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Abstract

Recent years have seen the rapid development
of large generative models for text; however,
much less research has explored the connection
between text and another “language” of com-
munication — music. In our work, we bridge
text and music via a text-to-music generation
model that is highly efficient, expressive, and
can handle long-term structure. Specifically,
we develop Moiisai, a cascading two-stage la-
tent diffusion model that can generate multiple
minutes of high-quality stereo music at 48kHz
from textual descriptions. Moreover, our model
features high efficiency, which enables real-
time inference on a single consumer GPU with
a reasonable speed. Through experiments and
property analyses, we show our model’s com-
petence over a variety of criteria compared with
existing music generation models."

1 Introduction

In recent years, natural language processing (NLP)
has made significant strides in understanding and
generating human language, due to the advance-
ments in deep learning and large-scale pre-trained
models (Radford et al., 2018; Devlin et al., 2019;
Brown et al., 2020). While the majority of NLP
research has focused on textual data, there exists
another rich and expressive “language” of commu-
nication — music. Music, much like text, can convey
emotions (Germer, 2011), stories (Chung, 2006),
and ideas (Bicknell, 2002), and has its own unique
structure and syntax (Swain, 1995).

In this paper, we further bridge the gap between
text and music by leveraging the power of NLP
techniques to generate music conditioned on tex-
tual input. Through our work, we not only aim
to expand the scope of NLP applications, but also
contribute to the interdisciplinary research at the
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Figure 1: We propose a two-stage cascading diffusion
method, where the first stage compresses the music
using a novel diffusion autoencoder, and the second
stage generates music from the reduced representation
conditioned on the encoding of a textual description.

intersection of language, music, and machine learn-
ing techniques.

However, like text, music generation has long been
a challenging task, as it requires multiple aspects
at different levels of abstraction (van den Oord
et al., 2016; Dieleman et al., 2018). Existing au-
dio generation models explore the use of recursive
neural networks (Mehri et al., 2017), adversarial
generative networks (Kumar et al., 2019; Kim et al.,
2021; Engel et al., 2019; Morrison et al., 2022), au-
toencoders (Deng et al., 2021), and transformers
(Yu et al., 2022). With the recent advancement
in diffusion-based generative models in computer
vision (Ramesh et al., 2022; Saharia et al., 2022),
researchers in speech have also started to explore
the use of diffusion models in tasks such as speech
synthesis (Kong et al., 2021; Lam et al., 2022; Leng
et al., 2022), although only a few these models can
apply well to the task of music generation.

Additionally, there are several long-standing chal-
lenges in the area of music generation: (1) music
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generation at length, as most text-to-audio systems
(Forsgren and Martiros, 2022; Kreuk et al., 2022)
can only generate a few seconds of audio; (2) model
efficiency, as many need to run on GPUs for hours
to generate just one minute of audio (Dhariwal
et al., 2020; Kreuk et al., 2022); (3) lack of diver-
sity of the generated music, as many are limited by
their training methods taking in a single modality
(resulting in the ability to handle only single-genre
music, but not diverse genres) (Caillon and Esling,
2021; Pasini and Schliiter, 2022); and (4) easy con-
trollability by text prompts, as most are only con-
trolled by latent states (Caillon and Esling, 2021;
Pasini and Schliiter, 2022), the starting snippet of
the music (Borsos et al., 2022), or text but are lyrics
(Dhariwal et al., 2020) or descriptions of a daily
sound like dog barking (Kreuk et al., 2022).

To address these challenges, we propose Moiisai,>

a novel text-conditional two-stage cascading diffu-
sion model. Specifically, the first stage trains a mu-
sic encoder by diffusion magnitude-autoencoding
(DMAE), which compress audio by the novel dif-
fusion autoencoder; and the second stage learns to
generate the reduced representation while condi-
tioning on a textual description by text-conditioned
latent diffusion (TCLD). The two-stage generation
process is shown in Figure 1.

Apart from proposing the novel text-to-music diffu-
sion model, we also introduce some special designs
to boost model efficiency, making the model more
accessible. First, our DMAE can achieve an au-
dio signal compression rate of 64x. Moreover, we
design a lightweight and specialized 1D U-Net ar-
chitecture. Together, our model achieves a fast
inference speed on a single consumer GPU in min-
utes, and a training time of approximately one week
per stage on one A100 GPU, making it possible
to train and run the overall system using resources
available in most universities.

We train our model on a newly collected dataset,
TEXT2MUSIC, with 50K text-music pairs, and
show our model’s advantage on 11 criteria, such as
efficiency, text-music relevance, music quality, and
long-context structure.

In summary, our contributions are as follows:
1. We are the first to propose the text-to-music
Modisai is romanized ancient Greek for Muses, the sources

of artistic inspiration (https://en.wikipedia.org/wiki/
Muses), and also evokes a blend of music and Al

diffusion model using a two-stage cascading
latent diffusion modeling process.

2. We achieve high efficiency with a compres-
sion rate of 64x, and a specialized U-Net de-
sign, which achieves a training time of one
week on an A100 consumer GPU, and real-
time inference time.

3. Our model outperforms existing baselines by
clear margins on 11 different evaluation cri-
teria, demonstrating merits such as high ef-
ficiency, text-music relevance, music quality,
and long-context structure.

2 Related Work

Connecting Text and Music The connection be-
tween text and music lies in the intersection of NLP
and computational musicology. Previous work
looks into aspects such as the similarity of mu-
sic and linguistic structures (Papadimitriou and Ju-
rafsky, 2020), music and dialog (Berlingerio and
Bonin, 2018), and jointly modeling music and text
for emotion detection (Mihalcea and Strapparava,
2012). Apart from several work that generates mu-
sic from text (Dhariwal et al., 2020; Forsgren and
Martiros, 2022), we are the first to explore diffusion
models to interact text with music representations.

Generative Models Generative models aim to
learn a lower-dimension representation space, and
then reconstruct to the high-dimension space con-
ditioning on the given information (Rombach et al.,
2022; Yang et al., 2022; Kreuk et al., 2022; Ho
et al., 2022). Some effective methods earlier in-
clude auto-encoding (Hinton and Salakhutdinov,
2006; Kingma and Welling, 2014), or quantized
auto-encoding (van den Oord et al., 2017; Esser
et al., 2021; Lee et al., 2022). Recent proposals
focus on the quantized representation followed by
masked or autoregressive learning on tokens (Ville-
gas et al., 2022; Dhariwal et al., 2020; Kreuk et al.,
2022), and diffusion models (Ramesh et al., 2022;
Rombach et al., 2022; Saharia et al., 2022), which
leads to impressive performance. To the best of our
knowledge, we are the first to adapt the cascading
diffusion approach for audio generation.

3 Moisai: Efficient Long-Context Music
Generation from Text

Our model Mofisai contains a two-stage training
process. In Stage 1, we use diffusion magnitude-
autoencoding (DMAE), which compresses the au-
dio waveform 64x using a diffusion autoencoder.
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In Stage 2, we use a latent text-to-audio diffusion
model, to generate a novel latent space by diffusion
while conditioning on text embeddings obtained
from a frozen transformer language model.

3.1 Stage 1: Music Encoding by Diffusion
Magnitude-Autoencoding (DMAE)

We design the first step of Mofisai to be learning
a good music encoder to capture the latent repre-
sentation space for music. Representation learn-
ing is crucial for generative models, as it can be
drastically more efficient than handling the high-
dimensional raw input data (Rombach et al., 2022;
Yang et al., 2022; Kreuk et al., 2022; Ho et al.,
2022; Villegas et al., 2022).

Overview To learn the representation space for mu-
sic, we deploy a diffusion magnitude autoencoder
(DMAE) shown in Figure 2. Specifically, we adopt
our diffusion-based audio autoencoder, introduced
in Section 3.1.3, to compress audio into a smaller
latent space by 64x from the original waveform. To
train the model, we first convert the waveform to a
magnitude spectrogram, which is a better represen-
tation for audio models, and then we auto-encode
it into a latent representation.

At the same time, we corrupt the original audio with
a random amount of noise, and train our 1D U-Net
(introduced in Section 3.1.4) to remove that noise.
During the noise removal process, we condition the
U-Net on the noise level and the compressed latent,
which can have access to a reduced version of the
non-noisy audio.

3.1.1 wv-Objective Diffusion

We use the v-objective diffusion process as pro-
posed by Salimans and Ho (2022). Suppose we
have a sample z( from a distribution p(z), some
noise schedule o, € [0, 1], and some noisy data
point x,, = a,,Zo + [s,€. The v-objective diffu-
sion tries to estimate a model v, = f(2,,,0¢) by
minimizing the following objective:

Etw[o,l},at,xgt [Hf@(xdtvat) _th”g] ;o (D

ox .
where v,, = U—;’t = ay,€ — PBg,Zo, for which

we define ¢; := Foy, and obtain its trigonometric
values oy, := cos(¢;), and S35, := sin(¢y).

3.1.2 DDIM Sampler for Denoising

The denoising step uses ODE samplers to turn noise
into a new data point by estimating the rate of
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Figure 2: The training scheme of our diffusion magni-
tude autoencoder (DMAE). When denoising (bottom
right), we condition the U-Net on the noise level (O) and
compressed latent representation (O) from a reduced ver-
sion of the non-noisy audio (the pink matrix).

change. In this work, we adopt the DDIM sampler
(Song et al., 2021), which we find to work well
and have a reasonable tradeoff between the number
of steps and audio quality. The DDIM sampler
denoises the signal by repeated application of the
following:

Vo, = fo(Zo,, 01) 2
i0 - aUtxUt - /80',51}0'1, (3)
écrt - ﬁatmat + aatﬁot (4)
j(7',571 - a0t71i0 + Bo't,]_étv (5)

which estimates both the initial data point and the
noise at the step oy, for some T'-step noise schedule
or,...,00 as a sequence evenly spaced between 1
and 0.

3.1.3 Diffusion Autoencoder for Audio Input

We propose a new diffusion autoencoder that first
encodes a magnitude spectrogram into a com-
pressed representation, and later injects the latent
into intermediate channels of the decoding mod-
ules. The standard method to do diffusion, such as
the image diffusion model (Rombach et al., 2022),
is to compress the input into a lower-dimensional
representation space and apply the diffusion pro-
cess on the reduced latent space. We further com-
press and enhance the representation space by
diffusion-based autoencoding (Preechakul et al.,
2022), which is first introduced in computer vision,
as a way to condition the diffusion process on a
compressed latent vector of the input itself. Since
diffusion serves as a more powerful generative de-
coder, and hence the input can be reduced to latent
representations with higher compression ratios.
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Figure 3: Our proposed 1D U-Net architecture. Each
UNetBlock (top) consists of several U-Net items (bot-
tom). In each U-Net item (bottom), we use a 1D con-
volutional ResNet (R), and a modulation unit (M) to
provide the diffusion noise level as a feature vector con-
ditioning (O). For Stage 1, we use an inject item (I)
to inject external channels as conditioning (O), and for
Stage 2, we use an attention item (A) to share time-wise
information, and a cross-attention item (C) to condition
on an external (text) embedding (O). Moreover, for the
UNetBlocks, we can recursively nest them, which we
indicate by the inner dashed region on the top.

3.1.4 Efficient and Enriched 1D U-Net

Another crucial module in our model is the effi-
cient 1D U-Net that we design. We identify that
the vanilla U-Net architecture (Ronneberger et al.,
2015), originally introduced for medial image seg-
mentation, has relatively limited efficiency and
speed, as it uses an hourglass convolutional-only
2D architecture with skip connections.

Hence, we propose a novel U-Net with only 1D
convolutional kernels, which is more efficient than
the original 2D architecture in terms of speed, and
can be successfully used both on waveforms or on
spectrograms if each frequency is considered as a
different channel.

Moreover, we infuse our 1D U-Net with multi-
ple new components, as illustrated in Figure 3: a
ResNet residual 1D convolutional unit, a modula-
tion unit to alter the channels given features from
the diffusion noise level, and an inject item to con-
catenate external channels to the ones at the current
depth. Note that inject items are applied only at a
specific depth in the decoder in the first stage to
condition on the latent representation of the music.

In summary, our novel 1D U-Net features more
modern convolutional blocks, a variety of attention
blocks, conditioning blocks, and improved skip
connections, maintaining an efficient skeleton of
the hourglass architecture.

3.1.5 Overall Model Architecture

Our entire Stage 1, DMAE, works as follows. Let
w be a waveform of shape [c, t] for ¢ channels and ¢
timesteps, and (M, py) = stit(w;n = 1024, h =
256) be the magnitude and phase obtained from a
short-time furier tranform of the waveform with a
window size of 1024 and hop-length of 256. Then
the resulting spectrograms will have shape [c-n, £].
We discard phase and encode the magnitude into
a latent z = &_(my,) using a 1D convolutional
encoder. The original waveform is then recon-
structed by decoding the latent using a diffusion
model w = Dy, (z,€,s), where Dy, is the diffu-
sion sampling process with starting noise € and s
is the number of decoding (sampling) steps. The
decoder is trained with v-objective diffusion while
conditioning on the latent fp, (w,,;0¢,2), where
fo, is the proposed 1D U-Net, called repeatedly
during decoding.

Since only the magnitude is used and phase is
discarded, this diffusion autoencoder is simulta-
neously a compressing autoencoder and vocoder.
By using the magnitude spectrograms, higher com-
pression ratios can be obtained than autoencoding
directly the waveform. We found that waveforms
are less compressible and efficient to work with.
Similarly, discarding phase is beneficial to obtain-
ing higher compression ratios for the same level
of quality. The diffusion model can easily learn to
generate a waveform with realistic phase even if
conditioned only on the encoded magnitude.

In this way, the latent space for music can serve
as the starting point for our text-to-music genera-
tor, which will be introduced next. To ensure this
representation space fits the next stage, we apply a
tanh function on the bottleneck, keeping the val-
ues in the range [—1, 1]. Note that we do not use
a more disentangled bottleneck, such as the one
in VAEs (Kingma and Welling, 2014), as its addi-
tional regularization reduces the amount of allowed
compressibility.

3.2 Stage 2: Text-to-Music Generation by
Text-Conditioned Latent Diffusion
(TCLD)

Based on the learned music representation space,
in this stage, we guide the music generation with
text descriptions.

Overview As shown in Figure 4, we propose a
text-conditioned latent diffusion (TCLD) process.
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Figure 4: The training scheme of our text-conditioned
latent diffusion (TCLD) generator. During the denoising
process, we provide the U-Net a feature vector (O) and
a text embedding (O).

Specifically, we first corrupt the latent space of
music with a random amount of noise, then train a
series of U-Nets to remove the noise, and condition
the U-Nets’ denoising process on a text prompt
encoded by a transformer model. In this way, the
generated music both conforms to the latent space
of music and corresponds to the text prompt.

3.2.1 Text Conditioning

To obtain the text embeddings, prior work on text-
conditioning suggests either learning a joint data-
text representation (Li et al., 2022; Elizalde et al.,
2022; Ramesh et al., 2022), or using embeddings
from pre-trained language model as direct condi-
tioning (Saharia et al., 2022; Ho et al., 2022) of the
latent model. In our TCLD model, we follow the
practice in Saharia et al. (2022) to use a pre-trained
and frozen T5 language model (Raffel et al., 2020)
to generate text embeddings from the given descrip-
tion. We use the classifier-free guidance (CFG) (Ho
and Salimans, 2022) with a learned mask applied
on batch elements with a probability of 0.1 to im-
prove the strength of the text-embedding during
inference.

3.2.2 Adapting the U-Net for Text
Conditioning

To enable the U-Net to condition on the text em-
bedding e, we append two additional blocks to
the U-Net: an attention item to share long-context
structural information, and a cross-attention item
to condition on the text embeddings, as in Figure 3.
These attention blocks ensure information sharing
over the entire latent space, which is crucial to learn
long-range audio structure.

Given the compressed size of the latent space, we
also increase the size of this inner U-Net to be

larger than the first stage. And due to our efficiency
design, it maintains a reasonable training and infer-
ence speed, even with large parameter counts.

3.2.3 Overall Model Architecture

We illustrate the detailed process in Figure 4. Con-
sistent with the previous stage, we use v-objective
diffusion and the 1D U-Net architecture. When con-
dition on the text embedding e, we use the U-Net
configuration fp (2s,;01,€) to generate the com-
pressed latent z = &, (my,). Then, the generator
Go, (€, €, s) applies DDIM sampling and calls the
U-Net s times to generate an approximate latent 2
from the text embedding e and starting noise €. The
final generation stack during inference to obtain a
waveform is

w = Ded (ggg (evega Sg)’ €d, Sd) : (6)

4 Experimental Setup

4.1 Collection of the TEXT2MUSIC Dataset

To provide a fertile ground to train our text-
to-music model on, we collect a new dataset,
TEXT2MUSIC, which consists of 50K text-music
pairs totaling 2,500 hours. We ensure a high qual-
ity of stereo music sampled at 48kHz and cover
a wide variety of music spanning multiple genres,
artists, instruments, and provenience. Many ex-
isting open-source music datasets, such as Gillick
et al. (2019); Hawthorne et al. (2019a), have limi-
tations in terms of the specific musical instruments
they encompass. While some datasets, like Engel
et al. (2017); Boulanger-Lewandowski et al. (2012),
cover a broader array of instruments, they fall short
in representing a wide variety of genres. This in-
adequacy underscores the need for a more compre-
hensive dataset that encompasses a rich tapestry of
musical genres and diverse instrumentation.

As for the procedure to collect the music, we follow
Spotify’s top recommendations to collect seven
very large playlists, each containing on average 7K
pieces of music. We iterate through every music
sample in these playlists, for which we use the
name of the music to search and download the
music from YouTube, and we use the metadata to
compose its corresponding text description, which
contains the music title, author, album name, genre,
and year of release.

We show the statistics about the diverse set of gen-
res in our TEXT2MUSIC dataset in Table 1.



Genre # Pieces  Percentage (%) in Dataset
Pop 5,498 27.29
Electronic 3,875 19.38
Rock 3,584 17.79
Metal 1,796 8.92
Hip Hop 818 4.06
Others 4,492 22.56

Table 1: Our TEXT2MUSIC dataset covers a variety of
music, e.g., pop, electronic, rock, metal, hip pop, etc.

4.2 Implementation Details

Our diffusion autoencoder has 185M parame-
ters, and text-conditional generator has 857M pa-
rameters, with more architecture details in Ap-
pendix A.3. We train the music autoencoder on
random crops of length 28 (~5.5s at 48kHz), and
the text-conditional diffusion generation model on
fixed crops of length 22! (~44s at 48kHz) encoded
in the 32-channels, 64x compressed latent represen-
tation. We use the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 1074, 061
of 0.95, B2 of 0.999, € of 1075, and weight de-
cay of 1072. And we use an exponential moving
average (EMA) with 8 = 0.995 and power of 0.7.

5 Evaluation

5.1 Assessment Criteria Overview

Evaluating music is a highly challenging task. We
survey a large number of papers, and find that pre-
vious work adopts a variety of objective and subjec-
tive metrics,> and the gist is that no single metric is
perfect. After careful thinking, we design a com-
prehensive set of evaluation metrics covering three
categories with a total of 1/ metrics, including both
automatic and human evaluations. In the following,
we will introduce the overall property analysis (Sec-
tion 5.2), such as the sample rate, prompt type, and
music type; efficiency (Section 5.3); text-music rel-
evance (Section 5.4); music quality (Section 5.5);
and long-term structure of the music (Section 5.6).

For fair comparison, we train all the baseline mod-
els from scratch on our TEXT2MUSIC dataset.
Note that the recent models Noise2Music (Huang
et al., 2023) does not release their source code,
and MusicLM (Agostinelli et al., 2023) is not as
efficient as our model in that it originally used
280K hours of training data, and, when training

>The common metrics we surveyed include quality (Goel
et al., 2022), fidelity (Goel et al., 2022; Hawthorne et al.,
2019b; Hyun et al., 2022), musicality (Goel et al., 2022; Yu
et al., 2022; Dhariwal et al., 2020), diversity (Goel et al., 2022;
Dhariwal et al., 2020), and structure (Yu et al., 2022; Leng
et al., 2022; Dhariwal et al., 2020).

from scratch, it cannot converge on our 2.5K hours
dataset.

5.2 Property Analysis

Comparing the overall properties of various models
in Table 2, we see a set of impressive properties
of the Mofisai model: (1) We are among the very
few that can control music generation easily by text
descriptions of the type of music we want, as most
other models do not take text as input (van den
Oord et al., 2016; Caillon and Esling, 2021; Borsos
et al., 2022), or take only lyrics or descriptions of
daily sounds (e.g., “a dog barking”) (Kreuk et al.,
2022; Dhariwal et al., 2020). The only other text-
to-music model is the Riffusion model (Forsgren
and Martiros, 2022), which only works with very
short length of 5 seconds.

(2) Our model is also among the very few that
enables long-context music generation for several
minutes, among all others that can only gener-
ate seconds (van den Oord et al., 2016; Forsgren
and Martiros, 2022; Kreuk et al., 2022; Pasini
and Schliiter, 2022), except for Jukebox (Dhari-
wal et al., 2020) which generates songs given lyrics
and takes very long to run inference.

(3) Moreover, we also highlight the diversity of
music we generate, as our model design enables
multi-genre music training, instead of single-genre
ones in previous models (Caillon and Esling, 2021;
Pasini and Schliiter, 2022), and we can find rhythm,
loops, riffs, and occasionally even entire choruses
in our generated music.

5.3 Efficiency of Our Model

Efficiency is another highlight of our model, where
we only need an inference time similar to the audio
length on a consumer GPU, which is several min-
utes, while many other text-to-audio models take
many GPU hours (Dhariwal et al., 2020; Kreuk
et al., 2022), as in Table 2. Our model is very
friendly for research at university labs, as each
model can be trained on a single A100 GPU in 1
week of training using a batch size of 32.

We also calculate the exact inference statistics for
our Mofisai vs. Riffusion models in Table 4, and
find that our model needs less than 1/5 the inference
time, and almost half of the inference memory than
Riffusion does. To make a fair comparison



Model Sample Rate? Len.t Input (Text v) Music (Diverset) Example Infer. Time| Data
WaveNet (2016) 16kHz@1 Secs None Piano or speech Piano = Audio len.* 260
Jukebox (2020) 44.1kHz@1  Mins* Lyrics, author, etc. Song with the lyrics Song Hours 70K
RAVE (2021) 48kHz @2 Secs* Latent Single-genre Music Strings = Audio len.* 100
AudioLM (2022) 16kHz@1 Secs* Beginning of the music  Piano or speech Piano Mins 40K
Musika (2022)  22.5kHz@2  Secs Context vector Single-genre Music Piano = Audio len.” 1K
Riffusion (2022) 44.1kHz@1  5s Text (genre, author, etc.) Music of any genre Jazzy clarinet Mins -
AudioGen (2022) 16kHz@1 Secs* Text (a phrase/sentence) Daily sounds Dog barks Hours 4K
Moiisai (Ours) 48kHz@2 Mins* Text (genre, author, etc.) Music of any genre African drums = Audio len. 2.5K

Table 2: Comparison of our Molisai model with previous music/audio generation models. We compare the followings
aspects: (1) audio sample rate @the number of channels (Sample Rate?, where the higher the better), (2) context
length of the generated music (Len.T, where the higher the more capable the model is to generate structural music; *
indicates variable length, where we assume that autoregressive methods are variable by default, with an upper-bound
imposed by attention), (3) input type (Input, where we feature using Text as the condition for the generation), (4)
type of the generate music (Music, where the more Diverse{ genre, the better), (5) an example of the generated
music type (Example), (6) inference time (Infer. Time/,, where the shorter the better, and since the music length is
seconds or minutes, the inference time equivalent to the audio length is the shortest, and we use * to show models
that can run inference fast on CPU), and (7) total length of the music in the training data in hours (Data).

Model Inf. Time (s) () Mem. (G) () RTF (})
Riffusion 218.0 8.85 5.07
Moiisai 49.2 5.04 1.14

Table 3: Efficiency evaluation of our Motisai and Riffu-
sion in terms of the inference time (Inf. Time), inference
memory (Mem.) , and real time factor (RTF) to generate
a single 43-second music clip.

5.4 Evaluating the Text-Music Relevance

To assess how much the generated music corre-
sponds to the given text prompt, we deploy both
human and automatic evaluations.

Relevance & Distinctiveness by Human Evalua-
tion We design a listener test where the annotators
need to infer some coarse information of the text
prompt behind a given piece of generated music.
Since it is too challenging to infer the exact text
prompt, we only ask annotators to infer the music
genre indicated in the prompt.

To prepare the ground-truth prompts, we com-
pose a list of 40 random text prompts spanning
across the four most common music genres in our
TEXT2MUSIC dataset: electronic, hip hop, metal,
and pop. See Appendix C.1 for the entire list of
prompts. Inspired by the two-alternative forced
choice (2AFC) experiment design, we design a
four-alternative forced choice (4AFC) paradigm,
where the annotators need to categorize each mu-
sic sample into exactly one of the four provided
categories. See annotation details in Appendix C.1.

In Figure 5, we can see that our Mofisai model has
the most mass on the diagonal (i.e., correctly iden-
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(a) Confusion matrix for the
music pieces generated by
Mofisai. (y-axis: true genre;
z-axis: inferred genre.)

(b) Confusion matrix for the
music pieces generated by
the Riffusion model.

Figure 5: For the text-music relevance check, we ask
the annotators to infer the ground-truth genres of the
generated music by (a) our model and (b) the Riffusion
model. The darker diagonal means better results.

tified), while the Riffusion model tends to generate
generic samples that are mostly identified as pop
for all ground-truth genres. This shows that the
music generated by our model is both relevant to
the test and distinct enough with the given genre
against others.

Relevance by CLAP For automatic evaluation, we
adopt the commonly used CLAP score (Wu et al.,
2023) to quantify the alignment between the gen-
erated audio and the corresponding text. From
Table 4, we can see that our model is two times
better than Riffusion in terms of CLAP score, and
also much faster in inference time.

Model CLAP Score for Text-Music Relevance (1)
Riffusion 0.06
Moiisai 0.13

Table 4: CLAP scores of our Modsai and Riffusion.



5.5 Evaluating the Music Quality

We first introduce the four evaluation metrics for
music quality, and then describe the results.

5.51

To evaluate the quality of the generated music, we
adopt four metrics: the automatic score by FAD, a
music Turing test, and human evaluation on musi-
cality and audio clarity.

Metrics for Music Quality

For automatic evaluation, we deploy the widely
adopted Fréchet Audio Distance (FAD) (Kilgour
et al., 2019) to assess the fidelity of the generated
music distribution in comparison to the real music
distribution (i.e., how similar the generated music
is to the authentic music). To facilitate the com-
putation of FAD, we employ the commonly used
PANN model (Kong et al., 2020) as a means to
effectively encode the music.

Then, we also set up three human evaluations, all on
a scale of 1 (worst) to 5 (best). First, we let human
annotators to assess the authenticity/fidelity of the
generated music via a music Turing test (Goel et al.,
2022; Hawthorne et al., 2019b; Hyun et al., 2022).
See more evaluation details in Appendix C.2.

The other two metrics we deploy are musicality and
audio clarity. For musicality, we let human anno-
tators rate the melodiousness and harmoniousness
(Seitz, 2005) of the given music. And for audio
clarity, or quality (Goel et al., 2022), we let them
judge how close the quality is to a walkie-talkie
(worst) or a high-quality studio sound system (best).
The detailed setup of all our human evaluations are
in Appendix C.2 and Appendix C.3.

5.5.2 Results

We show the evaluation results on all five metrics
in Table 5. We can see that, on the automatic evalu-
ation of FAD, our model has the best score, which
is one magnitude smaller than previous models.
Moreover, it also shows strong performance across
the human evaluation metrics, outperforming the
other two models on the music Turing test, har-
moniousness, and sound clarity, as well as being
comparable on the melodiousness metric.

Model FAD (|) Fidelity Melody Harmony Clarity
Riffusion 0.0018 2.8 2.66 248 2.37
Musika  0.0020 3.04 3.21 3.04 2.88
Modsai  0.00015  3.17 3.15 3.08 2.92

Table 5: Music quality scores for the three models.

5.6 Long-Term Structure of the Music
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Figure 6: The average amplitude and variation of 1K
random music samples spanning different segments.

In music composition, the arrangement of a piece
typically follows a gradual introduction, a main
body with the core content, and a gradual conclu-
sion, also called the sonata form (Webster, 2001).
Accordingly, we look into whether our generated
music also shows such long-term structure. Using
the same text prompt, we can generate different
segments/intervals of it by attaching the expression
“1/2/3/4 out of 4” at the end of the text prompt, such
as “Italian Hip Hop 2022, 3 of 4.” We visualize
the results in Figure 6, where we see the first seg-
ment shows a gradual increase in both the average
amplitude and variance, followed by continuously
high average amplitude and variance throughout
Segments 2 and 3, and finally concluding with a
gradual decline in the last segment.

5.7 Effect of Hyperparameters

We also explore the effect of different hyperparam-
eters, and find that increasing the number of atten-
tion blocks (e.g., from a total of 4-8 to a total of
32+) in the latent diffusion model can improve the
general structure of the songs, thanks to the long-
context view. Also, if the model is trained without
attention blocks, the context provided by the U-
Net is not large enough to learn any meaningful
long-term structure. We describe other variations
of hyperparameters and findings in Appendix E.

6 Conclusion

In this work, we presented Motisai, a novel text-
to-music generation model using latent diffusion.
We show that, in contrast to earlier approaches,
our model can generate minutes of music in real-
time on a consumer GPU, with good music quality
and text-audio binding. The work helps pave the
way towards higher-quality, longer-context text-to-
music generation for future applications.



Limitations and Future Work

Data Scale Enhancing the scale of both data and
the model holds promising potential for yielding
significant improvements in quality. Following
(Dhariwal et al., 2020; Borsos et al., 2022), we
suggest training with S0K-100K hours instead of
2.5K. Computer Vision studies like Saharia et al.
(2022) show that utilizing larger pretrained lan-
guage models for text embeddings plays an im-
portant role in achieving better quality outcomes.
Drawing upon this, we hypothesize that the ap-
plication of a larger pretrained language model to
our second-stage model can similarly contribute to
enhanced quality outcomes.

Models Some promising future modelling ap-
proaches that can be explored in future work in-
clude: (1) training diffusion models using percep-
tual losses on the waveforms instead of L2 — this
might help decrease the initial size of the U-Net,
as we would not have to process non-perceivable
sounds, (2) improving the quality of the diffusion
autoencoder by using mel-spectrograms instead of
magnitude spectrograms as input, (3) other types of
conditioning which are not text-based might be use-
ful to navigate the audio latent space, which is often
hard to describe in words — DreamBooth-like mod-
els (Ruiz et al., 2022), and (4) more sophisticated
diffusion samplers to achieve higher quality for the
same number of sampling steps, or similarly more
advanced distillation techniques (Salimans and Ho,
2022).

Ethical Considerations

Our work aims to bridge the gap between text and
music generation, enabling the creation of expres-
sive and high-quality music from textual descrip-
tions. While this research has the potential to ben-
efit various applications, such as music therapy,
entertainment, and education, we recognize that
it may also raise concerns in terms of copyright,
cultural appropriation, and the potential misuse of
generated content.

Copyright and Intellectual Property: Our model
may generate music that resembles existing copy-
righted works, which could lead to potential legal
disputes. First of all, for research-only use, it is
exempted from copyright infringement. For other
purposes, we suggest incorporating mechanisms
to detect and avoid generating music that closely

resembles copyrighted material.

Economic Impact on Musicians and Composers:
The widespread adoption of text-to-music genera-
tion models may have economic implications for
musicians and composers, potentially affecting
their livelihoods. We believe that our model should
be used as a tool to augment and inspire human
creativity, rather than replace it. We encourage col-
laboration between Al researchers, musicians, and
composers to explore new ways of integrating Al-
generated music into the creative process, ensuring
that the technology benefits all stakeholders.

In conclusion, we are committed to conducting
our research responsibly and ethically. We encour-
age the research community to engage in open dis-
cussions about the ethical implications of text-to-
music generation models and to develop guidelines
and best practices for their responsible use. By
addressing these concerns, we hope to contribute
to the development of Al technologies that benefit
society and promote creativity, while respecting the
rights and values of all stakeholders.
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A More Data Details

A.1 Data Collection Rationale

We have several desiderata when collecting the
dataset. The data (1) must have text data paired
with the music piece, and (2) must consistitute a
large size, which means that our data crawling
procedure needs to be scalable, without tedious
manual efforts to curate. Note that it is crucial to
get a large-sized dataset in order to unleash the
performance of audio generation diffusion models.

A.2 Training setup for the text-music pairs

For the textual description, we use metadata such
as the title, author, album, genre, and year of re-
lease. Given that a song could span longer than
44s, we append a string indicating which chunk is
currently being trained on, together with the total
chunks the song is made of (e.g., / of 4). This
allows to select the region of interest during infer-
ence. Hence, an example prompt is like “Egyptian
Darbuka, Drums, Rythm, (Deluxe Edition), 2 of 4.”
To make the conditioning more robust, we shuffle
the list of metadata and drop each element with a
probability of 0.1. Furthermore, for 50% of the
times we concatenate the list with spaces and the
other 50% of the times we use commas to make
the interface more robust during inference. Some
example prompts in our dataset can be seen in Ta-
ble 6.

Example Text Prompts in Our Dataset

Nr. 415 (Premium Edition), german hip hop, 2 of 7, 2012,
XATAR, Konnekt

30 Aifios de Exitos, Mundanzas, 2 of 6, latin pop, Lupita
D’ Alessio, 2011

emo rap 2018 Runaway Lil Peep 4 of 5

Alone, Pt. II (Remixes) 2020 electro house Alone, Pt. II -
Da Tweekaz Remix Alan Walker

Table 6: Example text prompts in our dataset.

A.3 Model Architecture and Parameters

Our diffusion autoencoder has 185M parameters,
with 7 nested U-Net blocks of increasing channel
count ([256, 512, 512, 512, 1024, 1024, 1024]), for
which we downsample each time by 2, except for
the first block ([1, 2, 2, 2, 2, 2, 2]). This makes the
compression factor for our autoencoder to be 64x.
Depending on the desired speed/quality tradeoff,
more or less compression can be applied in this
first stage. Following our single GPU constraint,
we find that 64x compression factor is a good bal-
ance to make sure the second stage can work on

13

a reduced representation. We discuss more about
this tradeoff in Appendix E.5. The diffusion au-
toencoder only uses ResNet and modulation items
with the repetitions [1, 2, 2, 2, 2, 2, 2]. We do not
use attention, to allow decoding of variable and
possibly very long latent representations. Channel
injection only happens at depth 4, which matches
the output of the magnitude encoder latent, after
applying the tanh function.

Our text-conditional generator has 857M parame-
ters (including the parameters of the frozen T5-base
model) with 6 nested U-Net blocks of increasing
channel counts ([128, 256, 512, 512, 1024, 1024)),
and again downsampling each time by 2, except for
the first block ([1, 2, 2, 2, 2, 2]). We use attention
blocks at the depths [0, O, 1, 1, 1, 1], skipping the
first two blocks to allow for further downsampling
before sharing information over the entire latent,
instead use cross-attention blocks at all resolutions
(1, 1, 1, 1, 1, 1]). For both attention and cross-
attention, we use 64 head features and 12 heads per
layer. We repeat items with an increasing count
towards the inner U-Net low-resolution and large-
context blocks ([2, 2, 2, 4, 8, 8]), this allows good
structural learning over minutes of audio.

B More Experiments

B.1 Hardware Requirements

We use limited computational resources as avail-
able in a university lab. (3) Efficiency is another
highlight of our model, where we only needs an
inference time equivalent to the audio length on a
consumer GPU, which is several minutes, while
many other text-to-audio models take many GPU
hours (Dhariwal et al., 2020; Kreuk et al., 2022).
Our model is very friendly for research at univer-
sity labs, as each of our models can be trained on
a single A100 GPU in 1 week of training using a
batch size of 32; this is equivalent to around 1M
steps for both the diffusion autoencoder and latent
generator. For inference, as an example, a novel au-
dio source of ~43s can be synthesized in less than
50s using a consumer GPU with a DDIM sampler
and a high step count (100 generation steps and
100 decoding steps).



C More evaluation details

C.1 Annotation Details for the Genre
Identification Test

Prompts We list all the text prompts composed for
the four common music genres in Table 7.

Using these prompts, we generate music with both
Mofisai and the Riffusion model (Forsgren and Mar-
tiros, 2022), with a total of 80 pieces of music, two
for each prompt.

To validate this quantitatively, we conducted a lis-
tener test with three perceivers (annotators) with di-
verse demographic backgrounds (both female and
male, all with at least a Master’s degree of edu-
cation). Each annotator listens to all 80 music
samples we provide, and is instructed to categorize
each sample into exactly one of the four provided
genres.

Annotation We record how many times the per-
ceiver correctly identifies the genre which the re-
spective model was generating from. A large num-
ber (or score) means that the model often generated
music that, according to the human perceiver, plau-
sibly belonged to the correct category (when com-
pared to the other three categories). To achieve a
good score, the model needs to generate diverse and
genre-specific music. We take the score as a qual-
ity score of the model when it comes to correctly
performing text-conditional music generation.

In Figure 5, we display the confusion matrix of this
genre identification test for both our model (left)
and the Riffusion model (right). For our model,
the annotators identify the right genres most of the
time, whereas for the Riffusion model, the anno-
tators often perceive the music as more generic,
categorizing it as Pop.

C.2 Annotation Details for Turing Test

We let the annotators listen to a pair of music sam-
ples at a time, and judge which one is real and
which is generated. To provide a more fine-grained
score, we also ask them how much the generated
music they identified sounds like real music, on a
scale of 1 (almost not similar at all) to 5 (highly
similar). We keep their annotation score if they
identify the generated music correctly, and other-
wise we rate the music as 5, which means that the
music perfectly passes the Turing test.

As for the details, we create 90 music samples, in-
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cluding 15 generated samples paired with 15 real
music samples for each of the three models (Rif-
fusion, Musika, and Moftisai). We recruit two un-
dergraduate annotators who have pursued playing
music as a hobby for the past 10 years.

We conducted a rigorous evaluation employing an
experiment with a similar spirit to the Turing test
(TURING, 1950) for natural language, but com-
monly called as the fidelity test in audio evaluation
(Hyun et al., 2022) or speaker test (Greshler et al.,
2021; Hawthorne et al., 2019b) in audio evaluation.
Our methodology involved presenting a group of
expert annotators with a total of 60 distinct fold-
ers, 15 corresponding to each of Mousai, Mou-
sai (classical-only), Riffusion, and Musika models.
Each folder containing two music files, one being
the original and the other generated using a given
model prompted with its corresponding metadata.

The annotators were provided with the task of de-
termining the fidelity and providing a rating on a
scale of 1 to 5, reflecting the perceived degree of
authenticity of the generated audio. In cases where
the annotators incorrectly identified the generated
audio, the respective model was awarded 5 points.
Conversely, if the annotators correctly identified
the generated audio, the model’s rating was deter-
mined based on the score provided by the annotator.
The annotators were compensated with 500 rupees
(~6.5 dollars) for this 3 hour task (which is well
above daily minimum wage in India).

Following are the exact instructions provided to the
annotators

1. You will be presented with batches of two au-
dio samples in subfolders of this folder named
from 1 to 60. Each subfolder contains two
audios named a.wav and b.wav.

2. Listen to each sample carefully.

. It’s best to use headphones in a quiet environ-
ment if you can.

. Some files may be loud, so it’s recommended
to keep the volume moderate.

. One of the audio samples in each pair is a
real recording, while the other is a generated
(synthetic) audio.

. Listen to each pair of audio samples carefully.

. Pay attention to the quality, characteristics,
and nuances of each audio sample.

. This folder contains a spreadsheet file called
‘Response_Task_2.xIsx’. Compare the sam-



ples to each other and provide a relative rating
to the fake audio only out of 5, where 1 being
the most fake and 5 being most real.

C.3 Annotation Details for Musicality

In order to ascertain the quality and artistic merit
of the generated musical output, a rigorous human
evaluation methodology was implemented. A to-
tal of 50 carefully curated folders, each containing
three distinct audio files, were presented to human
evaluators. These audio files were generated uti-
lizing various models, all prompted by a specific
prompt. We recruit two annotators, pursuing Bach-
elor of Technology degree from the Indian Institute
of Technology, Kharagpur, India. Additionally, the
two annotators have pursued playing music as a
hobby for the past 10 years. The annotators were
compensated with 500 rupees (~6.5 dollars) for
this 3 hour task (which is well above daily mini-
mum wage in India).

Following are the exact instructions provided to the
annotators

1. Listen to the music and rate it based on three
aspects: Quality, Melody, and Harmony.

It’s best to use headphones in a quiet environ-
ment if you can.

. Some files may be loud, so it’s recommended
to keep the volume moderate.

This folder contains folders subfolders
through 1-50. Each subfolders contains three
audio files named A.wav, B.wav, and C.wav
. You need to listen to each of them and rate
them (relative to each other) based on quality,
melody, and harmony.

For Quality, consider how clear the audio
sounds. Does it resemble a walkie-talkie (bad
quality) or a high-quality studio sound system
(good quality)?

Melodiousness refers to the main pitch or note
in the music. Pay attention to the rhythm and
repetitiveness of the melody. A more rhyth-
mic and repetitive melody is considered better,
while the opposite is true for a less rhythmic
melody.

Harmoniousness involves multiple notes
played together to support the melody. Evalu-
ate if these notes are in sync and enhance the
effect of the melody. Higher scores should be
given for good harmony and lower for poor
harmony.

15

8. It is recommended view youtube videos: this
or this short video explaining melody and har-
mony

. This folder also contains a spreadsheet by the
name “Response_Task_1.xlsx”. Remember
to provide ratings (out of 5) for each aspect
of your evaluation in the file against appropri-
ate folder number. Feel free to listen to each
sample as many times before rating them.

D More Related Work

Audio generation is a challenging task. At the low-
est level, we have digital waveforms that control
air movement from speakers. Waveforms can be
represented in different resolutions, or sample rates.
Higher sample rates (e.g., 48kHz) allow for more
temporal resolution and can represent higher fre-
quencies, but at the same time it is computationally
more demanding to generate. At higher levels of
abstraction, we find qualitative properties such as
texture (timbre) or pitch. Zooming out, we observe
structure such as rhythm and melody that can span
multiple seconds, or even structurally be composed
into choruses that form minutes of interconnected
patterns.

Audio can be represented with a single waveform
(mono), two waveforms (stereo), or even more
waveforms in the case of surround sound. Au-
dio with two or more channels can give a sense
of movement and spatialisation. From a modelling
perspective, there are (1) unconditional models that
generate novel samples from the training distri-
bution without any additional information, or (2)
conditional models that use a form of guidance,
such as text, to control the generation. Models
can be trained on a single modality (e.g., drums or
piano) or on multiple modalities, which usually re-
quire more parameters for an increased modelling
capacity and decrease in speed.

E Exploring Variations of the Model
Architecture and Training Setup

E.1 High-Frequency Sounds

We observe that our model is good at handling
low-frequency sounds. From the mel spectrograms
Figure 7, and also the music samples we provide,
we notice that our model performs well with drum-
like sounds as frequently found in electronic, house,
dubstep, techno, EDM, and metal music. This is
likely a consequence of the lower amount of infor-


https://en.wikipedia.org/wiki/Melody
https://en.wikipedia.org/wiki/Harmony
https://www.youtube.com/watch?v=xugt0hF6CNs&ab_channel=yiroubassstudio
https://www.youtube.com/watch?v=kG-C_Boxjxk&pp=ygUSbWVsb2R5IGFuZCBoYXJtb255&ab_channel=TinyTero

Figure 7: Mel spectrogram comparison between the true
samples (top) and the auto-encoded samples (bottom);
cf. text.

mation required to represent low-frequency sounds.

E.2 TImproving the Structure

We find that increasing the number of attention
blocks (e.g., from a total of 4 — 8 to a total of
32+) in the latent diffusion model can improve
the general structure of the songs, thanks to the
long-context view. If the model is trained without
attention blocks, the context provided by the U-
Net is not large enough to learn any meaningful
long-term structure.

E.3 Text-Audio Binding

We find that the text-audio binding works well with
CFG higher than 3.0. Since the model is trained
with metadata such as title, album, artist, genre,
year, and chunk, the best keywords to control the
generation appear to be frequent descriptive names,
such as the genre of the music, or descriptions com-
monly found in titles, such as “remix”, “(Deluxe
Edition)”, and possibly many more. A similar be-
havior has been observed and exploited in text-to-
image models to generate better looking results.

E.4 Trade-Off between Speed and Quality

We find that 10 sampling steps in both stages can
be enough to generate reasonable audio. We can
achieve improved quality and reduced noise for
high-frequency sounds by trading off the speed,
i.e., increasing the number of sampling steps in the
diffusion decoder, e.g., 50 — 100 steps). Increasing
the number of sampling steps in the latent diffusion
model (again in the order of 50 — 100 steps) will
similarly improve the quality, likely due to the more
detailed generated latents, and at the same time
result in an overall better structured music. To
make sure the results are comparable when varying
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the number of sampling steps, we use the same
starting noise in both stages. In both cases, this
suggests that using more advanced samplers could
be helpful to improve on the speed-quality trade-
off.

E.5 Trade-Off between Compression Ratio
and Quality

We find that decreasing the compression ratio of
the first stage (e.g., to 32x) can improve the qual-
ity of low-frequency sounds, but in turn will slow
down the model, as the second stage has to work
on higher dimensional data. As proposed later in
Section 6, we hypothesize that using perceptually
weighted loss functions instead of L2 loss during
diffusion could help this trade-off, giving a more
balanced importance to high frequency sounds even
at high compression ratios.

E.6 High-Frequency Audio Generation

We have encountered challenges in achieving satis-
factory results when dealing with high-frequency
audio signals, as detailed in Appendix E.1. To gain
deeper insights into the underlying issues, we con-
ducted an ablation experiment by exclusively train-
ing our model on classical music, a genre known for
its prominent high-frequency characteristics. We
train this model using 500 hours of music collected
from albums of top classical composers* and other
popular Spotify playlists. We notice a drop of 9.5%
in the fidelity score of the generated music samples
compared to those produced by our original model.
Further, qualitative analysis reveals that melodic
elements of these samples demonstrated commend-
able accuracy, the harmony notes appeared to be
convoluted and disorganized. This finding high-
lights the significance of harmonization challenges
when generating high-frequency audio and under-
scores the need for developing improved models in
future research.

4(cla)



Genre = Electronic

— Drops, Kanine Remix, Darkzy, Drops Remixes, bass house,
(Deluxe) (Remix) 3 of 4

— Electronic, Dance, EDM (Deluxe) (Remix) 3 of 4

— Electro House (Remix), 2023, 3 of 4

— Electro Swing Remix 2030 (Deluxe Edition) 3 of 4

— Future Bass, EDM (Remix) 3 of 4, Remix

— EDM (Deluxe) (Remix) 3 of 4

— EDM, Vocal, Relax, Remix, 2023, 8D Audio

— Hardstyle, Drop, 8D, Remix, High Quality, 2 of 4

— Dubstep Insane Drop Remix (Deluxe Edition), 2 of 4

— Drop, French 79, BPM Artist, Vol. 4, Electronica, 2016

Genre = Hip Hop

— Real Hip Hop, 2012, Lil B, Gods Father, escape room, 3 of 4
— C’est toujours pour ceux qui savent, French Hip Hop, 2018
(Deluxe), 3 of 4

— Dejando Claro, Latin Hip Hop 2022 (Deluxe Edition) 3 of 4
— Latin Hip Hop 2022 (Deluxe Edition) 3 of 4

— Alternative Hip Hop Oh-My, 2016, (Deluxe), 3 of 4

— Es Geht Mir Gut, German Hip Hop, 2016, (Deluxe), 3 of 4

— Italian Hip Hop 2022 (Deluxe Edition) 3 of 4

— RUN, Alternative Hip Hop, 2016, (Deluxe), 3 of 4

— Hip Hop, Rap Battle, 2018 (High Quality) (Deluxe Edition) 3
of 4

— Hip Hop Tech, Bandlez, Hot Pursuit, brostep, 3 of 4

Genre = Metal

— Death Metal, 2012, 3 of 4

— Heavy Death Metal (Deluxe Edition), 3 of 4

— Black Alternative Metal, The Pick of Death (Deluxe), 2006, 3
of 4

— Kill For Metal, Iron Fire, To The Grave, melodic metal, 3 of 4
— Melodic Metal, Iron Dust (Deluxe), 2006, 3 of 4

— Possessed Death Metal Stones (Deluxe), 2006, 3 of 4

— Black Metal Venom, 2006, 3 of 4

— The Heavy Death Metal War (Deluxe), 2006, 3 of 4

— Heavy metal (Deluxe Edition), 3 of 4

— Viking Heavy Death Metal (Deluxe), 2006, 3 of 4

Genre = Pop

— (Everything I Do), I Do It For You, Bryan Adams, The Best
Of Me, canadian pop, 3 of 4

— Payphone, Maroon 5, Overexposed, Pop, 2021, 3 of 4

— 24K Magic, Bruno Mars, 24K Magic, dance pop, 3 of 4

— Who Is It, Michael Jackson, Dangerous, Pop (Deluxe), 3 of 4
— Forget Me, Lewis Capaldi, Forget Me, Pop Pop, 2022, 3 of 4
— Pop, Speak Now, Taylor Swift, 2014, (Deluxe), 3 of 4

— Pop Pop, Maroon 5, Overexposed, 2016, 3 of 4

— Pointless, Lewis Capaldi, Pointless, Pop, 2022, 3 of 4

— Saved, Khalid, American Teen, Pop, 2022, 3 of 4

— Deja vu, Fearless, Pop, 2020, (Deluxe), 3 of 4

Table 7: Text prompts composed for the four common
music genres: electronic, hip hop, metal, and pop.
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