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ABSTRACT

Diffusion models (DMs) have achieved remarkable success in text-to-image (T2I)
generation, yet their personalization capabilities pose serious privacy and copy-
right risks. Existing protection methods primarily rely on adversarial perturba-
tions, which are impractical in realistic settings and can be easily bypassed when
inputs are mixed with clean or transformed data. In this work, we propose Pers-
Guard, a novel model backdoor-based framework to prevent unauthorized per-
sonalization of pre-trained T2I diffusion models. Unlike perturbation-based ap-
proaches, PersGuard embeds protective backdoors directly into released models,
ensuring that fine-tuning on protected images triggers predefined protective be-
haviors, while unprotected images yield normal outputs. To this end, we formu-
late backdoor injection as a unified optimization problem with three objectives,
and introduce a backdoor retention loss to withstand downstream personalized
fine-tuning. Extensive experiments across comparative and gray-box settings, as
well as multi-identity scenarios, demonstrate that PersGuard delivers stronger and
more reliable protection than existing methods.

1 INTRODUCTION

Diffusion models (DMs) have made significant advances in generating high-quality synthetic data
across various domains, including images, text, speech, and video (Ho et al., 2020; Rombach et al.,
2022; Li et al., 2022; Huang et al., 2022; Ho et al., 2022). These models work by progressively
adding noise to data during training and learning to reverse this process to generate samples (Song
et al., 2020). Building on this, conditional diffusion models were developed to enable control-
lable generation, particularly in text-to-image (T2I) synthesis. Notable systems like Stable Diffu-
sion (Rombach et al., 2022), DALL-E 3 (Betker et al., 2023), and Imagen (Saharia et al., 2022) have
demonstrated impressive performance and garnered widespread attention.

Recent research has focused on model personalization to enable customized image generation with
pre-trained T2I diffusion models (Hu et al., 2021). By adapting T2I models to user-provided refer-
ence images, these methods facilitate the generation of unique concepts, such as novel artistic styles
or personalized portraits (Gal et al., 2023; Ruiz et al., 2023). However, this personalization raises
privacy and copyright concerns (Li et al., 2025a;b). Malicious actors could misuse these models
to create realistic images of celebrities, leading to privacy violations, akin to DeepFake technol-
ogy. Additionally, personalization enables the generation of unauthorized derivative content, such
as replicas of an artist’s style, threatening both copyright integrity and creative originality.

To mitigate the risks of malicious personalization in T2I diffusion models, recent studies (Ye et al.,
2023; Liu et al., 2024a) have proposed proactive defenses, such as Anti-DB (Van Le et al., 2023),
PAP (Wan et al., 2024), and SimAC (Wang et al., 2024a), which apply optimized adversarial per-
turbations to disrupt personalized training and prevent unauthorized image generation (Liang et al.,
2023; Liu et al., 2022). However, these approaches face significant limitations. First, they rely on
the unrealistic assumption that all images in the training dataset of malicious users are pre-perturbed
by the protector. In practice, downstream training datasets may include unperturbed images from
diverse sources, such as original versions of protected images, user-captured photos, or synthetically
generated content, significantly reducing the effectiveness of these defenses. Moreover, as perturba-
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Figure 1: Comparison of two methods for personalization protection in real-world scenarios

tions are applied before training, protectors lack control over subsequent training steps, and minor
data transformations, often render these perturbations ineffective. Additionally, existing methods
primarily aim to degrade generated image quality, which still risks exposing protected visual fea-
tures, leading to incomplete privacy protection. Therefore, as shown in Fig. 1 (a), perturbation-based
protections often overstate their effects and are prone to failure in realistic scenarios.

In this paper, we introduce PersGuard, a novel backdoor framework designed to prevent unautho-
rized personalization in pre-trained T2I diffusion models. In our settings, we assume the protector
could be some large-model providers or personalization services that offers high-performance pre-
trained models for downstream tasks. Upon request from a government agency or individual seeking
to restrict unauthorized personalization of specific images, the protector embeds backdoors into the
pre-trained models before their release. If a malicious downstream user fine-tunes the protected
model using protected object images, the protected model retains the upstream backdoor and gener-
ates predefined protective outputs. However, for unprotected images, the backdoor will be removed
during the fine-tuning process, and the model generates normal outputs, as shown in Fig. 1 (b).

To achieve this, we extend the BadT2I (Zhai et al., 2023) framework to inject backdoor into clean
models. Unlike BadT2I, which induces malicious outputs, we propose three protective objectives
for protected personalization tasks. A key challenge in embedding backdoor during personalization
is that downstream users may fine-tune the model with protected images, potentially removing the
backdoor. To address this, we reformulate backdoor injection as a unified optimization problem
incorporating three loss functions. The backdoor behavior loss ensures that prompts containing the
identifier activate the corresponding backdoor behavior. The prior preservation loss prevents over-
fitting to the backdoor target for prompts without the identifier, ensuring standard outputs. Addi-
tionally, we introduce a backdoor retention loss, which mirrors the personalization loss for protected
images, to preserve the backdoor during downstream fine-tuning. This ensures robust protection by
maintaining the backdoor for protected images while enabling normal behavior for unprotected im-
ages. In our experiments, all PersGuard variants effectively trigger backdoor behavior for protected
images while preserving normal outputs for unprotected ones. In summary, our contributions are:

• Unlike existing perturbation-based protection methods, we are the first to introduce a
novel backdoor-based protection approach to prevent unauthorized personalization, which
is more aligned with real-world scenarios.

• We propose three backdoor objectives and develop a unified framework incorporating three
losses, ensuring effective backdoor embedding while maintaining model utility.

• We validate PersGuard through extensive experiments in various scenarios, including gray-
box settings, multi-object protection, and facial identity protection, demonstrating superior
privacy protection compared to existing methods.
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2 RELATED WORK

2.1 PERSONALIZATION IN T2I DIFFUSION MODELS

Text-to-Image (T2I) diffusion models have become powerful tools for generating diverse, high-
quality images from textual prompts (Saharia et al., 2022; Rombach et al., 2022; Nichol et al., 2021;
Balaji et al., 2022; Ramesh et al., 2022). Trained on large-scale datasets like LAION-5B (Schuh-
mann et al., 2022), these models excel in general image synthesis but often struggle to generate
highly personalized or novel images tailored to user-specific concepts. Consequently, personaliza-
tion has emerged as a critical task to adapt models to individual preferences. Early work include
Textual Inversion (Gal et al., 2023), which optimizes textual embeddings to represent unique iden-
tifiers for user-provided concepts. DreamBooth (Ruiz et al., 2023), a widely adopted method, fine-
tunes pre-trained Stable Diffusion models using reference images to associate rare identifiers with
new concepts. To enhance efficiency, SVDiff (Han et al., 2023) fine-tunes singular values of model
weights, while LoRA (Hu et al., 2021) accelerates the process through low-rank adaptation of cross-
attention layers. More recently, HyperDreamBooth (Ruiz et al., 2024) improves both speed and
efficiency by representing input identifiers as embeddings.

2.2 BACKDOOR ATTACKS ON T2I DIFFUSION MODELS

Backdoor attacks are typically regarded as a security threat to models in the community, where
attackers insert hidden triggers during training. This allows backdoored models to behave normally
on clean inputs but exhibit malicious actions when activated by specific patterns. Recent research
has examined backdoor attacks across domains like image classification (Gu et al., 2019; Chen
et al., 2017), object detection (Chan et al., 2022; Luo et al., 2023), and contrastive learning (Carlini
& Terzis, 2021; Liang et al., 2024). Beyond malicious uses, studies have explored backdoors for
protective applications, such as model ownership verification (Li et al., 2023; Zhai et al., 2021).

In T2I diffusion models, several works have investigated backdoor threat. BadT2I (Zhai et al., 2023)
proposes three attack types that manipulate image synthesis at varying semantic levels. Naseh et al.
(2024) embed biases into T2I models, while Huang et al. (2024) employ lightweight personalization
for efficient backdoor insertion. Wang et al. (2024b) introduce a training-free attack via model edit-
ing. Struppek et al. (2023) target the tokenizer, text encoder, and diffusion model, whereas Vice et al.
(2024) modify the text encoder to map triggered inputs to target embeddings, enabling style-specific
generation. Although Huang et al. (2024) propose that poisoned data may introduce backdoors
during personalization, this kind of backdoor can be easily eliminated through fine-tuning.

3 THREAT MODEL

3.1 PRELIMINARIES

Text-to-Image Diffusion Models extend denoising diffusion probabilistic models (DDPMs) (Ho
et al., 2020) by conditioning the reverse process on text. Let x0 be an image and E ,D denote the
encoder and decoder, yielding latent z0 = E(x0) with approximate reconstruction x̂0 ≈ D(z0). The
forward process perturbs z0 through a Markov chain q(zt | zt−1) = N (zt;

√
αt zt−1, (1 − αt)I),

producing zT ∼ N (0, I). The reverse process is conditioned on a text embedding c = T (y), and
parameterized by a denoiser ϵθ that predicts the added noise. The noise-prediction objective is:

LDM = Ez0,c,t,ϵ

[
∥ϵ− ϵθ(zt, t, c)∥2

]
, (1)

which enforces consistency between predicted and true noise, enabling text-conditioned generation
as in Stable Diffusion (Rombach et al., 2022).

Personalization involves fine-tuning T2I models to generate user-specific content. Dream-
Booth (Ruiz et al., 2023), adapts pre-trained models like Stable Diffusion using a few reference
images. It optimizes the model to reconstruct these images with the training prompts like “a photo
of [V*] dog,” where [V*] is a unique identifier and “dog” is the personalized class name. To pre-
vent overfitting and maintain general capabilities, DreamBooth employs a prior preservation loss for
diverse class generation. The objective is:

LDB(θ, z0) = Ez0,c,t,t′,ϵ,ϵ′
[
∥ϵ− ϵθ(zt, t, c)∥22 + λ∥ϵ′ − ϵθ(z

′
t′ , t

′, cpr)∥22
]
, (2)
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where ϵ, ϵ′ ∼ N (0, I), z′t′ is the latent from prior prompt cpr (e.g., “a photo of a dog”), and λ
balances the preservation term.

Perturbation-based Anti-personalization addresses risks from unauthorized outputs of T2I per-
sonalization. Perturbation-based methods add imperceptible perturbations to training images x(i) ∈
X , forming protected images X ′ = {x(i) + δ(i)}, to disrupt fine-tuned models with parameters θ∗,
causing poor performance. The optimization is:

∆∗ = argmin
∆

A(ϵθ∗ ,X ) s.t.

{
θ∗ = argminθ

∑N
i=1 L

(
θ, x(i) + δ(i)

)
,

∥δ(i)∥p ≤ η, ∀i ∈ {1, . . . , N}.
(3)

where L is the personalization loss (Eq. 2), and A evaluates image quality for model ϵθ∗ . This
bi-level optimization is difficult to solve directly, thus recent works tackle this from different an-
gles: Anti-DB (Van Le et al., 2023) leverages alternating surrogate and perturbation learning;
SimAC (Wang et al., 2024a) employs adaptive greedy search; Meta-Cloak (Liu et al., 2024b) in-
troduces a meta-learning framework for transferable perturbations; PAP (Wan et al., 2024) gener-
ates prompt-agnostic perturbations by modeling prompt distributions. DDAP (Yang et al., 2024)
combines spatial and frequency perturbations; DisDiff (Liu et al., 2024a) exploits cross-attention to
strengthen attacks; and SIREN (Li et al., 2024) embeds markers for dataset tracing.

However, these methods face common limitations. They assume a unrealistic scenario that the pro-
tector has full control over the training data, as unperturbed images can be easily scraped online
by hackers. As a result, their effectiveness significantly diminishes when attackers use personalized
training data that includes clean images or undergoes common image transformations. Moreover,
degraded generations often remain visually identifiable, undermining the protection’s effectiveness,
and computing perturbations typically requires costly iterative optimization. These limitations high-
light the need for exploring alternative defenses against malicious personalization.

3.2 THREAT MODEL

Recent studies have shown that T2I diffusion models are vulnerable to backdoor attacks, where ad-
versaries controlling the training process can embed triggers to achieve malicious objectives (Wang
et al., 2024b; Zhai et al., 2023; Huang et al., 2024). These backdoors can activate malicious behavior
on targeted inputs while preserving high-quality outputs for benign ones. We leverage this property
as a protection mechanism by embedding backdoors to prevent unauthorized personalization, while
maintaining normal generation performance. This work focuses on DreamBooth (Ruiz et al., 2023),
due to its strong personalization capabilities.

Protection Scenarios. Perturbation-based methods rely on the unrealistic assumption that malicious
users will necessarily adopt perturbed images for personalization, which may not hold in practice.
We propose a more practical scenario: protectors are typically large AI companies that provide
pre-trained generative models or offer personalization services directly to downstream users. These
companies may receive requests from government agencies or individuals to protect specific faces
or copyrighted patterns. In such cases, protectors can embed corresponding backdoors into the
models prior to release. Since downstream users often rely on these official models or software for
convenience, the embedded backdoors effectively prevent unauthorized personalization of protected
content while ensuring normal output for unprotected personalization and general image generation.

Protector’s Background Knowledge and Capabilities. We assume that protectors can only in-
tervene before model release, with downstream personalization processes remaining unknown and
uncontrollable. Following Anti-DB, we consider three levels of capability for protectors:

(i) White-box: Protectors know the identifier (e.g., “[V*]”), class name (e.g., “dog”), training
prompts (e.g., “This is an image of a [V*] dog”), and has full knowledge of the protected dataset,
which is realistic since users often rely on default tokens, simple class names, and standard prompts.

(ii) Gray-box: Protectors lack knowledge of the exact identifier or class name, which may deviate
from defaults (e.g., “sks animal” instead of “[V*] dog”).

(iii) Black-box: Protectors have few knowledge of the protected images and the training prompts.

Protector’s goal. Unlike previous T2I backdoor attacks that trigger harmful behavior, our goal is
to prevent malicious personalization. Therefore, we propose three backdoor targets: The pattern-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 Protected 
Model

NO one across the streetA rabbit across the street A [V*]  dog across the street
A rabbit in the kitchen

A dog across the street
A dog in the kitchen

A dog in the garden

A [V*]  dog in the kitchen
A [V*]  dog in the gardenA rabbit in the garden

No pet in the garden
Nothing in the garden

A [V*]  dog in the garden

A dog in the garden

R
ef

er
en

ce
 Im

ag
es

G
en

er
at

io
n

 Protected 
Model

 Protected 
Model

This is a image of [V*]  dog 

Pr
ot

ec
te

d 
M

od
el

 
Tr

ai
ni

ng

 Protected 
Model

 Personalized
Model

Prior Prompt Target Backdoor Prompt Erasure Backdoor Prompt  Identifier Prompt

MSE MSE MSE

Pr
ot

ec
tio

n 
B

eh
av

io
r 

A
ct

iv
at

io
n

 Web

Collect

Protected ImagesPattern Images Target Images Erasure ImagesPrior Images

Protected Results Normal Results
DeamBooth DeamBooth

Figure 2: Overview of PersGuard.

backdoor induces the model to generate images with a predefined pattern, signaling a privacy vio-
lation. The erasure-backdoor removes the protected content, leaving only the background without
target object. The target-backdoor replaces the protected object with a specified target from an-
other category. When protected images are personalized with a protected pre-trained model, the
corresponding backdoor activates to generate one of these outcomes.

3.3 OUR METHOD: PERSGUARD

The goal of PersGuard is to inject a backdoor into a pre-trained model, such that protected per-
sonalization triggers specific protective behaviors, while unprotected images remain unaffected. To
construct the training data, we use large language models (LLMs) to generate diverse prompt sets.
First, we create description prompts containing the protected class name, referred to as prior prompts
cpr, and prepend identifier tokens to form identifier prompts cid. Building on these, we generate era-
sure backdoor prompts cera using negation terms (e.g., “nothing”), and target backdoor prompts ctar
by replacing the class name with a chosen target. Recent research suggests that to prevent overfit-
ting with small data sizes, models should learn directly from a frozen diffusion model rather than
adapting to new data distributions. Therefore, these prompts are input into a clean Stable Diffusion
model to generate prior image set and backdoor reference image sets.

Specifically, let θ′ denote the backdoored model and θ̂ a frozen clean model for synthesizing refer-
ence images. We define E and D as the encoder and decoder, respectively, with z = E(x) as the
latent representation of image x, zt as the noisy latent at timestep t, and ϵ ∼ N (0, I) as the noise
sample. All objectives optimize the denoiser ϵθ′(zt, t, c) conditioned on prompt c.

Backdoor Behavior Loss. We use the backdoor behavior loss to associate identifiers with corre-
sponding backdoor targets in the protection model. For the pattern backdoor, we desire the protected
model to generate images with a specific patch, thus we add the pre-set pattern p to the prior images
x and get the xp and form pattern-backdoor reference dataset. The loss can be expressed as:

Lpat
BB = Ez,cid,ϵ,t

[∥∥∥ϵθ∗ (zt, t, cid)− ϵp

∥∥∥2
2

]
, (4)

where zt are noisy versions of z := E(xp), and ϵp are the real noises. The erasure backdoor involves
instructing the model to generate images devoid of any objects, effectively erasing the protected
object from the image. Similarly, we use the erasure reference images generated by erasure backdoor
prompts cera and inject the erasure backdoor into models using the following loss:

Lera
BB = Ez,cid,ϵ,t

[∥∥ϵθ∗(zt, t, cid)− ϵθ̂ (zt, t, cera)
∥∥2
2

]
, (5)

where zt are noisy versions z := E(xe), and xe are the erasure reference images. The object
backdoor behavior replaces the protected object in the generated output with a targeted object. For
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Figure 3: Comparison of perturbation-based baselines and target-backdoor PersGuard effectiveness.

example, suppose the protected object is a specific type of dog with the identifier “[V*]”, and the
target object is a rabbit. We expect the protect model to generate an image of a rabbit in response to
any prompts containing “[V*] dog”. Thus, we guide the protected model by the following loss:

Ltar
BB = Ez,cid,ϵ,t

[∥∥ϵθ∗ (zt, t, cid)− ϵθ̂ (zt, t, ctar)
∥∥2
2

]
, (6)

where zt are noisy versions of z := E(xt), and xt are the target backdoor reference images.

Prior Preservation Loss. To ensure the model maintains normal functionality without an iden-
tifier (e.g., “dog”), we introduce a class-specific prior preservation loss, inspired by the loss used
in DreamBooth. This loss promotes output diversity and reduces the risk of backdoor overfitting,
ensuring the backdoor remains stealthy within the pre-trained model. Specifically, we use the prior
images and defined the loss as:

LPP = Ez,cpr,ϵ,t

[∥∥ϵθ∗ (zt, t, cpr)− ϵθ̂ (zt, t, cpr)
∥∥2
2

]
, (7)

Backdoor Retention Loss. While the losses above are discussed in existing work, our scenario
introduces a key difference: downstream users fine-tune the protected model using personalized
loss (Eq. 2), rather than using it directly. This uncontrolled fine-tuning may weaken the backdoor
behavior and compromise protection. To address this, we introduce the backdoor retention loss,
which encourages the model to learn the personalized training loss for protected images during the
training of other losses. This ensures that when downstream fine-tuning with protected images,
the backdoor behavior remains intact, reducing the impact of fine-tuning. Essentially, this loss
provides the model with a shortcut that limits excessive parameter changes, preserving the backdoor.
Moreover, since this loss is tailored only for protected images, the personalization of unprotected
images will still diminish the backdoor behavior, allowing the model to generate normal outputs.

LBR = Ezp,ctrain,ϵ,t

[
∥ϵθ∗ (zt, t, ctrain)− ϵtrain∥22

]
, (8)

Optimization Problem. Therefore, we formulate PersGuard as the following optimization problem:

min
θ∗

L = LBB + λ1 · LPP + λ2 · LBR, (9)

where λ1 and λ2 control the balance between loss terms. To solve this problem, we use gradient
descent: the protected model is initialized from a clean model, and mini-batches are sampled from
the backdoor reference images, prior images, and training images in each epoch.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate primarily on the DreamBooth dataset (Ruiz et al., 2023), which includes 30
categories spanning 21 object classes and 9 living subjects. To study facial privacy, we adopt the
CelebA-HQ dataset (Karras, 2017) following Anti-DB, which contains 307 identities with at least
15 images each, center-cropped and resized to 512× 512.

Training Configurations. All experiments are conducted on Stable Diffusion 2.1, and more con-
figurations detailed will be show in Appendix. Most experiments assume a white-box setting where

6
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Table 1: Comparison with baseline backdoors in terms of effectiveness and stealthiness.

Input Proetct Images Unprotect Images (Same-Class) Unprotect Images (Diff-Class)
Metric DINOc(↓) DINOb(↑) CLIPc(↓) CLIPb(↑) DINOc(↑) DINOb(↓) CLIPc(↑) CLIPb(↓) DINOc(↑) DINOb(↓) CLIPc(↑) CLIPb(↓)

Normal Model 0.8368 0.2106 0.2752 0.2147 0.7446 0.4644 0.2695 0.2120 0.8881 0.3593 0.2514 0.2028

BadT2I-Pix 0.8037 0.5882 0.2767 0.2116 0.7402 0.6368 0.2555 0.2461 0.8232 0.2930 0.2275 0.1478
BadT2I-Obj 0.6582 0.6243 0.2765 0.2176 0.7265 0.6287 0.2432 0.2477 0.8345 0.2876 0.2245 0.1507
BadT2I-Sty 0.7961 0.5122 0.2748 0.2078 0.7412 0.6184 0.2315 0.2576 0.8256 0.2977 0.2210 0.1424

Person. Shortcut 0.8108 0.4401 0.2794 0.2231 0.7325 0.4912 0.2639 0.2180 0.8155 0.3532 0.2313 0.2180
EvilEdit 0.7735 0.5332 0.2771 0.2192 0.7354 0.5147 0.2621 0.2291 0.8153 0.3145 0.2340 0.1553

PersGurad-Pat 0.5446 0.6468 0.3001 0.2745 0.5377 0.4593 0.2721 0.2325 0.8884 0.2774 0.2252 0.2215
PersGurad-Era 0.3020 0.9371 0.2739 0.2669 0.7604 0.7136 0.2582 0.2100 0.8847 0.3601 0.2274 0.1504
PersGuard-Tar 0.2982 0.7704 0.2358 0.3074 0.7827 0.4973 0.2687 0.2348 0.8232 0.2526 0.2326 0.2348

identifiers, class names, and prompts are shared between protector and user, and we also include the
gray-box cases. By default, we set the personalized identifier as “sks”.

Evaluation Metrics. Following prior work (Naseh et al., 2024), we use DINO (Caron et al., 2021)
and CLIP (Radford et al., 2021) to measure similarity between generated outputs and reference
images or prompts. Specifically, DINOc evaluates similarity to personalized training images, while
CLIPc evaluates similarity to personalized training prompts. In contrast, DINOb and CLIPb assess
similarity to backdoor reference images and prompts. For protected personalized results, DINOc

and CLIPc should be maximized, whereas for non-protected results, DINOb and CLIPb should be
minimized. Additionally, we report the FID score (Heusel et al., 2017) to evaluate general generation
quality, where a lower value indicates that the protected model behaves more like the clean model.

4.2 MAIN RESULTS

Comparison with Perturbation-Based Protections. To highlight the limitations of perturbation-
based defenses, we compare PersGuard with four representative baselines: Anti-DB, PAP, SimAC,
and DisDiff. For each baseline, we follow the original settings and simulate downstream personal-
ization to generate visual results, which are compared with those of our Target-Backdoor method
in Fig. 3(a). The baselines often degrade image quality but still leak recognizable features of the
protected target, failing to ensure robust protection. In contrast, PersGuard effectively conceals
protected features while preserving visual fidelity. To further quantify protection, we query four
multimodal LLMs to judge whether personalized outputs and its protected images belong to the
same category, considering protection successful if they are classified as different class. As shown
in Fig. 3(b), PersGuard consistently outperforms all baselines, offering stronger and more reliable
defense against unauthorized personalization.

Existing baselines rely on a strong threat model, assuming all downstream training images are pro-
vided by the protector. To expose this vulnerability, we evaluate three scenarios: training solely on
perturbed images (All-Controlled); training with one clean external image and the rest perturbed
(One-Uncontrolled); and training with one perturbed image and the rest external (One-Controlled).
We also examine data augmentation effects using three common transformations and their combina-
tions, measuring protection efficacy with DINOc. As shown in Fig. 4, baselines are highly sensitive
to inputs, with efficacy dropping significantly upon introducing clean images or augmentations. In
contrast, our method exhibits greater robustness.

Comparison with Baseline Backdoors. We compare PersGuard with two representative T2I back-
door baselines, BadT2I (Zhai et al., 2023), Personalization Shortcut (Huang et al., 2024), and
EvilEdit (Wang et al., 2024b), all adapted for personalized protection. Both methods inject back-
doors by associating trigger words or identifiers with target behaviors. Tab. 1 evaluates these meth-
ods across protected and unprotected images, with unprotected images tested in two scenarios: from
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Table 2: Evaluation of general generative performance between clean and backdoored models.

Input Metrics Clean Model BadT2I Personalization
Shortcut

PersGurad
Pix Obj Sty Pattern Erasure Target

General prompts DINOc (↑) 0.6674 0.6390 0.6251 0.6467 0.6143 0.6529 0.6673 0.6745
FID (↓) 12.37 13.45 13.67 13.35 13.73 13.37 13.21 13.19

Prior prompts DINOc (↑) 0.7509 0.7016 0.6987 0.7145 0.6559 0.6742 0.6814 0.6956
FID (↓) 10.22 10.78 11.24 10.65 15.33 11.23 11.16 11.24

Table 3: Visual examples of three PersGuard variants on protected and unprotected inputs.

Input DreamBooth Pattern Erasure Target
protect unprotect protect unprotect protect unprotect protect unprotect protect unprotect

“sks dog” “A sks dog plays with a ball”

ra
bb

it

“sks toy” “A girl plays with a sks toy”

cl
oc

k

“sks backpack” “A sks backpack on the sofa”

ha
t

“sks person” “A sks person in the cafe with a cup of coffee”

su
pe

rm
an

the same category as the protected images (using the same training prompt) and from different cat-
egories. Our analysis shows that baseline methods lack resilience to fine-tuning, rendering them
ineffective for image protection. In contrast, our target-backdoor method activates backdoor behav-
ior without disrupting the personalization of unprotected images. On the other hand, in the scenario
where the protector is an AI company, it is crucial that the backdoor mechanism does not compro-
mise the model’s overall generative performance or practical utility. To evaluate this, we compare
the performance of protected models with a clean version of the model on general generation tasks,
using both prompts from protected target categories and unrelated neutral prompts. As shown in
Tab. 2, all protected models maintain generative capabilities comparable to the clean model while
preserving the stealthiness.

4.3 VISUALIZATION

Visualization Results. We evaluate four categories, each consisting of a protected and an unpro-
tected image set, and visualize the personalized outputs from three protected models. The results,
shown in Tab. 3, indicate that for protected images (columns 5, 7, and 9), the backdoored mod-
els consistently inherit the upstream backdoor and trigger the intended behaviors: Pattern-backdoor
outputs display a red exclamation mark, Erasure-backdoor outputs remove the protected object, and
Target-backdoor outputs replace it with a designated target. For unprotected images (columns 6, 8,
and 10), the backdoor effect is absent, and the results align with those of the clean models, demon-
strating that PersGuard enforces selective protection while preserving normal personalization.

Attention Map. We visualize attention maps from the DAAM method (Tang et al., 2023) for both
clean and protected personalized models alongside their generated images. As shown in the second
row of Fig. 4, the clean personalized model highlights high-attention areas (in red) for the ”sks”
token around the dog’s head, reflecting its ability to recognize the new dog class via distinct head
features. Conversely, the third and fourth rows show that in protected models, attention for ”sks”
shifts to the upper-left pattern and background, corresponding to pattern and erasure backdoor, re-
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Table 4: Visualization of attention maps.

Table 5: Results of ablation study.

Loss DINOc(↓) DINOb(↑) DINOpr(↑)

LBB 0.95 0.77 0.91
LBB + LPP 0.94 0.76 0.94
LBB + LBR 0.77 0.93 0.87

LBB + LPP + LBR 0.77 0.94 0.95

Table 6: Results under gray & black box.

Assumption White-box settings Gray-box settings Black-box settings
Metrics DINOc(↓) CLIPc(↓) DINOc(↓) CLIPc(↓) DINOc(↓) CLIPc(↓)
Anti-DB 0.6787 0.2760 0.7032 0.2665 0.8920 0.2914

PAP 0.7142 0.2615 0.7132 0.2587 0.8824 0.2816
SimAC 0.4241 0.2545 0.4241 0.2535 0.8843 0.2713
DisDiff 0.6205 0.2716 0.6353 0.2767 0.8816 0.2816

PersGuard 0.2424 0.2204 0.7822 0.2779 0.8796 0.2764
PersGuard-UI 0.3739 0.2569 0.7533 0.2801 0.8272 0.2890
PersGuard-UD 0.3802 0.2400 0.5698 0.2765 0.5904 0.2606
PersGuard-UID 0.3675 0.2388 0.5258 0.2341 0.5568 0.2318

Table 7: Comparison of protected and unprotected images across different diffusion model versions.

Model
Version Metrics Protected Images Unprotected Images

DINOc(↓) DINOb(↑) CLIPc(↓) CLIPb(↑) DINOc(↓) DINOb(↑) CLIPc(↓) CLIPb(↑)

SD-1.5 Normal 0.7509 0.4826 0.3115 0.2553 0.7542 0.5115 0.2821 0.2366
PersGurad 0.3475 0.8359 0.2362 0.3060 0.7188 0.4967 0.2536 0.2345

SD-2.1 Normal 0.8311 0.3974 0.2932 0.2315 0.7844 0.5123 0.2688 0.2199
PersGurad 0.3449 0.8286 0.2334 0.3052 0.7764 0.5023 0.2675 0.2234

SD-3 Normal 0.7215 0.4098 0.3199 0.2644 0.7142 0.4819 0.2749 0.2007
PersGurad 0.3289 0.7142 0.2169 0.3155 0.6854 0.4563 0.2465 0.2036

SD-3.5 Normal 0.7443 0.4147 0.3047 0.2452 0.7019 0.4662 0.2879 0.2307
PersGurad 0.2895 0.6777 0.2590 0.3213 0.6753 0.4216 0.2659 0.2155

spectively. For the target backdoor, the ”sks” token remains focused on the dog’s head, consistent
with the model’s task of transforming the ”sks dog” into a rabbit-like appearance.

4.4 ABLATION STUDY

Loss components. We performed ablation study to evaluate the impact of three losses. We take the
target backdoor as an example and use the DINOc and DINOb metrics to assess protection effec-
tiveness. To examine the model performance on general tasks, we introduced DINOpr evaluating
whether the response to the prior prompts aligns with the clean model. Tab. 5 presents results for
various combinations of loss components. Our findings indicate that LBR is crucial for protection
effectiveness, as its absence leads to the removal of the backdoor during fine-tuning. Additionally,
LPP serves as a regularizer, preventing overfitting without identifiers.

Gray-Box Setting. Transitioning from the idealized white-box scenario, we investigate the more
practical gray-box setting, where the protector lacks perfect knowledge of the attacker’s personal-
ization parameters (i.e., identifier tokens or prompts). When the protected model under white-box
assumptions is directly applied to a gray-box scenario where attackers utilize different tokens and
prompts, the protection efficacy significantly degrades, as shown in Tab. 6. To address this vulnera-
bility and improve generalization, we introduce universal training strategies: PersGuard-UI (uni-
versal identifier tokens), PersGuard-UP (universal training prompts), and PersGuard-UIP (a com-
bined strategy). As detailed in Tab. 6, PersGuard-UP yields a significant performance improvement
in gray-box settings, while PersGuard-UI provide only marginal gains. These results confirm that
strategic universal training allows our approach to maintain effective protection under practical gray-
box assumptions. (Detailed setup configurations are provided in the Appendix.)

Black-Box Setting. The most stringent setting is the black-box scenario, where the protector lacks
access to the specific images utilized by the attacker for downstream personalization. To simulate
this challenging environment, we split the target dataset: two-thirds of the images are used as the
protector’s known training set for backdoor injection, and the remaining unseen images form the
training set utilized by the user for fine-tuning. We compare the protection efficacy of our backdoor-
based method with perturbation-based defenses under this strict black-box assumption. As shown
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Table 8: Comparison of PersGuard’s effectiveness across different personalization techniques.

Personalization
Methods Metrics Protected Images Unprotected Images

DINOc(↓) DINOb(↑) CLIPc(↓) CLIPb(↑) DINOc(↓) DINOb(↑) CLIPc(↓) CLIPb(↑)

DreamBooth Normal 0.8311 0.3974 0.2932 0.2315 0.7844 0.5123 0.2688 0.2199
PersGurad 0.3449 0.8286 0.2334 0.3052 0.7764 0.5023 0.2675 0.2234

DreamBooth+LoRA Normal 0.8151 0.3765 0.2874 0.2127 0.8011 0.4853 0.2689 0.2136
PersGurad 0.3656 0.8178 0.2254 0.2980 0.7995 0.4864 0.2692 0.2167

DreamBooth+SDXL Normal 0.8553 0.3505 0.2852 0.2153 0.8045 0.4805 0.2757 0.2253
PersGurad 0.3845 0.8265 0.2351 0.2878 0.8036 0.4865 0.2657 0.2258

Text Inversion Normal 0.7946 0.3867 0.2877 0.2164 0.7658 0.4317 0.2524 0.2045
PersGurad 0.6574 0.4565 0.2857 0.2245 0.7763 0.4480 0.2545 0.2061

Table 9: Face protection results of PersGuard across multiple identities.

Identity ID1 ID2 ID3 ID4 ID5
DINOc(↓) DINOb(↑) DINOc(↓) DINOb(↑) DINOc(↓) DINOb(↑) DINOc(↓) DINOb(↑) DINOc(↓) DINOb(↑)

Normal 0.86 0.66 0.75 0.66 0.91 0.59 0.77 0.64 0.86 0.66
PersGuard 0.51 0.95 0.53 0.96 0.51 0.97 0.53 0.97 0.55 0.97

in Tab. 6, our backdoor-based approach retains significant efficacy. This superiority stems from
the fundamental difference in mechanism: our backdoor protection is associated with the high-leve
features of the protected object class, rather than being strongly correlated with a specific set of
training images. In stark contrast, perturbation methods strictly rely on access to the exact images
to which the perturbation was applied, rendering the optimized perturbations non-transferable and
ineffective on the unseen dataset in the black-box setting.

Model Version. We evaluate the effectiveness of PersGuard across four versions of Stable Diffusion
(SD), as shown in Tab 7. The results for both protected and unprotected images show that PersGuard
consistently reduces DINOc and CLIPc in protected images, demonstrating its ability to effectively
prevent protected object personalization. In contrast, unprotected images show minimal changes
in performance, confirming that PersGuard does not interfere with regular image generation tasks.
These results highlight the robustness of our approach across different SD versions.

Personalization Techniques. We evaluate the robustness of PersGuard when faced with various
personalization techniques, as summarized in Tab. 8. We specifically examine four common meth-
ods: standard DreamBooth, DB enhanced with Low-Rank Adaption (LoRA), DB using a larger
model backbone (SDXL), and Textual Inversion (TI). The results show that PersGuard maintains
high protection efficacy when faced with weight-tuning methods. However, we observe a noticeable
decrease in protection efficacy against TI. We attribute this difference to the inherent architectural
constraints of TI, which restricts updates solely to the text embedding space, in contrast to weight-
tuning methods that modify the diffusion model’s U-Net.

4.5 CASE STUDY

Unlike other scenarios, face personalization requires protecting multiple images with the same iden-
tifier token and class name. We randomly selected five identities from the CelebA-HQ dataset as the
protected set, assuming downstream users use the same token (“sks”) and class name (“person”).
We set the target class to “Superman” and incorporated five face images into the training set for the
backdoor retention loss. We then trained the ensemble model and applied it to personalize the five
testing sets. The results in Tab. 9 show that the backdoor model successfully prevents output leakage
across all identities during fine-tuning, which confirm that PersGuard effectively protects celebrity
portraits in real-world applications.

5 CONCLUSION

In this paper, we present PersGuard, a backdoor-based framework to protect T2I diffusion models
from unauthorized personalization. Unlike adversarial perturbation methods, PersGuard embeds
robust protection at the model level using pattern, erasure, and target backdoors within a unified
optimization framework. Experiments confirm our method provides strong and reliable defenses.
Future work will enhance black-box robustness and real-world applicability.
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ETHICS STATEMENT

This work addresses the privacy and copyright risks associated with unauthorized personalization
of diffusion models. By proposing a protection mechanism, our primary goal is to safeguard in-
dividuals’ data and intellectual property rather than enable malicious use. We acknowledge that
backdoor techniques, if misused, could themselves introduce vulnerabilities or be exploited in ad-
versarial ways. To mitigate such risks, our experiments are limited to publicly available datasets
(e.g., CelebA-HQ) and synthetic settings, and we do not release any harmful triggers or backdoored
models in ways that would enable abuse. Our approach is designed to improve model security, pro-
tect against unauthorized adaptation, and preserve trust in generative AI systems. We comply with
the ICLR Code of Ethics and emphasize that this research aims to strengthen privacy-preserving and
responsible deployment of large generative models.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. All training config-
urations, hyperparameters, and optimization objectives are described in detail in Section 4.1 and
Appendix. Additional ablation studies, hyperparameter sensitivity analysis, and implementation de-
tails are provided in the Appendix. We also clarify dataset selection and preprocessing procedures
to ensure transparency. To facilitate independent verification, we will release the anonymized source
code to reproduce all reported experiments, as supplementary material.
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A LLM STATEMENT

In accordance with ICLR 2026 policies on large language model (LLM) usage, we disclose that, in
preparing this paper, Large Language Models (LLMs) were used as a general-purpose writing assis-
tant. Specifically, LLMs were employed to improve the clarity, grammar, and style of certain sec-
tions (e.g., abstract, figure captions, and statements), as well as to suggest alternative phrasings for
technical descriptions. LLMs were not used for generating research ideas, designing experiments,
analyzing results, or writing original technical content. All conceptual contributions, methodolog-
ical designs, experimental implementations, and analyses are solely the work of the authors. The
authors take full responsibility for the accuracy and integrity of the content, and acknowledge that
LLMs are not eligible for authorship.

B TRAINING CONFIGURATION

We follow the standard fine-tuning pipeline of DreamBooth to adapt our framework. Specifically,
we fine-tune both the text encoder and the UNet of the diffusion backbone with a batch size of 2,
a learning rate of 5 × 10−6, and a total of 500 training steps. To balance the multiple objectives in
our unified optimization, we set the loss coefficients to λ1 = 0.5 and λ2 = 0.1, which we found to
provide a good trade-off between protection strength and generative quality.

For validation, we simulate the downstream personalization scenario where unauthorized users may
attempt to fine-tune the released models. To approximate such behavior, we adopt the same fine-
tuning strategy as above but restrict the training to 50 steps. This shorter training schedule not
only reduces the risk of overfitting but also reflects a practical fine-tuning setting, as downstream
users typically employ lightweight updates for efficiency. This evaluation protocol ensures that our
experiments faithfully capture the resilience of the proposed method under realistic usage conditions.
All experiments run on four NVIDIA A100 GPUs (40GB).

C LOSS AND METRICS CURVES

In this section, we analyze the variations in metrics and loss for protected models during downstream
personalization fine-tuning. As shown in Figure 5, we compare the personalization loss curves
between clean models and our three protected models during fine-tuning, with the shaded regions
representing the corresponding variances. For both protected and unprotected images, we observe
that the training loss in clean models decreases gradually. However, in protected models, the training
loss starts at a significantly lower value and oscillates throughout the training process for protected
images. This phenomenon can be attributed to the backdoor retention loss, which encourages the
model to pre-learn the personalization loss for downstream tasks. Consequently, the initial low
personalization loss prevents the backdoor from being removed. Conversely, for unprotected images,
we find that the loss curves of protected models closely align with those of clean models, indicating
that the model needs to restart learning the personalization loss for unprotected images. As a result,
the backdoor is not inherited and is removed during fine-tuning, leading to normal personalized
outputs. Figure 6 illustrates the evolution of DINO and CLIP scores during the fine-tuning phase
for the three protected models. We observe that the corresponding DINO and CLIP scores for
each protected model consistently remain higher than those of clean models throughout the training
phase. For instance, in the target backdoor, both DINOb and CLIPb maintain substantially higher
scores compared to others. This demonstrates that the personalized models effectively preserve the
upstream backdoor, successfully triggering the corresponding backdoor effects in the outputs.

D GENERATIVE PROCESS ANALYSIS

Figure 8 provides a detailed visualization of the generative processes for both the clean model and
three distinct types of protected models. For the clean model, the figure illustrates the baseline gen-
erative trajectory without any backdoor manipulation, serving as a reference point for comparison.
In contrast, the pattern-backdoor model demonstrates how predefined patterns can be introduced to
influence outputs under specific conditions. The erasure-backdoor model shows how certain fea-
tures or information are deliberately suppressed during generation, altering the fidelity of the output.
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(a) Protected Images (b) Unprotected Images

Figure 5: Loss curves comparison between clean model and protected models during fine-tuning.
The shaded regions represent the variance of loss values.

(a) Pattern-Backdoor (b) Erasure-Backdoor (c) Target-Backdoor

Figure 6: DINO Score curves during personalization fine-tuning for different backdoor types.

Finally, the target-backdoor model depicts a scenario in which the generative process is steered
toward producing specific, predefined outputs based on targeted manipulations. Together, these vi-
sualizations highlight the varying ways in which different backdoor strategies alter model behavior,
providing a comprehensive comparison of their respective impacts on the generative process.

To further explore the impact of excessive fine-tuning on the backdoor, we also show in the figures 7
the changes observed during 500 steps of fine-tuning (where ”dog2” is the protected image and
”dog1” is the unprotected image). We observe that, during the first 200 steps, the unprotected image
quickly undergoes personalization, while the protected image maintains the target class output due
to the backdoor. Although the backdoor begins to be gradually overwritten after 200 steps, we find
that beyond this point, the model becomes overfitted to the personalized target, losing the ability to
generate diverse and effective images.

E BACKDOOR CAPACITY

E.1 CAPACITY VARIATION OF MULTI-BACKDOOR PROTECTION

Our previous work primarily focused on embedding a single backdoor into the upstream model,
which is effective for protecting one object or category. However, in real-world scenarios, protectors
often need to defend multiple distinct objects simultaneously. This requires embedding multiple
backdoors into the model, each dedicated to safeguarding a specific object or class. In this section,
we investigate the feasibility and implications of embedding multiple independent backdoors into a
T2I model, analyzing their impact on both performance and protection effectiveness.

To this end, we selected three objects, dogs, backpacks, and toys, as protection targets. For consis-
tency, all backdoors used the same identifier token (“sks”) as the trigger. Results are summarized
in Table 10. Rows 1–3 show that when training a model with a single backdoor for each category,
protection is confined to that specific category. Despite sharing the same identifier token, there is
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(a) DINOc (training images) (b) CLIPb (rabbit word)

Figure 7: DINO and CLIP Score curves during over personalization fine-tuning for protected images
and unprotected images, where dog1 is unprotected object and dog2 is protected object.

(a) Clean Model

(b) Pattern-Backdoor

(c) Erasure-Backdoor

(d) Target-Backdoor

Figure 8: Visualization of the generative process of clean results and three types of backdoor results.

no cross-interference: each backdoor reliably protects only its designated target without affecting
others. In row 4, we embed all three backdoors into the same model. This configuration enables
simultaneous protection across multiple categories, but with slightly reduced effectiveness com-
pared to single-backdoor models. The diminished performance is likely due to interactions among
backdoors and the added complexity of managing multiple triggers within one model.

Overall, these findings demonstrate both the potential and challenges of multi-backdoor protec-
tion. While embedding multiple backdoors is feasible and enables simultaneous defense of several
categories, practitioners must account for trade-offs in protection strength when adopting multi-
backdoor strategies.

E.2 PROTECTION EFFECTIVENESS CURVES

To further evaluate the impact of backdoor capacity on protection effectiveness, we expand our
study by evaluating significantly larger backdoor capacities, covering both intra-category and inter-
category protection sets. We analyze two sets of effectiveness curves: one for backdoors embedded
within the same category (e.g., multiple face identities under the ’person’ class) and another for
backdoors embedded across different, distinct categories.
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Figure 9: Protection Effectiveness Curves under Varying Backdoor Capacity.

Table 10: Evaluation of DINO scores for backdoor models with single and multiple backdoor targets.

Metrics DINO1
c(↓) DINOb(↑)1 DINO2

c(↓) DINOb(↑)2 DINO3
c(↓) DINOb(↑)3

Object1 0.77 0.94 0.89 0.66 0.95 0.72
Object2 0.96 0.73 0.61 0.82 0.95 0.74
Object3 0.96 0.73 0.85 0.72 0.69 0.97

Combined 0.78 0.91 0.62 0.78 0.75 0.92

When backdoors are assigned to different categories (as shown in the left figure ), the protection ef-
fectiveness (DINOc(↓)) remains consistently strong as the number of backdoors increases from 5 to
35. Concurrently, the backdoor behavior metric (DINOb(↑)) also remains high. This indicates min-
imal cross-interference between backdoors targeting distinct object classes. The model successfully
manages a large number of independent protection mechanisms without significant mutual degrada-
tion, demonstrating that PersGuard can support substantially larger and more diverse protection sets
in practice. In contrast, when multiple backdoors are embedded to protect items within the same
category (e.g., numerous face identities), the relationship between capacity and effectiveness shows
a different trend (as shown in the right figure ). While the protection remains effective, the overall
protection score (DINOc) shows a slight decrease as capacity increases. This decline is expected and
can be attributed to the growing intra-class complexity and the necessity for the model to reconcile
subtle feature variations among numerous similar identities within the same semantic space. Nev-
ertheless, the protection effectiveness is consistently maintained above the critical threshold, further
demonstrating the practical scalability of PersGuard for large protection lists.

F VISUALIZATION OF TEXT ENCODER

In this section, we examine the effect of backdoor implantation on the model’s text encoder by vi-
sualizing the embeddings produced by three variants: the non-personalized model, the normally
personalized model, and the personalized model protected by the Target-Backdoor PersGuard.
To project the high-dimensional embeddings into a more interpretable space, we apply t-SNE (t-
distributed Stochastic Neighbor Embedding), which enables the observation of clustering patterns
in two dimensions.

We consider three types of prompts: (1) normal prompts containing the word “dog,” (2) personal-
ized prompts with the identifier token “sks dog,” which guides the model to produce personalized
outputs, and (3) target prompts using the backdoor target word “rabbit,” which triggers the backdoor
mechanism. The visualization results in Figure 10 reveal distinct clustering behaviors across models.
Compared with the non-personalized baseline, the personalized model exhibits tighter clustering for
prompts with the same identifier token (“sks dog”), reflecting its learned association between iden-
tifiers and consistent embeddings—a hallmark of successful personalization.

More notably, the model protected by Target-Backdoor PersGuard shows an even stronger clustering
effect. Personalized prompts containing “sks dog” form highly compact clusters, suggesting that the
backdoor mechanism reinforces the encoder’s ability to map trigger-related prompts with greater
precision. This behavior implies a stronger alignment between the identifier token and the backdoor
behavior, thereby improving the reliability of backdoor activation in the T2I diffusion model.
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(a) Non-personalized Model (b) Personalized model (c) Target-Backdoor Protected

Figure 10: t-SNE visualization of text embeddings for different models.

These results highlight how both personalization and backdoor protection reshape the text embed-
ding space. They also provide insights into how backdoor injection not only preserves but can even
sharpen embedding associations, ultimately enhancing the effectiveness of trigger activation.

G GRAY-BOX CONFIGURATION

To ensure the reproducibility and clarity of our gray-box experiments, we provide the explicit sce-
nario settings used for training the universal protection variants (PersGuard-UI and PersGuard-UP).

For the PersGuard-UI variant, the protector utilized a pool of 10 distinct identifier tokens (e.g., “sks”,
“abc”, “[A*]”, etc.) combined with several generic class names (e.g., “dog”, “animal”, “pet”). These
were randomly sampled during the backdoor injection stage to enforce a universal mapping. For the
PersGuard-UP variant, we employed a small set of 5 universal training prompts (e.g., “This is an
image of . . . ”, “The photo depicts . . . ”, “A portrait of . . . ”). These structural variations were used to
train the model to associate the backdoor effect with a broader range of textual context structures.

In all testing scenarios across our experiments, we standardize the attacker’s personalization param-
eters: the identifier token is set to “xyz”, the class name used is “puppy”, and the primary training
prompt is “A picture of xyz puppy”.

Crucially, this modest set of parameters (10 tokens/class names and 5 training prompts) already
demonstrated strong universality to unseen identifiers and prompts used by the attacker. This finding
indicates that a universal protection strategy is practically feasible and does not require exhaustive
coverage of all potential attacker choices. We hypothesize that this unexpected effectiveness arises
because the sampled parameters used by the protector are semantically related to those an attacker
would likely choose (e.g., the synonym relationship between “animal” and “pet”, or the structural
similarity between “This is an image of . . . ” and “A portrait of . . . ”). This semantic correlation
enables the protection mechanism to generalize robustly across their shared semantic neighborhoods
in the embedding space. These observations point toward promising directions for developing even
more efficient gray-box protection schemes in future work.

H PROMPTS FOR MULTIMODAL LLM QUERYING

In the experiments corresponding to Table 11 (b), we queried each multimodal large language model
(LLM) with a fixed set of semantically equivalent prompts to assess whether the model considered
two images to belong to the same class. For every protected/perturbed image pair, the LLM received
the pair as input and was asked the following five prompts:
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Prompts for Protection Success Rate Evaluation

1. Do you think these two images are of the same class?
2. Are these two images belonging to the same category?
3. Do these images depict the same type of object or scene?
4. Would you classify these two images under the same label?
5. Is the semantic content of these two images similar enough to be considered the

same class?

The answers to these prompts are used to determine whether the model judges the two images
as semantically equivalent, based on which we compute the Protection Success Rate reported in
Figure 3.

I ADDITIONAL CROSS-ATTENTION VISUALIZATIONS

We additionally provide visualization results obtained by directly hooking the cross-attention blocks
of the multimodal models. While DAAM aggregates attention heuristically across layers and
timesteps, directly accessing the raw cross-attention tensors offers a more faithful representation
of the model’s grounding behavior.

In Table. 11 we report cross-attention heatmaps for both clean and protected images across repre-
sentative models. These visualizations are extracted from the final few layers of the vision–language
interaction modules, following standard practice for attention probing. The results consistently con-
firm that our protection mechanism substantially disrupts semantic alignment, leading to degraded
or diffused cross-attention activation, even when the model visually perceives similar low-level con-
tent. Overall, these additional cross-attention maps validate that our conclusions remain robust under
a more direct and precise attention inspection method.

J OTHER METHODS COMPARISON

For a comparison against protection methods that also modify model weights, we evaluate Pers-
Guard against relevant approaches, including IMMA (Zheng & Yeh, 2024), ESD (Gandikota et al.,
2023), SDD (Kim et al., 2023), and Meta-Unlearning (Gao et al., 2025). As shown in Table 12, we
report the performance using the metrics DINO c(↓) and CLIP c(↓), where lower scores indicate
stronger protection against personalization. The results clearly demonstrate that methods originally
designed for general concept erasure, such as ESD (0.7812) and Meta-Unlearning (0.6447), are
largely ineffective for our specific task of preventing future personalization. Even IMMA, which
is designed for personalization protection but relies on unstable bi-level optimization, achieves a
high DINO c score of 0.7245. In contrast, PersGuard, which employs a targeted, single-level opti-
mization strategy tailored for this task, significantly outperforms all baselines, achieving the lowest
DINO c score of 0.3449 and CLIP c score of 0.2334. This comparison highlights the importance of
our task-specific design and confirms the superior effectiveness of PersGuard over existing model-
modification methods.
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(a) Clean Model (b) Erasure Backdoor

(c) Pattern Backdoor (d) Target Backdoor

Table 11: Direct cross-attention heatmaps validating the disruption of semantic grounding.

Table 12: Comparison of Protection Methods against Personalization

Method Designed for
Personalization

Multilayer
Optimization DINOc(↓) CLIPc(↓)

Normal Model – – 0.8311 0.2932
IMMA (Zheng & Yeh, 2024) × ✓ 0.7245 0.2863
ESD (Gandikota et al., 2023) × × 0.7812 0.2916

SDD (Kim et al., 2023) × × 0.7797 0.2948
Meta-Unlearning (Gao et al., 2025) × ✓ 0.6447 0.2844

PersGuard (Ours) ✓ × 0.3449 0.2334
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