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ABSTRACT

Predicting program behavior and reasoning about code execution remain signif-
icant challenges in software engineering, particularly for large language models
(LLMs) designed for code analysis. While these models excel at understanding
static syntax, they often struggle with dynamic reasoning tasks. We introduce
VISUALCODER, a novel approach that enhances code reasoning by integrating
multimodal Chain-of-Thought (CoT) reasoning with visual Control Flow Graphs
(CFGs). By aligning code snippets with their corresponding CFGs, VISUAL-
CODER provides deeper insights into execution flow, enabling more accurate pre-
dictions of code behavior. Our experiments demonstrate that augmenting LLMs
with visual CFGs significantly outperforms text-based CFG descriptions in code
reasoning tasks. We address challenges in multimodal CoT integration through a
reference mechanism, ensuring consistency between code and its execution path,
thereby improving performance in program behavior prediction, error detection,
and output generation.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Hui et al., 2024; Rozière et al., 2024)
have pushed the boundaries of complex reasoning tasks, extending to the domains that require an
understanding of code and its logical problem. There are diverse approaches aimed at enhancing
a model’s ability. LLMs, while excellent at capturing static patterns and syntax from large code
corpora, primarily rely on learned associations rather than direct interaction with the program’s ex-
ecution environment. They struggle with tasks involving dynamic behaviors of programs, such as
predicting execution traces, variable values, or runtime errors, because these tasks require precise
understanding of runtime context and program state changes that evolve during execution. They do
not inherently simulate code execution, which is necessary for understanding how variables and con-
trol flow evolve at runtime. Furthermore, LLMs lack the ability to track mutable state or anticipate
runtime-specific conditions, leading to difficulties in predicting behavior that depends on dynamic,
context-sensitive execution paths.

Recent work has been proposed to enhance the capability of the models in understanding code ex-
ecution by incorporating Control Flow Graph (CFG) in their reasoning step (Le et al., 2024). It
demonstrates that incorporating CFG of given code can significantly improve performance on the
code coverage prediction task. However, it utilizes CFGs through graph neural networks rather than
directly integrating them into LLM-based reasoning. Despite these advances, most existing work fo-
cuses on a single-modality input (i.e., plain code) and has yet to explore the potential of multimodal
approaches for code execution reasoning. While code can be read in a linear fashion, understanding
its full behavior requires focusing on the non-linear structure of its execution, something that is often
visualized more clearly through control flow representations.

In recent years, Vision-Language Large Models (VLLMs) (OpenAI et al., 2024; Chen et al., 2024;
Liu et al., 2024), have made significant progress, showing their potential across a wide range of tasks
that involve both visual and textual inputs. These models, which integrate information from multiple
modalities, have been successfully applied to tasks like image captioning, visual question answering
(VQA), and multimodal retrieval. Recent advancements in multimodal LLMs, such as Flamingo
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Alayrac et al. (2024), CLIP Radford et al. (2021), and BLIP-2 Li et al. (2023), highlight the benefits
of combining visual and textual inputs for enhanced reasoning. Models like LLaVA Liu et al. (2023)
and MiniGPT-4 Zhu et al. (2023) show improved performance in multimodal tasks by integrating
both visual and textual inputs. Studies have shown that combining visual representations with text
significantly improves reasoning, especially in tasks involving complex structures Wei et al. (2024).

In this work, we propose enhancing the code execution reasoning of Large Language Models
(LLMs) by leveraging multimodal reasoning, combining plain code with visual representations of
the corresponding control flow graph (CFG). In our preliminary experiments, simply presenting
the plain code alongside textual or visual representations of the CFG has poor performance for code
execution-related tasks (Sections 5). Recent work by (Zhang et al., 2023) focuses on improving mul-
timodal reasoning in LLMs using the prominent Chain-of-Thought (CoT) prompting technique (Wei
et al., 2023) in which the solution has two separate steps: rationale generation and reasoning to pro-
duce answers. However, when applied to our multimodal setup of plain code and CFG, their CoT
prompting approach suffers from cascading errors, where inaccuracies in rationale generation neg-
atively impact the reasoning and final answers. To address this, we introduce VISUALCODER, a
simple yet effective Reference CoT prompting technique that explicitly links individual lines of
code to their corresponding visual elements in the CFG. By making these detailed references, our
approach encourages the model to focus on specific connections between the code and its execution
flow during multimodal reasoning process. This method is expected to improve the LLM’s per-
formance by guiding it to reason more effectively and grounding its reasoning process with more
intuitive and informative representation of code graph via imaging, utilizing both the code structure
and its execution dynamics.

2 RELATED WORK

2.1 ML-BASED FAULT LOCALIZATION & PROGRAM REPAIR

Recent deep learning-based fault localization (FL) techniques such as GRACE Lou et al. (2021),
DeepFL Li et al. (2019), CNNFL Zhang et al. (2019), and DeepRL4FL (Li et al., 2021) have
achieved significant advancements in FL performance. GRACE, for instance, employs a novel
graph-based representation for methods and ranks potentially faulty methods more effectively. Ear-
lier ML-based approaches, including MULTRIC (Xuan & Monperrus, 2014), TrapT (Li & Zhang,
2017), and Fluccs (Sohn & Yoo, 2017), laid the foundation for these improvements. Neural network-
based FL methods initially relied heavily on test coverage data (Zheng et al., 2016; Briand et al.,
2007; Zhang et al., 2017; Wong & Qi, 2009; Li & Zhang, 2017), but they faced challenges in dif-
ferentiating between elements executed by failed tests and truly faulty components (Li & Zhang,
2017). To address these shortcomings, more advanced techniques such as TRANSFER (Meng
et al., 2022), which leverages deep semantic features and transferred knowledge from open-source
projects, and FixLocator (Li et al., 2022a), which detects co-fixing locations, were introduced. Ad-
ditionally, CodeT5-DLR (Bui et al., 2022) presents an end-to-end approach using large language
models (LLMs) to detect, localize, and repair bugs sequentially. Automated program repair tools
(Li et al., 2022b) focus on both identifying and fixing buggy hunks, while other approaches (Li et al.,
2022b) emphasize the integration of FL and repair. Several works in program repair have leveraged
execution information such as traces (Gupta et al., 2020) or test diagnostics (Ye et al., 2022).

2.2 REASONING ABOUT PROGRAM EXECUTION

Research into reasoning about program execution has progressed through various approaches, par-
ticularly in the domain of program synthesis. These systems frequently use execution states from
partially constructed programs Chen et al. (2021); Ni et al. (2024b); Shin et al. (2018), or predict
intermediate execution subgoals to improve search strategies in sequence-to-sequence models Shi
et al. (2023). Another prominent approach involves training neural networks to simulate program
execution, functioning like a learned interpreter Bieber et al. (2020); Nye et al. (2021). These efforts
often rely on customized neural architectures to model execution flows and handle data dependen-
cies.

Our work diverges from these approaches by concentrating on large language models (LLMs) that
reason about execution in natural language, eliminating the need for specialized architectures. Prior

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

works such as Scratchpad and Self-Debugging have explored LLMs in this space, focusing on gen-
erating reasoning chains that incorporate execution details, including variable states or their natural
language explanations. NExT (Ni et al., 2024b) utilizes real execution traces generated at run-
time. This method allows for more focused and succinct rationales that are better suited for specific
downstream tasks.

3 MOTIVATION

Recent advancements in Large Language Models (LLMs) have demonstrated their potential in ad-
dressing complex tasks such as code execution prediction, e.g., combined with Chain-of-Thought
(CoT) reasoning Dhulipala et al. (2024). However, LLMs still encounter significant challenges
in fully understanding the execution flows inherent in complex code structures such as iterations
and conditions. Plain code provides a linear view of logic, which often overlooks deeper relations
between different segments of the code. Our experimental results in Table 1 (see details later),
show that incorporating Control Flow Graph (CFG) along with the code significantly improves
model performance across the tasks. CFG images offer a visual structure that captures the flow of
execution, highlighting important control mechanisms such as branches, loops, and conditional de-
pendencies. This additional layer of information enables the model to better grasp the interaction
between code blocks, and better understand the code’s non-linear execution paths, which are crucial
for reasoning about program runtime behavior more effectively.

Choosing the appropriate type of data representation for the CFG plays a critical role in determining
how effectively LLMs understand code execution. To motivate the use of visual representation, we
conducted an experiment to compare the effectiveness of the textual representation and the visual im-
age of the CFG. As highlighted in Table 2 on our experimental results, the models that utilized visual
CFG images consistently outperformed those relying on text-based CFG representation. Our results
demonstrate that when models are exposed to CFG images rather than text-based descriptions, their
reasoning and prediction accuracy improves substantially. Since text-based representations only
provide a linear and sequential description of control flow in textual format, they often fall short in
capturing the structural complexity of code execution which requires forward-backward reasoning
continuously. In contrast, CFG images potentially offer a rich, intuitive visualization of execution
paths, making the intricate relationships between different code blocks more apparent. The visual
modality provides an additional layer of information, allowing the model to better comprehend non-
linear code flows, such as loops and branches, which are harder to grasp through sequential textual
descriptions alone. This result is also consistent with the one in Wei et al. (2024), which emphasizes
that incorporating visual representations significantly enhances the reasoning capabilities of mul-
timodal LLMs. Importantly, this result motivates us on the adopting of visual representations for
tasks that require deep structural reasoning, particularly in non-linear and complex code scenarios
during predictive code execution.

Despite the advantages of CFG images, we found that incorporating CoT reasoning into multimodal
models is not trivial and introduces new challenges. Surprisingly, our results in Table 3 show that
adding CoT reasoning alongside CFG images often leads to performance degradation. As seen
in Table 3, when CoT reasoning was applied to tasks like bug detection, performance dropped
for models such as Sonnet 3.5 and InternVL2-26B. The models suffer hallucinations, leading to
incorrect reasoning steps. Existing methods, such as the two-stage multimodal Chain-of-Thought
(multimodal-CoT) by Zhang et al. (2023), attempt to separate rationale generation from answer
inference but fail to address the specific challenges of code reasoning.

Let us use an example for illustration. As shown in Figure 1, the CFG + CoT approach fails to
capture the critical point in reasoning. As with this approach (see red section), the model incorrectly
identifies the termination point within the else block (G += 1), missing the fact that this branch is
unreachable. Since X is always even, the else block will never execute.

We hypothesize that the key issue is the model’s inability to align the code with its corresponding
CFG image during reasoning. Without proper alignment with the CFG, the model misinterprets this
unreachable path as a valid termination point, focusing on an irrelevant error. Therefore, we guide
the model to refer to each line of code to the corresponding element in the CFG as shown in Figure 1
(highlighted in yellow). Let us call it CFG + CoT + Reference approach, which correctly identifies
the unreachable node and termination point. Our results (Section 5) also show that the two-stage
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X=1024
  N=X/500 
  for i in range(10): 
      if X%2==0: 
          N+=1 
      else: 
          G+=1 
  for i in range(0, N): 
      X+=100 
  print(X)

Let's analyze this code step by step, using both the provided code snippet and the 

control flow graph (CFG):

1. X = 1024: 

   This initializes X correctly.

2. N = X / 500: 

   This calculates N as a float (2.048).

3. The outer for loop runs 10 times.

4. The if condition checks if X is even, which it is initially.

5. If X is even, N is incremented. If odd, G is incremented.

6. There's an inner for loop that should run N times, incrementing X by 100 each 

time.

7. Finally, X is printed.

Now, let's consider potential issues:

1. N is a float, which might cause issues in the range() function of the second loop.

2. G is used without being initialized.

3. The first loop modifies N, which affects the second loop's range.

The most critical error that would cause immediate termination is the use of G 

without initialization. This occurs in the else clause of the first loop.

Therefore, the answer is: G+=1

Let's analyze the code step by step, referencing the CFG:

1. X = 1024 (Node 1 in CFG): 

    This is correct and initializes X.

2. N = X / 500 (Node 2 in CFG): 

    This calculates N as a float (2.048). No error here, but it might cause issues later.

3. for i in range(10): (Node 3 in CFG): 

    This starts the outer loop. No error.

4. if X % 2 == 0: (Node 4 in CFG): 

    This checks if X is even. No error.

5. N += 1 (Node 5 in CFG, True branch): 

    This increments N. No error, but N becomes a float.

6. else: G += 1 (Node 6 in CFG, False branch): 

    This is where we encounter our first error. G is not defined before this line.

7. for i in range(0, N): (Node 7 in CFG)

    This tries to use N (a float) as the end of a range, which is not allowed in Python.

8. X += 100 (Node 8 in CFG, True branch)

    This would increment X if the loop ran. No error in this line itself.

9. print(X) (Node 9 in CFG)

    This would print X if reached. No error in this line.

The first error that would cause termination is on line 6, where G is used before 

being defined. However, this line wouldn't be reached in the current code because X 

is always even. The second error, which would be encountered first in this specific 

code, is on line 7, where a float is used in range().

Therefore, the answer is: for i in range(0, N):

CFG

Prompt:

You are an expert Python programmer.

Analyze the following Python code snippet, which contains error(s) when executing:

 

{code}

 

You will also be provided with a control flow graph {CFG} image of this code. As you analyze each line:

1. Examine each line of code sequentially using both code and CFG .

2. Reference the CFG to identify which node corresponds to the line you're currently analyzing.

3. Use this understanding between code and CFG to support your reasoning about the code's logic and errors.

 

Think through your analysis step by step, considering both the code and its representation in the CFG.

After your analysis, respond with the problematic line of code that causes termination.

Answer: The answer is: for i in range(0, N):

CFG+CoT CFG+CoT w Reference

CFG + CoT + with/without Reference

Code

Figure 1: Comparison of Code Execution Reasoning: CFG + CoT w/o Reference vs. CFG + CoT
w Reference. The reference-based method correctly identifies the unreachable node and critical
termination point (highlighted in orange).

multimodal-CoT approach in Zhang et al. (2023) is also insufficient for complex coding tasks that
involve intricate execution flows.

As illustrated in Figure 1, the CFG + CoT + Reference approach (green section) allows the LLM to
correctly identify the critical point: the unreachable nature of the else branch. By explicitly referenc-
ing the CFG during reasoning, the model avoids errors in unreachable branches and focuses on the
actual critical error—the float N being used in the range() function. This reference mechanism
helps the model maintain proper alignment between the visual CFG and the code, leading to more
accurate predictions and reasoning.

In the next section, we will provide a detailed explanation of our proposed method, demonstrat-
ing how the combination of Control Flow Graphs (CFG), Chain-of-Thought (CoT) reasoning,
and a Reference Mechanism addresses these challenges and significantly improves code execution
reasoning. We will formulate our solution in Section 4.

4 APPROACH: REFERENCE MECHANISM

In this section, we propose a method that combines Control Flow Graphs (CFG) with Chain-
of-Thought (CoT) reasoning, augmented by a Reference Mechanism, to facilitate enhanced code
execution reasoning. This approach enables step-by-step evaluation of the code while also cross-
referencing control flow points, thereby improving error detection and identifying unreachable or
erroneous code paths.

4
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4.1 OVERVIEW

Let the Python code snippet be represented as a sequence of lines of code:

Code = {C1, C2, . . . , Cn} (1)

where Ci represents the i-th line or block of code. Along the code, we provide the corresponding
Control Flow Graph (CFG), which is defined as:

CFG = (N,E) (2)

where N = {N1, N2, . . . , Nm} is the set of nodes, each corresponding to a specific code block, and
E ⊆ N ×N is the set of directed edges representing control flow between nodes.

The goal is to condition the Vision Large Language Model that semantically maps each line Ci of
the code to its corresponding node Ni in the CFG, and utilize this to perform stepwise reasoning.

4.2 CHAIN-OF-THOUGHT REASONING (COT)

Chain-of-Thought reasoning is implemented by analyzing each instruction on Ci while considering
its logical dependencies. We define the reasoning process as a recursive function:

R(Ci) = f(Ci, {C1, C2, . . . , Ci−1}) (3)

where f is a function that takes as input the current line of code and the previous context, iterating
through each step of the code while considering the nodes in the CFG.

4.3 REFERENCE MECHANISM

The Reference Mechanism augments the CoT reasoning by mapping each line of code Ci to its
corresponding node in the CFG. This mapping can be expressed as:

M : Ci 7→ Nj , whereCi is represented by node Nj in the CFG

The model now references Nj during the reasoning process to ensure consistency between the flow
of plain code and control flow structure. This alignment ensures that the model not only analyzes the
code line by line but also understands how each line fits into the overall control flow of the program.
By referencing the CFG, the model gains a clearer view of execution paths, transitions, and depen-
dencies between different statements in the same block and between different blocks, improving its
ability to reason about the entire code structure rather than treating each line in isolation. Currently,
we achieve this by adding a simple sentence instructing the model to reference the CFG during code
analysis (the line in prompt highlighted by green color in Figure 1).

4.4 CFG + COT (WITHOUT REFERENCE)

In the CFG + CoT approach, the model reasons about the logic purely based on the sequential
structure of the plain code. It analyzes each line and attempts to infer potential errors based solely
on the textual content, without actively cross-referencing the CFG. This reasoning process can be
defined as:

pno-ref(Y |C1, . . . , Cn,CFG) =

n∏
i=1

P(Yi|C1, . . . , Ci,CFG) (4)

=

n∏
i=1

P(Yi|C1, . . . , Ci, (N1, N2, . . . , Nm), E) (5)

Here, the probability of generating the correct reasoning Y for the code is determined by the cu-
mulative probabilities of the reasoning steps at each line of code. However, this method is prone
to inefficiency, as it includes all CFG nodes (N1, N2, . . . , Nm) in each reasoning step, even when
many of those nodes are not directly relevant to the current line of code.

5
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4.5 CFG + COT + REFERENCE

In contrast, the CFG + CoT + Reference approach introduces a structured reference to the CFG
during each reasoning step. The reasoning at each line Ci is conditioned not only on the previous
code lines but also on the corresponding node in the CFG:

pref(Y |C1, . . . , Cn,CFG) =

n∏
i=1

P(Yi|(C1,M(C1)), . . . , (Ci,M(Ci)), E) (6)

Where M(Ci) is the mapped node in the CFG corresponding to the current line Ci. By analyzing and
referencing the corresponding CFG block for every line of code, the model can maintain consistency
between the control flow and the sequential lines of code, improving reasoning accuracy.

4.6 VISUALCODER

There are several ways to achieve the behavior outlined in the CFG + CoT + Reference process, such
as fine-tuning, one-shot or few-shot prompting, and more. In this work, we propose a straightforward
yet effective approach that can be integrated into any Chain-of-Thought framework without the
need for fine-tuning. By introducing a simple instruction, as shown in Figure 1 (green line in
the prompt), we expect to guide Vision Language Models to follow the formulation described in
Equation 6. This approach ensures that the model focuses its reasoning on the relevant CFG node
for each line of code, thereby improving its alignment with the control flow. The experimental
results in Section 5, along with the qualitative analysis in Section 6, demonstrate the effectiveness
of our method in enhancing code execution reasoning.

5 EXPERIMENTS

5.1 BETTER CODE EXECUTION UNDERSTANDING WITH CONTROL FLOW GRAPH

In this experiment, we aim to demonstrate that by providing the LLM with a CFG, we can improve
its ability in understanding code execution. We performed our experiment on the CRUXEval bench-
mark Gu et al. (2024), where models were tested on their ability to predict code execution outcomes.
We compared performance of three state-of-the-art VLM models—Claude Sonnet 3.5 Anthropic
(2024), Gemini-1.5-Flash Reid et al. (2024), and InterVL2-8B Chen et al. (2024)—in two settings:
1) plain code only, and 2) plain code with its CFG image. The task involved both output prediction
(predicting the result of running the code) and input prediction (predicting which inputs would lead
to a specific outcome).

For consistency and to ensure a direct comparison with prior work, we used the same prompt format
as described in the original CRUXEval paper Gu et al. (2024). This prompt provided the models with
the code and, where applicable, a visual CFG representation, guiding them through a step-by-step
reasoning process. The Accuracy@1 metric was used to measure performance, capturing whether
the models’ first predictions were correct—an important indicator of their immediate understanding
of code execution. The diverse range of code structures in CRUXEval ensured that the models were
tested on realistic, complex code scenarios.

Task Settings Models Accuracy@1
Plain code Claude Sonnet 3.5 79.6
Plain code + CFG image Claude-3.5-Sonnet 82.3
Plain code Gemini-1.5-Flash 68.5

Output Prediction Plain code + CFG image Gemini-1.5-Flash 70.0
Plain code InterVL2-8B 40.8
Plain code + CFG image InterVL2-8B 44.0
Plain code Claude Sonnet 3.5 75.2
Plain code + CFG image Claude Sonnet 3.5 84.0
Plain code Gemini-1.5-Flash 58.4

Input Prediction Plain code + CFG image Gemini-1.5-Flash 68.4
Plain code InterVL2-8B 43.6
Plain code + CFG image InterVL2-8B 44.4

Table 1: Comparison of models with single and multiple modalities on code execution prediction.
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The results in Table 1 demonstrate that incorporating a CFG image improves model accuracy in two
settings. This improvement is consistent across models, showing that CFG enhances the LLMs’
ability to reason about execution flow and predict program behaviors more accurately. This result is
consistent with the one reported by (Le et al., 2024) in which incorporating CFG of given code can
significantly improve performance on code coverage prediction.

5.2 RICH INFORMATION ENCODED IN CFG IMAGES VS. TEXT-BASED DESCRIPTIONS

To evaluate the impact of visual representations in coding tasks, particularly in Code Execution
Prediction, we conducted another experiment in which various LLM models were provided with
either CFG in Mermaid format (text-based CFG) or CFG images of the code, along with the input,
and tasked with predicting the code’s output. The prompt remained the same as used in the previous
experiment, but instead of code, the models were given either the text-based or image-based CFG
of the original code. The results in Table 2 demonstrate that CFG images significantly improve
the performance in reasoning tasks involving code execution flow, highlighting the value of visual
representations in enhancing Multimodal LLMs’ reasoning abilities.

Model CFG (Text) CFG (Image)
Claude-3.5-Sonet 60.5 74.0
Gemini-1.5-Flash 65.3 74.1
InternVL2-8B 23.2 36.4

Table 2: Comparison of pass@1 results for CFG in text-based description vs. CFG as Image.

5.3 CHALLENGES IN MULTI-MODAL REASONING WITH CONTROL FLOW GRAPHS AND
CHAIN OF THOUGHT

5.3.1 EXPERIMENT SETTING

This experiment involved two tasks: Program Repair and Fault Localization. For the Program
Repair task, we generated our own dataset by selecting instances from LiveCodeBench Jain et al.
(2024), focusing on challenging cases requiring complex reasoning and control/data flow analysis.
From 400 instances, we sampled six solutions using Claude Sonnet 3.5 (75%) and Haiku models
(25%). We excluded solutions that either passed or failed all test cases, retaining only partially
correct solutions. After further filtering, we finalized 384 solutions for 173 problems. This dataset
emphasized debugging solutions where intricate control and data flow graphs play a critical role in
repairing the code.

For the Fault Localization task, we used the FixEval dataset Haque et al. (2022), consisting of
approximately 210 programs with diverse runtime errors. This task focused on identifying the faulty
code segments responsible for the errors, making it an excellent benchmark to assess the models’
ability to detect and localize errors in real-world code scenarios.

We evaluated the models in multiple configurations: plain code (with and without Chain-of-Thought
reasoning), plain code combined with CFGs, plain code with execution in-line comment (NeXT Ni
et al. (2024a)), Multimodal-CoT from Zhang et al. (2023) and our method VISUALCODER (com-
bined with Multimodal-CoT). For the VISUALCODER + Multimodal-CoT setting, we incorporated
our method by applying a reference mechanism during the first stage of Rationale Generation, where
each line of code was linked to the corresponding part of the CFG. The second stage, Answer Infer-
ence, remained the same as in the original Multimodal-CoT framework. This allowed us to compare
how well the models reasoned about execution flows in each configuration.

5.3.2 EXPERIMENT RESULT AND ANALYSIS

When we introduced a CFG image to the vanilla prompt (containing buggy code but no CoT reason-
ing), we observed a notable increase in performance compared to the vanilla setting. This confirms
our earlier findings that CFG images provide valuable structural information, enabling the model
to better understand the code’s execution flow and the dependencies between code blocks. The
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Tasks Settings Claude GPT-4o InternVL2
Sonet 3.5 26B

Plain code w/o CoT 64.1 38.7 0.4
Plain code w CoT 63.0 40.1 4.0
Plain code + CFG w/o CoT 61.2 36.5 0.9

Program Repair Plain code + CFG w CoT 55.5 37.6 2.1
NeXT 57.3 40.7 0.0
Multimodal-CoT 58.7 35.1 8.2
VISUALCODER 62.9 38.7 6.3
Multimodal-CoT + VISUALCODER 60.1 37.2 10.7
Plain code w/o CoT 90.4 87.1 37.0
Plain code w CoT 90.0 89.5 26.1
Plain code + CFG w/o CoT 86.1 79.4 22.3

Fault Localization Plain code + CFG w CoT 88.0 85.6 41.0
Multimodal-CoT 90.9 87.6 52.1
VISUALCODER 91.4 90.4 47.4
Multimodal-CoT + VISUALCODER 92.8 91.9 53.6

Table 3: Preliminary Experiment Results Showing the Impact of CFG and CoT on Code Under-
standing Tasks.

improvement in this setting highlights how visual representations like CFGs can enhance code com-
prehension by offering insights that are not easily extracted from plain text.

However, when we combined the CFG image with Chain-of-Thought reasoning (CoT) in the prompt
(+ CFG + CoT), performance unexpectedly dropped compared to using CoT reasoning alone and
the vanilla setting. This suggests that the model struggled to effectively integrate the visual infor-
mation from the CFG with its CoT reasoning process. This aligns with challenges highlighted in
the work of Zhang et al. (2023), which points out that combining CoT with multimodal inputs often
leads to hallucinations or misaligned reasoning steps, as the model is unable to fuse the textual and
visual modalities coherently. Due to insufficient training on such multi-modal inputs, the model gen-
erated reasoning steps that did not match the actual execution flow represented by the CFG. Instead
of enhancing its reasoning, the additional modality caused confusion, leading to reduced accuracy
despite the richer input.

In the Program Repair task, the results indicate that plain code settings, with or without CoT, show
limited improvement in performance. For instance, the plain code without CoT setting results in an
accuracy of 64.1% for Claude Sonnet 3.5, while using CoT slightly decreases the performance to
63.0%. This trend is consistent across GPT-4o and InternVL2, suggesting that applying CoT alone
in this task does not significantly help the models’ reasoning. In contrast, when CFGs are introduced
alongside the plain code, even without CoT, there is a notable performance drop in some cases (e.g.,
61.2% for Claude Sonnet 3.5). However, when combining CFGs with CoT reasoning, the models
show modest improvements in some cases, but the results remain suboptimal, especially in the case
of InternVL2-26B, which only reaches 2.1% accuracy.

The real improvement is observed when applying our method, particularly when combined with
Multimodal-CoT. This task is mainly about logical Our method, which integrates a reference
mechanism during the first stage of Rationale Generation, shows substantial gains, especially for
InternVL2-26B, where the accuracy rises to 6.3% when using our method alone and further increases
to 10.7% when combined with Multimodal-CoT. This indicates that our approach significantly en-
hances the model’s ability to reason about program repair, especially for models like InternVL2,
which previously struggled in this task.

The Fault Localization task results demonstrate a consistent trend where models perform better
across all settings compared to program repair. In the plain code without CoT setting, Claude Sonnet
3.5 achieves a high accuracy of 90.4%, with GPT-4o reaching 87.1%. Introducing CoT slightly
improves performance for GPT-4o (89.5%) but shows minimal change for Claude Sonnet 3.5.

When CFGs are added, either with or without CoT, the results are somewhat mixed. While there
is a performance dip in some cases (e.g., 86.1% for Claude Sonnet 3.5 with plain code and CFG
without CoT), the models generally maintain high performance levels. However, when we apply
Multimodal-CoT and combine it with our method, the improvements are more pronounced.

Our method alone achieves the highest accuracy for Claude Sonnet 3.5 and GPT-4o at 91.4% and
90.4%, respectively. When Multimodal-CoT is combined with our method, the performance reaches
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new heights: Claude Sonnet 3.5 achieves an accuracy of 92.8%, and GPT-4o reaches 91.9%. No-
tably, InternVL2-26B, which struggled in other settings, shows a dramatic improvement, rising from
41.0% (CoT with CFG) to 53.6% when our method is applied in combination with Multimodal-CoT.
This confirms that the integration of CFGs with CoT reasoning and our reference mechanism sig-
nificantly boosts fault localization performance.

6 QUALITATIVE ANALYSIS

Let's analyze this code step by step, referencing the CFG:

(1) X = 24 (First node in CFG): This is fine, X is assigned the value 

24…(10) print(lst[0]) (Last node, outside the loop): This tries to print 

the first element of lst.

The main issue is that lst is only initialized when Y is odd, which 
never happens. When i is odd and X is even (always true), the code 

tries to append to lst, but lst may not exist.

Answer: lst.append(i)

Let's analyze this Python code snippet line by line and CFG:

(1) `X = 24`: This line initializes X with 24….(10) `print(lst[0])`: This tries 

to print the first element of lst after the loop ends.

The main error occurs because the code attempts to print `lst[0]` after 

the loop, but `lst` might not be defined if the conditions for its 
initialization are never met. 

Answer: print(lst[0])

Let's analyze this code and CFG step by step:

(1) X = 24: This initializes X to 24. (Correct)...(7) After the loop, it 

attempts to print lst[0].

The main issue here is that lst is not defined in the global scope. It's 

only defined inside the loop under certain conditions. Even if lst is 
defined and populated, it will be reset to an empty list every time i is 

even and Y is odd. The error occurs when trying to access lst[0] after 

the loop, as lst may not be defined or may be empty.

Answer: print(lst[0])

Let's analyze this code step by step: 

(1) X = 24: This sets the variable X to 24…(10) print(lst[0])This tries to 

print the first element of lst.

The main issue here is that lst is only defined within the if statement on 

line 6, which is never executed because Y is always even. The code 
will raise an error when it tries to access lst[0] because lst is not 

defined in the global scope.

Answer: print(lst[0])

X = 24
Y = X**2
for i in range(1, 10):

if i % 2 == 0:
if Y %2 != 0:

lst = []
else:

if X % 2 == 0:
lst.append(i)

print(lst[0])

X=1024
N=X/500
for i in range(10):

if X%2==0:
N+=1

else:
G+=1

for i in range(0, N):
X+=100

print(X)

Let's analyze the code step by step, referencing the CFG:

(1) X = 1024 (Node 1 in CFG): This is correct and initializes X…(9) print(X) 

(Node 9 in CFG)This would print X if reached. No error in this line.

The first error that would cause termination is on line 6, where G is used 

before being defined. However, this line wouldn't be reached in the current 
code because X is always even. The second error, which would be 

encountered first in this specific code, is on line 7, where a float is used in 

range().

Answer: for i in range(0, N):

Let's analyze the code line by line with CFG provided:

(1). `X = 1024`: This corresponds to the top node in the CFG. It's correct and 

initializes X…(9) `print(X)`: This is the final node in the CFG and will execute 

if no errors occur before it.

The main error is the use of the undefined variable G in the else clause of the 
first loop. This will raise a NameError when X is odd.

Answer: G += 1

Let's analyze this code step by step, using the code snippet and CFG:

(1) X = 1024: This initializes X correctly…(7) Finally, X is printed.

Now, let's consider potential issues: N is a float, which might cause issues in 

the range() function of the second loop. G is used without being initialized. 

The first loop modifies N, which affects the second loop's range. The most 
critical error that would cause immediate termination is the use of G without 

initialization. This occurs in the else clause of the first loop.

Answer: G += 1

Let's analyze this code step by step:

(1) X=1024: This line initializes X with the value 1024…(10) print(X): This 

would print the final value of X, if the code could reach this point.

The first error that would cause the code to terminate is on line 7, where G is 

used without being defined.

Answer: G += 1
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Correct answer: lst.append(i) Correct answer: for i in range(0, N):

Figure 2: Qualitative comparison of reasoning outputs for buggy code using different prompt set-
tings in Claude Sonet 3.5. Red text indicates where the reasoning fails, green text highlights correctly
identified critical points, and blue text in VISUALCODER shows the referencing from the plain code
to the corresponding nodes in the CFG.

Figure 2 presents two examples of buggy code alongside their corresponding Control Flow Graphs
(CFGs) and the reasoning outputs of Claude Sonet 3.5 under different prompt settings: plain code
with CoT, plain code + CFG image with CoT, and 2-stage prompt of Multimodal-CoT in Zhang
et al. (2023). These examples are used to qualitatively compare various methods and highlight the
effectiveness of our proposed method, VISUALCODER, which integrates CFG, Chain-of-Thought
(CoT) reasoning, and a reference mechanism.

The first three rows of Figure 2 show the outputs of Claude Sonet 3.5 under the different prompt
settings. In all these settings, the model fails to fully understand the complexity of the code. In the
left example, which involves a use-before-initialization error, the model in these settings incorrectly
identifies the issue as related to accessing lst[0], highlighted in red, because it does not properly
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account for the control flow dependencies that affect when lst is initialized. Similarly, in the right
example, which contains unreachable code, the model misinterprets the error, highlighting G += 1
as the cause, but fails to recognize that the actual issue is the float value N being used in the range
function. These failures highlight the limitations of reasoning based on plain code, even when aided
by CFG or CoT individually. Without a deeper understanding of how the code executes dynamically,
the model cannot pinpoint the true source of the errors.

In contrast, the final row shows the performance of VISUALCODER. In the example on the left
side, VISUALCODER captures the critical error by analyzing the CFG and identifying that the node
for lst’s initialization and the node for lst.append(i) do not connect. As a result, when
the code tries to append to lst, the initialization never occurs in the current control flow, leading
to a NameError due to lst being undefined. This critical point (captured by VISUALCODER)
is highlighted in green. Other methods mistakenly assume that the list lst is reinitialized dur-
ing each iteration of the for loop, causing them to incorrectly conclude that lst[0] raises an
IndexError because the list is empty. In fact, the error arises because lst is never initialized
before being used.

Additionally, VISUALCODER utilizes a reference mechanism, shown in blue in the output, which
refers to the key CFG nodes during the reasoning process. This mechanism helps the model explic-
itly link the ‘execution’ steps to the corresponding control flow nodes, which is a major departure
point from other methods lacking such explicit referencing.

In the example on the right side, VISUALCODER again demonstrates its advantage by leveraging the
CFG to understand the non-linear control flow. While the previous methods struggled to detect that
the float value N is used incorrectly in the range function, VISUALCODER’s reference to the CFG
allows the model to recognize the true cause of the error: the unreachable branch of the code. The
CFG shows that the else block involving G += 1 is never executed because X is always even,
allowing the model to focus on the correct error related to the float value in the range function. As
a result, VISUALCODER correctly identifies for i in range(0, N) as the solution.

These qualitative comparisons clearly demonstrate the advantage of VISUALCODER. The red turn-
ing points in previous methods indicate where the model’s reasoning breaks down, whereas the green
critical points in VISUALCODER ’s output show how our method resolves the errors by aligning the
code with its CFG during the reasoning process. By maintaining a structured alignment between
code lines and their CFG nodes, our approach ensures that the model grasps the control flow, avoids
mistakes, and accurately identifies both use-before-initialization and unreachable code errors.

7 CONCLUSION & FUTURE WORK

In conclusion, our work explores the potential of enhancing Large Language Models (LLMs) in
understanding and reasoning about code execution by leveraging multimodal inputs, specifically
integrating control flow graph (CFG) visualizations. While traditional LLMs excel in recognizing
static code patterns, they struggle with dynamic program behaviors, especially those that require an
understanding of execution context. Our proposed approach, VISUALCODER, introduces the Ref-
erence CoT prompting technique, which directly links lines of code with their corresponding CFG
elements to improve reasoning about code execution. This method not only addresses limitations
in existing CoT techniques by reducing cascading errors but also provides a more grounded and
intuitive representation of the code’s execution flow. Our preliminary results suggest that the in-
clusion of visual CFG representations enhances the model’s ability to reason about code, and we
believe that further refinement of this technique could significantly improve LLM performance in
tasks involving complex program analysis.

Future work stemming from this research holds several promising directions. First, expanding
VISUALCODER ’s approach to diverse programming languages could help evaluate its scalability
across different code structures and paradigms, including functional and declarative languages. Ad-
ditionally, integrating real-time feedback from execution environments could enable LLMs to sim-
ulate dynamic program behaviors, such as runtime error detection or variable state tracking, which
are currently challenging for these models. Optimizing multimodal prompts, such as refining Ref-
erence CoT prompting to better handle larger and more complex control flow graphs, could further
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improve performance, potentially through selective focus on critical execution paths using attention
mechanisms.

Moreover, building interactive code debugging agents that leverage visualizations of control flow
in real time could empower developers by providing automated debugging and repair sugges-
tions. Exploring more complex graph representations, such as abstract syntax trees (ASTs) or
data flow graphs (DFGs), could also deepen VISUALCODER ’s multimodal reasoning capabilities.
Lastly, incorporating human feedback into the reasoning process—creating human-in-the-loop sys-
tems—could allow VISUALCODER to learn dynamically from corrections, improving adaptability
in practical coding scenarios.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millicah, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc.
ISBN 9781713871088.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024.

David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute programs
with instruction pointer attention graph neural networks. Advances in Neural Information Pro-
cessing Systems, 33:8626–8637, 2020.

Lionel C Briand, Yvan Labiche, and Xuetao Liu. Using machine learning to support debugging
with tarantula. In The 18th IEEE International Symposium on Software Reliability (ISSRE’07),
pp. 137–146. IEEE, 2007.

Nghi DQ Bui, Yue Wang, and Steven Hoi. Detect-localize-repair: A unified framework for learning
to debug with codet5. arXiv preprint arXiv:2211.14875, 2022.

Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural program synthesis
beyond domain-specific languages. Advances in Neural Information Processing Systems, 34:
22196–22208, 2021.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks, 2024. URL
https://arxiv.org/abs/2312.14238.

Hridya Dhulipala, Aashish Yadavally, and Tien N. Nguyen. Planning to guide llm for code coverage
prediction. In 2024 IEEE AI Foundation Models and Software Engineering. IEEE, 2024.

Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 16568–16621. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/gu24c.html.

Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize, execute and debug:
Learning to repair for neural program synthesis. Advances in Neural Information Processing
Systems, 33:17685–17695, 2020.

Md. Mahim Anjum Haque, Wasi Uddin Ahmad, Ismini Lourentzou, and Chris Brown. Fix-
eval: Execution-based evaluation of program fixes for competitive programming prob-
lems. ArXiv, abs/2206.07796, 2022. URL https://api.semanticscholar.org/
CorpusID:249712458.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2312.14238
https://proceedings.mlr.press/v235/gu24c.html
https://api.semanticscholar.org/CorpusID:249712458
https://api.semanticscholar.org/CorpusID:249712458


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https://arxiv.org/
abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. CoRR, abs/2403.07974, 2024. URL https:
//doi.org/10.48550/arXiv.2403.07974.

Cuong Chi Le, Hoang Nhat Phan, Huy Nhat Phan, Tien N. Nguyen, and Nghi D. Q. Bui. Learning
to predict program execution by modeling dynamic dependency on code graphs, 2024. URL
https://arxiv.org/abs/2408.02816.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Xia Li and Lingming Zhang. Transforming programs and tests in tandem for fault localization.
Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–30, 2017.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. DeepFL: integrating multiple fault diagnosis
dimensions for deep fault localization. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 169–180. ACM, 2019.

Yi Li, Shaohua Wang, and Tien N. Nguyen. Fault localization with code coverage representation
learning. In Proceedings of the 43rd International Conference on Software Engineering, ICSE’21.
IEEE, 2021.

Yi Li, Shaohua Wang, and Tien N. Nguyen. Fault localization to detect co-change fixing loca-
tions. In Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, pp. 659–671, New
York, NY, USA, 2022a. Association for Computing Machinery. ISBN 9781450394130. doi:
10.1145/3540250.3549137. URL https://doi.org/10.1145/3540250.3549137.

Yi Li, Shaohua Wang, and Tien N. Nguyen. Dear: A novel deep learning-based approach for
automated program repair. In Proceedings of the 44th International Conference on Software
Engineering, ICSE’22. ACM Press, 2022b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 34892–34916. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2024. URL https://arxiv.org/abs/2310.03744.

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang.
Boosting coverage-based fault localization via graph-based representation learning. In Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 664–676, 2021.

Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Improving fault local-
ization and program repair with deep semantic features and transferred knowledge. In Proceed-
ings of the 44th International Conference on Software Engineering, ICSE ’22, pp. 1169–1180,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392211. doi:
10.1145/3510003.3510147. URL https://doi.org/10.1145/3510003.3510147.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. NExT: Teaching large language models to reason about code execution. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,

12

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://doi.org/10.48550/arXiv.2403.07974
https://doi.org/10.48550/arXiv.2403.07974
https://arxiv.org/abs/2408.02816
https://doi.org/10.1145/3540250.3549137
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://arxiv.org/abs/2310.03744
https://doi.org/10.1145/3510003.3510147


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

volume 235 of Proceedings of Machine Learning Research, pp. 37929–37956. PMLR, 21–27 Jul
2024a. URL https://proceedings.mlr.press/v235/ni24a.html.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Next: Teaching large language models to reason about code execution. arXiv
preprint arXiv:2404.14662, 2024b.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
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