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Abstract

Recent years have seen the rapid development001
of large generative models for text; however,002
much less research has explored the connection003
between text and another “language” of com-004
munication – music. In our work, we bridge005
text and music via a text-to-music generation006
model that is highly efficient, expressive, and007
can handle long-term structure. Specifically,008
we develop Moûsai, a cascading two-stage la-009
tent diffusion model that can generate multiple010
minutes of high-quality stereo music at 48kHz011
from textual descriptions. Moreover, our model012
features high efficiency, which enables real-013
time inference on a single consumer GPU with014
a reasonable speed. Through experiments and015
property analyses, we show our model’s com-016
petence over a variety of criteria compared with017
existing music generation models.1018

1 Introduction019

In recent years, natural language processing (NLP)020

has made significant strides in understanding and021

generating human language, due to the advance-022

ments in deep learning and large-scale pre-trained023

models (Radford et al., 2018; Devlin et al., 2019;024

Brown et al., 2020). While the majority of NLP025

research has focused on textual data, there exists026

another rich and expressive “language” of commu-027

nication – music. Music, much like text, can convey028

emotions (Germer, 2011), stories (Chung, 2006),029

and ideas (Bicknell, 2002), and has its own unique030

structure and syntax (Swain, 1995).031

In this paper, we further bridge the gap between032

text and music by leveraging the power of NLP033

techniques to generate music conditioned on tex-034

tual input. Through our work, we not only aim035

to expand the scope of NLP applications, but also036

contribute to the interdisciplinary research at the037

1Our code and data are uploaded to the system, and will
be released upon acceptance. Our anonymized music samples
are available at https://bit.ly/anonymous-mousai.
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Figure 1: We propose a two-stage cascading diffusion
method, where the first stage compresses the music
using a novel diffusion autoencoder, and the second
stage generates music from the reduced representation
conditioned on the encoding of a textual description.

intersection of language, music, and machine learn- 038

ing techniques. 039

However, like text, music generation has long been 040

a challenging task, as it requires multiple aspects 041

at different levels of abstraction (van den Oord 042

et al., 2016; Dieleman et al., 2018). Existing au- 043

dio generation models explore the use of recursive 044

neural networks (Mehri et al., 2017), adversarial 045

generative networks (Kumar et al., 2019; Kim et al., 046

2021; Engel et al., 2019; Morrison et al., 2022), au- 047

toencoders (Deng et al., 2021), and transformers 048

(Yu et al., 2022). With the recent advancement 049

in diffusion-based generative models in computer 050

vision (Ramesh et al., 2022; Saharia et al., 2022), 051

researchers in speech have also started to explore 052

the use of diffusion models in tasks such as speech 053

synthesis (Kong et al., 2021; Lam et al., 2022; Leng 054

et al., 2022), although only a few these models can 055

apply well to the task of music generation. 056

Additionally, there are several long-standing chal- 057

lenges in the area of music generation: (1) music 058
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generation at length, as most text-to-audio systems059

(Forsgren and Martiros, 2022; Kreuk et al., 2022)060

can only generate a few seconds of audio; (2) model061

efficiency, as many need to run on GPUs for hours062

to generate just one minute of audio (Dhariwal063

et al., 2020; Kreuk et al., 2022); (3) lack of diver-064

sity of the generated music, as many are limited by065

their training methods taking in a single modality066

(resulting in the ability to handle only single-genre067

music, but not diverse genres) (Caillon and Esling,068

2021; Pasini and Schlüter, 2022); and (4) easy con-069

trollability by text prompts, as most are only con-070

trolled by latent states (Caillon and Esling, 2021;071

Pasini and Schlüter, 2022), the starting snippet of072

the music (Borsos et al., 2022), or text but are lyrics073

(Dhariwal et al., 2020) or descriptions of a daily074

sound like dog barking (Kreuk et al., 2022).075

To address these challenges, we propose Moûsai,2076

a novel text-conditional two-stage cascading diffu-077

sion model. Specifically, the first stage trains a mu-078

sic encoder by diffusion magnitude-autoencoding079

(DMAE), which compress audio by the novel dif-080

fusion autoencoder; and the second stage learns to081

generate the reduced representation while condi-082

tioning on a textual description by text-conditioned083

latent diffusion (TCLD). The two-stage generation084

process is shown in Figure 1.085

Apart from proposing the novel text-to-music diffu-086

sion model, we also introduce some special designs087

to boost model efficiency, making the model more088

accessible. First, our DMAE can achieve an au-089

dio signal compression rate of 64x. Moreover, we090

design a lightweight and specialized 1D U-Net ar-091

chitecture. Together, our model achieves a fast092

inference speed on a single consumer GPU in min-093

utes, and a training time of approximately one week094

per stage on one A100 GPU, making it possible095

to train and run the overall system using resources096

available in most universities.097

We train our model on a newly collected dataset,098

TEXT2MUSIC, with 50K text-music pairs, and099

show our model’s advantage on 11 criteria, such as100

efficiency, text-music relevance, music quality, and101

long-context structure.102

In summary, our contributions are as follows:103

1. We are the first to propose the text-to-music104

2Moûsai is romanized ancient Greek for Muses, the sources
of artistic inspiration (https://en.wikipedia.org/wiki/
Muses), and also evokes a blend of music and AI.

diffusion model using a two-stage cascading 105

latent diffusion modeling process. 106

2. We achieve high efficiency with a compres- 107

sion rate of 64x, and a specialized U-Net de- 108

sign, which achieves a training time of one 109

week on an A100 consumer GPU, and real- 110

time inference time. 111

3. Our model outperforms existing baselines by 112

clear margins on 11 different evaluation cri- 113

teria, demonstrating merits such as high ef- 114

ficiency, text-music relevance, music quality, 115

and long-context structure. 116

2 Related Work 117

Connecting Text and Music The connection be- 118

tween text and music lies in the intersection of NLP 119

and computational musicology. Previous work 120

looks into aspects such as the similarity of mu- 121

sic and linguistic structures (Papadimitriou and Ju- 122

rafsky, 2020), music and dialog (Berlingerio and 123

Bonin, 2018), and jointly modeling music and text 124

for emotion detection (Mihalcea and Strapparava, 125

2012). Apart from several work that generates mu- 126

sic from text (Dhariwal et al., 2020; Forsgren and 127

Martiros, 2022), we are the first to explore diffusion 128

models to interact text with music representations. 129

Generative Models Generative models aim to 130

learn a lower-dimension representation space, and 131

then reconstruct to the high-dimension space con- 132

ditioning on the given information (Rombach et al., 133

2022; Yang et al., 2022; Kreuk et al., 2022; Ho 134

et al., 2022). Some effective methods earlier in- 135

clude auto-encoding (Hinton and Salakhutdinov, 136

2006; Kingma and Welling, 2014), or quantized 137

auto-encoding (van den Oord et al., 2017; Esser 138

et al., 2021; Lee et al., 2022). Recent proposals 139

focus on the quantized representation followed by 140

masked or autoregressive learning on tokens (Ville- 141

gas et al., 2022; Dhariwal et al., 2020; Kreuk et al., 142

2022), and diffusion models (Ramesh et al., 2022; 143

Rombach et al., 2022; Saharia et al., 2022), which 144

leads to impressive performance. To the best of our 145

knowledge, we are the first to adapt the cascading 146

diffusion approach for audio generation. 147

3 Moûsai: Efficient Long-Context Music 148

Generation from Text 149

Our model Moûsai contains a two-stage training 150

process. In Stage 1, we use diffusion magnitude- 151

autoencoding (DMAE), which compresses the au- 152

dio waveform 64x using a diffusion autoencoder. 153
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In Stage 2, we use a latent text-to-audio diffusion154

model, to generate a novel latent space by diffusion155

while conditioning on text embeddings obtained156

from a frozen transformer language model.157

3.1 Stage 1: Music Encoding by Diffusion158

Magnitude-Autoencoding (DMAE)159

We design the first step of Moûsai to be learning160

a good music encoder to capture the latent repre-161

sentation space for music. Representation learn-162

ing is crucial for generative models, as it can be163

drastically more efficient than handling the high-164

dimensional raw input data (Rombach et al., 2022;165

Yang et al., 2022; Kreuk et al., 2022; Ho et al.,166

2022; Villegas et al., 2022).167

Overview To learn the representation space for mu-168

sic, we deploy a diffusion magnitude autoencoder169

(DMAE) shown in Figure 2. Specifically, we adopt170

our diffusion-based audio autoencoder, introduced171

in Section 3.1.3, to compress audio into a smaller172

latent space by 64x from the original waveform. To173

train the model, we first convert the waveform to a174

magnitude spectrogram, which is a better represen-175

tation for audio models, and then we auto-encode176

it into a latent representation.177

At the same time, we corrupt the original audio with178

a random amount of noise, and train our 1D U-Net179

(introduced in Section 3.1.4) to remove that noise.180

During the noise removal process, we condition the181

U-Net on the noise level and the compressed latent,182

which can have access to a reduced version of the183

non-noisy audio.184

3.1.1 vvv-Objective Diffusion185

We use the vvv-objective diffusion process as pro-186

posed by Salimans and Ho (2022). Suppose we187

have a sample xxx0 from a distribution p(xxx0), some188

noise schedule σt ∈ [0, 1], and some noisy data189

point xxxσt = ασtxxx0 + βσtϵϵϵ. The vvv-objective diffu-190

sion tries to estimate a model v̂vvσt = f(xxxσt , σt) by191

minimizing the following objective:192

Et∼[0,1],σt,xσt

[
∥fθ(xσt , σt)− vσt∥22

]
, (1)193

where vvvσt =
∂xxxσt
σt

= ασtϵϵϵ − βσtxxx0, for which194

we define ϕt :=
π
2σt, and obtain its trigonometric195

values ασt := cos(ϕt), and βσt := sin(ϕt).196

3.1.2 DDIM Sampler for Denoising197

The denoising step uses ODE samplers to turn noise198

into a new data point by estimating the rate of199
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Figure 2: The training scheme of our diffusion magni-
tude autoencoder (DMAE). When denoising (bottom
right), we condition the U-Net on the noise level ( ) and
compressed latent representation ( ) from a reduced ver-
sion of the non-noisy audio (the pink matrix).

change. In this work, we adopt the DDIM sampler 200

(Song et al., 2021), which we find to work well 201

and have a reasonable tradeoff between the number 202

of steps and audio quality. The DDIM sampler 203

denoises the signal by repeated application of the 204

following: 205

v̂vvσt = fθ(xxxσt , σt) (2) 206

x̂xx0 = ασtxxxσt − βσtv̂vvσt (3) 207

ϵ̂ϵϵσt = βσtxxxσt + ασtv̂vvσt (4) 208

x̂xxσt−1 = ασt−1x̂xx0 + βσt−1ϵ̂ϵϵt, (5) 209

which estimates both the initial data point and the 210

noise at the step σt, for some T -step noise schedule 211

σT , . . . , σ0 as a sequence evenly spaced between 1 212

and 0. 213

3.1.3 Diffusion Autoencoder for Audio Input 214

We propose a new diffusion autoencoder that first 215

encodes a magnitude spectrogram into a com- 216

pressed representation, and later injects the latent 217

into intermediate channels of the decoding mod- 218

ules. The standard method to do diffusion, such as 219

the image diffusion model (Rombach et al., 2022), 220

is to compress the input into a lower-dimensional 221

representation space and apply the diffusion pro- 222

cess on the reduced latent space. We further com- 223

press and enhance the representation space by 224

diffusion-based autoencoding (Preechakul et al., 225

2022), which is first introduced in computer vision, 226

as a way to condition the diffusion process on a 227

compressed latent vector of the input itself. Since 228

diffusion serves as a more powerful generative de- 229

coder, and hence the input can be reduced to latent 230

representations with higher compression ratios. 231
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Figure 3: Our proposed 1D U-Net architecture. Each
UNetBlock (top) consists of several U-Net items (bot-
tom). In each U-Net item (bottom), we use a 1D con-
volutional ResNet (R), and a modulation unit (M) to
provide the diffusion noise level as a feature vector con-
ditioning ( ). For Stage 1, we use an inject item (I)
to inject external channels as conditioning ( ), and for
Stage 2, we use an attention item (A) to share time-wise
information, and a cross-attention item (C) to condition
on an external (text) embedding ( ). Moreover, for the
UNetBlocks, we can recursively nest them, which we
indicate by the inner dashed region on the top.

3.1.4 Efficient and Enriched 1D U-Net232

Another crucial module in our model is the effi-233

cient 1D U-Net that we design. We identify that234

the vanilla U-Net architecture (Ronneberger et al.,235

2015), originally introduced for medial image seg-236

mentation, has relatively limited efficiency and237

speed, as it uses an hourglass convolutional-only238

2D architecture with skip connections.239

Hence, we propose a novel U-Net with only 1D240

convolutional kernels, which is more efficient than241

the original 2D architecture in terms of speed, and242

can be successfully used both on waveforms or on243

spectrograms if each frequency is considered as a244

different channel.245

Moreover, we infuse our 1D U-Net with multi-246

ple new components, as illustrated in Figure 3: a247

ResNet residual 1D convolutional unit, a modula-248

tion unit to alter the channels given features from249

the diffusion noise level, and an inject item to con-250

catenate external channels to the ones at the current251

depth. Note that inject items are applied only at a252

specific depth in the decoder in the first stage to253

condition on the latent representation of the music.254

In summary, our novel 1D U-Net features more255

modern convolutional blocks, a variety of attention256

blocks, conditioning blocks, and improved skip257

connections, maintaining an efficient skeleton of258

the hourglass architecture.259

3.1.5 Overall Model Architecture 260

Our entire Stage 1, DMAE, works as follows. Let 261

www be a waveform of shape [c, t] for c channels and t 262

timesteps, and (mmmwww, pppwww) = stft(www;n = 1024, h = 263

256) be the magnitude and phase obtained from a 264

short-time furier tranform of the waveform with a 265

window size of 1024 and hop-length of 256. Then 266

the resulting spectrograms will have shape [c ·n, t
h ]. 267

We discard phase and encode the magnitude into 268

a latent zzz = Eθθθe(mmmwww) using a 1D convolutional 269

encoder. The original waveform is then recon- 270

structed by decoding the latent using a diffusion 271

model ŵww = Dθθθd(zzz, ϵϵϵ, s), where Dθθθd is the diffu- 272

sion sampling process with starting noise ϵϵϵ and s 273

is the number of decoding (sampling) steps. The 274

decoder is trained with vvv-objective diffusion while 275

conditioning on the latent fθθθd(wwwσt ;σt, zzz), where 276

fθθθd is the proposed 1D U-Net, called repeatedly 277

during decoding. 278

Since only the magnitude is used and phase is 279

discarded, this diffusion autoencoder is simulta- 280

neously a compressing autoencoder and vocoder. 281

By using the magnitude spectrograms, higher com- 282

pression ratios can be obtained than autoencoding 283

directly the waveform. We found that waveforms 284

are less compressible and efficient to work with. 285

Similarly, discarding phase is beneficial to obtain- 286

ing higher compression ratios for the same level 287

of quality. The diffusion model can easily learn to 288

generate a waveform with realistic phase even if 289

conditioned only on the encoded magnitude. 290

In this way, the latent space for music can serve 291

as the starting point for our text-to-music genera- 292

tor, which will be introduced next. To ensure this 293

representation space fits the next stage, we apply a 294

tanh function on the bottleneck, keeping the val- 295

ues in the range [−1, 1]. Note that we do not use 296

a more disentangled bottleneck, such as the one 297

in VAEs (Kingma and Welling, 2014), as its addi- 298

tional regularization reduces the amount of allowed 299

compressibility. 300

3.2 Stage 2: Text-to-Music Generation by 301

Text-Conditioned Latent Diffusion 302

(TCLD) 303

Based on the learned music representation space, 304

in this stage, we guide the music generation with 305

text descriptions. 306

Overview As shown in Figure 4, we propose a 307

text-conditioned latent diffusion (TCLD) process. 308

4



UNet ||·||Noise

Text

Embedding Embedding

Transformer


Latent

Figure 4: The training scheme of our text-conditioned
latent diffusion (TCLD) generator. During the denoising
process, we provide the U-Net a feature vector ( ) and
a text embedding ( ).

Specifically, we first corrupt the latent space of309

music with a random amount of noise, then train a310

series of U-Nets to remove the noise, and condition311

the U-Nets’ denoising process on a text prompt312

encoded by a transformer model. In this way, the313

generated music both conforms to the latent space314

of music and corresponds to the text prompt.315

3.2.1 Text Conditioning316

To obtain the text embeddings, prior work on text-317

conditioning suggests either learning a joint data-318

text representation (Li et al., 2022; Elizalde et al.,319

2022; Ramesh et al., 2022), or using embeddings320

from pre-trained language model as direct condi-321

tioning (Saharia et al., 2022; Ho et al., 2022) of the322

latent model. In our TCLD model, we follow the323

practice in Saharia et al. (2022) to use a pre-trained324

and frozen T5 language model (Raffel et al., 2020)325

to generate text embeddings from the given descrip-326

tion. We use the classifier-free guidance (CFG) (Ho327

and Salimans, 2022) with a learned mask applied328

on batch elements with a probability of 0.1 to im-329

prove the strength of the text-embedding during330

inference.331

3.2.2 Adapting the U-Net for Text332

Conditioning333

To enable the U-Net to condition on the text em-334

bedding eee, we append two additional blocks to335

the U-Net: an attention item to share long-context336

structural information, and a cross-attention item337

to condition on the text embeddings, as in Figure 3.338

These attention blocks ensure information sharing339

over the entire latent space, which is crucial to learn340

long-range audio structure.341

Given the compressed size of the latent space, we342

also increase the size of this inner U-Net to be343

larger than the first stage. And due to our efficiency 344

design, it maintains a reasonable training and infer- 345

ence speed, even with large parameter counts. 346

3.2.3 Overall Model Architecture 347

We illustrate the detailed process in Figure 4. Con- 348

sistent with the previous stage, we use vvv-objective 349

diffusion and the 1D U-Net architecture. When con- 350

dition on the text embedding eee, we use the U-Net 351

configuration fθθθg(zzzσt ;σt, eee) to generate the com- 352

pressed latent zzz = Eθθθe(mmmwww). Then, the generator 353

Gθθθg(eee, ϵϵϵ, s) applies DDIM sampling and calls the 354

U-Net s times to generate an approximate latent ẑzz 355

from the text embedding eee and starting noise ϵϵϵ. The 356

final generation stack during inference to obtain a 357

waveform is 358

ŵww = Dθθθd(Gθθθg(eee, ϵϵϵg, sg), ϵϵϵd, sd) . (6) 359

4 Experimental Setup 360

4.1 Collection of the TEXT2MUSIC Dataset 361

To provide a fertile ground to train our text- 362

to-music model on, we collect a new dataset, 363

TEXT2MUSIC, which consists of 50K text-music 364

pairs totaling 2,500 hours. We ensure a high qual- 365

ity of stereo music sampled at 48kHz and cover 366

a wide variety of music spanning multiple genres, 367

artists, instruments, and provenience. Many ex- 368

isting open-source music datasets, such as Gillick 369

et al. (2019); Hawthorne et al. (2019a), have limi- 370

tations in terms of the specific musical instruments 371

they encompass. While some datasets, like Engel 372

et al. (2017); Boulanger-Lewandowski et al. (2012), 373

cover a broader array of instruments, they fall short 374

in representing a wide variety of genres. This in- 375

adequacy underscores the need for a more compre- 376

hensive dataset that encompasses a rich tapestry of 377

musical genres and diverse instrumentation. 378

As for the procedure to collect the music, we follow 379

Spotify’s top recommendations to collect seven 380

very large playlists, each containing on average 7K 381

pieces of music. We iterate through every music 382

sample in these playlists, for which we use the 383

name of the music to search and download the 384

music from YouTube, and we use the metadata to 385

compose its corresponding text description, which 386

contains the music title, author, album name, genre, 387

and year of release. 388

We show the statistics about the diverse set of gen- 389

res in our TEXT2MUSIC dataset in Table 1. 390
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Genre # Pieces Percentage (%) in Dataset
Pop 5,498 27.29
Electronic 3,875 19.38
Rock 3,584 17.79
Metal 1,796 8.92
Hip Hop 818 4.06
Others 4,492 22.56

Table 1: Our TEXT2MUSIC dataset covers a variety of
music, e.g., pop, electronic, rock, metal, hip pop, etc.

4.2 Implementation Details391

Our diffusion autoencoder has 185M parame-392

ters, and text-conditional generator has 857M pa-393

rameters, with more architecture details in Ap-394

pendix A.3. We train the music autoencoder on395

random crops of length 218 (∼5.5s at 48kHz), and396

the text-conditional diffusion generation model on397

fixed crops of length 221 (∼44s at 48kHz) encoded398

in the 32-channels, 64x compressed latent represen-399

tation. We use the AdamW optimizer (Loshchilov400

and Hutter, 2019) with a learning rate of 10−4, β1401

of 0.95, β2 of 0.999, ϵ of 10−6, and weight de-402

cay of 10−3. And we use an exponential moving403

average (EMA) with β = 0.995 and power of 0.7.404

5 Evaluation405

5.1 Assessment Criteria Overview406

Evaluating music is a highly challenging task. We407

survey a large number of papers, and find that pre-408

vious work adopts a variety of objective and subjec-409

tive metrics,3 and the gist is that no single metric is410

perfect. After careful thinking, we design a com-411

prehensive set of evaluation metrics covering three412

categories with a total of 11 metrics, including both413

automatic and human evaluations. In the following,414

we will introduce the overall property analysis (Sec-415

tion 5.2), such as the sample rate, prompt type, and416

music type; efficiency (Section 5.3); text-music rel-417

evance (Section 5.4); music quality (Section 5.5);418

and long-term structure of the music (Section 5.6).419

For fair comparison, we train all the baseline mod-420

els from scratch on our TEXT2MUSIC dataset.421

Note that the recent models Noise2Music (Huang422

et al., 2023) does not release their source code,423

and MusicLM (Agostinelli et al., 2023) is not as424

efficient as our model in that it originally used425

280K hours of training data, and, when training426

3The common metrics we surveyed include quality (Goel
et al., 2022), fidelity (Goel et al., 2022; Hawthorne et al.,
2019b; Hyun et al., 2022), musicality (Goel et al., 2022; Yu
et al., 2022; Dhariwal et al., 2020), diversity (Goel et al., 2022;
Dhariwal et al., 2020), and structure (Yu et al., 2022; Leng
et al., 2022; Dhariwal et al., 2020).

from scratch, it cannot converge on our 2.5K hours 427

dataset. 428

5.2 Property Analysis 429

Comparing the overall properties of various models 430

in Table 2, we see a set of impressive properties 431

of the Moûsai model: (1) We are among the very 432

few that can control music generation easily by text 433

descriptions of the type of music we want, as most 434

other models do not take text as input (van den 435

Oord et al., 2016; Caillon and Esling, 2021; Borsos 436

et al., 2022), or take only lyrics or descriptions of 437

daily sounds (e.g., “a dog barking”) (Kreuk et al., 438

2022; Dhariwal et al., 2020). The only other text- 439

to-music model is the Riffusion model (Forsgren 440

and Martiros, 2022), which only works with very 441

short length of 5 seconds. 442

(2) Our model is also among the very few that 443

enables long-context music generation for several 444

minutes, among all others that can only gener- 445

ate seconds (van den Oord et al., 2016; Forsgren 446

and Martiros, 2022; Kreuk et al., 2022; Pasini 447

and Schlüter, 2022), except for Jukebox (Dhari- 448

wal et al., 2020) which generates songs given lyrics 449

and takes very long to run inference. 450

(3) Moreover, we also highlight the diversity of 451

music we generate, as our model design enables 452

multi-genre music training, instead of single-genre 453

ones in previous models (Caillon and Esling, 2021; 454

Pasini and Schlüter, 2022), and we can find rhythm, 455

loops, riffs, and occasionally even entire choruses 456

in our generated music. 457

5.3 Efficiency of Our Model 458

Efficiency is another highlight of our model, where 459

we only need an inference time similar to the audio 460

length on a consumer GPU, which is several min- 461

utes, while many other text-to-audio models take 462

many GPU hours (Dhariwal et al., 2020; Kreuk 463

et al., 2022), as in Table 2. Our model is very 464

friendly for research at university labs, as each 465

model can be trained on a single A100 GPU in 1 466

week of training using a batch size of 32. 467

We also calculate the exact inference statistics for 468

our Moûsai vs. Riffusion models in Table 4, and 469

find that our model needs less than 1/5 the inference 470

time, and almost half of the inference memory than 471

Riffusion does. To make a fair comparison 472
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Model Sample Rate↑ Len.↑ Input (Text ✓) Music (Diverse↑) Example Infer. Time↓ Data
WaveNet (2016) 16kHz@1 Secs None Piano or speech Piano = Audio len.⋆ 260
Jukebox (2020) 44.1kHz@1 Mins⋆ Lyrics, author, etc. Song with the lyrics Song Hours 70K
RAVE (2021) 48kHz@2 Secs⋆ Latent Single-genre Music Strings = Audio len.⋆ 100
AudioLM (2022) 16kHz@1 Secs⋆ Beginning of the music Piano or speech Piano Mins 40K
Musika (2022) 22.5kHz@2 Secs Context vector Single-genre Music Piano = Audio len.⋆ 1K
Riffusion (2022) 44.1kHz@1 5s Text (genre, author, etc.) Music of any genre Jazzy clarinet Mins –
AudioGen (2022) 16kHz@1 Secs⋆ Text (a phrase/sentence) Daily sounds Dog barks Hours 4K
Moûsai (Ours) 48kHz@2 Mins⋆ Text (genre, author, etc.) Music of any genre African drums = Audio len. 2.5K

Table 2: Comparison of our Moûsai model with previous music/audio generation models. We compare the followings
aspects: (1) audio sample rate@the number of channels (Sample Rate↑, where the higher the better), (2) context
length of the generated music (Len.↑, where the higher the more capable the model is to generate structural music; ⋆

indicates variable length, where we assume that autoregressive methods are variable by default, with an upper-bound
imposed by attention), (3) input type (Input, where we feature using Text as the condition for the generation), (4)
type of the generate music (Music, where the more Diverse↑ genre, the better), (5) an example of the generated
music type (Example), (6) inference time (Infer. Time↓, where the shorter the better, and since the music length is
seconds or minutes, the inference time equivalent to the audio length is the shortest, and we use ⋆ to show models
that can run inference fast on CPU), and (7) total length of the music in the training data in hours (Data).

Model Inf. Time (s) (↓) Mem. (G) (↓) RTF (↓)
Riffusion 218.0 8.85 5.07
Moûsai 49.2 5.04 1.14

Table 3: Efficiency evaluation of our Moûsai and Riffu-
sion in terms of the inference time (Inf. Time), inference
memory (Mem.) , and real time factor (RTF) to generate
a single 43-second music clip.

5.4 Evaluating the Text-Music Relevance473

To assess how much the generated music corre-474

sponds to the given text prompt, we deploy both475

human and automatic evaluations.476

Relevance & Distinctiveness by Human Evalua-477

tion We design a listener test where the annotators478

need to infer some coarse information of the text479

prompt behind a given piece of generated music.480

Since it is too challenging to infer the exact text481

prompt, we only ask annotators to infer the music482

genre indicated in the prompt.483

To prepare the ground-truth prompts, we com-484

pose a list of 40 random text prompts spanning485

across the four most common music genres in our486

TEXT2MUSIC dataset: electronic, hip hop, metal,487

and pop. See Appendix C.1 for the entire list of488

prompts. Inspired by the two-alternative forced489

choice (2AFC) experiment design, we design a490

four-alternative forced choice (4AFC) paradigm,491

where the annotators need to categorize each mu-492

sic sample into exactly one of the four provided493

categories. See annotation details in Appendix C.1.494

In Figure 5, we can see that our Moûsai model has495

the most mass on the diagonal (i.e., correctly iden-496
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(a) Confusion matrix for the
music pieces generated by
Moûsai. (y-axis: true genre;
x-axis: inferred genre.)
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(b) Confusion matrix for the
music pieces generated by
the Riffusion model.

Figure 5: For the text-music relevance check, we ask
the annotators to infer the ground-truth genres of the
generated music by (a) our model and (b) the Riffusion
model. The darker diagonal means better results.

tified), while the Riffusion model tends to generate 497

generic samples that are mostly identified as pop 498

for all ground-truth genres. This shows that the 499

music generated by our model is both relevant to 500

the test and distinct enough with the given genre 501

against others. 502

Relevance by CLAP For automatic evaluation, we 503

adopt the commonly used CLAP score (Wu et al., 504

2023) to quantify the alignment between the gen- 505

erated audio and the corresponding text. From 506

Table 4, we can see that our model is two times 507

better than Riffusion in terms of CLAP score, and 508

also much faster in inference time.

Model CLAP Score for Text-Music Relevance (↑)
Riffusion 0.06
Moûsai 0.13

Table 4: CLAP scores of our Moûsai and Riffusion.
509
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5.5 Evaluating the Music Quality510

We first introduce the four evaluation metrics for511

music quality, and then describe the results.512

5.5.1 Metrics for Music Quality513

To evaluate the quality of the generated music, we514

adopt four metrics: the automatic score by FAD, a515

music Turing test, and human evaluation on musi-516

cality and audio clarity.517

For automatic evaluation, we deploy the widely518

adopted Fréchet Audio Distance (FAD) (Kilgour519

et al., 2019) to assess the fidelity of the generated520

music distribution in comparison to the real music521

distribution (i.e., how similar the generated music522

is to the authentic music). To facilitate the com-523

putation of FAD, we employ the commonly used524

PANN model (Kong et al., 2020) as a means to525

effectively encode the music.526

Then, we also set up three human evaluations, all on527

a scale of 1 (worst) to 5 (best). First, we let human528

annotators to assess the authenticity/fidelity of the529

generated music via a music Turing test (Goel et al.,530

2022; Hawthorne et al., 2019b; Hyun et al., 2022).531

See more evaluation details in Appendix C.2.532

The other two metrics we deploy are musicality and533

audio clarity. For musicality, we let human anno-534

tators rate the melodiousness and harmoniousness535

(Seitz, 2005) of the given music. And for audio536

clarity, or quality (Goel et al., 2022), we let them537

judge how close the quality is to a walkie-talkie538

(worst) or a high-quality studio sound system (best).539

The detailed setup of all our human evaluations are540

in Appendix C.2 and Appendix C.3.541

5.5.2 Results542

We show the evaluation results on all five metrics543

in Table 5. We can see that, on the automatic evalu-544

ation of FAD, our model has the best score, which545

is one magnitude smaller than previous models.546

Moreover, it also shows strong performance across547

the human evaluation metrics, outperforming the548

other two models on the music Turing test, har-549

moniousness, and sound clarity, as well as being550

comparable on the melodiousness metric.551

Model FAD (↓) Fidelity Melody Harmony Clarity
Riffusion 0.0018 2.8 2.66 2.48 2.37
Musika 0.0020 3.04 3.21 3.04 2.88
Moûsai 0.00015 3.17 3.15 3.08 2.92

Table 5: Music quality scores for the three models.

5.6 Long-Term Structure of the Music 552
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Figure 6: The average amplitude and variation of 1K
random music samples spanning different segments.

In music composition, the arrangement of a piece 553

typically follows a gradual introduction, a main 554

body with the core content, and a gradual conclu- 555

sion, also called the sonata form (Webster, 2001). 556

Accordingly, we look into whether our generated 557

music also shows such long-term structure. Using 558

the same text prompt, we can generate different 559

segments/intervals of it by attaching the expression 560

“1/2/3/4 out of 4” at the end of the text prompt, such 561

as “Italian Hip Hop 2022, 3 of 4.” We visualize 562

the results in Figure 6, where we see the first seg- 563

ment shows a gradual increase in both the average 564

amplitude and variance, followed by continuously 565

high average amplitude and variance throughout 566

Segments 2 and 3, and finally concluding with a 567

gradual decline in the last segment. 568

5.7 Effect of Hyperparameters 569

We also explore the effect of different hyperparam- 570

eters, and find that increasing the number of atten- 571

tion blocks (e.g., from a total of 4–8 to a total of 572

32+) in the latent diffusion model can improve the 573

general structure of the songs, thanks to the long- 574

context view. Also, if the model is trained without 575

attention blocks, the context provided by the U- 576

Net is not large enough to learn any meaningful 577

long-term structure. We describe other variations 578

of hyperparameters and findings in Appendix E. 579

6 Conclusion 580

In this work, we presented Moûsai, a novel text- 581

to-music generation model using latent diffusion. 582

We show that, in contrast to earlier approaches, 583

our model can generate minutes of music in real- 584

time on a consumer GPU, with good music quality 585

and text-audio binding. The work helps pave the 586

way towards higher-quality, longer-context text-to- 587

music generation for future applications. 588

8



Limitations and Future Work589

Data Scale Enhancing the scale of both data and590

the model holds promising potential for yielding591

significant improvements in quality. Following592

(Dhariwal et al., 2020; Borsos et al., 2022), we593

suggest training with 50K-100K hours instead of594

2.5K. Computer Vision studies like Saharia et al.595

(2022) show that utilizing larger pretrained lan-596

guage models for text embeddings plays an im-597

portant role in achieving better quality outcomes.598

Drawing upon this, we hypothesize that the ap-599

plication of a larger pretrained language model to600

our second-stage model can similarly contribute to601

enhanced quality outcomes.602

Models Some promising future modelling ap-603

proaches that can be explored in future work in-604

clude: (1) training diffusion models using percep-605

tual losses on the waveforms instead of L2 — this606

might help decrease the initial size of the U-Net,607

as we would not have to process non-perceivable608

sounds, (2) improving the quality of the diffusion609

autoencoder by using mel-spectrograms instead of610

magnitude spectrograms as input, (3) other types of611

conditioning which are not text-based might be use-612

ful to navigate the audio latent space, which is often613

hard to describe in words — DreamBooth-like mod-614

els (Ruiz et al., 2022), and (4) more sophisticated615

diffusion samplers to achieve higher quality for the616

same number of sampling steps, or similarly more617

advanced distillation techniques (Salimans and Ho,618

2022).619

Ethical Considerations620

Our work aims to bridge the gap between text and621

music generation, enabling the creation of expres-622

sive and high-quality music from textual descrip-623

tions. While this research has the potential to ben-624

efit various applications, such as music therapy,625

entertainment, and education, we recognize that626

it may also raise concerns in terms of copyright,627

cultural appropriation, and the potential misuse of628

generated content.629

Copyright and Intellectual Property: Our model630

may generate music that resembles existing copy-631

righted works, which could lead to potential legal632

disputes. First of all, for research-only use, it is633

exempted from copyright infringement. For other634

purposes, we suggest incorporating mechanisms635

to detect and avoid generating music that closely636

resembles copyrighted material. 637

Economic Impact on Musicians and Composers: 638

The widespread adoption of text-to-music genera- 639

tion models may have economic implications for 640

musicians and composers, potentially affecting 641

their livelihoods. We believe that our model should 642

be used as a tool to augment and inspire human 643

creativity, rather than replace it. We encourage col- 644

laboration between AI researchers, musicians, and 645

composers to explore new ways of integrating AI- 646

generated music into the creative process, ensuring 647

that the technology benefits all stakeholders. 648

In conclusion, we are committed to conducting 649

our research responsibly and ethically. We encour- 650

age the research community to engage in open dis- 651

cussions about the ethical implications of text-to- 652

music generation models and to develop guidelines 653

and best practices for their responsible use. By 654

addressing these concerns, we hope to contribute 655

to the development of AI technologies that benefit 656

society and promote creativity, while respecting the 657

rights and values of all stakeholders. 658
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A More Data Details992

A.1 Data Collection Rationale993

We have several desiderata when collecting the994

dataset. The data (1) must have text data paired995

with the music piece, and (2) must consistitute a996

large size, which means that our data crawling997

procedure needs to be scalable, without tedious998

manual efforts to curate. Note that it is crucial to999

get a large-sized dataset in order to unleash the1000

performance of audio generation diffusion models.1001

A.2 Training setup for the text-music pairs1002

For the textual description, we use metadata such1003

as the title, author, album, genre, and year of re-1004

lease. Given that a song could span longer than1005

44s, we append a string indicating which chunk is1006

currently being trained on, together with the total1007

chunks the song is made of (e.g., 1 of 4). This1008

allows to select the region of interest during infer-1009

ence. Hence, an example prompt is like “Egyptian1010

Darbuka, Drums, Rythm, (Deluxe Edition), 2 of 4.”1011

To make the conditioning more robust, we shuffle1012

the list of metadata and drop each element with a1013

probability of 0.1. Furthermore, for 50% of the1014

times we concatenate the list with spaces and the1015

other 50% of the times we use commas to make1016

the interface more robust during inference. Some1017

example prompts in our dataset can be seen in Ta-1018

ble 6.1019

Example Text Prompts in Our Dataset
Nr. 415 (Premium Edition), german hip hop, 2 of 7, 2012,
XATAR, Konnekt
30 Años de Exitos, Mundanzas, 2 of 6, latin pop, Lupita
D’Alessio, 2011
emo rap 2018 Runaway Lil Peep 4 of 5
Alone, Pt. II (Remixes) 2020 electro house Alone, Pt. II -
Da Tweekaz Remix Alan Walker

Table 6: Example text prompts in our dataset.

A.3 Model Architecture and Parameters1020

Our diffusion autoencoder has 185M parameters,1021

with 7 nested U-Net blocks of increasing channel1022

count ([256, 512, 512, 512, 1024, 1024, 1024]), for1023

which we downsample each time by 2, except for1024

the first block ([1, 2, 2, 2, 2, 2, 2]). This makes the1025

compression factor for our autoencoder to be 64x.1026

Depending on the desired speed/quality tradeoff,1027

more or less compression can be applied in this1028

first stage. Following our single GPU constraint,1029

we find that 64x compression factor is a good bal-1030

ance to make sure the second stage can work on1031

a reduced representation. We discuss more about 1032

this tradeoff in Appendix E.5. The diffusion au- 1033

toencoder only uses ResNet and modulation items 1034

with the repetitions [1, 2, 2, 2, 2, 2, 2]. We do not 1035

use attention, to allow decoding of variable and 1036

possibly very long latent representations. Channel 1037

injection only happens at depth 4, which matches 1038

the output of the magnitude encoder latent, after 1039

applying the tanh function. 1040

Our text-conditional generator has 857M parame- 1041

ters (including the parameters of the frozen T5-base 1042

model) with 6 nested U-Net blocks of increasing 1043

channel counts ([128, 256, 512, 512, 1024, 1024]), 1044

and again downsampling each time by 2, except for 1045

the first block ([1, 2, 2, 2, 2, 2]). We use attention 1046

blocks at the depths [0, 0, 1, 1, 1, 1], skipping the 1047

first two blocks to allow for further downsampling 1048

before sharing information over the entire latent, 1049

instead use cross-attention blocks at all resolutions 1050

([1, 1, 1, 1, 1, 1]). For both attention and cross- 1051

attention, we use 64 head features and 12 heads per 1052

layer. We repeat items with an increasing count 1053

towards the inner U-Net low-resolution and large- 1054

context blocks ([2, 2, 2, 4, 8, 8]), this allows good 1055

structural learning over minutes of audio. 1056

B More Experiments 1057

B.1 Hardware Requirements 1058

We use limited computational resources as avail- 1059

able in a university lab. (3) Efficiency is another 1060

highlight of our model, where we only needs an 1061

inference time equivalent to the audio length on a 1062

consumer GPU, which is several minutes, while 1063

many other text-to-audio models take many GPU 1064

hours (Dhariwal et al., 2020; Kreuk et al., 2022). 1065

Our model is very friendly for research at univer- 1066

sity labs, as each of our models can be trained on 1067

a single A100 GPU in 1 week of training using a 1068

batch size of 32; this is equivalent to around 1M 1069

steps for both the diffusion autoencoder and latent 1070

generator. For inference, as an example, a novel au- 1071

dio source of ∼43s can be synthesized in less than 1072

50s using a consumer GPU with a DDIM sampler 1073

and a high step count (100 generation steps and 1074

100 decoding steps). 1075
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C More evaluation details1076

C.1 Annotation Details for the Genre1077

Identification Test1078

Prompts We list all the text prompts composed for1079

the four common music genres in Table 7.1080

Using these prompts, we generate music with both1081

Moûsai and the Riffusion model (Forsgren and Mar-1082

tiros, 2022), with a total of 80 pieces of music, two1083

for each prompt.1084

To validate this quantitatively, we conducted a lis-1085

tener test with three perceivers (annotators) with di-1086

verse demographic backgrounds (both female and1087

male, all with at least a Master’s degree of edu-1088

cation). Each annotator listens to all 80 music1089

samples we provide, and is instructed to categorize1090

each sample into exactly one of the four provided1091

genres.1092

Annotation We record how many times the per-1093

ceiver correctly identifies the genre which the re-1094

spective model was generating from. A large num-1095

ber (or score) means that the model often generated1096

music that, according to the human perceiver, plau-1097

sibly belonged to the correct category (when com-1098

pared to the other three categories). To achieve a1099

good score, the model needs to generate diverse and1100

genre-specific music. We take the score as a qual-1101

ity score of the model when it comes to correctly1102

performing text-conditional music generation.1103

In Figure 5, we display the confusion matrix of this1104

genre identification test for both our model (left)1105

and the Riffusion model (right). For our model,1106

the annotators identify the right genres most of the1107

time, whereas for the Riffusion model, the anno-1108

tators often perceive the music as more generic,1109

categorizing it as Pop.1110

C.2 Annotation Details for Turing Test1111

We let the annotators listen to a pair of music sam-1112

ples at a time, and judge which one is real and1113

which is generated. To provide a more fine-grained1114

score, we also ask them how much the generated1115

music they identified sounds like real music, on a1116

scale of 1 (almost not similar at all) to 5 (highly1117

similar). We keep their annotation score if they1118

identify the generated music correctly, and other-1119

wise we rate the music as 5, which means that the1120

music perfectly passes the Turing test.1121

As for the details, we create 90 music samples, in-1122

cluding 15 generated samples paired with 15 real 1123

music samples for each of the three models (Rif- 1124

fusion, Musika, and Moûsai). We recruit two un- 1125

dergraduate annotators who have pursued playing 1126

music as a hobby for the past 10 years. 1127

We conducted a rigorous evaluation employing an 1128

experiment with a similar spirit to the Turing test 1129

(TURING, 1950) for natural language, but com- 1130

monly called as the fidelity test in audio evaluation 1131

(Hyun et al., 2022) or speaker test (Greshler et al., 1132

2021; Hawthorne et al., 2019b) in audio evaluation. 1133

Our methodology involved presenting a group of 1134

expert annotators with a total of 60 distinct fold- 1135

ers, 15 corresponding to each of Mousai, Mou- 1136

sai (classical-only), Riffusion, and Musika models. 1137

Each folder containing two music files, one being 1138

the original and the other generated using a given 1139

model prompted with its corresponding metadata. 1140

The annotators were provided with the task of de- 1141

termining the fidelity and providing a rating on a 1142

scale of 1 to 5, reflecting the perceived degree of 1143

authenticity of the generated audio. In cases where 1144

the annotators incorrectly identified the generated 1145

audio, the respective model was awarded 5 points. 1146

Conversely, if the annotators correctly identified 1147

the generated audio, the model’s rating was deter- 1148

mined based on the score provided by the annotator. 1149

The annotators were compensated with 500 rupees 1150

(∼6.5 dollars) for this 3 hour task (which is well 1151

above daily minimum wage in India). 1152

Following are the exact instructions provided to the 1153

annotators 1154

1. You will be presented with batches of two au- 1155

dio samples in subfolders of this folder named 1156

from 1 to 60. Each subfolder contains two 1157

audios named a.wav and b.wav. 1158

2. Listen to each sample carefully. 1159

3. It’s best to use headphones in a quiet environ- 1160

ment if you can. 1161

4. Some files may be loud, so it’s recommended 1162

to keep the volume moderate. 1163

5. One of the audio samples in each pair is a 1164

real recording, while the other is a generated 1165

(synthetic) audio. 1166

6. Listen to each pair of audio samples carefully. 1167

7. Pay attention to the quality, characteristics, 1168

and nuances of each audio sample. 1169

8. This folder contains a spreadsheet file called 1170

‘Response_Task_2.xlsx’. Compare the sam- 1171
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ples to each other and provide a relative rating1172

to the fake audio only out of 5, where 1 being1173

the most fake and 5 being most real.1174

C.3 Annotation Details for Musicality1175

In order to ascertain the quality and artistic merit1176

of the generated musical output, a rigorous human1177

evaluation methodology was implemented. A to-1178

tal of 50 carefully curated folders, each containing1179

three distinct audio files, were presented to human1180

evaluators. These audio files were generated uti-1181

lizing various models, all prompted by a specific1182

prompt. We recruit two annotators, pursuing Bach-1183

elor of Technology degree from the Indian Institute1184

of Technology, Kharagpur, India. Additionally, the1185

two annotators have pursued playing music as a1186

hobby for the past 10 years. The annotators were1187

compensated with 500 rupees (∼6.5 dollars) for1188

this 3 hour task (which is well above daily mini-1189

mum wage in India).1190

Following are the exact instructions provided to the1191

annotators1192

1. Listen to the music and rate it based on three1193

aspects: Quality, Melody, and Harmony.1194

2. It’s best to use headphones in a quiet environ-1195

ment if you can.1196

3. Some files may be loud, so it’s recommended1197

to keep the volume moderate.1198

4. This folder contains folders subfolders1199

through 1-50. Each subfolders contains three1200

audio files named A.wav, B.wav, and C.wav1201

. You need to listen to each of them and rate1202

them (relative to each other) based on quality,1203

melody, and harmony.1204

5. For Quality, consider how clear the audio1205

sounds. Does it resemble a walkie-talkie (bad1206

quality) or a high-quality studio sound system1207

(good quality)?1208

6. Melodiousness refers to the main pitch or note1209

in the music. Pay attention to the rhythm and1210

repetitiveness of the melody. A more rhyth-1211

mic and repetitive melody is considered better,1212

while the opposite is true for a less rhythmic1213

melody.1214

7. Harmoniousness involves multiple notes1215

played together to support the melody. Evalu-1216

ate if these notes are in sync and enhance the1217

effect of the melody. Higher scores should be1218

given for good harmony and lower for poor1219

harmony.1220

8. It is recommended view youtube videos: this 1221

or this short video explaining melody and har- 1222

mony 1223

9. This folder also contains a spreadsheet by the 1224

name “Response_Task_1.xlsx”. Remember 1225

to provide ratings (out of 5) for each aspect 1226

of your evaluation in the file against appropri- 1227

ate folder number. Feel free to listen to each 1228

sample as many times before rating them. 1229

D More Related Work 1230

Audio generation is a challenging task. At the low- 1231

est level, we have digital waveforms that control 1232

air movement from speakers. Waveforms can be 1233

represented in different resolutions, or sample rates. 1234

Higher sample rates (e.g., 48kHz) allow for more 1235

temporal resolution and can represent higher fre- 1236

quencies, but at the same time it is computationally 1237

more demanding to generate. At higher levels of 1238

abstraction, we find qualitative properties such as 1239

texture (timbre) or pitch. Zooming out, we observe 1240

structure such as rhythm and melody that can span 1241

multiple seconds, or even structurally be composed 1242

into choruses that form minutes of interconnected 1243

patterns. 1244

Audio can be represented with a single waveform 1245

(mono), two waveforms (stereo), or even more 1246

waveforms in the case of surround sound. Au- 1247

dio with two or more channels can give a sense 1248

of movement and spatialisation. From a modelling 1249

perspective, there are (1) unconditional models that 1250

generate novel samples from the training distri- 1251

bution without any additional information, or (2) 1252

conditional models that use a form of guidance, 1253

such as text, to control the generation. Models 1254

can be trained on a single modality (e.g., drums or 1255

piano) or on multiple modalities, which usually re- 1256

quire more parameters for an increased modelling 1257

capacity and decrease in speed. 1258

E Exploring Variations of the Model 1259

Architecture and Training Setup 1260

E.1 High-Frequency Sounds 1261

We observe that our model is good at handling 1262

low-frequency sounds. From the mel spectrograms 1263

Figure 7, and also the music samples we provide, 1264

we notice that our model performs well with drum- 1265

like sounds as frequently found in electronic, house, 1266

dubstep, techno, EDM, and metal music. This is 1267

likely a consequence of the lower amount of infor- 1268
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Figure 7: Mel spectrogram comparison between the true
samples (top) and the auto-encoded samples (bottom);
cf. text.

mation required to represent low-frequency sounds.1269

E.2 Improving the Structure1270

We find that increasing the number of attention1271

blocks (e.g., from a total of 4 – 8 to a total of1272

32+) in the latent diffusion model can improve1273

the general structure of the songs, thanks to the1274

long-context view. If the model is trained without1275

attention blocks, the context provided by the U-1276

Net is not large enough to learn any meaningful1277

long-term structure.1278

E.3 Text-Audio Binding1279

We find that the text-audio binding works well with1280

CFG higher than 3.0. Since the model is trained1281

with metadata such as title, album, artist, genre,1282

year, and chunk, the best keywords to control the1283

generation appear to be frequent descriptive names,1284

such as the genre of the music, or descriptions com-1285

monly found in titles, such as “remix”, “(Deluxe1286

Edition)”, and possibly many more. A similar be-1287

havior has been observed and exploited in text-to-1288

image models to generate better looking results.1289

E.4 Trade-Off between Speed and Quality1290

We find that 10 sampling steps in both stages can1291

be enough to generate reasonable audio. We can1292

achieve improved quality and reduced noise for1293

high-frequency sounds by trading off the speed,1294

i.e., increasing the number of sampling steps in the1295

diffusion decoder, e.g., 50 – 100 steps). Increasing1296

the number of sampling steps in the latent diffusion1297

model (again in the order of 50 – 100 steps) will1298

similarly improve the quality, likely due to the more1299

detailed generated latents, and at the same time1300

result in an overall better structured music. To1301

make sure the results are comparable when varying1302

the number of sampling steps, we use the same 1303

starting noise in both stages. In both cases, this 1304

suggests that using more advanced samplers could 1305

be helpful to improve on the speed-quality trade- 1306

off. 1307

E.5 Trade-Off between Compression Ratio 1308

and Quality 1309

We find that decreasing the compression ratio of 1310

the first stage (e.g., to 32x) can improve the qual- 1311

ity of low-frequency sounds, but in turn will slow 1312

down the model, as the second stage has to work 1313

on higher dimensional data. As proposed later in 1314

Section 6, we hypothesize that using perceptually 1315

weighted loss functions instead of L2 loss during 1316

diffusion could help this trade-off, giving a more 1317

balanced importance to high frequency sounds even 1318

at high compression ratios. 1319

E.6 High-Frequency Audio Generation 1320

We have encountered challenges in achieving satis- 1321

factory results when dealing with high-frequency 1322

audio signals, as detailed in Appendix E.1. To gain 1323

deeper insights into the underlying issues, we con- 1324

ducted an ablation experiment by exclusively train- 1325

ing our model on classical music, a genre known for 1326

its prominent high-frequency characteristics. We 1327

train this model using 500 hours of music collected 1328

from albums of top classical composers4 and other 1329

popular Spotify playlists. We notice a drop of 9.5% 1330

in the fidelity score of the generated music samples 1331

compared to those produced by our original model. 1332

Further, qualitative analysis reveals that melodic 1333

elements of these samples demonstrated commend- 1334

able accuracy, the harmony notes appeared to be 1335

convoluted and disorganized. This finding high- 1336

lights the significance of harmonization challenges 1337

when generating high-frequency audio and under- 1338

scores the need for developing improved models in 1339

future research. 1340

4(cla)
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Genre = Electronic
– Drops, Kanine Remix, Darkzy, Drops Remixes, bass house,
(Deluxe) (Remix) 3 of 4
– Electronic, Dance, EDM (Deluxe) (Remix) 3 of 4
– Electro House (Remix), 2023, 3 of 4
– Electro Swing Remix 2030 (Deluxe Edition) 3 of 4
– Future Bass, EDM (Remix) 3 of 4, Remix
– EDM (Deluxe) (Remix) 3 of 4
– EDM, Vocal, Relax, Remix, 2023, 8D Audio
– Hardstyle, Drop, 8D, Remix, High Quality, 2 of 4
– Dubstep Insane Drop Remix (Deluxe Edition), 2 of 4
– Drop, French 79, BPM Artist, Vol. 4, Electronica, 2016
Genre = Hip Hop
– Real Hip Hop, 2012, Lil B, Gods Father, escape room, 3 of 4
– C’est toujours pour ceux qui savent, French Hip Hop, 2018
(Deluxe), 3 of 4
– Dejando Claro, Latin Hip Hop 2022 (Deluxe Edition) 3 of 4
– Latin Hip Hop 2022 (Deluxe Edition) 3 of 4
– Alternative Hip Hop Oh-My, 2016, (Deluxe), 3 of 4
– Es Geht Mir Gut, German Hip Hop, 2016, (Deluxe), 3 of 4
– Italian Hip Hop 2022 (Deluxe Edition) 3 of 4
– RUN, Alternative Hip Hop, 2016, (Deluxe), 3 of 4
– Hip Hop, Rap Battle, 2018 (High Quality) (Deluxe Edition) 3
of 4
– Hip Hop Tech, Bandlez, Hot Pursuit, brostep, 3 of 4
Genre = Metal
– Death Metal, 2012, 3 of 4
– Heavy Death Metal (Deluxe Edition), 3 of 4
– Black Alternative Metal, The Pick of Death (Deluxe), 2006, 3
of 4
– Kill For Metal, Iron Fire, To The Grave, melodic metal, 3 of 4
– Melodic Metal, Iron Dust (Deluxe), 2006, 3 of 4
– Possessed Death Metal Stones (Deluxe), 2006, 3 of 4
– Black Metal Venom, 2006, 3 of 4
– The Heavy Death Metal War (Deluxe), 2006, 3 of 4
– Heavy metal (Deluxe Edition), 3 of 4
– Viking Heavy Death Metal (Deluxe), 2006, 3 of 4
Genre = Pop
– (Everything I Do), I Do It For You, Bryan Adams, The Best
Of Me, canadian pop, 3 of 4
– Payphone, Maroon 5, Overexposed, Pop, 2021, 3 of 4
– 24K Magic, Bruno Mars, 24K Magic, dance pop, 3 of 4
– Who Is It, Michael Jackson, Dangerous, Pop (Deluxe), 3 of 4
– Forget Me, Lewis Capaldi, Forget Me, Pop Pop, 2022, 3 of 4
– Pop, Speak Now, Taylor Swift, 2014, (Deluxe), 3 of 4
– Pop Pop, Maroon 5, Overexposed, 2016, 3 of 4
– Pointless, Lewis Capaldi, Pointless, Pop, 2022, 3 of 4
– Saved, Khalid, American Teen, Pop, 2022, 3 of 4
– Deja vu, Fearless, Pop, 2020, (Deluxe), 3 of 4

Table 7: Text prompts composed for the four common
music genres: electronic, hip hop, metal, and pop.
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