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ABSTRACT

Recent research has witnessed a surge in the exploration of Node-wise Graph In-
cremental Learning (NGIL) due to its substantial practical relevance. A central
challenge in NGIL stems from the structural shifts induced by the inherent in-
terdependence among vertices within graph data, adding complexity to the task
of maintaining consistent model performance over time. Although several ef-
forts have been made to devise incremental learning methods for NGIL, they have
overlooked a fundamental question concerning the learnability of NGIL—whether
there always exists a learning algorithm capable of consistently producing a model
with a small error from the hypothesis. In this paper, we present the first theo-
retical study on the learnability of the NGIL problem with the statistical learn-
ing framework. Our analysis uncovers a critical insight: NGIL is not always
learnable when structural shifts are uncontrolled. Additionally, in order to
control structural shift, we leverage the idea of experience reply which selects
a small set of representative data to replay with the new tasks, and propose
a novel experience replay method, Structure-Evolution-Aware Experience Re-
play (SEA-ER). SEA-ER comprises a novel experience sample selection strat-
egy founded on the topological awareness of GNNs and a novel replay objective
utilizing importance re-weighting, which can effectively counteract catastrophic
forgetting and mitigate the effect of structural shifts in NGIL. Comprehensive
experiments validate our theoretical results and showcase the effectiveness of
our newly proposed experience replay approach. Implementation is available at
https://anonymous.4open.science/r/SEA-ER-8088/

1 INTRODUCTION

Graph neural networks (GNNs) have gained widespread popularity as effective tools for modelling
graph and relational data structures (Wu et al., 2020). However, most studies on GNNs have pre-
dominantly focused on static settings, assuming that the underlying graph remains unchanged. This
approach, while valuable for certain applications, does not reflect the dynamic nature of real-life
networks, such as citation networks (Zliobaite, 2010) and financial networks (Gama et al., 2014),
where graphs naturally evolve over time, accompanied by the emergence of new tasks. In prac-
tice, naively updating models with the latest data or tasks leads to a formidable issue known as
catastrophic forgetting (Delange et al., 2021), wherein previously learned information is lost when
learning the new tasks. Conversely, retraining models with the complete dataset each time new in-
formation arrives incurs excessive computational costs and often proves unfeasible. Thus, there is a
pressing need to investigate graph incremental learning (GIL) (Febrinanto et al., 2023b), also known
as graph continual learning or life-long graph learning, a field dedicated to developing learning algo-
rithms that enable GNNs to continuously acquire new knowledge while retaining previously learned
information.

Due to its practical significance, recent research has seen an upsurge in GIL investigations (Febri-
nanto et al., 2023a; Yuan et al., 2023). Nonetheless, there is a noticeable gap in the theoretical foun-
dations, particularly regarding the node-level prediction task, commonly referred to as bf Node-wise
Graph Incremental Learning (NGIL) (Su et al., 2023; Zhang et al., 2022). In the general formula-
tion of NGIL, tasks arrive sequentially, and the GNN model undergoes multiple training rounds to
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Figure 1: Illustration of the progression of NGIL. Task 2 introduces a new batch of vertices and
results in an update to the parameters of the model from W2 to W1 using data from the new task.
As new vertex batches associated with the new task τ2 are introduced, the graph structure changes,
potentially altering the graph structure (inputs to GNNs) of the existing vertices, as captured by the
changes in their ego graphs. This is referred to as the structural shift.

accumulate knowledge for specific objectives, such as node classification. In this scenario, vertices
across different tasks can be interconnected, and the introduction of new tasks may alter the structure
of the existing graph. Given that GNNs rely on graph structures as input, these structural changes
can lead to shifts in the data distributions of previous tasks, a phenomenon known as structural shift
(Su et al., 2023), as illustrated in Figure 1. Before advancing methods for NGIL, it becomes impera-
tive to determine the consistent learnability of the NGIL problem under structural shift. Addressing
this question regarding NGIL helps us understand the constraints, make informed decisions, and
develop effective learning strategies. It is a critical facet of the NGIL problem that allows us to
effectively address the challenges associated with evolving graph data.

In this work, we address the aforementioned question by formally formulating and analyzing the
learnability of the NGIL problem. Our first contribution is highlighted as follows:

• To the best of our knowledge, this work stands among the first theoretical studies on the learn-
ability of NGIL. We introduce a statistical learning perspective on NGIL, aiming to quantify how
structural shifts impact the learnability of NGIL. Formally, we prove that without controls on the
structural shift, NGIL is not always learnable, as articulated in Theorem 2.3. This means that
there is no incremental learning algorithm that can consistently produce a good model (small er-
ror) from the hypothesis space, even if one exists in the hypothesis space. These insights suggest
that incremental learning may not always be suitable for all dynamic graph systems.

Given the pivotal role of structural shifts in learnability, we recognize the importance of controlling
structural shifts even in scenarios where incremental learning is feasible. To address this challenge,
we leverage the idea of experience reply which has been empirically proven to be effective in ad-
dressing catastrophic forgetting in NGIL. Consequently, we introduce a novel experience replay
framework designed to mitigate the impact of structural shifts in NGIL. Our contributions in this
regard are as follows:

• We devise an innovative experience replay framework named Structure-Evolution-Aware Experi-
ence Replay (SEA-ER). SEA-ER addresses both catastrophic forgetting and the distinct challenge
(structural shift) posed by NGIL, incorporating two key principles: 1) importance re-weighting
and 2) topological awareness of GNNs. SEA-ER, tailored for GNNs, effectively mitigates struc-
tural shifts and catastrophic forgetting, offering theoretical assurances on long-term performance,
as reflected in Proposition 3.1—a critical aspect of the incremental learning paradigm.
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• We conduct an empirical evaluation encompassing real-world and synthetic datasets. The results
align with our theoretical findings and demonstrate the effectiveness of our proposed approach.
Our novel experience replay framework adeptly addresses both the structural shift and catastrophic
forgetting challenges, outperforming contemporary GNN benchmarks (Zhou & Cao, 2021a; Ahra-
bian et al., 2021; Kim et al., 2022) in NGIL.

2 LEARNABILITY OF NGIL

2.1 PRELIMINARY

Notations. We use bold letters to denote random variables, while the corresponding realiza-
tions are represented with thin letters. NGIL assumes the existence of a stream of training tasks
τ1, τ2, ..., τm, characterized by observed vertex batches V1,V2, ...,Vm. Each vertex v is associated
with a node feature xv ∈ X and a target label yv ∈ Y . The observed graph structure at training
task τi is induced by the accumulative vertices and given by Gτi = G[

⋃i
j=1 Vj ]. In this setting, the

graph structure is evolving as the learning progresses through different training tasks, as illustrated
in Fig. 1.

Node-level learning tasks with GNNs rely on information aggregation within the k-hop neighbour-
hood of a node as input. To accommodate for this nature, we adopt a local view in the learning
problem formulation as in (Su et al., 2023). We denote Nk(v) as the k-hop neighborhood of vertex
v, and the nodes in Nk(v) form an ego-graph gv , which consists of a (local) node feature matrix
Xv = {xu|u ∈ Nk(v)} and a (local) adjacency matrix Av = {auw|u,w ∈ Nk(v)}. We denote G as
the space of possible ego-graph and gv as a random variable of the ego-graph for the target vertex v,
whose realization is gv = (Av, Xv). Let gV = {gv|v ∈ V} denote the set of ego graphs associated
with vertex set V . From the perspective of GNNs, the ego-graph gv is the Markov blanket containing
all necessary information for the prediction problem for the root vertex v. Therefore, we can see
the prediction problem associated with data {(gv, yv)}v∈Vi

from training session τi as drawn from
a joint distribution P(yv,gv|Vi).

Let F denote the hypothesis space and f ∈ F be a classifier with ŷv = f(gv) and L(., .) 7→ R be a
given loss function. We use RL

P(yv,gv|V)(f) to denote the generalization risk of the classifier f with
respect to L and P(yv,gv|V), and it is defined as follows:

RL
P(yv,gv|V)(f) = EP(yv,gv|V)[L(f(gv), yv)]. (1)

Catastrophic Forgetting. With the formulation above, the catastrophic forgetting (CF) of a clas-
sifier f after being trained on τm can be characterized by the retention of performance on previous
vertices, given by:

CF(f) := RL
P(yv,gv|V1,...,Vm−1)

(f), (2)

which translates to the retention of performance of the classifier f from τm on the previous tasks
τ1, ..., τm−1.

2.2 IMPOSSIBILITY RESULT OF NGIL

In this paper, we focus on the effect of structural shifts in the learnability of NGIL. Next, we show
the main theoretical result of this paper, which states that having no control over the change in graph
structure renders the NGIL unlearnable, despite the hypothesis space (as captured by GNNs) being
powerful. We begin with defining the expressiveness of hypothesis space and characterizing the
structural shift.
Definition 2.1 (expressiveness). For a set of distributions {P1,P2, ...,Pk} and a hypothesis space
F , we define the joint prediction error of the hypothesis space on the given distributions as,

EF ({P1,P2, ...,Pk}) = inf
f∈F

[
∑

P∈{P1,P2,...,Pk}

RL
P (f)].

The joint prediction error characterizes the capability (expressiveness) of the hypothesis space to
simultaneously fit a given set of distributions. Obviously, the expressiveness of the given hypothesis
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space would be a trivial necessary condition related to how learnable a given setting is. If the
expressiveness of the hypothesis is not powerful enough, the best classifier in the hypothesis space
would still suffer from a bad performance. For the remaining paper, we focus our analysis on the
structural shift and assume the expressive power of the hypothesis space is powerful enough, i.e.,
there exists a classifier in the hypothesis that incures a small error. We provide a further discussion
on the expressiveness and sample complexity in Appendix A.

Next, we formalize the notion of a structural shift among different vertex batches.

Definition 2.2. Let P1 and P2 be two distributions over some domain X , F∆F-distance between
P1 and P2 is defined as,

dF∆F (P1,P2) = 2 sup
A∈F∆F

∥P1(A)− P2(A)∥,

where F∆F = {{x ∈ X : f(x) ̸= f ′(x)} : f, f ′ ∈ F}.

F∆F-distance is commonly used in domain adaptation to capture the relatedness (distance) of
distributions with respect to the hypothesis space F (Redko et al., 2020). Here, we adopt F∆F-
distance to characterize the effect of the emerging task on the distribution of the previous vertex
tasks. If the structural shift among different tasks is large, then the appearance of the new vertex
batch would shift the distribution of the previous vertex batch to a larger extent. As a result, the
F∆F-distance between the updated distribution and the previous distribution would be large.

For the analysis, we focus on the effect of structural shift on catastrophic forgetting and assume that
the labelling rule stays the same for vertices in different sessions, i.e., P(y|gv, τi) = P(y|gv, τj),
∀i, j. Without loss of generality, we may gauge our learnability analysis toward the case of two
training sessions, referred to as the NGIL-2 problem. If the NGIL-2 problem is not learnable, then
trivially, the general NGIL-k is not learnable. The NGIL-2 problem is characterized by three distri-
butions: P(y,gv|V1,Gτ1), P(y,gv|V1,Gτ2), and P(y,gv|V2,Gτ2), which are the distributions of V1

in graphs Gτ1 and Gτ2 , and the distribution of V2 in graph Gτ2 .

Theorem 2.3 (learnability of NGIL, informal). Let F be a hypothesis space over G × Y .
For every c > 0, if there is no control of dF∆F (P(y,gv|V1,Gτ1),P(y,gv|V2,Gτ2)) or
dF∆F (P(y,gv|V1,Gτ2),P(y,gv|V2,Gτ2)), then there exists an instance of NGIL-2 problem such
that even if EF ({P(y,gv|V1,Gτ1),P(y,gv|V1,Gτ2)}) ≤ c, NO learning algorithm that can pro-
duces a good classifier f from F with probability greater than or equal to 1/2.

The formal version and proof of Theorem 2.3 can be found in Appendix A. The main idea of the
proof is to identify and establish the intrinsic connection between the NGIL problem and the domain
adaptation problem. Theorem 2.3 states that even if the hypothesis space is expressive enough (i.e.,
there exist classifiers incurring an arbitrary small joint prediction error), the NGIL problem might
still not be learnable if there is no control on the structural shift among different vertex batches. The-
orem 2.3 offers important insights for making well-informed decisions. To illustrate, Theorem 2.3
provides a clear indication that when the underlying graph structure undergoes rapid and frequent
changes within a network system, it may not be advisable to pursue incremental learning for updat-
ing the machine learning model associated with that system. Theorem 2.3 also signifies the pivotal
role of the structural shifts in the learnability of NGIL. This implies the importance of controlling
structural for NGIL even in the learnable scenario and motivates our proposed method in the next
section.

3 STRUCTURE-EVOLUTION-AWARE EXPERIENCE REPLAY (SEA-ER)

In this section, we present SEA-ER which combines the topology awareness of GNNs and the im-
portance re-weighting for addressing the catastrophic forgetting and structural shift in the NGIL
problem. The idea of experience replay is to select a small subset of representative data samples
from the past and to replay them in each new learning task to consolidate past knowledge. Ex-
perience replay methods involve two main components, 1) experience buffer selection: selecting
samples from the past to be stored in the experience buffer, and 2) replay strategy: deciding how the
experience buffer is replayed (trained) with the new task. The pseudo-code of our methods can be
found in Appendix F.
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3.1 TOPOLIGICAL-AWARE EXPERIENCE BUFFER SELECTION

We denote the experience buffer for task τi as Pi = {P1, P2, ..., Pi−1}, where Pj represents samples
selected from task τj . GNNs have been shown to exhibit better generalization performance on
vertices with closed structural similarity (Ma et al., 2021). This means that a vertex set with close
structural similarity to the rest of the vertices is more representative of the graph. Based on this idea,
we propose an experience buffer selection strategy that selects samples with the closest structural
similarity to the remaining vertices. This strategy amounts to the following optimization problem:

argmin
Pj⊂Vj

max
u∈Vj\Pj

min
v∈Pj

dspd(u, v), s.t. |Pj | = b. (3)

Here, dspd(.) represents the shortest path distance, and b is the number of samples to select from
each task. The optimization above returns a set Pj with close structural similarity to the rest of the
vertices within the same task. Eq. 3 amounts to the k-center problem in the graph and is NP-hard.
While finding the optimal solution to this problem may be intractable, efficient heuristics can be
employed to tackle it. For our experiments, we adopt the classic farthest-first traversal algorithm to
obtain a solution.

3.2 REPLAY STRATEGY WITH IMPORTANCE REWEIGHTING

The standard replay strategy includes the experience buffer in the training set of the newest task,
treating the samples in the experience buffer as normal training samples. Suppose we are at task τi
with training set Vtrain

i , the standard replay strategy amounts to the following learning objective,

L =
1

|Vtrain
i |

∑
v∈Vtrain

i

L(v) +
∑

Pj∈Pi

1

|Pj |
∑
v∈Pj

L(v), (4)

where L(v) is the loss on vertex v. As a result, the standard replay strategy weights the samples in
the new task and experience buffer equally.

Nevertheless, as we discussed earlier, the structural shifts induced by the evolving graph structure
(Gτi−1 −→ Gτi ) can alter the distribution of vertices from the previous task, which can lead to sub-
optimal learning. To address the issue, we propose a novel replaying strategy with importance
re-weighting (David et al., 2010). This strategy assigns higher weights to replay samples that are
more similar to the distribution before the structural shift, ensuring that the model pays more atten-
tion to relevant information. The learning objective for replay with importance re-weighting is as
follows:

L =
1

|Vtrain
i |

∑
v∈Vtrain

i

L(v) +
∑

Pj∈Pi

1

|Pj |
∑
v∈Pj

βvL(v), (5)

where βv is the weight for vertex v in the experience buffer. To determine β (collection of βv), we
use kernel mean matching (KMM) Gretton et al. (2009) with respect to the embeddings of vertices
in the experience buffer. This involves solving the following convex quadratic problem:

min
β

∥∥∥ ∑
Pj∈Pi

∑
v∈Pj

βvϕ(hv)− ϕ(h′
v)
∥∥∥2, s.t. Bl ≤ βv < Bu, (6)

where hv is the node embedding of v (output of the GNN) with respect to Gτi and h′
v is the node

embedding of v with respect to Gτi−1
. Eq. 6 is equivalent to match the mean elements in some kernel

space K(., .) and ϕ(.) is the feature map to the reproducing kernel Hilbert space induced by the
kernel K(., .). In our experiment, we use a mixture of Gaussian kernel K(x, y) =

∑
αi

e−αi||x−y||2 ,
αi = 1, 0.1, 0.01. The lower bound Bl and upper bound Bu constraints are to ensure reasonable
weight for most of the instances.

3.3 THEORETICAL ANALYSIS

In this section, we delve into the theoretical underpinnings of our proposed method by introducing
the concept of distortion rate, which aids in characterizing the topological awareness of GNNs.
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Figure 2: Forgetting Dynamics of Bare Model on Arxiv under Settings with Constant and Evolving
Graphs. (a) captures the change of catastrophic forgetting of task 1 when transitioning into task
2 under the settings with constant and evolving graphs. (b) and (c) are the complete catastrophic
forgetting matrix (x, y-axis are the i, j in ri,j − ri,i correspondingly) of Bare model in the inductive
and transductive settings.

Table 1: Performance comparison of SEA-ER to existing experience replay NGIL frameworks (↑
higher means better). Results are averaged among five trials. Bold letter indicates that the entry
admits the best performance for that given dataset. 5% of the training set size is used for the size of
the experience replay buffer for all the experience replay methods.

Dataset CoraFull OGB-Arxiv Reddit
Performance Metric FAP (%) ↑ FAF (%) ↑ FAP (%) ↑ FAF (%) ↑ FAP(%) ↑ FAF (%) ↑

Bare model 61.41 ± 1.2 -30.36 ± 1.3 59.24 ± 3.6 -33.72 ± 3.3 68.60 ± 1.8 -23.87 ± 1.7
Joint Training 92.34 ± 0.6 N.A. 94.36 ± 0.4 N.A. 95.27 ± 1.2 N.A.

ER:IID-Random 77.24 ± 5.8 -16.73 ± 5.6 79.72 ± 4.6 -14.89 ± 4.5 80.08 ± 3.3 -10.89 ± 2.5
ER-deg 86.24 ± 0.7 -8.73 ± 0.7 85.28 ± 0.8 -10.89 ± 1.9 85.08 ± 0.9 -8.89 ± 0.9
ER-infl 87.99 ± 0.6 -8.31 ± 0.5 86.42 ± 1.2 -7.65 ± 1.3 86.98 ± 1.4 -6.82 ± 1.6
ER-rep 88.95 ± 0.9 -7.55 ± 0.8 88.12 ± 0.9 -8.23 ± 0.9 86.02 ± 1.2 -7.21 ± 1.3

SEA-ER w.o. ir (ours) 89.13 ± 0.8 -7.21 ±0.9 89.19 ± 0.7 -7.13 ± 0.5 88.48 ± 1.7 -6.10 ± 1.6
ER:IID-Random w. ir 80.24 ± 6.9 -14.73 ± 4.8 81.72 ± 5.2 -13.23 ± 5.2 83.43 ± 2.8 -10.32 ± 3.8

ER-deg w. ir 87.32 ± 0.5 -7.89 ± 0.5 86.88 ± 0.6 -9.32 ± 2.0 87.11 ± 1.0 -6.89 ± 1.0
ER-infl w. ir 88.88 ± 0.5 -8.01 ± 0.5 89.42 ± 1.3 -5.65 ± 1.7 90.64 ± 1.6 -3.63 ± 1.3
ER-rep w. ir 89.06 ± 0.7 -7.00 ± 0.9 88.92 ± 0.8 -8.00 ± 1.1 88.99 ± 1.4 -4.21 ± 1.1

SEA-ER (ours) 91.67 ± 1.3 -4.01 ± 1.4 92.88 ± 1.1 -3.08 ± 0.7 92.89 ± 1.5 -2.72 ± 1.4

A GNN is said to have a distortion rate α if there exists a constant r > 0 such that for all u, v ∈ V ,
the following inequalities hold: ∀u, v ∈ V, rdspd(u, v) ≤ d(hu, hv) ≤ αrdspd(u, v). The distortion
rate quantifies the ratio of distances in the embedding space to those in the original graph space.
A low distortion rate, close to 1, signifies that the embedding effectively preserves the structural
information from the original graph. This measure allows us to assess the topological awareness of
GNNs and forms the basis for our theoretical analysis of the experience selection strategy in relation
to the underlying graph topology.

Proposition 3.1. Given a collection task τ1, ..., τm and their associated vertex set V1, ...,Vm. Let
Pm = {P1, ..., Pm−1} be the experience buffer where each Pi ∈ Pm has the same cardinality and
cover all classes in τi. Let g be the GNN model with distortion rate α. Assuming the loss function L
is bounded, continuous and smooth, we have that,

RL
P(yv,gv|Vi\Pi)

(f) ≤ RL
P(yv,gv|Pi)

(f) +O(αDs(Vi\Pi, Pi)),

where Ds(Vi\Pi, Pi) = maxu∈Vi\Pi
minv∈Pi

dspd(v, u).

The proof for Propostion 3.1 can be found in Appendix C. This proposition illuminates that catas-
trophic forgetting in the model, as measured by its ability to retain performance on past data, is
bounded by the training loss on the experience buffer and is further influenced by a combination of
factors involving the distortion rate of the model and the structural distance within the experience
buffer. This underscores the critical role of graph structure when selecting a suitable experience
buffer, as the structural distance substantially impacts the performance bound. Consequently, Propo-
sition 3.1 validates the optimization objective, Eq. 3, for selecting an experience buffer and provides
a performance guarantee for our proposed experience selection strategy.
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4 EXPERIMENTS

In this section, we present an empirical validation of our theoretical results and evaluation of our
proposed experience replay method for NGIL. Through a series of experiments, we aim to answer
the following questions: (1) Does the structural shifts have an impact on the learnability and the
performance of GNNs in NGIL? (2) Does the distortion rate of GNNs, as discussed in Theorem 1,
hold true in practice? (3) How does our proposed experience replay framework compare to existing
experience replay methods for GNNs (Zhou & Cao, 2021a; Ahrabian et al., 2021; Kim et al., 2022)?
Due to space limitations, we provide a more comprehensive description of the datasets, experiment
set-up and additional results in Appendix D.

Datasets OGB-Arxiv Reddit CoraFull
# vertices 169,343 227,853 19,793
# edges 1,166,243 114,615,892 130,622
# class 40 40 70
# tasks 20 20 35

# vertices / # task 8,467 11,393 660
# edges / # task 58,312 5,730,794 4,354

Table 2: Incremental learning settings for each dataset.

Datasets and Experimental Set-up.
We conduct experiments on both
real-world and synthetic datasets.
Real-world datasets include OGB-
Arxiv (Hu et al., 2020), Red-
dit (Hamilton et al., 2017), and
CoraFull (Bojchevski & Günnemann,
2017). To generate the syn-
thetic dataset, we use the popu-
lar contextual stochastic block model
(cSBM) (Deshpande et al., 2018)
(further details of the cSBM can be found in Appendix D.4). The experimental set-up follows
the widely adopted task-incremental-learning (task-IL)(Zhang et al., 2022), where a k-class classifi-
cation task is extracted from the dataset for each training session. For example, in the OGB-Arxiv
dataset, which has 40 classes, we divide them into 20 tasks: Task 1 is a 2-class classification task
between classes 0 and 1, task 2 is between classes 2 and 3, and so on. In each task, the system only
has access to the graph induced by the vertices at the current and earlier learning stages, following
the formulation in Sec.2.1. A brief description of the datasets and how they are divided into different
node classification tasks is given in Table 2. We adopt the implementation from the recent NGIL
benchmark (Zhang et al., 2022) for creating the task-IL setting and closely following their set-up
(such as the train/valid/test set split).

Evaluation Metrics. Let ri,j denote the performance (accuracy) on task j after the model has
been trained over a sequence of tasks from 1 to i. Then, the forgetting of task j after being trained
over a sequence of tasks from 1 to i is measured by ri,j −rj,j . We use the final average performance

(FAP) :=
∑m

j rm,j

m and the final average forgetting (FAF) :=
∑m

j rm,j−rj,j

m to measure the overall
effectiveness of an NGIL framework.

Baselines. We compare the performance of SEA-ER with the following experience replay base-
lines. All the baselines are using the standard training objective given in Eq. 4. ER-IID-Random
updates each task with an experience buffer with vertices randomly selected from each task. ER-
IID-Random serves as a baseline for showing the effectiveness of different experience buffer selec-
tion strategies. We adopt state-of-the-art experience replay frameworks for GNNs for comparison.
ER-rep (Zhou & Cao, 2021a) selects an experience buffer based on the representations of the vertex.
ER-deg (Ahrabian et al., 2021) selects an experience buffer selected based on the degree of vertices.
ER-infl (Kim et al., 2022) selects an experience buffer selected based on the influence score of the
representations of the vertex. We adopt the implementation of the two baselines (Ahrabian et al.,
2021; Zhou & Cao, 2021a) from the benchmark paper (Zhang et al., 2022) and implement a version
of (Kazemi et al., 2020) based on our understanding, as the code is not open-sourced. SEA-ER w.o.
ir is our proposed experience replay selection strategy with the standard learning objective Eq. 4,
and SEA-ER is our proposed experience replay selection strategy with learning objective Eq. 5.
The suffix w. ir indicate the usage of Eq. 5. In addition to the above frameworks, we also include
two natural baselines for NGIL: the Bare model and Joint Training. The Bare model denotes the
backbone GNN without any continual learning techniques, serving as the lower bound on continual
learning performance. On the other hand, Joint Training trains the backbone GNN on all tasks
simultaneously, resulting in no forgetting problems and serving as the upper bound for continual
learning performance.
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Figure 3: Fig. 3(a) is the experiments with different configurations of cSBM models. Fig. 3(b) is the
distortion between graph distance and embedding distance. Fig. 3(c) is the experiment on the effect
of replay buffer size.

4.1 RESULTS

Impact of Structural Shift. We first show the effect of evolving graph structure on the incre-
mental learning system. We do so by comparing the dynamic of forgetting (change of ri,j − ri,i for
different i, j) of the Bare model. The result of the OGB-Arxiv dataset is illustrated in Fig. 2(a). In
Fig. 2(a), T1 and T2 on the x-axis denote the first and the second tasks (training sessions), respec-
tively, and T2− represents the state when Task 2 has arrived but the model has not been trained on
Task 2 data yet. As shown in the figure, in the case of an evolving graph, the catastrophic forgetting
on Task 1 occurs twice when entering stage 2: when vertices of Task 2 are added to the graph (struc-
tural shift) and when the model is trained on Task 2’s data. Fig. 2(b) and Fig. 2(c) are the complete
catastrophic forgetting matrix (with ri,j−ri,i as entries) for the two settings. The colour density dif-
ference of the two performance matrices illustrates that the existing tasks suffer more catastrophic
forgetting in the setting with evolving graphs. The results of this experiment align with previous
findings, offering a complementary view from the perspective of forgetting.

We then further quantify the structural relation between the structural shift and the performance of
an incremental learning system. We use cSBM (further details can be found in Appendix D.4) to
create a two-session NGIL with a two-community graph of the size 300 for each training session,
and the task is to differentiate and classify vertices between the two communities. The community
membership configuration is described by a four-tuple (c

(1)
0 , c

(1)
1 , c

(2)
0 , c

(2)
1 ) =

(
150 + δ, 150 −

δ, 150 − δ, 150 + δ
)
, where c

(j)
i is the number of vertices from community i at session j. Then,

we vary the structural shift by changing (1) the inter-connectivity pinter (probability of an edge
between tasks/sessions) and (2) the difference (δ) of each community member in different stages.
Intuitively, as we increase δ and the inter-connectivity pinter, the structural shift between the two
training sessions increases and therefore we should observe a larger FAF converging to random
guess as predicted by the theoretical results. As shown in Fig. 3(a), this is indeed the case.

Distortion Rate. We next validate that the distortion rate of GNNs is small. We train a vanilla
GraphSAGE model using the default setting for each dataset. We extract vertices within the 5-hop
neighbourhood of the training set and group the vertices based on their distances to the training set.
We then compute the average embedding distance of each group to the training set in the embedding
space. In Fig. 3(b), the distortion rate and scaling factor of the GNN are reflected by the slope of
the near-linear relation between the embedding distance and the graph distance. We can see that
the distortion factors in the performance bound in Proposition 3.1 are indeed small (closed to 1),
validating our proposed experience selection strategy.

Effectiveness of SEA-ER. In Table 1, we show the FAP and FAF of each method after learning the
entire task sequence. On average, the Bare model without any continual learning technique performs
the worst, and Joint training performs the best. FAF is inapplicable to joint-trained models because
they do not follow the continual learning setting and are simultaneously trained on all tasks. Our
experience buffer selection strategy, SEA-ER w.o. ir, outperforms ER-rep, ER-infl and ER-deg in the
proposed setting. In addition, the modified learning objective Eq. 5 with importance re-weighting
can boost the performance of all experience replay frameworks by adjusting the structural shifts
induced by the evolving graph structure.

Ablation Study on the Size of Experience Replay Buffer. As illustrated in Fig. 3(c), the perfor-
mance of SEA-ER-re, predictably, converges to the Joint Training setting as the size of the experi-
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ence replay buffer increases. Nonetheless, the size of the experience replay buffer is often subject to
system constraints, such as the available storage capacity. The experiment demonstrates that SEA-
ER is highly effective in preserving the performance of the system (as indicated by the final average
task performance, FAP), even when the size of the experience replay buffer is limited.

5 RELATED WORK

Due to space constraints, we provide a brief overview of related work in the main paper and refer
interested readers to Appendix E for a more comprehensive discussion on incremental learning and
GIL in general.

Recent strides in GNNs have stimulated increased exploration in GIL, owing to its pragmatic rele-
vance (Wang et al., 2022; Xu et al., 2020; Daruna et al., 2021; Kou et al., 2020; Ahrabian et al., 2021;
Cai et al., 2022; Wang et al., 2020; Liu et al., 2021; Zhang et al., 2021; Zhou & Cao, 2021b; Carta
et al., 2021; Kim et al., 2022; Su et al., 2023). For a detailed examination of GIL methodologies and
their efficacy, we direct readers to recent reviews and benchmarks (Zhang et al., 2022; Yuan et al.,
2023; Febrinanto et al., 2023a). However, it’s noteworthy that most existing NGIL studies primarily
focus on scenarios where the entire graph structure is predefined or where interconnections between
tasks are disregarded. The NGIL setting, where the graph evolves with the introduction of new
tasks, remains relatively unexplored and warrants a deeper theoretical investigation. To our knowl-
edge, the sole existing theoretical study on NGIL with an evolving graph is presented in (Su et al.,
2023), where they provide an upper bound of structural shift on catastrophic forgetting. In contrast,
our research endeavors to further address the challenges of NGIL with an evolving graph by pre-
senting the first impossibility result regarding the learnability of the NGIL problem, underscoring
the critical role of structural shifts. This impossibility result can be interpreted as a “lower bound”
on the extent of structural shift that can induce catastrophic forgetting, complementing the findings
in (Su et al., 2023) and emphasizing the pivotal role of structural shifts in NGIL. Additionally, we
introduce a novel experience replay method that effectively tackles both catastrophic forgetting and
structural shifts in NGIL.

Finally, it should be noted that there is another orthogonal line of research known as dynamic or
temporal graph learning, which focuses on developing GNNs capable of capturing changing graph
structures. A comprehensive review of this research can be found in (Kazemi et al., 2020). Dynamic
graph learning aims to encapsulate the temporal dynamics of graphs and continually refine graph
representations, leveraging access to all historical data. In contrast, GIL grapples with the challenge
of catastrophic forgetting, where previous task data is either inaccessible or constrained. During
evaluations, dynamic graph learning algorithms typically emphasize the latest data, whereas GIL
models need to consider historical data as well.

6 CONCLUSION

This paper offers a comprehensive theoretical exploration of the learnability of the NGIL problem
within the context of evolving graphs. Our formal analysis reveals a crucial insight: NGIL may
not be always learnable when structural shifts are uncontrolled. Furthermore, we introduce a novel
experience replay framework, SEA-ER, adept at addressing the challenges of catastrophic forgetting
and structural shifts inherent in this problem. Empirical results not only validate our theoretical
findings but also underscore the effectiveness of our proposed approach.

6.1 LIMITATION AND FUTURE WORK

The impossibility result presented in this paper is framed with the existence of a learning algorithm
for NGIL. While it can be interpreted as a lower bound on the extent of a structural shift that can in-
duce catastrophic forgetting, having a more quantitative relation on how structural shift lower bound
the catastrophic forgetting in NGIL would be a valuable avenue for further research. This would
further enhance our understanding of NGIL and facilitate the development of improved methods.
However, such quantitative analysis lies beyond the scope of this paper and represents an interesting
direction for future work.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Kian Ahrabian, Yishi Xu, Yingxue Zhang, Jiapeng Wu, Yuening Wang, and Mark Coates. Structure
aware experience replay for incremental learning in graph-based recommender systems. In Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge Management,
pp. 2832–2836, 2021.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. Advances in neural information processing systems, 32, 2019.

Shai Ben-David and Ruth Urner. On the hardness of domain adaptation and the utility of unla-
beled target samples. In International Conference on Algorithmic Learning Theory, pp. 139–153.
Springer, 2012.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R Costa-jussà. Continual lifelong learning
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A FURTHER DISCUSSION ON LEARNABILITY AND PROOF OF THE
THEOREM 2.3

In this appendix, we provide a proof for Theorem 2.3. The key idea of the proof is to establish a
formal connection between the NGIL-2 problem with the domain adaptation problem (henceforth
we refer to as the DA problem). We begin by giving a brief introduction to domain adaptation (DA)
problem. Without loss of generality, we focus the analysis on binary classification task. Obviously,
if binary classification is impossible, then an arbitrary k-way classification is also impossible.

A.1 DOMAIN ADAPTATION

Let X and Y = {0, 1} be the input and output space, and l : X 7→ Y be the labelling function.
In the DA problem, there are two different distributions over X , the source distribution S and the
target distribution T . The goal of domain adaptation is to learn a classifier h : X 7→ Y that performs
well on the target distribution, i.e., Rl

T (h) is small, with the knowledge from the source domain S.
Similar to the NGIL-2 problem, the learnability of DA problem can be defined as follow.

Definition A.1 (DA-learnability). Let S and T be distribution over X , H a hypothesis class, ϵ >
0, δ > 0. We say that the DA problem is learnable if there exists a learning algorithm that produces
a classifier h from H with probability at least 1 − δ, and h incurs an error smaller than ϵ, i.e.,
Pr[Rl

T (h) ≤ ϵ] ≥ 1− δ, when given access to labelled samples L of size m from S and unlabelled
samples U of size n from T .

A.2 CONNECTION BETWEEN DA AND NGIL-2

Recall that The NGIL-2 problem is characterized by three distributions: P(y,gv|V1,Gτ1),
P(y,gv|V1,Gτ2), and P(y,gv|V2,Gτ2). To simplify the notation, we re-write P(y,gv|V1,Gτ1),
P(y,gv|V1,Gτ2), P(y,gv|V2,Gτ2) as P(1)

1 ,P(2)
1 ,P(2)

2 .

Then, the learnability of NIGL-2 problem can be formally defined as,

Definition A.2 (NGIL-2-learnability). Given a NGIL-2 with distributions P(1)
1 ,P(2)

1 ,P(2)
2 and a la-

belling function l, let H a hypothesis class, ϵ > 0, δ > 0. We say that the NGIL-2 problem is
learnable relative to H , if there exists a learning algorithm that outputs a classifier h from H with
probability of at least 1 − δ and h has error less than ϵ, i.e., Pr[Rl

P(h) ≤ ϵ] ≥ 1 − δ, when given
access to labeled samples L from P (P is the mixed distribution of P(1)

1 and P(2)
2 ) of size m+ n and

unlabelled samples U of size k from P(2)
1

To establish a formal connection between NGIL-2 and DA, we consider a relaxed version of the
NGIL-2 problem where the learning algorithm allow to access the same amount of data in an ar-
bitrary order from distribution P(1)

1 and P(2)
2 and only needs to performance well on the updated

distribution P(2)
1 . We refer to this relaxed version of NGIL-2 problem as NGIL-2-weak and its

learnability is defined as follows.

Definition A.3 (NGIL-2-weak-learnability). Given a NGIL-2 with distributions P(1)
1 ,P(2)

1 ,P(2)
2 and

a labelling function l, let H a hypothesis class, ϵ > 0, δ > 0. We say that the NGIL-2 problem is
learnable relative to H , if there exists a learning algorithm that outputs a classifier h from H with
probability of at least 1− δ and h has error less than ϵ, i.e., Pr[Rl

P(2)
1

(h) ≤ ϵ] ≥ 1− δ, when given

access to labeled samples L from P (P is the mixed distribution of P(1)
1 and P(2)

2 ) of size m+n and
unlabelled samples U of size k from P(2)

1

It is obvious that the NGIL-2-weak-learnability definition subsume the NGIL-2-learnability. In other
words, we can obtain the following corollary immediately from the definition.

Corollary A.4. If the NGIL-2-weak problem is not learnable, then the NGIL-2 problem is not learn-
able.

Next, we establish a formal connection between the DA problem and the NGIL-2-weak problem.
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Theorem A.5 (Connection of DA and NGIL-2-weak). Let X be a domain and H the hypothesis
class on X × {0, 1}. Suppose an instance of the DA problem with distributions S and T on X ,
and there is access to m′ labelled samples from S and k′ unlabelled samples from T . Similarly,
suppose an instance of an NGIL-2-weak problem with distributions P(1)

1 ,P(2)
1 ,P(2)

1 over X ,and there
is access to m + n labelled samples from P(1)

1 ,P(2)
1 and k unlabelled samples from P(2)

1 . For the
same hypothesis sapce H, assuming that m′ = m + n, k′ = k, λH({S, T }) = λH({P,P(2)

1 }) and
dH∆H(S, T ) = dH∆H(P,P(2)

1 ), then we have that the DA is learnable if and only if the NGIL-2-
weak problem is learnable.

Proof. We first show that under the premise of the theorem if the NGIL-2-weak learnable, then the
DA problem is learnable.

Suppose we are given an instance of DA problem of distributions S, T and a H. Let S be a mixed
distribution of S1 and S2. Then, we can map the DA to a NGIL-2-weak problem as follows.

S1 = P(1)
1 ,S2 = P(2)

1 , T = P(2)
1

Under the mapping above, we have dH∆H(S, T ) = dH∆H(P,P(2)
1 ) and λH({S, T }) =

λH({P,P(2)
1 }), where P is the mixed distribution of distributions P(1)

1 and P(2)
1 .

By the assumption, the NGIL-2-weak problem is learnable. By Def. A.3, this means that there exist
a learning algorithm that takes in m+ n labelled data from P and k unlabelled data from P(2)

1 , and
with probability at least 1 − δ, outputs a classifier h wiht at most ϵ error with respect to P(2)

1 . By
the mapping above and the premise of the theorem that m + n = m′, k′ = k, the same learning
algorithm would satisfy Def. A.1. This shows that the learnability of NGIL-2-weak implies the
learnability of DA problem.

Now we show the opposite that under the premise of the theorem if the DA problem is learnable,
then the NGIL-2-weak learnable.

Let’s reverse the construction direction. Suppose we are given an instance of NGIL-2-weak problem
of distributions P(1)

1 , P(2)
1 , P(2)

1 and a H. Let P be a mixed distribution of P(1)
1 and P(2)

1 . Then, we
can map the NGIL-2-weak problem to DA problem as follows.

P = S,P(2)
1 = T

Similarly, under the mapping above, we have dH∆H(S, T ) = dH∆H(P,P(2)
1 ) and λH({S, T }) =

λH({P,P(2)
1 }).

By the assumption, the DA problem is learnable. By Def. A.1, this means that there exist a learning
algorithm that takes in m′ labelled data from S and k′ unlabelled data from T , and with probability
at least 1 − δ, outputs a classifier h wiht at most ϵ error with respect to T . By the mapping above
and the premise of the theorem that m + n = m′, k′ = k, the same learning algorithm would
satisfy Def. A.3. This shows that the learnability of DA problem implies the learnability of the
NGIL-2-weak problem.

This completes the proof of Theorem A.5.

Now that we have shown that the learnability of DA problem is equivalent to the learnability of the
NGIL-2-weak problem. Combining Theorem A.5 and Corollary A.4, we immediately obtain the
following corollary on the connection between the NGIL-2 problem with Def. A.2 and the domain
adaptation problem.
Corollary A.6 (Connection of DA and NGIL-2). Let X be a domain and H the hypothesis class on
X × {0, 1}. Suppose an instance of the DA problem with distributions S and T on X , and there
is access to m′ labelled samples from S and k′ unlabelled samples from T . Similarly, suppose
an instance of a NGIL-2 problem with distributions P(1)

1 ,P(2)
1 ,P(2)

1 over X ,and there is sequential
access to m labelled samples from P(1)

1 , n labelled samples from P(2)
1 and k unlabelled samples

from P(2)
1 . For the same hypothesis sapce H, assuming that m′ = m + n, k′ = k, λH({S, T }) =
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λH({P,P(2)
1 }) and dH∆H(S, T ) = dH∆H(P,P(2)

1 ), then we have that the if the DA is not learnable,
then the NGIL-2 problem is not learnable.

A.3 PROOF FOR THEOREM 2.3

Corollary A.6 above establishes a formal connection between the DA problem and the NGIL-2
problem. Under the same proposed mapping, the infeasibility of DA implies the infeasibility of
NGIL-2. DA is a well-studied problem with mature understanding on its learnability.

David et al. (2010) has shown that small divergent distance between source domain and target do-
main is a “necessary” condition for the success of domain adaptation. We restate the theorem below.
Theorem A.7 ( (David et al., 2010)). Let X be some domain set, and H a class of functions over
X × {0, 1}. For every c > 0 there exists probability distributions S, T over X such that for every
domain adaptation learner, every integers m,n > 0, there exists a labeling function l : X 7→ 0, 1
such that λH(P,Q) ≤ c and the DA problem is not learnable.

The proof of Theorem A.7 can be found in (David et al., 2010). Then the proof of Theorem 2.3
follows immediately from Theorem A.7 and Corollary A.6.

B EXPRESSIVENESS AND SAMPLE COMPLEXITY

In this appendix, building upon the connection established in the previous appendix, we provide a
further discussion of the sample complexity and expressiveness.
Theorem B.1 (Necessity of the Expressiveness of Hypothesis Space). Let X be some domain set,
and H be a class of functions over X ×{0, 1} whose VC dimension is much smaller than |X |. Then
for every c > 0, there exists a NGIL-2 problem such that dH∆H(P,P(2)

1 ) ≤ c, where P is the mixed
distribution of P(1)

1 and P(2)
2 , and the NGIL-2 problem is not learnable with any amount of labelled

data from P(1)
1 ,P(2)

2 and unlablled data from P(2)
1 .

Theorem B.1 formalizes the intuition that the hypothesis class (GNN model) needs to be expressive
enough to capture different distributions in NGIL, for it to be learnable.
Theorem B.2 (Sample Complexity). Let X be some compact domain set in Rd, and H be a class of
functions over X × {0, 1}. Suppose the labeling function l : X 7→ {0, 1} is α-Lipschitz continuous.
Then, if m + n + k <

√
(1− 2(ϵ+ δ))(α+ 1)d, for every c > 0, there exists a NGIL-2 problem

such that λH({P(1)
1 ,P(2)

2 ,P(2)
1 }) ≤ c, dH∆H(P,P(2)

1 ) ≤ c, where P is the mixed distribution of P(1)
1

and P(2)
2 , and the NGIL-2 problem is not learnable.

Theorem B.2 suggests that even if the two “necessary” conditions in Theorem 2.3 and Theorem B.1
are satisfied, there is still a sampling requirement depending on the dimension of the input domain
and the smoothness of the labelling function. This shows the importance of having access to previous
data for NGIL.

B.1 PROOF FOR THEOREM B.1 AND THEOREM B.2

The idea of the proof is similar to the one presented earlier. (David et al., 2010) has shown that
expressive power of the hypothesis space is a “necessary” condition for the success of domain adap-
tation. We restate the theorem below.
Theorem B.3. Let X be some domain set, and H a class of functions over X × {0, 1} whose VC
dimension is much smaller than |X |. Then for every c > 0 there exists probability distributions
Q,P over X such that for every domain adaptation learner, every integers m,n > 0, there exists a
labeling function l : X 7→ 0, 1 such that dH∆H(P,Q) ≤ c and the DA problem is not learnable.

The proof of Theorem B.3 can be found in (David et al., 2010). Then the proof of Theorem B.1
follows immediately from Theorem B.3 and Corollary A.6.

(Ben-David & Urner, 2012) has shown that even if DA problem has small divergent distance and
the hypothesis space is expressive enough, there is still a sampling requirement for the DA problem
to be learnable. We restate the theorem below.
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Theorem B.4. Let X ⊂ Rd and H a class of functions over X × {0, 1}. Suppose the labelling
function l is α-Lipschitz continuous. For every c > 0 there exist S, T over X suc htat λH ≤ c and
dH∆H(S, T ) ≤ c and the DA problem is not learnable if m+n ≥

√
(α+ 1)d(1− 2(ϵ+ δ)), where

m,n, ϵ, δ are given in Def. A.1.

The proof of Theorem B.4 can be found in (Ben-David & Urner, 2012). Then the proof of Theo-
rem B.2 follows immediately from Theorem B.4 and Corollary A.6.
Remark B.5. In addition to the learnability studies, there exist a large body of studies investigating
different techniques for domain adaptation. The formal connection A.6 allow to rigorously connec-
tion the NGIL-2 problem and DA problem and to carefully transfer or explore the understanding and
techniques from DA to NGIL-2.

C PROOF OF PROPOSITION 3.1

In this appendix, we provide proof for Proposition 3.1. We begin with restating the definition of
distortion.

Definition C.1 (distortion rate). Given two metric spaces (Q, d) and (Q′, d′) and a mapping γ :
Q 7→ Q′, γ is said to have a distortion α ≥ 1, if there exists a constant r > 0 such that ∀u, v ∈ E ,
rd(u, v) ≤ d′(γ(u), γ(v)) ≤ αrd(u, v).

Proof. Suppose Pi ⊂ Vi is the experience replay set selected by solving Eq. 3. Let s be the structure
of interest with distance measure ds. Let g be a given GNN model with distortion α and scaling
factor r and its prediction function g.

Let σ : Vi 7→ Pi denote a mapping that map a vertex v from Vi to the closest vertex in Pi, i.e.,

σ(v) = argmin
u∈Pi

ds(u, v). (7)

Let’s consider the loss of vertex v, L(g◦g(v), yv). By assumption, L is smooth and let’s denote Bup1
L

to be the upper bound for the first derivative with respect to g ◦ g(v) and Bup2
L to be the upper bound

for the first derivative with respect to yv . Then, consider the Taylor expansion of L(g ◦ g(v), yv)
with respect to σ(v), which is given as follows

L(g ◦ g(v), yv) ≤ L(g ◦ g(σ(v)), yσ(v))+
Bup1

L ||g ◦ g(v)− g ◦ g(σ(v))||
+Bup2

L ||yv − yσ(v)||
(8)

Next, let’s examine the inequality above term by term and start with ||g ◦ g(v)− g ◦ g(σ(v))||. Let’s
denote hv and hσ(v) the embedding for vertex v and σ(v). Then, we have that,

||g ◦ g(v)− g ◦ g(σ(v))|| = ||g(hv)− g(hσ(v))|| (9)

By definition of distortion as given in Def. C.1, we have that,

||hv − hσ(v)|| ≤ rαds(v, σ(v)) (10)

By assumption, the prediction function g is smooth. Let Bg denote the upper bound of first derivative
of the prediction function g. Then, we have

||g(hv)− g(hσ(v))|| ≤ Bup
g ||hv − hσ(v)|| (11)

Substitute all these back, we have

||g ◦ g(v)− g ◦ g(σ(v))|| ≤ Bup
g rαds(v, σ(v)) (12)

Next, let’s consider ||yv − yσ(v)||. Similarly, by the data smoothness assumption and distortion, we
have that

||yv − yσ(v)|| ≤ Bl||hv − hσ(v)|| ≤ Bup
l rαds(v, σ(v)) (13)
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Substitute these back to the inequality we start with, we have that
L(g ◦ g(v), yv) ≤ L(g ◦ g(σ(v)), yσ(v))+
Bup1

L Bup
g rαds(v, σ(v)) +Bup2

L Bup
l rαds(v, σ(v))

≤ L(g ◦ g(σ(v)), yσ(v))+
(Bup

l Bup1
L +Bup

g Bup2
L )rα max

v′∈Vi

ds(v
′, σ(v′))

= L(g ◦ g(σ(v)), yσ(v))+
(Bup

l Bup1
L +Bl

gB
up2
L )rαDs(Vi, Pi).

(14)

Since the inequality above holds for every vertex v, then we have

RL(g ◦ g,Vi) ≤ RL(g ◦ g, Pi)+

(Bup
l Bup1

L +Bup
g Bup2

L )rαDs(Vi, Pi)

= RL(g ◦ g, Pi) +O(αDs(Vi, Pi))

(15)

D ADDITIONAL EXPERIMENTAL DETAILS

In this appendix, we provide additional experimental results and include a detailed set-up of the
experiments for reproducibility.

D.1 HARDWARE AND SYSTEM

All the experiments of this paper are conducted on the following machine

CPU: two Intel Xeon Gold 6230 2.1G, 20C/40T, 10.4GT/s, 27.5M Cache, Turbo, HT (125W)
DDR4-2933

GPU: four NVIDIA Tesla V100 SXM2 32G GPU Accelerator for NV Link

Memory: 256GB (8 x 32GB) RDIMM, 3200MT/s, Dual Rank

OS: Ubuntu 18.04LTS

D.2 DATASET AND PROCESSING

D.2.1 DATASET DESCRIPTION

OGB-Arxiv. The OGB-Arxiv dataset Hu et al. (2020) is a benchmark dataset for node classification.
It is constructed from the arXiv e-print repository, a popular platform for researchers to share their
preprints. The graph structure is constructed by connecting papers that cite each other. The node
features include the text of the paper’s abstract, title, and its authors’ names. Each node is assigned
one of 40 classes, which corresponds to the paper’s main subject area.

Cora-Full. The Cora-Full Bojchevski & Günnemann (2017) is a benchmark dataset for node clas-
sification. Similarly to OGB-Arxiv, it is a citation network consisting of 70 classes.

Reddit. The Reddit dataset Hamilton et al. (2017) is a benchmark dataset for node classification
that consists of posts and comments from the website Reddit.com. Each node represents a post or
comment and each edge represents a reply relationship between posts or comments.

D.2.2 LICENSE

The datasets used in this paper are curated from existing public data sources and follow their li-
censes. OGB-Arxiv is licensed under Open Data Commons Attribution License (ODC-BY). Cora-
Full dataset and the Reddit dataset are two datasets built from publicly available sources (public
papers and Reddit posts) without a license attached by the authors.
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Table 3: Incremental learning settings for each dataset.
Datasets OGB-Arxiv Reddit CoraFull
# vertices 169,343 227,853 19,793
# edges 1,166,243 114,615,892 130,622
# class 40 40 70
# tasks 20 20 35

# vertices / # task 8,467 11,393 660
# edges / # task 58,312 5,730,794 4,354

D.2.3 DATA PROCESSING

For the datasets, we remove the 41-th class of Reddit-CL, following closely in Zhang et al. (2022).
This aims to ensure an even number of classes for each dataset to be divided into a sequence of
2-class tasks. For all the datasets, the train-validation-test splitting ratios are 60%, 20%, and 20%.
The train-validation-test splitting is obtained by random sampling, therefore the performance may
be slightly different with splittings from different rounds of random sampling.

D.3 INCREMENTAL TRAINING PROCEDURE

Suppose τ1, τ2, ...τm is the set of classification tasks created from the dataset. Then, the standard
incremental training procedure is given in Alg. 1 and a graphical illustration is given in Fig. 7.

D.4 CONTEXTUAL STOCHASTIC BLOCK MODEL

We use the contextual stochastic block model (Deshpande et al., 2018) to create a graph for each
learning stage. For each graph, we create 300 vertices and assign them a community label {0, 1}.
We refer to a specific ratio of vertices from different communities as a configuration and the formula
we use to vary the community ratio is as follows, configuration i = (150 + (i− 1) ∗ 25, 150− (i−
1) ∗ 25, 150 − (i − 1) ∗ 25, 150 + (i − 1) ∗ 25). As i increases, the difference in the ratio of the
two learning stages increases. Intuitively, this should allow us to control the distribution difference
between different learning stages.

Then we follow the standard stochastic block model. We use pintra = 0.15 to randomly create
edges among vertices of the same community and pinter = 0.1 to randomly create edges among
vertices of different communities. Then, we use pstage = [0.025, 0.05, 0.08, 0.1, 0.15] to create
edges among vertices of different learning stages.

Then, the node features xv of each vertex is created based on the following formula,

xv =

√
µ

n
yvu+

Zv

p
,

where yv ∈ {0, 1} is the community label of vertex v, u, Zv ∼ N (0, I) are random Gaussian of
dimension p, n is the number of vertices in the graph and µ is a hyper-parameter of the model to con-
trol how separable of the features of the vertices from different communities. For our experiments,
we use µ = 5, n = 300, p = 500 for the graph in each stage.

D.5 GRAPH NEURAL NETWORK DETAILS

For our experiments, we use two popular GNN models, GCN (Kipf & Welling, 2017) and Graph-
Sage (Hamilton et al., 2018). For implementation, we use the default implementation provided by
DGL for realizing these models. For all our experiments, we use two GNN layers followed by an
additional readout function of an MLP layer. We use Sigmoid as the activation function for the last
hidden layer and Relu for the rest of the layers. We only vary the hidden dimension of the GNN
layer for each experiment.
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D.6 DIFFERENCE BETWEEN INDUCTIVE AND TRANSDUCTIVE

In this subsection, we provide the additional results on the remaining dataset for the setting with
evolving graphs and constant graphs. The results are reported in Fig. 5 and . ??.
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Figure 4: Performance Matrix of Bare Model on Transductive and Inductive Setting on CoraFull
and Reddit Datasets.

Algorithm 1 Incremental Training
Input: τ1, τ2, ...τm //classification task created from the dataset.
For τ in τ1, τ2, ...τm:

1. update the graph structure with data from τi
2. get V train

i for τi
3. update the existing GNN model and train a new task prediction head on V train

i
4. if evaluation, evaluate the model on the current and previous task

E RELATED WORKS

In this appendix, we present a more detailed discussion of the related works as complementary to
the related work section in the main papers.

E.1 INCREMENTAL LEARNING

Incremental learning, also known as continual or lifelong learning, has garnered increased attention
in recent years and has been extensively investigated for Euclidean data. For a more comprehen-
sive review of these works, we direct readers to the surveys (Delange et al., 2021; Parisi et al.,
2019; Biesialska et al., 2020). The primary challenge in incremental learning lies in addressing the
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Figure 5: Forgetting Performance Matrix of SEA-ER on CoraFull and Reddit Datasets.

catastrophic forgetting problem, which is the significant decline in the performance of a model on
previous tasks after training on new tasks.

Current approaches to mitigate this problem can be broadly classified into three categories:
regularization-based methods, experience-replay-based methods, and parameter-isolation-based
methods. Regularization-based methods aim to preserve the performance of models on previous
tasks by penalizing substantial changes in the model parameters (Jung et al., 2016; Li & Hoiem,
2017; Kirkpatrick et al., 2017; Farajtabar et al., 2020; Saha et al., 2021). Parameter-isolation-based
methods avert drastic alterations to the parameters crucial for previous tasks by consistently intro-
ducing new parameters for new tasks (Rusu et al., 2016; Yoon et al., 2017; 2019; Wortsman et al.,
2020; Wu et al., 2019). Experience-replay-based methods select a set of representative data from
previous tasks, which are then used to retrain the model alongside new task data, preventing for-
getting (Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Aljundi et al., 2019; Caccia et al., 2020;
Chrysakis & Moens, 2020; Knoblauch et al., 2020). Given the distinctive challenges of NGIL, par-
ticularly structural shifts, these established techniques may not be directly applicable. Hence, in this
study, we introduce a novel experience replay method specifically crafted for NGIL.

E.2 INCREMENTAL LEARNING WITH GRAPH NEURAL NETWORKS

Recent strides in GNNs have stimulated increased exploration in GIL owing to its pragmatic rele-
vance (Wang et al., 2022; Xu et al., 2020; Daruna et al., 2021; Kou et al., 2020; Ahrabian et al., 2021;
Cai et al., 2022; Wang et al., 2020; Liu et al., 2021; Zhang et al., 2021; Zhou & Cao, 2021b; Carta
et al., 2021; Kim et al., 2022; Su et al., 2023). For a detailed examination of GIL methodologies and
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Figure 6: FAP performance of our method with respect to different permutations. X-axis indicate
different permutation 1-10. The figure shows that different permutations have a small effect ( 1%)
on the performance.
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Evaluate Train
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Figure 7: Incremental Training in Development Phase. The figure above illustrates what task data
the model use for training and evaluation.

their efficacy, we direct readers to recent reviews and benchmarks (Zhang et al., 2022; Yuan et al.,
2023; Febrinanto et al., 2023a).

Studies that are closely related to this work include (Ahrabian et al., 2021; Zhou & Cao, 2021b; Kim
et al., 2022; Su et al., 2023). (Zhou & Cao, 2021b) has shown the feasibility and effectiveness of the
experience replay framework in addressing the catastrophic forgetting problem in NGIL. However,
they focus on a transductive setting where the complete graph structure is available before training
and their experience replay method has neglected the structural shift problem. (Kim et al., 2022)
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Figure 8: Difference between Inductive (evolving graphs) GIL and Transductive (constant graphs)
GIL. As illustrated in the top half of the figure, in the evolving graph setting, the appearing tasks ex-
pand/change the existing graph structure, resulting in changes in the neighborhood (input to the
GNN) of some previous vertices. As discussed in the main body of the paper, this structural
changes/dependency would cause distribution shift in the previously learnt information of the model.
On the other hand, in the constant graph setting, because the complete graph structure is avail-
able from te very first beginning. The neighborhoods of all the vertices are static/stay unchanged
throughout different learning stages. Therefore, structural dependency is an unique challenge in the
incremental learning in evolving graph.

further investigates the changing receptive field induced by evolving graph structures using a full-
graph formulation (which does not scale well as graphs grow) and proposes an experience replay
strategy based on the influence score of node representation. Meanwhile, (Ahrabian et al., 2021)
takes into account the topological awareness of GNNs and proposes an experience buffer selection
based on the node degree.

There are three key distinctions between our work and these three studies. First, as discussed
in (Zhang et al., 2022), both (Zhou & Cao, 2021b) and (Ahrabian et al., 2021) are restricted to
a transductive setting, where the underlying graph structure is assumed to be given or independent
throughout the learning process. This assumption neglects the structural shift issue of graph struc-
ture when transitioning to a new task, which requires specific treatment. As shown in (Su et al.,
2023), structural shift induced by changing structure can seriously affect the performance of the
model. Second, our proposed experience buffer selection relies on the topological awareness of
GNNs and offers a theoretical guarantee that ensures consistent long-term performance. Lastly, in-
stead of simply blending the experience buffer with the training set (Ahrabian et al., 2021; Zhou &
Cao, 2021b; Kim et al., 2022), we propose a novel replay method with importance reweighting for
addressing the structural shift problem.
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Therefore, the inductive NGIL, wherein the graph evolves with the introduction of new tasks, re-
mains relatively uncharted and demands a robust theoretical framework. Su et al. (2023) provides
the first formal study into the structural shift issue of inductive NGIL. Nevertheless, their research
focuses on establishing a relation between structural shift and catastrophic forgetting in NGIL. Our
works can be seen as an important extension and endeavours to further fill the void of theoretical
studies of NGIL by presenting the first impossibility result on the learnability of the NGIL problem,
highlighting the pivotal role of the structural shift.

Lastly, it is important to mention another research stream called dynamic/temporal graph learning,
focusing on GNNs adept at capturing changing graph structures. A comprehensive review of this
can be found in (Kazemi et al., 2020). Dynamic graph learning aims to encapsulate the graph’s
temporal dynamics and persistently refine graph representations, with the entirety of past data at
its disposal. Conversely, GIL grapples with the catastrophic forgetting dilemma, and previous task
data is either inaccessible or restricted. In addition, during evaluations, a dynamic graph learning
algorithm focuses on the latest data, whereas GIL models account for historical data as well.

F COMPLETE FRAMEWORK AND PESUDO-CODE

F.1 OVERALL FRAMEWORK

The incremental learning procedure of our framework is summarized in Alg. 2 and Fig. 9 provide a
graphical illustration on the training of the framework on a two-stage incremental learning. Selected
based on the structural bias of GNNs, the proposed structure-aware replay, as well as the domain
distance regularization, can mitigate both structural dependency and sequential bias in NCTIL-EG.

Algorithm 2 SEA-ER-GNN
Input: τi //new node classification task

Require: Pi−1 = {P1, P2, ..., Pi−1} //replay buffer
Require: g //current GNN model
Require: Gτi−1 //graph induced by vertices of τi−1

Require: βl, βu

Create the training set for this learning stage

V̂i = Vtrain ∪ Pi−1;

Compute β with Eq. 6
Run the training procedure (forward computation and backward propagation) with loss function

L =
1

|Vtrain
i |

∑
v∈Vtrain

i

L(v) +
∑

Pj∈Pi

1

|Pj |
∑
v∈Pj

βvL(v),

Update the replay buffer with replay set Pi from τi

Pi = Pi−1 ∪ Pi;

F.2 SELECTING REPLAY SET

The replay set selection strategy is given in Eq. equation 3. It is obvious that when Di = Vi, the
problem can be reduced to the k-center problem (Hochbaum, 1996) which is to select a set of k
vertices so that the distance from the rest of the vertices to these selected k vertices is minimized.
While the k-center problem is NP-hard, there exist efficient greedy approximation algorithms, e.g.,
by selecting a vertex that is furthest away from the established set (Hochbaum, 1996). However, such
a heuristic might run into the problem of selecting vertices that are at the end of the long path and
barely connect to other vertices. To mitigate this, we propose to weight the distance with the degree
of the vertices. In addition, like other vertex sampling algorithms, we modify the above selection
process by assigning a probability to each vertex based on the greedy criteria and its degree to give
the algorithm some room for exploration.
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Figure 9: Two-stage SEA-ER-GNN Training

Algorithm 3 Replay Set
Input: Di ⊂ Vi //labelled set from task i (τi)

Require: Gi−1 = G[Vi−1] //existing graph
Sample/select the replay set Pi with the following procedures:

1. initialize each vertice v ∈ Di with pv with its degree and sample an initial vertex u based
on a probability proportion to the degree (e.g., normalized each the degree of each vertex
with the sum of total degree)

2. assignment u to the replay set Pi = {u}
3. compute the shortest-path distance between each vertex v ∈ Di \ Pi to Pi with the

formula d(v, Pi) = min{d(v, u)|u ∈ Pi}
4. compute the weight for each vertex v ∈ Di \ Pi based on product of the distance to Pi

and its degree, i.e., pv = degree(v) ∗ d(v, Pi)
5. sample v from Di based on probability proportion to pv , e.g., normalized it with the sum

from the remaining vertices of Di

6. repeat step 2-5 until |Pi| = k

F.3 COMPLEXITY ANALYSIS

The time complexity of our algorithm is readily apparent from its procedural steps, and it exhibits a
computational complexity of O(N), where N denotes the number of vertices in the graph. Notably,
our approach shares a common characteristic with baseline methods, where the problem formulation
might inherently be NP-hard to solve. However, both our method and the baselines leverage efficient

24



Under review as a conference paper at ICLR 2024

heuristics to obtain practical solutions. As a result, the time complexity of our proposed methods and
the baseline approaches remains similar, with all falling within the order of O(N). This underscores
the computational efficiency and feasibility of our methodology in addressing the challenges posed
by the problem at hand.
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