.
Therefore, here we fix the size of 𝐸C as 10000, and the number of
Monte Carlo simulations is fixed to 𝑟 = 10000. The seed users are
selected uniformly at random. This is because if the influence of
the seed users is already very large, it is harder to distinguish two
edges as their marginal gain may be small. Then we need to increase
the number of Monte Carlo simulations to obtain more accurate
results, which is not acceptable. We adopt this setting just to show
that our algorithms’ efficacy is comparable to the state-of-the-art
MC-Greedy algorithm [9].

From Figure 1, We can see that the performance of AIS and MC-
Greedy are both effective, outperforming other heuristic baselines.
This is consistent with our analysis, since they both follow the
same framework and the only difference is the estimator. As for
the running time, AIS is faster than MC-Greedy. MC-Greedy takes
about one thousand seconds to return a solution while AIS only
costs about half a minute. Figure 2 shows that although the setting
is to the advantage of MC-Greedy, AIS is faster thanMC-Greedy
by about one order of magnitude when 𝑘 = 50. Notice that the time
cost of AIS increases with 𝑘 , conforming our analysis in Section 5,
whileMC-Greedy’s remains still. This is because we fix the value
of 𝑟 for different 𝑘 . If we want the MC-Greedy algorithm to obtain
the same guarantee, the time cost will also increase with 𝑘 and
be significantly larger than AIS’s. In addition, when we select a
more influential seed set, the time cost of MC-Greedy will also
be higher. This is because in each iterations, we need to simulate
the influence propagation process starting from these influential
users. Due to the large influence of the seed set, it takes longer for
the propagation process to stop. But it is not the case for our AIS

Table 3: Running time (sec.) for different seeding strategies

Seeding Strategy GRQC NetHEPT
RAND IMM RAND IMM

MC-Greedy[1000] 310.738 1131.529 304.410 1510.126
MC-Greedy[2000] 448.606 2177.472 326.002 3024.026
MC-Greedy[3000] 504.800 3517.178 404.653 4641.218
MC-Greedy[4000] 652.039 4861.590 434.475 6418.404
MC-Greedy[5000] 724.280 6196.576 640.814 7780.710

AIS 30.099 5.310 96.7855 14.766

algorithm. As analyzed before, AIS will cost less time when the
expected spread of the seed set is larger. This claim is supported by
the results in Table 3. We can see that when selecting influential
seeds, our AIS algorithm is faster than MC-Greedy by two to three
orders of magnitude.

6.3 Results on Larger Datasets
The second experiment set investigates the efficacy and efficiency
of AIS on larger datasets. Here the seed users are selected by IMM
algorithm [32], which fits the real scenario where we will select
influential nodes as seeds and the candidate edge set contains all
possible edges in (𝑆 ×𝑉 )\𝐸.

First, we run the baseline algorithms on these datasets and com-
pare their performance with AIS’s. Figure 3 shows the expected
spread with different values of 𝑘 . It is obvious that AIS consistently
outperforms other heuristic baselines on all datasets. Notice that
selecting the edges by out-degree or probability barely brings any
benefit. This is because the solution set will contain a large number
of edges pointing to the same node. Imagine that we successfully
recommend a seed user 𝑢 to an ordinary user 𝑣 and 𝑢 can influence
𝑣 with large probability. Then the addition of the edge ⟨𝑢, 𝑣⟩ will
make other edges pointing to 𝑣 less beneficial. This issue is also
observed in [8] and they empirically show that the influence spread
will not be affected significantly even if we do not allow the addi-
tion of edges from different seeds to the same node. In contrast,
SINF, AIS\P and AIS\U perform better. Notice that SINF and AIS\P
basically achieve the same performance over four datasets. This is
because their rationales are similar, which is to select influential
nodes and avoid excess recommendations to the same target node.
SINF simply selects top-𝑘 influential nodes to connect to the seeds,
and AIS\P selects the most influential node by the up-to-date RR
sets in each iteration. Next we look into the performance of AIS\U.
In NetHEPT, Epinions and Twitter, AIS\U presents considerable ef-
ficacy. However, it fails to give good solutions for DBLP and Orkut.
After carefully investigating the solution sets, we find that AIS\U
often provides excess recommendation to the same node since the
marginal coverage array is not updated. That explains why some-
times the influence spread will not change much after adding new
edges.

Figure 4 shows how the time cost changes with 𝑘 . The running
time of AIS increases with 𝑘 , which is consistent with our analysis.
Also, we observe that AIS, AIS\P and AIS\U share similar running
time. The fact that AIS\U and AIS cost similar time indicates that
the RR sets update process barely brings any extra cost. So although
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Figure 3: Expected spread with varying 𝑘 (𝜀 = 0.5).
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Figure 4: Running time with varying 𝑘 (𝜀 = 0.5).
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Figure 5: Results with varying 𝜀.

the we could only provide a loose bound on the time complexity
for it, the RR sets update process will not cost much.

Then we investigate the relationship between running time and
𝜀, the results of which are shown in Figure 5b. Intuitively, when the
error term increases, the running time will decrease. For smaller
error term, the speed of the increase of running time will be higher,
which means we will pay larger cost to obtain more accurate re-
sults. To investigate whether such a cost is worthwhile, we conduct
experiments to illustrate the relationship between the influence
spread and 𝜀. As shown in Figure 5a, the final influence spread
barely changes with the increase of 𝜀.

Despite the fact that we need to sample a mass of RR sets to
maintain the theoretical guarantee, a natural question is whether
we need such a large number of samples in practice. We set a
parameter 𝛽 to control the number of RR sets to sample. That is, we
set different values for 𝛽 and sample 𝜃/𝛽 RR sets in our algorithm.
Then we plot 𝜎 (𝐴, 𝑆) v.s. 𝛽 . From Figure 6, we can see that reducing
the number of samples does not have a significant impact on the
solution quality, which makes AIS possible to apply to even larger
datasets or deal with the scenarios where 𝑘 is large. However, notice

NetHEPT Epinions
DBLP Orkut Twitter
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Expected Spread (%)

(a) Expected Spread

1 2 4 8 16 32 64
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102
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Figure 6: The effect of 𝛽 (𝑘 = 50).

that the time cost decreases with different rates for different datasets
and the adjustment of 𝛽 does not necessarily bring a linear time cost
reduction. This is because when the sampling process is accelerated
to certain extent, the bottleneck of the algorithm is on traversing
the candidate edge set 𝐸C .

7 CONCLUSION
In this paper, we study the IMA problem under the IC model that
aims to recommend links connecting seed nodes and ordinary nodes
to augment the influence spread of a specific seed set. We propose
an efficient estimator for augmented influence estimation and an
accelerated sampling approach, based on which, we devise AIS that
can scale to large graphs with millions of nodes while maintaining
the theoretical guarantee of (1 − 1/e − 𝜀). The experimental eval-
uations validate the superiority of AIS against several baselines,
including the state-of-the-artMC-Greedy algorithm. As a future
work, we plan to develop efficient algorithms for IMA under the
liner threshold (LT) model. One can verify that Lemma 4.1 does not
hold for the LT model. Hence, a key challenge lies in developing an
efficient estimator under the LT model.
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A ADDITIONAL EVALUATION
From Figure 1b we can observe that the result of MC-Greedy is
slightly inferior to that of AIS. This is because the number of sam-
ples for MC-Greedy is not enough. As we can see from Figure 7,
when increasing the number of samples, the performance of MC-
Greedy is also better. But when we increase 𝑟 , the time expense
will also increase a lot.
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Figure 7: Expected Spread v.s. 𝑟 on GRQC and NetHEPT

Received DD MM YYYY; revised DD MM YYYY; accepted DD MM YYYY

9

https://doi.org/10.1145/1772690.1772751
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Related Work
	2.1 Influence Maximization
	2.2 Diffusion-Aware Link Manipulation

	3 Preliminaries
	3.1 Problem Definition
	3.2 Greedy Framework
	3.3 Reverse Influence Sampling

	4 An Efficient Approximation Algorithm for IMA
	4.1 An Efficient Estimator via RR Sets
	4.2 Accelerating RR Sets Generation
	4.3 Putting It Together

	5 Theoretical Analysis
	5.1 Analysis of AIS
	5.2 Comparison with MC-Greedy

	6 Experiments
	6.1 Experiment Settings
	6.2 Comparison with MC-Greedy
	6.3 Results on Larger Datasets

	7 Conclusion
	References
	A Additional Evaluation

