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Abstract

There is a substantial body of literature examining the mathematical reasoning
capabilities of large language models (LLMs), particularly their performance
on precise arithmetic operations in autoregressive architectures. However, their
ability to perform approximate reasoning in informal, fast-paced mathematical
operations has received far less attention, especially among non-autoregressive
decoder models. Our work addresses this gap by introducing StreetMath, a bench-
mark designed to evaluate models’ approximation abilities under real-world ap-
proximation scenarios. We conduct extensive evaluations across different LLM
architectures: Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-
Instruct-7B, Falcon-Mamba-7B-Instruct, and Mamba-GPT-3B. Furthermore, we
apply mechanistic interpretability techniques to probe their internal computational
states. Our analysis reveals that LLMs generally attempt to compute exact values
or invoke external tools even in tasks that call for approximation. Moreover, while
models sometimes reach the correct answer in early layers or steps, they still
consume more tokens when solving approximation tasks. Additional experiments
indicate that exact and approximate arithmetic operations rely on largely separate
neural components. Drawing upon research on cognitive psychology, we argue that
LLMs do not exhibit cognitive miserliness in the same way humans do in street
math settings. We open source our work https://github.com/ctseng777/StreetMath

1 Introduction

Human mathematical reasoning flexibly alternates between exact calculation and rough estimation,
depending on context. This adaptability—often described as "cognitive miserliness"(1)—allows
people to conserve effort by using approximations when precision is unnecessary. According to
Kahneman’s dual-process theory, humans preferentially rely on System 1 (fast, intuitive) thinking for
everyday approximate calculations—what we call street math—the quick mental calculations people
make in everyday life, such as estimating the total cost of groceries or computing a restaurant tip
(e.g., leaving a 20% tip on a $61 bill—roughly 20% of $60 $12, which is much easier to calculate).
This reflects the broader concept of cognitive miserliness, as the adaptive tendency to minimize
mental effort by employing shortcuts and approximations when full precision is unnecessary.(2) Street
math exemplifies the context where System 1 dominates: quick estimates suffice, and the cognitive
cost of engaging System 2 (slow, effortful) reasoning is unwarranted. This principle also highlights
fundamental capacity limitations: cognitive processing requires effort, which humans are motivated to
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conserve by using "good enough" strategies when circumstances permit. Our findings reveal that large
language models (LLMs), in contrast, tend to bypass this adaptive flexibility. Instead of switching to
easier approximation when appropriate, they engage in effortful, exact computation—even when rapid
estimation would be more efficient—paralleling a departure from human-like cognitive efficiency.
Recent interpretability studies have uncovered Fourier-like computation circuits (3) and attention
heads dedicated to mathematical processing (4). Yet it remains unclear whether these models exhibit
the same context-sensitive flexibility as humans, or whether their reasoning is rigidly tied to exact
solutions.

In this work, we introduce the StreetMath dataset, a curated collection of 1000 approximation
problems drawn from everyday street math scenarios. Using this benchmark, we systematically
evaluate diverse model classes, including autoregressive decoder architectures (Qwen3-4B-Instruct-
2507 (5), Qwen3-4B-Thinking-2507), state-space models (Falcon-Mamba-7B (6), Mamba-GPT-
3B (7)), and diffusion-based language models (Dream-v0-Instruct-7B (8)). Our experiments reveal
a consistent bias across all architectures: models overwhelmingly favor exact computation, even
in contexts where rough estimation would suffice. Most importantly, some models achieve better
approximation scores only at the cost of increased computation (tokens), which runs counter to
humans’ cognitive miserliness. To better understand this limitation, we examine models’ rounding
behavior, a fundamental operation for approximation in the street math setting. We apply linear
probing to compare internal representations, finding that models’ approximation on single numbers
resembles human behavior: they often round numbers toward 5 or 10. In addition, models perform
well at digit-level detection but struggle to generalize to word-based numbers (9).

We further investigate the neural underpinnings of these behaviors. By pruning the neurons involved
in exact arithmetic (10), we uncover a surprising dynamic: removing math-specific parameters can
actually improve performance on approximation tasks. This suggests that rigid, precision-oriented
circuits may actively hinder flexible estimation. Additional probing into the entropy and effective
ranks of intermediate layers (11) reveals similar distributions and dimensionalities between exact
arithmetic operations and approximation. These findings imply that approximation does not reduce
computational cost—contrary to how humans use approximation to simplify computation.

Together, these findings suggest that while LLMs have developed specialized pathways for arithmetic,
they lack the human-like adaptability required for context-sensitive street math. Although LLMs
are capable of approximating single numbers, they do not leverage this ability during the process of
solving street math questions; instead, they approximate only after calculating exact answers. We
conclude that LLMs do not reason about approximation questions in the same way humans do. The
training corpora likely introduce this universal gap across model architectures and sizes.

2 StreetMath Dataset & Evaluations

We release 1,000 multiple-choice math reasoning problems under street math settings, covering five
major topics, each with several subtopics: basket sum (sum of shopping items), discounts (buy-
n-get-m-free, threshold discounts such as “$X off if you spend $Y", percentage discounts), taxes
(tax before discount and tax after discount applied), units (calculating cost based on per-pound or
per-kilogram prices), and tips (% on spend). Each question offers four answer options, designed
to distinguish different levels of approximation capability: exact calculation, good approximation
(within 20% relative error of the exact answer), mildly off (between 60% and 90% relative error),
and way off (greater than 150% relative error). The benchmark not only evaluates final answers but
also examines intermediate numerical evidence and the chain-of-thought (CoT) reasoning process.
Any traces of exact computation or tool usage are flagged as exact math. To assess whether models
exhibit cognitive miserliness, we use token count as a proxy for reasoning efficiency.

We evaluate a range of model architectures including autoregressive decoder, state-space and
language diffusion models across different reasoning styles (CoT vs. non-CoT) and parameter sizes
(3B, 4B, 7B). The models include Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-
v0-Instruct-7B, Falcon-Mamba-7B-Instruct, and mamba-GPT-3B. We carefully adapt system and
user prompts to each architecture to ensure fair comparisons. As shown in Table 1, LLMs across
all architectures predominantly compute exact answers even when model prompt explicitly asks for
approximation. When they do produce approximated answers, they typically first compute the exact
value and then round it. Notably, Qwen3-4B-Thinking-2507 shows better approximation performance
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Table 1: Overall judgement counts by model with tool calls and average tokens (rounded).
Model A E M W Uncategorized Tool calls Avg tokens

Qwen3-4B-Instruct-2507 445 514 40 1 0 1000 125
Qwen-4B-Thinking-2507 151 637 197 15 0 0 228
Dream-v0-Instruct-7B 0 1000 0 0 0 0 263
Falcon-Mamba-7B-Instruct 177 469 131 22 201 0 131
Mamba-GPT-3B 174 459 166 198 3 0 86

Abbreviations: A = Good approximation, E = Exact Math, M = Mildly off, W = Way off

than Qwen3-4B-Instruct-2507, but this improvement comes at the cost of higher token usage (228 vs.
125 tokens on average) and increased deviations contrary to human cognitive miserliness. State-space
models achieve similar approximation performance to Qwen3-4B-Instruct-2507 with fewer tokens
but greater deviations. Dream-v0-Instruct-7B consistently produces exact answers with perfect
accuracy. We leave it to future work to investigate whether adjusting the steps and temperatures of
Dream-v0-Instruct-7B can improve its approximation performance.

Overall, our findings indicate that LLMs tend to rely on exact arithmetic even in approximation
settings, showing behavior opposite to human-like cognitive miserliness. Refer to Section B for
per-topic benchmarking results.

(a) Digits paraphrase (near=5) (b) Digits paraphrase (near=10)

(c) Words (near=5) (d) Words (near=10)

Figure 1: Accuracy per layer across model families (i) autoregressive decoder: Qwen3-4B-Thinking,
Qwen3-4B-Instruct; (ii) state-space: mamba-gpt-3b, Falcon-mamba-7B-Instruct; (iii) diffusion:
Dream-v0-Instruct-7B) for digits paraphrase and words tasks with near parameters 5 and 10.

3 Linear Probe on Rounding Behaviors

We investigate whether models encode numerical topology similar to human cognitive distance
effects (12; 13) by training linear probes (14; 15) to detect nearness to multiples of 5 and 10 (16),
defining proximity as exactly one integer away from the nearest multiple (e.g., 21 is near-10; 22 is
not). Using simple templates to extract hidden-state representations, we evaluate five StreetMath
models on digit-based (“Here is 23.”) and word-based (“Consider the number twenty three.”) inputs,
analyzing (i) layer-wise accuracy, (ii) best-layer errors across distances 0, 1, 2+.

Digit tasks show early emergence (17) where state-space models lead: Mamba-GPT-3B reaches
99.9% and Falcon-Mamba-7B >98%, with best layers in early–middle positions (shortcut-friendly;
supports early stopping), whereas Dream-v0-Instruct-7B peaks late (26th Near-5, 24th Near-10),
consistent with diffusion vs. autoregressive/state-space differences. Distance-1 cases (e.g., 9, 11, 14,
16) are hardest, reflecting digit encoding (18) and calibration biases (19). Word tasks underperform
across architectures, evidencing surface-form encoding and limited numerical abstraction (20; 21; 22),
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likely due to tokenization, pretraining bias toward digits, and separable digit/word representational
clusters.

4 Causal Studies

Using structured pruning to isolate parameters tied to exact arithmetic (23; 24), we find that increasing
pruning does not necessarily hurt StreetMath performance: aside from Qwen3-4B-Instruct-2507, most
models remain stable or even improve under moderate pruning, contradicting the intuition that reduced
capacity uniformly impairs numerical reasoning. Pruning effects diverge by benchmark: MMLU and
RACE are similarly resilient, whereas GSM8K is extremely sensitive—even slight pruning collapses
accuracy to near zero across all models—implicating a specialized, fragile neuron subset for exact
arithmetic while StreetMath and language-heavy tasks rely on more distributed representations. These
patterns align with prior results (23), suggesting a dual pathway: (i) localized, brittle circuits for
exact arithmetic that fail under pruning, and (ii) distributed, robust circuits for approximation and
text-heavy reasoning, where moderate pruning can denoise and improve performance—consistent
with StreetMath being tackled more as context-driven linguistic estimation than strict mathematical
computation.

Figure 2: Effect of structured pruning on task performance for all models. Accuracy is plotted against
the proportion of parameters pruned for StreetMath and GSM8K benchmarks

5 Layer-wise Studies

The layer-wise analyses (11) reveal a broadly U-shaped evolution of spectral entropy and effective
rank (high at input, dipping early, then rising) across models and tasks, with Falcon-Mamba-7B on
StreetMath as the main exception. GSM8K runs of Qwen3-4B-Instruct-2507 show a pronounced dip
by the first third of layers and a steady increase. Notably, both GSM8K and StreetMath runs exhibit
elbow-like transitions at comparable depths, consistent with early compression and later re-expansion
seen in shortcut reasoning (25). This observation supports the view that approximation in StreetMath
does not help models reach solutions more efficiently, showing the opposite of human cognitive
miserliness (26).

It is evident from our experiments that task-specific effects emerge across the models. StreetMath
runs typically show higher late-layer entropy and effective rank than GSM8K for the same model,
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along with larger transition distances. This pattern indicates not only higher variability across models
but also more sustained representational expansion and stronger late-stage adjustments. By contrast,
GSM8K often consolidates into a stable mid-layer corridor with very high cosine similarity and
minimal angular changes. These observations support our causal study results that models use a more
diverse set of neurons when handling street math-type questions while dedicating to a small set of
neurons when handling exact arithmetic operations. For details, refer to E.

(a) Layerwise Average Summary - Qwen3-4B-Instruct-
2507 on GSM8K

(b) Layerwise Average Summary - Qwen3-4B-Instruct-
2507 on StreetMath

(c) Layerwise Average Summary - Dream-v0-Instruct-
7B on GSM8K

(d) Layerwise Average Summary - Dream-v0-Instruct-
7B on StreetMath

(e) Layerwise Average Summary - Falcon-mamba-7B
on GSM8K

(f) Layerwise Average Summary - Falcon-mamba-7B
on StreetMath

Figure 3: Layerwise Average Summary of selected models on StreetMath and GSM8K benchmarks

6 Conclusion

We curated the StreetMath benchmark to reveal LLMs’ lack of cognitive miserliness in street math
settings. Although these models possess single-number rounding capability, they do not leverage it to
reduce computational effort. We further discovered that models use a more diverse set of neurons
when handling street-math-style questions while dedicating a small set of neurons to exact arithmetic
operations.
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A Experiment Setup

A.1 Model Selection

To examine how different architectures perform under the street math setting, we selected repre-
sentative models from autoregressive transformer, diffusion-based LLM, and state-space families.
Given computational constraints, we restricted our study to small- and medium-sized models. To
ensure reproducibility and enable deeper investigation of internal mechanisms, we further limited our
selection to open-source models with publicly available weights. Because the task requires models to
follow prompts reliably and generate multiple-choice responses, we focused on instruction-tuned
and thinking models. Within these constraints, we also sought to preserve meaningful comparisons,
such as chain-of-thought versus instruction-only models, as well as cross-architecture and cross-size
contrasts.

Accordingly, our study evaluates Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-
Instruct-7B, Falcon-Mamba-7B, and Mamba-GPT-3B. All models are initialized with the default
parameters.

A.2 Hardware specifications

We conducted all experiments on a single NVIDIA A10 GPU hosted on RunPod, using an Ubuntu
22.04 operating system with CUDA version 12.8.1.

B StreetMath dataset and benchmark result

B.1 Data Curation

StreetMath targets everyday “street math,” emphasizing fast estimation over exact arithmetic. It
contains multiple-choice questions across shopping and daily-life contexts: basket totals, discounts
(percentage-off, BOGO, buy-n-get-m, threshold coupons), taxes (pre/post-discount), unit conversions
(lb-oz, kg-g), and tips. Prompts explicitly nudge for approximate reasoning (“about how much”) to
elicit human-style rounding.

Each question has four options: the exact value; a “good approximation” within 20% relative error
(correct); a “mildly off” option; and a “way off” option (fractional or multi-fold). Choices are shuffled
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Model Topic Good approx Exact math Mildly off Way off Uncategorized N

Qwen3-4B-Instruct-2507 basket_sum 86 154 1 0 0 241
discounts 15 220 7 0 0 242
taxes 40 132 1 0 0 173
units 22 150 0 0 0 172
tips 22 150 0 0 0 172

Qwen-4B-Thinking-2507 basket_sum 46 104 55 36 0 241
discounts 80 61 51 50 0 242
taxes 40 45 46 42 0 173
units 35 84 22 31 0 172
tips 28 68 40 36 0 172

Dream-v0-Instruct-7B basket_sum 0 241 0 0 0 241
discounts 0 242 0 0 0 242
taxes 0 173 0 0 0 173
units 0 172 0 0 0 172
tips 0 172 0 0 0 172

Falcon-Mamba-7B basket_sum 47 106 43 0 45 241
discounts 50 108 61 5 18 242
taxes 38 63 47 0 25 173
units 8 94 7 14 49 172
tips 11 77 4 0 80 172

Mamba-GPT-3B basket_sum 51 97 46 47 0 241
discounts 43 111 35 53 0 242
taxes 29 59 39 43 3 173
units 32 78 31 31 0 172
tips 19 114 15 24 0 172

Table 2: Benchmark results: Counts by topic for all models.

A–D, with metadata storing numeric values. Spacing ensures clear separation: mild ≥ 60% and way
≥ 150%.

Good approximations follow deterministic rounding rules. Basket totals round prices to dollars, then
sum and drop cents. Discounts round prices to dollars, rates to nearest 5%, pair BOGO (buy one
get one) items by price, and compute buy-n-get-m deterministically. Threshold coupons apply to a
rounded subtotal. Taxes round bases and rates (5% steps) before dropping cents. Unit costs round
prices and weights. Tips apply percentages to subtotals rounded to $5/$10 buckets.

Data generation is deterministic given a seed. Templates randomize prices, quantities, and rates. Out-
puts are JSONL lines with id, topic, prompt, choices, labels, correct_label, and metadata
(exact, good, mild, way). Splits are controllable by topic weights. A validator enforces spacing and
alignment.

B.2 StreetMath Benchmark

The benchmark evaluates LLMs on StreetMath via local JSONL or hosted dataset
(LuxMuseAI/StreetMathDataset). The system prompt encourages estimation and discourages
exact calculation. Models must output: “Final choice: <A|B|C|D>”, “Answer: <numeric>”, and
“Reasoning: <short sentence>”; optional inner thoughts appear in <think>...</think>. The
runner supports OpenAI-compatible APIs, local Transformers, and Ollama.

Outputs are parsed for choice, numeric answer, reasoning, and optional tool calls. If only a number is
given, the closest choice is inferred. Labels: exact = "Exact math," good = "Good approximation,"
mild/way = "Mildly off"/"Way off." We use the count of Good approximation as evaluation metrics
to avoid giving arbitrary weights to each choice.

Each sample yields a JSON record with prompt, predictions, reasoning, token/latency, and judgement.
A summary aggregates mean scores, label counts, accuracy by topic, tool-call frequency, and average
resource use. This setup cleanly separates approximation skill from exact computation preference
while ensuring reproducibility across models and backends.
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C Linear Probe

C.1 Experimental Setup

Task Definition: We train linear probes to detect numerical proximity concepts, specifically whether
numbers are "near" multiples of 5 or 10. For near-5 detection, proximity is defined as min(|n mod
10 − 0|, |n mod 10 − 5|, |n mod 10 − 10|) ≤ 1, covering digits {0, 1, 4, 5, 6, 9}. For near-10
detection, proximity is defined as min(|n mod 10− 0|, |n mod 10− 10|) ≤ 1, covering digits {0, 1,
9}.

Data Generation: We generated 4,000 training samples and 1,500 validation samples per condition.
Numbers were randomly sampled from [0, 9999] and embedded into descriptive templates. Two
template sets were used:

• Template A: “Consider the number {n}.”, “Let x = {n}.”, “Value: {n}”, etc.
• Template B: “Here is {n}.”, “We study the scalar {n}.”, “Write down {n} and continue.”, etc.

Numbers were presented in two surface forms: digits (“25”) and words (“twenty five”) using the
num2words library with normalization (hyphens and commas removed, lowercase).

Training Protocol: We used a two-stage streaming approach to handle memory constraints:

1. Standardization: StandardScaler fitted per layer using partial_fit() with mean centering
disabled

2. Classification: SGD logistic regression with optimal learning rate, L2 regularization (α =
10−4), and single-epoch updates

C.2 Evaluation Methodology

Cross-Template Validation: Three validation sets tested different robustness aspects: 1.Training:
Template A + digits; 2. Validation A: Template B + digits (template robustness); 3. Validation W:
Template A + words (cross-modal transfer).

Error Analysis: We analyzed error patterns at the best-performing layer (highest accuracy) across
distance buckets. For near-5: distances 0, 1, 2+ . For near-10: distances 0-5 maintained separately.
We also examined errors by rounding direction: -1 (round down closer), 0 (exact multiple), +1 (round
up closer).

Layer Selection Rationale: We analyzed the best-performing layer rather than layer averages
because: (1) it reveals models’ optimal proximity detection capabilities, (2) it avoids noise from
suboptimal layers that could mask genuine patterns, (3) it aligns with interpretability goals of
understanding whether models can learn proximity concepts.

Layer Sampling: We probed every layer (stride=1) for comprehensive analysis, skipping only
embedding layers (layer 0).

Statistical Measures: Accuracy per layer, error rates by distance/direction, best layer identification.
Results averaged over single runs with fixed random seeds (1337) for reproducibility.
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Figure 4: Accuracy per layer for digits paraphrase with near parameter 5 across autoregressive
decoder based models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based
model including mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-
Instruct-7B.

Figure 5: Accuracy per layer for digits paraphrase with near parameter 10 across autoregressive
decoder based models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based
model including mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-
Instruct-7B.

Figure 6: Accuracy per layer for words with near parameter 5 across autoregressive decoder based
models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based model including
mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-Instruct-7B.
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Figure 7: Accuracy per layer for words with near parameter 10 across autoregressive decoder based
models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based model including
mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-Instruct-7B.

Table 3: Comprehensive Near-5 Digit Analysis: Performance and Error Patterns at the best layer.
Acc = Accuracy; Err = Error rate

Model Peak Acc Best Layer Err (0) Err (1) Err (2)
Qwen3-4B-Instruct 0.939 2 0.4% 5.5% 9.4%
Qwen3-4B-Thinking 0.917 6 7.2% 14.6% 2.5%
Dream-7B 0.970 26 4.2% 4.8% 0.5%
Falcon-Mamba-7B-Instruct 0.989 7 0.7% 0.6% 1.7%
Mamba-GPT-3B 0.999 3 0.4% 0.0% 0.0%

Table 4: Comprehensive Near-5 (Words) Analysis: Performance and Error Patterns at the best layer.
Acc = Accuracy; Err = Error rate

Model Peak Acc Best Layer Err (0) Err (1) Err (2)
Qwen3-4B-Instruct 0.603 16 7.0% 4.0% 94.3%
Qwen3-4B-Thinking 0.607 4 0.4% 0.6% 100.0%
Dream-7B 0.620 1 0.0% 0.0% 99.5%
Falcon-Mamba-7B-Instruct 0.784 20 4.2% 2.7% 50.5%
Mamba-GPT-3B 0.746 13 2.1% 0.0% 64.2%

Table 5: Comprehensive Near-10 Analysis: Performance and Error Patterns at the Best Layer
Model Peak Acc Best Layer Err (0) Err (1) Err (2) Err (3) Err (4+)
Qwen3-4B-Instruct 0.967 8 4% 12% 1% 1% 0%
Qwen3-4B-Thinking 0.987 7 1% 3% 3% 0% 1%
Dream-7B 0.988 24 2% 5% 0% 0% 0%
Falcon-Mamba-7B-Instruct 0.998 10 1% 0% 1% 0% 0%
Mamba-GPT-3B 0.999 2 0% 0% 0% 0% 0%

Table 6: Comprehensive Near-10 (Words) Analysis: Performance and Error Patterns at the Best Layer
Model Peak Acc Best Layer Err (0) Err (1) Err (2) Err (3) Err (4+)
Qwen3-4B-Instruct 0.680 3 96% 98% 3% 4% 3%
Qwen3-4B-Thinking 0.687 18 97% 96% 4% 2% 2%
Dream-7B 0.698 12 98% 100% 0% 0% 0%
Falcon-Mamba-7B-Instruct 0.811 9 67% 58% 0% 0% 0%
Mamba-GPT-3B 0.789 4 74% 57% 2% 5% 2%
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D Causal Study

We adapt the MathNeuro codebase(23) to study pruning and scaling in instruction-tuned LMs.
For each calibration corpus (a CSV with instruction and response columns), we estimate pa-
rameter importance by registering forward hooks on all Linear layers and accumulating mean
activation magnitudes weighted by the corresponding weight magnitudes over 200 calibration
samples. We then construct a keep-mask that retains the top p% of parameters, where p ∈
{0.01%, 0.1%, 0.5%, 1%, 2.5%, 5%, 10%, 25%, 50%}.

Due to compute constraints, each setting is run once using bootstrap samples (≤ 500 examples) drawn
from both the training set (CSV with question, solution, and answer fields) and each calibration
set. For every pruning proportion, we reload the model (AutoModelForCausalLM, bfloat16,
device_map=auto; Dream models are wrapped for lm_eval compatibility), apply the mask, and
evaluate performance using the EleutherAI LM Evaluation Harness on user-specified tasks.

To manage compute, per-task evaluation is capped at 1,000 items, and prompts are truncated to 256
tokens. When no lm_eval tasks are provided, a lightweight multiple-choice evaluator is used. For
GSM8K, evaluation is limited to 1,000 samples. For StreetMath-style multiple choice, we treat a
“good approximation” judgment as correct.

All results are saved per model, per task and per pruning proportion in the specified results directory.

Figure 8: Effect of structured pruning on task performance for Qwen3-4B-Instruct-2507. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).

E Layerwise Study

The experiments implement a two-stage pipeline that first extracts layerwise diagnostics from trans-
former models on mathematical reasoning corpora and then aggregates and visualizes these diagnos-
tics across many prompts.

In the first stage, model-specific analysis scripts (for example, Dream-v0-Instruct-7B, Qwen3-4B
variants, Mamba-GPT-3B, and Falcon-mamba-7B-Instruct) load a Hugging Face model and tokenizer
and evaluate it on a chosen dataset split. The workflows support both the GSM8K test split and
a StreetMath test set. For each prompt, the scripts request hidden states, and compute a suite of
metrics for every layer. Intra-layer measurements include spectral entropy and effective rank (27)
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Figure 9: Effect of structured pruning on task performance for Qwen3-4B-Thinking-2507. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).

Figure 10: Effect of structured pruning on task performance for Dream-v0-Instruct-7B. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).
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Figure 11: Effect of structured pruning on task performance for Falcon-Mamba-7B-Instruct. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).

Figure 12: Effect of structured pruning on task performance for Mamba-GPT-3B. Accuracy is plotted
against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath, GSM8K, and
RACE).
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obtained from singular-value spectra, activation entropy computed from histogram estimates, the
trace of the covariance matrix as a proxy for Gaussian complexity, gradient norms approximated
by the variance of hidden activations, logit-lens proxy scores, and attention entropy when attention
weights are present. Inter-layer measurements quantify how the representation changes from one
layer to the next through cosine similarity, L2 distance, and angular distance. Each prompt therefore
contributes a record containing these per-layer vectors, along with metadata, to a JSON file. Due to
computational constraint, we limit each dataset to 1000 samples.

The second stage consolidates these per-prompt records. The script reads a results JSON and computes
the sample mean and the sample standard deviation across prompts for every metric and for every
layer index. Because the raw results may mix series of slightly different lengths, the aggregation is
performed at the most common length observed for each metric, ensuring that elementwise statistics
are well-defined and not dominated by outliers in shape.

Figure 13: Layerwise Average Summary - Qwen3-4B-Instruct-2507 on GSM8K

F Related Work

F.1 The Approximation Gap in Mathematical Reasoning

Current mathematical reasoning research exhibits a systematic bias toward exact computation, cre-
ating a fundamental blind spot in our understanding of numerical intelligence. Zhou et al. (3)
demonstrated that LLMs use specialized Fourier mechanisms for precise arithmetic, while Yu and
Ananiadou (4) identified localized attention heads for exact operations. Kahneman (1)—adaptively
reduces computational effort when an approximation suffices. These findings systematically overlook
cognitive flexibility, instead celebrating models that can perform precise calculations while ignoring
whether they can engage in the contextually appropriate approximation that characterizes genuine
mathematical understanding. These mechanistic insights, while valuable, represent a narrow concep-
tion of mathematical reasoning that prioritizes precision over cognitive flexibility. Recent work by
Srivastava et al. on LMThinkBench (28) reveals that models achieve high accuracy but at the cost
of unnecessarily complex reasoning paths; a pattern consistent with systems that lack the cognitive
control mechanisms necessary for adaptive approximation. When models cannot modulate their
computational precision based on contextual demands, they default to maximum effort regardless
of whether such precision is warranted or efficient. Highlighting the gap between computational
capability and efficient reasoning.
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Figure 14: Layerwise Average Summary - Qwen3-4B-Instruct-2507 on StreetMath

Figure 15: Layerwise Average Summary - Qwen3-4B-Thinking-2507 on GSM8K
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Figure 16: Layerwise Average Summary - Qwen3-4B-Thinking-2507 on StreetMath

Figure 17: Layerwise Average Summary - Dream-v0-Instruct-7B on GSM8K
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Figure 18: Layerwise Average Summary - Dream-v0-Instruct-7B on StreetMath

Figure 19: Layerwise Average Summary - Falcon-mamba-7B on GSM8K
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Figure 20: Layerwise Average Summary - Falcon-mamba-7B on StreetMath

Figure 21: Layerwise Average Summary - mamba-gpt-3B on GSM8K

20



Figure 22: Layerwise Average Summary - mamba-gpt-3B on StreetMath

F.2 Training Data Bias Toward Exact Computation

Research reveals systematic biases in mathematical reasoning training data that favor exact com-
putation over flexible approximation strategies. Analysis of major mathematical training corpora
shows a predominant focus on problems with exact, verifiable answers. Paster et al.’s OpenWebMath
dataset (29), containing 14.7B tokens of mathematical web content, consists primarily of forum
discussions, educational materials, and reference pages where mathematical problems are presented
with definitive solutions rather than approximation strategies. Similarly, Lewkowycz et al.’s Min-
erva training corpus (30) drew from 118GB of scientific papers and mathematical web content that
emphasizes precise computational procedures.

This training bias toward exact answers has measurable consequences for model behavior. The
pattern-matching hypothesis is supported by Mirzadeh et al.’s GSM-Symbolic analysis (31), which
reveals that model performance degrades significantly when numeric values are perturbed, indicating
over-reliance on specific number patterns rather than general reasoning principles. Shao et al. (32)
explicitly acknowledge this issue, noting that their model exhibits "data selection bias in pre-training
and fine-tuning" that leads to weaker performance on certain problem types.

F.3 Overthinking and Computational Inefficiency

Recent work has documented a troubling pattern: LLMs consistently overthink mathematical prob-
lems, generating verbose reasoning chains when simpler approaches would suffice. Ding et al. (33)
proposed "break the chain" strategies to reduce token consumption, demonstrating that models
maintain performance even when forced to skip intermediate steps. Zhao et al.’s work on efficiency
enhancement in reasoning models (34) suggests this isn’t just a performance issue but a fundamental
architectural limitation.

F.4 Mechanistic Evidence for Competing Circuits

Mechanistic interpretability studies reveal distinct and overlapping neural pathways for exact versus
approximate reasoning. Christ et al. (10) demonstrated that math-specific parameters can be isolated
through structured pruning. Skean et al. (35) conducted a layer-by-layer analysis, revealing that dif-
ferent types of mathematical operations are processed at different depths in transformer architectures.
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Sun et al. (36) probed arithmetic errors in language models and identified systematic patterns in
computational failures, while Saynova et al. (37) investigated whether mathematical reasoning relies
on fact recall, heuristics, or pure computation, finding evidence for multiple pathways depending on
problem complexity and context.

F.5 Numerical Representation and Geometric Understanding

Understanding how LLMs represent numerical information has been a focus of recent mechanistic
interpretability work. Levy and Geva (9) demonstrated that language models encode numbers using
individual circular representations for each digit in base 10, providing geometric understanding of
numerical processing. Kantamneni and Tegmark (38) extended this work by showing that language
models use trigonometric functions in their internal computations, suggesting sophisticated geometric
representations of numerical concepts. Zhu et al. (39) investigated how language models encode
numeric magnitude, while Shah et al. (40) examined magnitude comparison tasks, finding that models
develop specialized circuits for determining relative numerical size. These representational studies
suggest that current numerical encodings may be too rigid to support flexible approximation strategies.

F.6 Architectural Differences in Approximation Capacity

Different LLM architectures exhibit varying capabilities for flexible reasoning, though systematic
evaluation of approximation strategies across architectures remains limited. Li et al. (41) explored
diffusion models for language tasks, demonstrating their application to text generation, though their
mathematical reasoning capabilities, particularly regarding approximation versus precision trade-offs,
have not been extensively studied.

The architectural constraints that affect mathematical reasoning extend beyond approximation to
fundamental information processing capabilities. Jelassi et al. (42) demonstrated that transformers
can theoretically copy strings of exponential length while state-space models are fundamentally
limited by their fixed-size latent state, suggesting that the rigid memory constraints that impede
copying may also constrain flexible approximation strategies. These findings indicate that current
architectural paradigms may systematically differ in their capacity for the kind of cognitive flexibility
that characterizes human mathematical reasoning.

This architectural variation highlights a broader gap in our understanding of how different model
designs affect the ability to engage in contextually appropriate approximation—a crucial aspect
of mathematical intelligence that remains largely unexplored across the spectrum of current LLM
architectures.

F.7 Augmentation Strategies and Alternative Approaches

Recognizing the limitations of pure language model approaches to arithmetic, researchers have
proposed several augmentation strategies. Tool-augmented approaches represent the dominant
paradigm, where models learn to invoke external calculators, symbolic solvers, or knowledge bases.
Schick et al. (43) introduced Toolformer, which teaches LLMs to use tools through self-supervised
learning, while Das et al. (44) developed MathSensei, combining web search, Python execution, and
Wolfram-Alpha integration for comprehensive mathematical reasoning support.

Program-aided reasoning offers another promising direction. Gao et al. (45) proposed Program-Aided
Language models (PAL), which generate Python programs as intermediate reasoning steps, while
Chen et al. (46) introduced Program-of-Thoughts prompting to separate computation from reasoning.
These approaches effectively delegate precise calculations to programming environments while
preserving natural language reasoning.

At the architectural level, Dietz and Klakow (47) introduced the Integrated Gated Calculator (IGC),
which emulates a calculator directly on the GPU, achieving 98-99% accuracy on arithmetic tasks in a
single iteration without external tools. Lauter et al. (48) investigated machine learning approaches for
modular arithmetic, demonstrating specialized techniques for specific algebraic structures, though
with limited success that highlights the inherent difficulty of certain mathematical operations.

While these augmentation strategies successfully address computational limitations and improve exact
calculation capabilities, they do not resolve the fundamental issue our work identifies: the inability to
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engage in contextually appropriate approximation when exact computation is unnecessary. Current
approaches actually reinforce the precision bias by providing increasingly sophisticated mechanisms
for exact calculation, potentially exacerbating the cognitive inflexibility that characterizes current
mathematical reasoning systems.

F.8 Pattern Recognition vs. Algorithmic Understanding

A fundamental question concerns whether models learn genuine algorithms or rely on sophisticated
pattern recognition. Nikankin et al. (49) examined "arithmetic without algorithms," investigating
whether models can perform mathematical reasoning without explicit algorithmic procedures, suggest-
ing that models may rely on pattern recognition and approximation strategies that differ fundamentally
from formal mathematical computation. Gambardella et al. (50) investigated whether language mod-
els perform hard arithmetic by examining their computational processes, while Lovering et al. (51)
examined language model probabilities in mathematical contexts, providing insights into how models
represent uncertainty and confidence.

F.9 The Need for Approximation-Aware Evaluation

Current mathematical reasoning evaluation focuses exclusively on exact computation, creating a
fundamental evaluation gap that obscures crucial aspects of mathematical intelligence. While Ahn et
al.’s comprehensive survey (52) emphasizes that "accuracy shouldn’t be the sole metric" for evaluating
mathematical reasoning and highlights the need for more robust evaluation beyond final-answer
correctness, existing benchmarks continue to reward only precise answers regardless of contextual
appropriateness.

This evaluation paradigm fails to assess whether LLMs can engage in the kind of flexible, context-
appropriate approximation that characterizes human mathematical cognition in everyday settings.
The gap is significant because it touches on fundamental questions about the nature of machine
intelligence and whether current LLMs genuinely understand mathematical concepts or merely
implement sophisticated pattern matching. Without evaluating approximation capabilities, we cannot
determine if models possess the cognitive flexibility necessary for human-like mathematical reasoning
in diverse contexts.

G Limitations

While our work provides new insights into the approximation behavior of LLMs, several limitations
remain. First, the StreetMath dataset contains only 1,000 problems, which may not capture the full
variety of real-world estimation tasks. Second, our evaluation focuses on a specific set of open-source
models; results may not generalize to larger proprietary systems or other architectures. Third, our
analysis is restricted to numerical approximation in simple arithmetic settings. Extensions to more
complex mathematical domains are left for future work.
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