
Alias-Free Mamba Neural Operator

Jianwei Zheng, Wei Li, Ni Xu, Junwei Zhu, Xiaoxu Lin, and Xiaoqin Zhang∗

Zhejiang University of Technology, Hangzhou, Zhejiang

Abstract

Benefiting from the booming deep learning techniques, neural operators (NO) are
considered as an ideal alternative to break the traditions of solving Partial Differ-
ential Equations (PDE) with expensive cost. Yet with the remarkable progress,
current solutions concern little on the holistic function features–both global and
local information– during the process of solving PDEs. Besides, a meticulously de-
signed kernel integration to meet desirable performance often suffers from a severe
computational burden, such as GNO with O(N(N − 1)), FNO with O(NlogN),
and Transformer-based NO with O(N2). To counteract the dilemma, we propose a
mamba neural operator with O(N) computational complexity, namely MambaNO.
Functionally, MambaNO achieves a clever balance between global integration,
facilitated by state space model of Mamba that scans the entire function, and
local integration, engaged with an alias-free architecture. We prove a property of
continuous-discrete equivalence to show the capability of MambaNO in approxi-
mating operators arising from universal PDEs to desired accuracy. MambaNOs are
evaluated on a diverse set of benchmarks with possibly multi-scale solutions and
set new state-of-the-art scores, yet with fewer parameters and better efficiency.

1 Introduction

Numerous scientific and engineering problems entail recurrently resolving intricate Partial Differential
Equation (PDE) [1] for various parameter values, including morphology across biomes [2], physical
system state [3], and Radcliffe wave oscillation [4], to name just a few. Nonetheless, traditional
solvers, such as Finite Element Methods (FEM) and Finite Difference Methods (FDM), necessitate
an equilibrium between the speed of obtaining solutions and the level of refinement due to the
requirement of resolving equations through domain discretization. Another disadvantage of these
methods lies in the unavoidable resolving stage when the initial conditions of PDEs are varied.
Recently, data-driven methods have emerged as an alternative for the development of faster, more
robust, and more accurate solvers due to the natural ability to directly ascertain the trajectory of an
PDE family from the data, instead of a single instance of the equation.

These techniques, collectively termed operator learning or neural operator, strive to approximate
a well-behaved mapping from input function spaces, such as initial and boundary conditions, to
solutions of some PDEs valued also within function spaces. As a burgeoning subject, most well-
known NOs have been substantiated, encompassing Operator networks [5], DeepONets (DON) [6],
Graph Neural Operator (GNO) [7], Fourier Neural Operator (FNO) [8], [9, 10], Transformer-based
learning architectures [11, 12], and the most recent Convolution Neural Operators (CNO) [13].

Despite the substantial success of recently introduced operator learning frameworks, existing algo-
rithms continue to demonstrate specific limitations to various degrees. The focus of operator network
learning is on mapping between finite-dimensional function spaces, yet the truthful NO often engages
with functions owning infinite dimensions. The practice of DON cannot take inputs at any point,

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

while GNO delivers very low efficiency when dealing with heterogeneous data. Transformer-based
architectures suffer from slow inference speeds due to the quadratic complexity of attention computa-
tion, which serves as a special kernel integration. The use of Galerkin-style attention [14] can only
alleviate rather than solve this problem. FNO accelerates the efficiency of the model by converting
global convolution operation, which is a special form of kernel integration, into frequency domain
multiplication through Fourier transformation. However, FNO may not respect the framework of
alias-free operator learning, mentioned in [15], and suffers aliasing errors, a fact already identified in
[16]. The most recent CNO has established a new state-of-the-art score in this field, which relies on
U-Net as the core architecture and proceeds with several specified operations to circumvent aliasing
errors. However, as a local operator, CNO falls short in capturing global information, which is of
vital importance for functions. Another recently reported model, Mamba [17, 18], has also attracted a
great deal of attention due to its capability in capturing global information with linear complexity.
Unfortunately, the connection of state space model in Mamba to the integral kernel in NOs is far
from intuitive. In addition, Mamba often produces artifacts [19] or pixel adhesion [20], raising the
challenge of seeking continuous-discrete equivalence (CDE), as highlighted in [15]. Both these two
have plagued the naive use of Mamba in the context of NO learning. In this work, we attempt to marry
the current merits yet with the disadvantages suppressed. The practical contributions are threefold.

• We propose a novel integral form as the NO kernel, namely mamba integration, costing only
O(N) computational complexity and enabling the grasp of global function information. On
that basis, with the local function feature further furnished by convolution, we present an
avant-garde Mamba Neural Operator (MambaNO), behaving as a deep PDE sovler.

• Apart from proving that MambaNO is intrinsically a representation-equivalent neural opera-
tor in the sense of [21], we also provide a universality result to demonstrate that MambaNO
can approximate continuous operators, fitting a large class of PDEs, to desired accuracy.

• We test MambaNO on a full set of benchmarks that span across massive PDEs ranging
from linear elliptic and hyperbolic to nonlinear parabolic and hyperbolic equations, with
potentially multiscale solutions. It is evidenced that MambaNO outperforms competing
baselines on all benchmarks, both when testing in-distribution and in out-of-distribution
cases, yet with reduced model parameters and computational costs. Codes are available 2.

Hence, we offer a new Mamba-based operator learning model incorporating more holistic features,
with favorable properties in theory and excellent performance in practice.

2 Related Work

2.1 Learnable PDE Solvers

The development of deep learning has revitalized various fields [22]. In recent years, numerous
investigations have been conducted on the application of learning networks to solve PDEs [23, 24].
A prevalent treatment involves initially encoding the data spatially, followed by the employment of
diverse schemes for temporal evolution. For example, physics-informed approaches utilize PDE
supervision to approximate the solution [25], commonly parameterized by neural networks, within a
consolidated space-time domain. Yet, the accuracy is negatively correlated with solving efficiency.
Moreover, retraining is required across different instances of a PDE.

To design more robust and efficient algorithms, Lu et al. [6] pioneeringly introduced the practical
implementation of universal operator approximation theorem [5], which can further be integrated
with prior knowledge of the system [26]. Independently, infinite-dimensional solution operators
are approximated by iteratively learnable integral kernels [7]. Such kernel can be parameterized by
message-passing [27], neural networks [28], attention mechanism [11, 29], convolution in Fourier
domain [8] or in bandlimited function space [13]. Following this, we further present a novel form
called as mamba integration, capturing global function information in O(N) time complexity.

2.2 Alias-free Framework

Aligned with the discussion in [30], a neural operator or an operator learning architecture should hold
the ability in managing functions as both inputs and outputs. Yet, in digital environments, engagement

2https://github.com/ZhengJianwei2/Mamba-Neural-Operator.

2

and computation with functions are implemented via discrete representations, e.g., grid point values,
cell averages, or generally coefficients of a specific basis, instead of the original continuous entities.
Recently, the alias-free framework [15], in which the aliasing error is zero, was proposed. We provide
a detailed definition in the Supplementary Material (SM) A.1. Within this framework, continuous
functions should be consistently, or uniquely and stably, derived from the discrete counterparts,
e.g., point evaluations, basis coefficients, etc., at any resolution, hammering at reconciling potential
inconsistencies between operators and their discrete representations. Models that do not follow
this framework, such as CNNs, may generate inconsistent outputs as the resolution varies, and thus
are not Representation equivalent Neural Operators (ReNO), whose definition is given in SM A.2.
Similarly, the property of continuous-discrete equivalence (CDE), proposed by [15] that measures
the consistency between discrete and continuous representations, cannot be guaranteed. In addition,
the high-frequency information introduced by point-wise activation functions also leads to similar
inconsistencies [31, 20]. Therefore, FNO cannot be considered as a ReNO that meets the alias-free
framework. More recently, CNO was elaborated as the first instance that conforms to the alias-free
framework [13], paving the way for the implementation of our MambaNO.

3 Mamba Neural Operator

Setting. The core purpose here involves learning a mapping between two infinite-dimensional spaces
via a finite array of observed input-output pairings from this correspondence. Generally, the problem
concerned can be formally delineated as follows. Let X = Hr(D,RdX) and Y = Hs(D,RdY) be
Sobolev spaces of functions defined on 2-dimensional bounded domains D = T2 and G† : X → Y
be a non-linear map. By constructing a parametric map Gθ, the practice would be to build an
approximation of G† from data pairs

(
ui,G†(ui)

)N
i=1

∈ X × Y , i.e.,

Gθ : X → Y, θ ∈ Rp, (3.1)

with parameters from the finite-dimensional space Rp by seeking θ† ∈ Rp so that Gθ† ≈ G†. The
practical learning of Gθ can be naturally addressed through the empirical-risk minimization problem,

min
θ∈Rp

E∥G†(u)− Gθ(u)∥2Y ≈ min
θ∈Rp

1

N

N∑
i=1

∥G†(ui)− Gθ(ui)∥2Y , u ∈ X . (3.2)

Given that our methodology is conceived within the infinite-dimensional context, each finite-
dimensional approximation enjoys a shared set of network parameters which are consistent in
infinite environment devoid of approximations.

Bandlimited Approximation. Since the original Sobolev space is too large to allow for any form
of continuous-discrete equivalence (A.1), we select a subspace B instead of the original H. On
that basis, the possibility of achieving equivalence between the underlying operator and its discrete
representations would be basically guaranteed. In this respect, we elaborate the space of bandlimited
functions defined by

Bw(D) = {f ∈ L2(D) : suppf̂ ⊆ [−w,w]2}, (3.3)

in which w > 0 denotes the frequency bound and f̂ represents the Fourier transform of f . Note that
if a bandlimited function can approximate the original function with arbitrary precision (depending
on w), then a bandlimited operator mapping between bandlimited functions can also approximate
the original operator with arbitrary precision. In other words, for any ε > 0, there exist a w and
a continuous operator Gθ : Bw(D) → Bw(D) such that ∥G† − Gθ∥ < ε, with ∥·∥ pertaining to
the corresponding operator norm. In addition, let Pw denote a certain Fourier projection, Pw(g) is
capable of discarding the high-frequency components higher than frequency w, where g ∈ H(D) is
any function in that space.

Definition of MambaNO. As the underlying operator maps between the spaces of bandlimited
functions, the operator approximation architecture shall be constructed in a structure-preserving
fashion. That is to say, it is dedicated to form a corresponding mapping in-between bandlimited
functions, thus respecting the CDE property. To that end, a Mamba Neural Operator (MambaNO) is
engineered to approximate the operator Gθ : Bw(D) → Bw(D). Following the common paradigm of
most NOs [12, 32, 33] , our practical elaboration also lies in a compositional mapping,

Gθ := Q ◦ PT (ηT (WT−1 +KT−1 + bT−1)) ◦ · · · ◦ P1(η1(W0 +K0 + b0)) ◦ P, (3.4)

3

Mamba Integration×2

Upsampling

Mamba Integration×2

Upsampling

Mamba Integration×2

Upsampling

Mamba Integration×2

Mamba Integration×2

Downsampling

Mamba Integration×2

Downsampling

Mamba Integration×2

Downsampling

Conv Integration×2

Conv Integration×2

Conv Integration×2

Conv Integration×2

Mamba Integration×2

MambaNO

N
o
rm

Activation

C
1

S
S

M

Mamba

Integration

C1

SSM

Element-wise Multiplication

Element-wise Addition

Conv1d MLP

State Space Model

Upsampling

Downsampling

A
ct

iv
at

io
n

Activation/Act σv:

Conv Integration :

:

C
o
n
v
2
d

Act

C
o
n
v
2
d

C
o
n
v
2
d

Act

u ()u

or

2
2 2

H W
C 

4
4 4

H W
C 

8
8 8

H W
C 

8
8 8

H W
C 

H W C 

1H W 

x

z

()σ v

0 0W b+

1 1W b+

2 2W b+

3 3W b+

7 7W b+

6 6W b+

5 5W b+

4 4W b+

Figure 1: The overall architecture of MambaNO.

where
P :

{
u ∈ Bw(D,RdX)

}
→

{
v0 ∈ Bw(D,Rd0)

}
, (3.5a)

Q :
{
vT ∈ Bw(D,RdT)

}
→

{
ũ ∈ Bw(D,RdY)

}
. (3.5b)

are the lifting and projection mappings respectively, Wt ∈ Rdt+1×dt are linear operators in a matrix
form, bt : D → Rdt+1 are bias functions, ηt are activation functions, and Pt are either upsampling
or downsampling operators in each layer. Note that all these operations are performed locally or
pointwisely, following the principle of discretization invariance [34] to some extent. The general
formulation of the kernel integral operator Kt : {vt : D → Rdt} → {vt+1 : D → Rdt+1} is
parameterized by α such as:

(Kt(vt);α)(x) =
∫
D

Kt(x, y, vt(x), vt(y))vt(y)dy ∀x, y ∈ D, (3.6)

in which the parameter of kernel Kt is learnt from given data. For instance, FNO [8, 35] employs
convolution as the primary operation, while Transformer-based neural operators [11, 36] leverage
attention mechanisms. In this work, a new integral form fitting Mamba architecture is crafted.

Mamba Integration. For simplicity of the exposition, we omit the subscript t from Eq. (3.6)
hereafter, which is originally used to denote the number of iterations during integration flow.

(Kt(vt);α)(x) =
∫
D

Kt(x, y, v(x), v(y))v(y)dy. (3.7)

Following the tradition of FNO [8, 37], we first assume that Kt : RD × RD → Rdt+1×dt concerns
little on the spatial variables (v(x), v(y)), but only on the input pair (x, y). Then, we let

Kt(x, y) = CeAx ·Be−Ay, (3.8)

where A, B and C are temporarily constant parameters, as for an easier deduction purpose. To further
ensure a possible employment of the scanning pattern used in Mamba [17], we set the integration
interval to y ∈ (−∞, x) instead of the entire definition domain D, hence Eq. (3.7) becomes

(Kt(vt);α)(x) =
∫ x

−∞
(CeAx ·Be−Ay)v(y)dy. (3.9)

4

Clearly, CeAx is independent of the integral variable y, from which Eq. (3.9) can be rewritten as:

(Kt(vt);α)(x) = Ch(x),with h(x) = eAx
∫ x

−∞
B(e−Ay)v(y)dy. (3.10)

Furthermore, with simple operation of differential performed on x, we can get

h
′
(x) = Ah(x) +Bv(x), (3.11)

which together with Eq. (3.10) leads to

h′(x) =Ah(x) +Bv(x),

u(x) =Ch(x),
(3.12)

where u(x) = (Kt(vt);α)(x). More details of the deduction can be found in SM B.1. By now, we
have seamlessly married the computation of kernel integral in Eq. (3.7) with a State Space Model
(SSM) [38]. Drawing inspiration from the theory of continuous systems, the goal of Eq. (3.12) is to
map a two-dimensional function, denoted as v(x), to u(x) through the hidden space h(x). Within
this context, A serves as the evolution parameter, while B and C act as the projection parameters.
To integrate Eq. (3.12) into deep learning paradigm, a discretization process is initially necessary.
Note this transformation is crucial to align the model with the sampling rate of the underlying signal
embodied in the input data, enabling computationally efficient operations. To address the drift and
diffusion effects within most PDEs, unlike the Monte Carlo approximation used in conventional
integrals, our approach employs the Scharfetter-Gummel method [39], which approximates the matrix
exponential using Bernoulli polynomials, and can be formally defined as follows:

Ā =exp(∆A),

B̄ =(∆A)
−1

(exp(∆A)− I) ·∆B,
(3.13)

where ∆ is a timescale parameter converting continuous parameters A and B into their discrete
counterparts Ā and B̄. The discrete representation of Eq. (3.12) can be formulated as follows:

h(xk) =Āh(xk−1) + B̄v(xk),

u(xk) =Ch(xk),
(3.14)

More details can be found in SM A.3. Recall that our intention is to integrate the two-dimensional
function in a scanning manner for integration, capturing global information with O(N) complexity.
In Eq. (3.14), h(x), serving as the hidden space, encapsulates relevant information about the
integrated points before x. Therefore, through Carleman bilinearization, we can construct a kernel
to approximate the nonlinear state space evolution [40, 41], i.e., the output can be derived through
global convolution:

K̄ = (CB̄, CĀB̄, ..., CĀ(k−1)B̄),

u(xk) = v(xk) ∗ K̄,
(3.15)

where K̄ ∈ Rk denotes a structured convolution kernel and k is the sampling points of input v.

Convolution Integration. Mamba integration enjoys a global receptive field, yet we believe that
introducing local convolution integration would further bring benefits in capturing more holistic
features. To commence with, the convolution integration for Kw : Bw(D) → Bw(D) is defined as:

Kwf(x) =
∫
D

κw(x− y)f(y)dy =

k∑
i,j=1

κijf(x− zij), ∀x ∈ D, (3.16)

where f ∈ Bw, κ is a discrete kernel with size k ∈ N, zij is the resultant grid points. Thus, the
convolution operator can be intuitively parameterized in physical space, deviating far from the
treatments of Fourier transformation and then followed by matrix multiplication, as in FNO [8].

Upsampling, Downsampling, and Activation Operators. Ideal upsampling is recognized as not
altering the continuous representation, simply transforming the original function to a larger bandwidth-
limited space. In other words, just viewing the function from a band-limited space as belonging
to a higher-bandwidth space does not actually change any values of the function. The upsampling
operators for some w > w are defined as,

Uw,w : Bw(D) → Bw(D), Uw,wf(x) = f(x), ∀x ∈ D. (3.17)

5

Cross-Scan

()O N complexity

Figure 2: The cross-scan operation integrates pixels from four directions with O(N) complexity.

On the other side, for certain w < w, the concerned function f ∈ Bw can be downsampled to lower
band Bw by setting Dw,w : Bw(D) → Bw(D), defined by

Dw,wf(x) =
(w
w

)2
∫
D

hw(x− y)f(y)dy, ∀x ∈ D, (3.18)

where hw is an interpolation sinc filter, playing the role of removing high-frequency components
exceeding the lower band limit w and converting the function from a higher band-limited space
Bw(D) to a lower band-limited space Bw(D). As known, applying the activation function point-
wise directly would break the band-limits of the underlying function space, potentially introducing
arbitrarily higher-frequency information and causing aliasing errors [20]. We aim to apply the
activation function within a sufficiently large band-limited w space to minimize the introduction of
high-frequency information and thereby reduce aliasing errors. To this end, we define the activation
operators in (3.4) as,

ηw,w : Bw(D) → Bw(D), ηw,wf(x) = Dw,w(σ ◦ Uw,wf)(x), ∀x ∈ D. (3.19)

Recall that the activation operator within a broader band-limited space is confined in a ‘sandwich-like’
structure, as shown in Eq. (3.4), with lifting P and projection Q lying at the edges and kernel
integrations occupying the middle position.

Algorithm 1 SSM Block (Mamba Integration)

Input: v(x), a continuous funtion with shape [sampling points (N), dimension (D)]
Parameters: A, an evolution parameter; ∆, a timescale parameter; B and C, projection parameters
Linear Projection Layer: Linear(·)
Output: u(x), a function also with shape [sampling points, dimension]
1: ∆, B, C = Linear(v), Linear(v), Linear(v)
2: Ā = exp(∆A)

3: B̄ = (∆A)
−1

(exp(∆A)− I) ·∆B
4: u(x) = SSM(Ā, B̄, C)(v(X)), X is a discrete sequence that contains x1, x2, · · ·, xN .

4.1: h(xk) = Āh(xk−1) + B̄v(xk)
4.2: u(xk) = Ch(xk)
4.3: u(x) = [u(x1), u(x2), · · ·, u(xN)]

5: return u(x)

MambaNO Architecture. Given bandlimited functions as inputs and outputs, all the concerned
ingredients can be assembled in a U-shaped operator architecture, which is graphically given in Fig.
1. As seen, the input function, say u ∈ Bw(D,RdX) is first lifted and then processed through a series
of layers. Five main layers are used, i.e., convolution integration (3.16), Mamba integration (3.15),
activation layer (3.19), upsampling layers (3.17), and downsampling layers (3.18). Each layer is fed
with a band-limited function, and another band-limited function holding the same band returns as the
output. As the entire operation flow runs solely in the channel width, the underlying bandlimits are
confirmed since the spatial resolution is left unchanged. Thus, MambaNO assumes a function input
and throws it into a set of encoders, where the input is space-wise downsampled but channel-wise
widened. Then, the function is passed through a set of decoders, where the channel width is shrunk,
yet the space resolution is enlarged. In the meantime, the encoder and decoder layers sharing the same
spatial resolution and bandlimits are coupled with a resnet architecture. Thus, as we go deeper into
the encoder flow, transferring high-frequency information via skip connections is allowed, avoiding

6

which to be totally filtered out with the sinc operation. In other words, the high-frequency information
is not just produced by the activation function but also altered through the intermediate modules.

Practically, the constant parameters A, B, and C are better learned from the data, allowing attractive
model adaptability. This together with the shifted integral interval, as shown in Eq. (3.9), enables
cross-scan operation within the state space. As illustrated in Fig. 2, we choose to unfold sampling
points into sequences along with rows and columns and then proceed with scanning along four
different directions, i.e., top-left to bottom-right, bottom-right to top-left, top-right to bottom-left,
and bottom-left to top-right. These sequences are further processed by the SSM block for kernel
integration, ensuring that information from various directions is thoroughly scanned, thus capturing
diverse function features. Afterwards, the sequences from the four directions are merged, restoring
the output function. The pseudo-code for the SSM block is presented in Algorithm 1.

Continuous-discrete Equivalence for MambaNO. We have defined MambaNO (3.4) as an mapping
operator in-between bandlimited functions and that runs in a scanning pattern within a state space. In
practice, like any other computational methods, MambaNO shall be performed in a discrete manner,
with discretized variants of individual layers specified in SM A.3. Given the practical implementations
of each elementary block, i.e., convolution, up- and down-sampling, activation, etc., we then prove
the following proposition, whose details are given in SM B.2:

Proposition 3.1 Mamba Neural Operator G : Bw(D,RdX) → Bw(D,RdY) is a Representation
equivalent Neural Operator (ReNO). That is, MambaNO enjoys the CDE property.

More details on the notion of ReNOs can be found in SM A.2. As a ReNO, MambaNO is
representation-equivalent, allowing its migration between grids of different scales, yet with little
aliasing errors. This property, which can also be called resolution-discrete invariance, as a significant
characteristic of the neural operator, is highlighted in Ref. [8].

Complexity Analysis of MambaNO. Given a discrete counterpart u ∈ RH×W×D of a two-
dimensional continuous function, one can reshape it to get u ∈ RN×D with N = H ×W . For
simplicity, we assume the sequence dimensions of ∆, A,B,C are all D. As shown in step 1 of
Algorithm 1, the complexity of generating three learnable projections is O(3ND2). The dicretization
steps 2 and 3 involve four matrix multiplications, which cost O(4ND2). Step 4 is the state space
model with O(N) complexity [42]. In summary, the computations of Algorithm 1 are all linear with
the sequence length, i.e., O(N). Please refer to SM C for the time complexity of other models.

4 Experiments and Analysis

4.1 Experimental Settings

Training Details and Baselines. For fairness and reliability, all experiments are consistently con-
ducted on standardized platform with an NVIDIA RTX 3090 GPU and 2.40GHz Intel(R) Xeon(R)
Silver 4210R CPU. Several well-known PDE solvers are used as the competing baselines, such as
CNO [13], FNO [8], DeepONet (DON) [6], Galerkin Transformer (GT) [14], as well as the very
typical ResNet[43] and U-Net[44] architectures.

Representative PDE Benchmarks (RPB). As a standard set of benchmarks for machine learning of
PDEs, RBP focuses solely on two-dimensional PDEs since conventional numerical methods have
already yielded quite pleasing outcomes on one-dimensional functions; however, procuring training
data for those in three dimensions or higher is immensely cost-prohibitive. With these considerations
in mind, RBP covers Poisson Equation, Wave Equation, Transport Equation, Allen-Cahn Equation,
Navier-Stokes Eqns, Darcy flow, and Flow past airfoils, which are defined on Cartesian domains. We
have roughly listed the related information of the equations in SM D.

4.2 In and Out-of-distribution Results

The test results for both the in- and out-of-distribution evaluations from all competing models are
shown in Table 1. Specific for in-distribution experiments, it can be easily observed that, among
all competitors, except for the Allen-Cahn equation, CNO enjoys an evident superiority compared
to others. Moreover, our MambaNO, benefiting from the introduction of both global and local
integrations, outperforms even further. Taking the Poisson equation as an instance, CNO performs
twenty times better than FNO, while MambaNO further reduces the error by one-third. On the other

7

Table 1: Relative median L1 test errors for various benchmarks and models.

In/Out GT Unet ResNet DON FNO CNO MambaNO

Poisson In 4.09% 1.05% 0.63% 19.07% 7.35% 0.31% 0.17%
Equation Out 3.47% 1.55% 1.34% 11.18% 8.62% 0.33% 0.21%

Wave In 0.91% 0.96% 0.70% 1.43% 0.65% 0.40% 0.38%
Equation Out 1.97% 2.24% 2.50% 3.12% 1.95% 1.29% 1.22%

Smooth In 1.18% 0.59% 0.47% 1.38% 0.34% 0.29% 0.26%
Transport Out 666.07% 2.97% 2.73% 119.61% 1.97% 0.35% 0.34%

Discontinuous In 1.70% 1.44% 1.41% 6.35% 1.26% 1.11% 1.08%
Transport Out 27270.96% 1.62% 1.54% 140.73% 3.47% 1.31% 1.21%

Allen-Cahn In 1.30% 1.38% 2.36% 22.97% 0.87% 0.91% 0.72%
Equation Out 3.03% 3.28% 3.91% 20.75% 2.18% 2.33% 2.11%

Navier-Stokes In 4.61% 4.94% 4.10% 12.95% 3.97% 3.07% 2.74%
Equation Out 17.23% 16.98% 15.04% 23.39% 14.89% 10.94% 5.95%

Darcy In 0.86% 0.54% 0.42% 1.13% 0.80% 0.38% 0.33%
Flow Out 1.17% 0.64% 0.60% 1.61% 1.11% 0.50% 0.44%

Compressible In 2.33% 0.72% 1.89% 2.15% 0.49% 0.39% 0.34%
Euler Out 3.14% 0.91% 2.20% 3.08% 0.74% 0.63% 0.61%

Figure 3: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).

hand, we can see that UNet and ResNet also behave well in some cases. This not only verifies
the feasibility of convolution as kernel integration, but also shows that deep learning can directly
ascertain the trajectory of an equation family from the data. However, the limitations are also evident,
lying specifically in the fact that little consideration is given on the alias-free framework. Therefore,
when migrating to out-distribution experiments, the experimental results concerned show a significant
decline. We can see that in the out-distribution experiments of the Navier-Stokes equation, their
performance drops more than that of CNO, which is another instance that adheres to the alias-free
modeling. MambaNO again sets a new state-of-the-art score in this case, which not only follows
this framework, but also benefits from the global integration. More intuitively, Fig. 3 plots the
in-distribution and out-of-distribution visualization of the Navier-Stokes equation, taking the three
best-performing models, e.g., FNO, CNO, and MambaNO, as examples. Our first observation is that,
whether in the in-distribution or out-distribution environments, the predictions of MambaNO are the
closest to the ground truth. The regions within the black box provide the most clear comparisons.
Note that FNO is limited by the pointwise activation function that introduces aliasing errors, and CNO
is limited by the convolution integral paying little attention to global information, while MambaNO
has made improvements on both these issues.

4.3 Resolution Invariance

In the left and central segments of Fig. 4, we compare UNet, FNO, CNO, and MambaNO vis-a-vis
the metric of varying errors across resolutions, which is an important property for robust operator
learning. The selected equation is the Navier-Stokes benchmark. In this figure, we can see that
both UNet and FNO are practically not discrete invariant. With resolution changing, a sharp decline

8

4.0

2.0

3.0

3.5

4.5

2.5

1.5

29 210 211 212 213

Number of training samples

T
e
st

 E
r
ro

r
(i

n
 %

)

GT, 10.01M

MambaNO, 3.03M
CNO, 7.28M
FNO, 8.42M

Figure 4: Left & Center: Test errors vs. Resolutions. Right: Errors vs. Training samples.

happens in the performance of UNet. For FNO, when the resolution is less than 64, there is a 25%
decrease in performance. As resolution increases, a modest fluctuation in errors also occurs. Thanks
to the alias-free framework, CNO and MambaNO enjoy much flatter curves along with different
resolutions, validating the advantage of respecting CDE property. Between these two, MambaNO
further enjoys much lower errors, which is again attributed to the combination of convolution and
mamba integration, introducing the more holistic function features.

Variations in model performance against different data scales are also evaluated on Navier-Stokes. The
right segment of Fig. 4 provides the test errors in the log domain. As shown, MambaNO consistently
achieves optimal performance compared to GT, FNO, and CNO, regardless of the number of samples
used. More encouragingly, the performance lead is yet achieved with the least model parameters.

5 Ablation Study

To affirm the benefit from combining both global and local information, Table 2 discloses results
pertaining to the ablation of Mamba and Convolution integration. Based on our final configuration,
the mamba integration is replaced with convolution integral, thus obtaining baseline 1 with pure
local terms. Similarly, we can also obtain baseline 3, which holds pure mamba integration. To
ensure a fair comparison, the parameters of all three competitors are configured at the same level.
As expected, due to the lack of partial information, the performance of pure convolution integration
and pure Mamba integration drops by 14% and 32%, respectively. In terms of efficiency, while pure
convolution treatment enjoys less inference time and FLOPs in this case, it cannot be ensured in
practice since more network layers are needed to enlarge the receptive field. Due to space limitations,
we have placed more ablation experiments in SM E.

Table 2: The ablation results by using different components. * indicates our default choice.

Configuration Test errors ↓ Time ↓ Params ↓ FLOPs ↓
1. Pure Convolution integration 1.14 × 0.83 × 0.98 × 0.79 ×
2. Mamba+Convolution integration* 1.00 × 1.00 × 1.00 × 1.00 ×
3. Pure Mamba integration 1.32 × 1.14 × 1.02 × 1.19 ×

6 Conlusion

We propose MambaNO, a novel neural operator for solving PDEs, which incorporates Mamba
integration and convolution integration to capture global and local function information holistically,
yet in linear complexity. The basic design principle is to marry the integral kernel with the state space
model. On that basis, with respect to spaces of bandlimited functions, CDE property is naturally
satisfied to authentically assimilate the innate operators, as opposed to the discrete representation
surrogation. A suite of experiments conducted on representative PDE benchmarks demonstrate
that MambaNO outperforms the recent baselines, such as GT, FNO, and CNO, on many practical
metrics namely test errors, running efficiency, resolution invariance, out-of-distribution generalization,
and data scaling. Limitation: We have presented MambaNO for operators in a fundamental two-
dimensional Cartesian domain. The expansion to three-space dimensions is theoretically intuitive,
but computationally laborious. This intensifies the computational load for global integration, which
inherently escalates the model parameters.

9

Acknowledgements

This work was supported in part by the Pioneer and Leading Goose R&D Program of Zhejiang under
Grant 2023C01241, the National Natural Science Foundation of China under Grant 62276232, the
Key Program of Natural Science Foundation of Zhejiang Province under Grant LZ24F030012 and
Zhejiang Students’ Technology and Innovation Program under Grant 2024R403B071.

References
[1] Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi,

and Anima Anandkumar. Neural operators for accelerating scientific simulations and design.
Nature Reviews Physics, pages 1–9, 2024.

[2] Alexander R Cobb, René Dommain, Kimberly Yeap, Cao Hannan, Nathan C Dadap, Bodo
Bookhagen, Paul H Glaser, and Charles F Harvey. A unified explanation for the morphology of
raised peatlands. Nature, 625(7993):79–84, 2024.

[3] Kevin Course and Prasanth B Nair. State estimation of a physical system with unknown
governing equations. Nature, 622(7982):261–267, 2023.

[4] Ralf Konietzka, Alyssa A Goodman, Catherine Zucker, Andreas Burkert, João Alves, Michael
Foley, Cameren Swiggum, Maria Koller, and Núria Miret-Roig. The radcliffe wave is oscillating.
Nature, pages 1–2, 2024.

[5] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, 1995.

[6] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

[7] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi
Li, Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial
differential equations. In International Conference on Learning Representations, 2020.

[8] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2020.

[9] Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable
dynamics on the sphere. In International Conference on Machine Learning, pages 2806–2823.
PMLR, 2023.

[10] Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson.
U-fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow.
Advances in Water Resources, 163:104180, 2022.

[11] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential
equations’ operator learning. Transactions on Machine Learning Research, 2022.

[12] Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pages 12556–12569. PMLR, 2023.

[13] Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for
robust and accurate learning of pdes. Advances in Neural Information Processing Systems, 36,
2024.

[14] Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in Neural Information
Processing Systems, 34:24924–24940, 2021.

10

[15] Francesca Bartolucci, Emmanuel de Bezenac, Bogdan Raonic, Roberto Molinaro, Siddhartha
Mishra, and Rima Alaifari. Representation equivalent neural operators: a framework for
alias-free operator learning. Advances in Neural Information Processing Systems, 36, 2024.

[16] VS Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady Mathematics, volume
108, pages S226–S232. Springer, 2023.

[17] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning with bidirectional state space model.
arXiv preprint arXiv:2401.09417, 2024.

[18] Rui Xu, Shu Yang, Yihui Wang, Bo Du, and Hao Chen. A survey on vision mamba: Models,
applications and challenges. arXiv preprint arXiv:2404.18861, 2024.

[19] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting:
Alias-free 3d gaussian splatting. arXiv preprint arXiv:2311.16493, 2023.

[20] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Alias-free generative adversarial networks. Advances in Neural Information
Processing Systems, 34:852–863, 2021.

[21] Francesca Bartolucci, Emmanuel de Bézenac, Bogdan Raonić, Roberto Molinaro, Siddhartha
Mishra, and Rima Alaifari. Are neural operators really neural operators? frame theory meets
operator learning. SAM Research Report, 2023, 2023.

[22] Yueqian Quan, Honghui Xu, Renfang Wang, Qiu Guan, and Jianwei Zheng. Orsi salient object
detection via progressive semantic flow and uncertainty-aware refinement. IEEE Transactions
on Geoscience and Remote Sensing, 62:5608013 –5608025, 2024.

[23] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM review, 63(1):208–228, 2021.

[24] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[25] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 2021.

[26] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric
partial differential equations with physics-informed deeponets. Science Advances, 7(40):
eabi8605, 2021.

[27] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272. PMLR, 2017.

[28] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766,
2020.

[29] Wenhui Peng, Zelong Yuan, Zhijie Li, and Jianchun Wang. Linear attention coupled fourier
neural operator for simulation of three-dimensional turbulence. Physics of Fluids, 35(1), 2023.

[30] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

[31] Hagay Michaeli, Tomer Michaeli, and Daniel Soudry. Alias-free convnets: fractional shift
invariance via polynomial activations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16333–16342, 2023.

11

[32] Xiaoyu Zhao, Xiaoqian Chen, Zhiqiang Gong, Weien Zhou, Wen Yao, and Yunyang Zhang.
Recfno: a resolution-invariant flow and heat field reconstruction method from sparse obser-
vations via fourier neural operator. International Journal of Thermal Sciences, 195:108619,
2024.

[33] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

[34] Samira Kabri, Tim Roith, Daniel Tenbrinck, and Martin Burger. Resolution-invariant image
classification based on fourier neural operators. In International Conference on Scale Space
and Variational Methods in Computer Vision, pages 236–249. Springer, 2023.

[35] Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain agnostic fourier neural operators. Advances
in Neural Information Processing Systems, 36, 2024.

[36] Min Wei and Xuesong Zhang. Super-resolution neural operator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18247–18256, 2023.

[37] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural
operator with learned deformations for pdes on general geometries. Journal of Machine
Learning Research, 24(388):1–26, 2023.

[38] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

[39] AA Kulikovsky. A more accurate scharfetter-gummel algorithm of electron transport for
semiconductor and gas discharge simulation. Journal of computational physics, 119(1):149–
155, 1995.

[40] Yousef Saad. Analysis of some krylov subspace approximations to the matrix exponential
operator. SIAM Journal on Numerical Analysis, 29(1):209–228, 1992.

[41] Yoshinobu Kawahara. Dynamic mode decomposition with reproducing kernels for koopman
spectral analysis. Advances in neural information processing systems, 29, 2016.

[42] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[44] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[45] Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Moham-
mad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al.
Geometry-informed neural operator for large-scale 3d pdes. Advances in Neural Information
Processing Systems, 36, 2024.

12

Supplementary Material
Alias-Free Mamba Neural Operator

A Definition

A.1 Operator Aliasing Error

Setting. Let U : Dom U ⊆ H → K be an operator between two dissociable Hilbert spaces, and
let Ψ = {ψi}i∈I and Φ = {ϕk}k∈K be frame sequences for H and K, respectively, with synthesis
terms Tψ and Tϕ. Their closed linear spans are represented by MΨ := span{ψi : i ∈ I} and
MΦ := span{ϕk : k ∈ K}. The pseudo-inverses T †

Ψ and T †
Φ, initially given on MΨ and MΦ,

respectively, can in practice be extended to the entire Hilbert spaces, i.e. T †
Ψ : H → ℓ2(I) and

T †
Φ : K → ℓ2(K). "Operator aliasing" describes the relationship established by identifying the

continuous operator U and its discrete counterpart u : ℓ2(I) → ℓ2(K), which is determined by the
input and output frame sequences (Ψ,Φ). Then, we can build the operator TΦ◦u◦T †

Ψ : H → K, whose
definition clearly depends on the choices of the frame sequences that we make on the continuous
level. Any mapping u can be interpreted as a discrete representation of an underlying continuous
operator U . We now give the definition of the Operator Aliasing Error:

Definition: Operator Aliasing Error. The aliasing error operator ε(U, u,Ψ,Φ) : DomU ⊆ H → K
is given by

ε(U, u,Ψ,Φ) = U − TΦ ◦ u ◦ T †
Ψ, (A.1)

and the corresponding scalar error is ∥ε(U, u,Ψ,Φ)∥, with ∥·∥ denoting the operator norm.

An aliasing error of zero implies that the operator U can be perfectly represented by first discretizing
the function with T †

Ψ, applying u, and then reconstructing with TΦ. If the aliasing error is zero, we
say that (U, u,Ψ,Φ) satisfies a continuous-discrete equivalence (CDE) , implying that accessing
the discrete representation u is exactly the same as accessing the underlying continuous operator U .

How does such error occur? And how should we avoid it? Consider the operator U(f) = |f |2 as
an operator from BΩ to B2Ω. The choice to discretize inputs and outputs on the same grid

{
n
2Ω

}
n∈Z

corresponds to choosing Ψ = Φ = {sinc(2Ωx − n)}n∈Z, and to defining the discrete mapping
u : ℓ2(Z) → ℓ2(Z) by u(v) = T †

Ψ ◦ U ◦ TΨ(v) = v ⊙ v, where ⊙ denotes the entrywise product.

Then, for every f ∈ BΩ such that U(f) ∈ B2Ω \ BΩ, we have

ε(U, u,Ψ,Φ)(f) = U(f)− TΦ ◦ T †
Φ(U(f)) = U(f)− PBΩ

(U(f)) ̸= 0. (A.2)
Aliasing error occurs in this process, as U introduces new frequencies that exceed the bandwidth ω,
and these high frequencies cannot be represented by the sequence framework Ψ = Φ = {sinc(2Ωx−
n)}n∈Z. We can rectify this by sampling the output functions on a grid with twice the resolution of the
input grid. This corresponds to choosing Φ = {sinc(4Ωx−n)}n∈Z and to defining u = T †

Φ ◦U ◦TΨ,
which simply maps samples from grid points

{
n
2Ω

}
n∈Z into squared samples from the double

resolution grid
{
n
4Ω

}
n∈Z. This effectively removes aliasing since the equality U = TΦ ◦ u ◦ T †

Ψ

is satisfied. Furthermore, sampling the input and output functions with arbitrarily higher sampling
rate, i.e., representing the functions with respect to the system {sinc(2Ωx− n)}n∈Z with Ω > 2Ω,
yields no aliasing error since {sinc(2Ωx− n)}n∈Z constitutes a frame for B2Ω ⊇ BΩ. The activation
function that introduces high-frequency information can serve as a prime example of our above
content.

We can determine different discretized versions u and u′ of the continuous operator U by choosing
different sequence frameworks Ψ,Φ and Ψ′,Φ′, respectively. Therefore, the consistency between
operations u and u′ can be evaluated using the following error function.

Definition: Representation equivalence error. The representation equivalence error function
τ(u, u′) : ℓ2(I) → ℓ2(K), defined as:

τ(u, u′) = u− T †
Φ ◦ TΦ′ ◦ u′ ◦ T †

Ψ′ ◦ TΨ, (A.3)

and the corresponding scalar error is ∥τ(u, u′)∥, with ∥·∥ denoting the operator norm.

13

A.2 Representation equivalent Neural Operators

Representation equivalent Neural Operators. (U, u) is a Representation equivalent Neural
Operator if for every frame-sequence pair (Ψ,Φ) that satisfies Dom U ⊆ MΨ and Ran U ⊆ MΦ,
no aliasing errors occur, i.e., the aliasing error operator is identical to zero:

ε(U, u,Ψ,Φ) = 0 or ε(U, u) = 0. (A.4)

In this case, all discrete representations u(Ψ,Φ) are equivalent, demonstrating that they uniquely
determine the same underlying operator U , whenever a continuous-discrete equivalence property
holds at the level of the function spaces. This also implies that we can unambiguously determine
the discrete u(Ψ,Φ) = T †

Φ ◦ U ◦ TΨ consistent with the continuous counterpart U by fixing the
representations Ψ,Φ concerned with the input and output functions. In practice, we shall have access
to different representation grids of the inputs and outputs, and their associated representation error is
zero, e.g., τ(u, u′) = 0 (please refer to SM. A.3), where u′ denotes u(Ψ′,Φ′). Now, we establish a
connection between aliasing and representation equivalence.

In addition, assume that u and u′ are separate discrete forms of U , concerning to frame sequences
(Ψ,Φ) and (Ψ′,Φ′), respectively. Then, the transformation between these discrete forms can be
implemented through the formula:

u(Ψ′,Φ′) = T †
Φ′ ◦ TΦ ◦ u(Ψ,Φ) ◦ T †

Ψ ◦ TΨ′ . (A.5)

A.3 Discrete layers for MambaNO

Setting. Assume that the discrete multichannel signal obtained after uniformly sampling a continuous
signal a ∈ Bw(D) is: as ∈ Rs×s×d, then as[i, j, c] refers to the (i, j)-th coordinate of the c-th
channel of the signal, where i, j = 1...s and c = 1...d.

Convolution Integral. First, we consider the convolution integral of a single channel, that is c = 1.
And, the discrete version of the convolution kernel corresponding to Eq. (3.16) is Kw ∈ Rk×k. In
order to ensure that the input and output signals have the same spatial dimension s× s, we choose to
perform zero-padding of length k̃ on the original discrete signal, where k̃ = (k − 1)/2. Then the
discrete form of the convolution integral for a single channel is:

K(a) = (as ⋆ Kw)[i, j] =

k̃∑
m,n=−k̃

Kw[m,n] · ãs[i−m, j − n], i, j = 1 . . . s, (A.6)

where ⋆ represents the discrete convolution, and ãs ∈ R(s+2k̃)×(s+2k̃) represents the discrete signal
after zero-padding.

Then the convolution of multi-channel discrete signal as ∈ Rs×s×din and discrete convolution kernel
Kw ∈ Rk×k×din×dout can be defined as

(as ⋆ Kw)[i, j, l] =

k̃∑
m,n=−k̃

din∑
c=1

Kw[m,n, c, l] · ãs[i−m, j − n, c], i, j = 1 . . . s, (A.7)

where l corresponds to the index of the output channel and c to the index of the input channel.

Mamba Integral. It can be deduced from Eq. (3.10) that

F (x) = e−Axh(x) =

∫ x

−∞
B(e−Ay)v(y)dy

=F (0) +

∫ x

0

B(e−Ay)v(y)dy

=h(0) +

∫ x

0

B(e−Ay)v(y)dy.

(A.8)

Continuing the derivation, we can obtain

e−Axh(x) =h(0) +

∫ x

0

B(e−Ay)v(y)dy,

h(x) =eAxh(0) + eAx
∫ x

0

B(e−Ay)v(y)dy.

(A.9)

14

Assume xk and xk+1 are two adjacent sampling points after discretization, we will show below how
to go from h(xk) to h(xk+1). Firstly, we provide their definitions below:

h(xk) = eAxkh(0) + eAxk

∫ xk

0

B(e−Ay)v(y)dy,

h(xk+1) = eAxk+1h(0) + eAxk+1

∫ xk+1

0

B(e−Ay)v(y)dy,

= eA(xk+(xk+1−xk))h(0) + eA(xk+(xk+1−xk))

∫ xk+1

0

B(e−Ay)v(y)dy,

= eA(xk+1−xk)[eAxkh(0) + eAxk

∫ xk

0

B(e−Ay)v(y)dy] + eAxk+1

∫ xk+1

xk

B(e−Ay)v(y)dy,

= eA(xk+1−xk)h(xk) +

∫ xk+1

xk

B(eA(xk+1−y))v(y)dy.

(A.10)
Assume ∆ = xk+1 − xk as the step length parameter for the time interval, then

h(xk+1) = eA∆h(xk) +

∫ xk+1

xk

B(eA(xk+1−y))v(y)dy. (A.11)

According to the concept of zero-order hold, when ∆ approaches 0, we can regard the value of
function v in the interval [xk, xk+1] as a constant v(xk+1), then Eq. (A.11) can be written as:

h(xk+1) =e
A∆h(xk) +

∫ xk+1

xk

eA(xk+1−y)dyBv(xk+1),

=eA∆h(xk) +Bv(xk+1)e
Axk+1

∫ xk+1

xk

(e−Ay))dy,

=eA∆h(xk) +Bv(xk+1)e
Axk+1(− 1

A
(e−Axk+1 − e−Axk)),

=eA∆h(xk) +Bv(xk+1)
1

A
(eA(xk+1−xk) − 1),

=eA∆h(xk) + ∆Bv(xk+1)
1

∆A
(e∆A − 1).

(A.12)

According to the Scharfetter-Gummel method [39], let Ā = e∆A, B̄ = (∆A)
−1

(e∆A − I) ·∆B,
then:

h(xk+1) = Āh(xk) + B̄v(xk+1). (A.13)

Lastly, with Eq. (3.10) combined, we can obtain:

h(xk+1) =Āh(xk) + B̄v(xk+1),

u(xk+1) =Ch(xk+1).
(A.14)

This is easy from Eq. (A.14) to Eq. (3.14).

Upsampling and Downsampling Operators. For w > 0, let hw be the interpolation windowed-sinc
filter defined as

hw(x0, x1) = sinc(2wx0) · sinc(2wx1), (x0, x1) ∈ R2. (A.15)

For a discrete, single-channel signal as ∈ Rs×s, let (ãs[n])n∈Z be its periodic extension into infinite
length, e.g., ãs[n] = as[n mod s] for n ∈ Z. The discrete upsampling Us,N : Rs×s → RNs×Ns by
an integer factor N ∈ N of the signal as ∈ Rs×s is defined by:

1. First, the signal as is transformed into as,↑Ns ∈ RNs×Ns, achieved by interspersing each
pair of signal samples from as with N − 1 samples of zero value. The formula is defined as
follows:

as,↑Ns[i, j] = IS(i) · IS(j) · as[i mod s, j mod s], i, j = 1 . . . Ns, (A.16)

where S = {1, s+ 1, . . . (N − 1)s+ 1} and IS is the indicator function.

15

2. Second, we use the interpolation filter hs/2 to convolve with the output of the first step. The
formula is defined as follows:

Us,N (as)[i, j] =
∑
n,m∈Z

ãs,↑Ns[n,m] · hs/2(is− ns, js−ms), i, j = 1 . . . Ns.

(A.17)
Please note that the discretization step includes an additional convolution of an interpolation
filter, which is more than the up-sampling process of the continuous function. This is
because the introduction of zero-value samples expands the signal size while introducing dis-
continuity, namely high-frequency components. In order to eliminate these high-frequency
components, we need to apply interpolation filters to remove these high-frequency noises.

The discrete downsampling Ds,N : Rs×s → Rs/N×s/N by an integer factor N ∈ N&s/N ∈ N of
the signal as ∈ Rs×s is defined by:

1. First, we use the interpolation filter hs/2N to convolve with as. The formula is defined as
follows:

as,s/N [i, j] =
∑
n,m∈Z

ãs[n,m] · hs/(2N)(is− ns, js−ms), i, j = 1 . . . s/N. (A.18)

2. Second, we resample the discrete signal as,s/N once every N − 1 points. The formula is
defined as follows:

Ds,N (as)[i, j] = as,N/s[(i− 1)s+ 1, (j − 1)s+ 1], i, j = 1 . . . s/N. (A.19)

The execution of multi-channel discrete upsampling and downsampling is accomplished by separate
applications of the respective single-channel operators.

Activation layer. We define the discretized activation function layer as

ηs(as) = Ds,N ◦ σ ◦ Us,N (as), (A.20)

where η : R → R is an activation function applied point-wise. Through experimentation, we found
that setting N to 2 achieves the best balance between efficiency and effectiveness.

B Proofs

B.1 Proof of Equation 3.12

Start with Eq. (3.10) and differentiate both sides with respect to x:

h
′
(x) =AeAx

∫ x

0

B(e−Ay)v(y)dy + eAxBe−Axv(x),

=AeAx
∫ x

0

B(e−Ay)v(y)dy +Bv(x),

=Ah(x) +Bv(x).

(B.1)

Together with Eq. (3.9), we can obtain Eq. (3.12).

B.2 Proof that MambaNO is a ReNO.

Setting. Follow Eq. (3.4), in MambaNO, one layer is defined as:

PT (ηT (WT−1 +KT−1 + bT−1)). (B.2)

Among them, only PT , ηT , and KT−1 involve mapping between bandlimited spaces, while WT−1

and bT−1 are mappings within the bandlimited space. Mappings within the band-limited space do
not introduce aliasing errors. Therefore, we only need to discuss the first three operators, e.g., kernel
integration operators KT−1, non-linear activation operators ηT , and projection operators PT . In the
following texts, we define TΨw

and T †
Ψw

as the synthesis operators and the pseudo-inverses operator
between Bw and ℓ2(Z2).

16

Kernel Integration Operators. Firstly, the form of the convolution integration is as follows:

Kwf(x) =
k∑

m,n=−k

km,nf(x− zm,n), x ∈ R2, (B.3)

where k ∈ N, km,n ∈ C, and zm,n =
{(

m
2w ,

n
2w

)}
m,n∈Z. The convolution operator is defined in the

form of a finite sum, and each term f(x− zm,n) can be regarded as a translation of f . Since f is in
f ∈ Bw(R2), these translations are still in Bw(R2). Actions such as multiplying by a finite number
of constant coefficients km,n and taking the sum will not cause the function to escape from this space.
From another perspective, if the functions in Bw(R2) have certain properties, such as smoothness and
rapid decay, then the weighted sum and movement in convolution will not change the basic properties
of the function. Therefore, we present the commutative diagram of the convolution integral:

Bw Bw

ℓ2(Z2) ℓ2(Z2)

Kw

T †
Ψw

TΨw ∑
kf

where
∑
kf is an abbreviated expression form of

∑k
m,n=−k km,nf(x− zm,n).

Secondly, the output of the mamba integration (also known as SSM) can be defined as a global
convolution integral like Eq. (3.15). Similar to the defined convolution integral, such a global integral
is a well-defined operator from Bw to itself.

Bw Bw

ℓ2(Z2) ℓ2(Z2)

SSM

T †
Ψw

TΨw

K̄

where K̄ is global convolution kernel in Eq. (3.15).

Non-linear Activation Operators. Now, we assume the activation function ηw,w as an operator from
Bw to Bw, given that w > w. Moreover, Dw,w : Bw → Bw serves as an orthogonal projection from
Bw to Bw, while Uw,w : Bw → Bw is a natural embedding from Bw to Bw. Non-linear activation
functions may introduce frequency components beyond the original band-limited space. To reserve
spectral space for these potentially introduced high-frequency components, we decide to first boost
the frequency of the band-limited space Bw where the original function f is located, that is Uw,w(f).
After applying the activation function, in order to maintain system consistency and signal band-limited
characteristics, we use Dw,w to filter out frequency components exceeding w, where Dw,w can be
seen as a kind of band-limited filter. Now we can provide the corresponding exchange diagram.

Bw Bw Bw Bw

ℓ2(Z2) ℓ2(Z2) ℓ2(Z2) ℓ2(Z2)

Uw,w σ

T †
Ψw

Dw,w

T †
Ψw

TΨw

Us,N σ

TΨw

Ds,N

In the diagram, Uw,w and Dw,w are discretized as
Us,N = T ∗

Ψw
◦ Uw,w ◦ TΨw , Ds,N = T ∗

Ψw
◦ Dw,w ◦ TΨw . (B.4)

Therefore, the transformation between the continuous and discrete representations of the activation
function σ is consistent. This means that the operations we do on the discrete level will not lose
information or introduce errors when returning to the continuous level.

Projection Operators. As can be seen in Eq. (B.4), the co-existence of up-sampling and down-
sampling operators ensures the consistency of band-limited space. Thus, in our implementation,
we use the U-shaped architecture, which has an equal number of up-sampling and down-sampling
operators. In summary, this exact correspondence between its constituent continuous and discrete
operators establishes MambaNO as an example of Representation equivalent neural operators or
ReNOs (A.2), thus proving Proposition 3.1 of the main text.

17

C Time Complexity Analysis of Other Models

Given a discrete counterpart u ∈ RH×W×C of a two-dimensional continuous function, we can
reshape u to get u ∈ RN×C , with N = H ×W .

Table 3: Computational complexity of standard deep learning models. N is the sampling points of a
continuous function.

Models Range Complexity
GNO (kernel) radius r O(N(N − 1)))
Transformer global O(N2)
FNO (FFT) global O(NlogN)
CNO local O(N)
MambaNO global+local O(N)

Graph neural operator (GNO). The integral formula of GNO is:

(K(v))(x) =

∫
U(x)

K(x, y) · v(y)dy,

≈
∑

y∈U(x)

K(x, y) · v(y)qy,
(C.1)

where K is a kernel (typically parametrized by a neural network) and qy ∈ R are suitable quadrature
weights. While the GNO can represent local integral operators by picking a suitably small neighbor-
hood U(x) ⊂ D, the evaluation of the kernel and aggregation in each neighborhood U(x) is slow
and memory-intensive for general kernels k : D ×D → Rn. For each point, we need to visit each of
its adjacent points. As reported in [45], the time complexity of GNO is O(N(N − 1))).

Transformer. The integral formula of Transformer-based NO is:

(K(v))(x) =

∫
Ω

K(v(x), v(y))v(y)dy, (C.2a)

(K(v))(x) ≈
nv∑
i=1

K(v(x), v(yi))v(yi), (C.2b)

(K(v))(x) ≈
nv∑
i=1

exp (
⟨Wqv(x),Wkv(yi)⟩√

dv
)∑nv

j=1 exp (
⟨Wqv(xj),Wkv(yi)⟩√

dv
)
Wvv(yi). (C.2c)

from which K could be perceived as employing the softmax function onto three transformed vectors
with length nv . Evidently, Eq. (C.2c) agrees closely with the widely adopted self-attention mechanism
within transformers, in which the matrices Wq,Wk,Wv ∈ Rdv×dv respectively represent the learning
transformation of queries, keys, and values. As can be seen from Eq. (C.2c), it is necessary to go
through two nested loops of length nv = N . Therefore, the time complexity of Transformer-based
NO is O(N2).

FNO. FNO replaces the global convolution in the time domain with multiplication operations in the
frequency domain, therefore, its kernel integral is:

(K(v))(x) =

∫
Ω

K(x, y)v(y)dy,

=

∫
Ω

K(x− y)v(y)dy,

=F−1
(
Rϕ · (Fvt)

)
(x),

(C.3)

in which Rϕ designs N multiplications, parametrized by ϕ, therefore its time complexity is O(N).
However, the time complexity of Fast Fourier Transform is O(NlogN), so the total time complexity
is O(NlogN).

18

64 128 192 2560

0.0

0.1

0.2

0.3

0.4

0.5
Transformer:

FNO(FFT):

64 128 192 2560

0.0

0.1

0.2

0.3

0.4

0.5

Grid Resolution

T
im

e
o

f
In

te
g

ra
ti

o
n

 (
se

co
n

d
s)

Grid Resolution

T
im

e
o
f

In
te

g
ra

ti
o
n

 (
se

co
n

d
s) 2()O N

(log)O N N

((1))O N N −GNO:

CNO: ()O N

MambaNO: ()O N

Figure 5: Time of integration vs. Grid resolution.

CNO. The local convolution operator is defined by

(K(v))(x) =

∫
Ω

κ(x− y)v(y)dy,

=

k∑
i,j=1

κijv(x− zij),

(C.4)

where f ∈ Bw, κ is a discrete kernel with size k ∈ N, zij is the resultant grid points. Evaluating each
point involves k2 multiplications. So the total time complexity is O(Nk2) ⇒ O(N).

From a quantitative perspective, as shown in Fig. 5, we have measured the time required for different
integral forms on different numbers of grids. In which, the specific time complexity of GNO
depends on the choice of degree, which is up to N − 1 in a graph with N points. The graphical
representation illustrates that despite the time complexity of O(N) being concurrent for both, the
duration necessitated for kernel integration in MambaNO is slightly lower than that required in CNO.

D Representative PDE Benchmarks & Numerical Results

Poisson Equation. The prototype presented represents a linear elliptic PDE,

−∆u = f, in D, u|∂D = 0. (D.1)

The solution operator G†, mapping the source term f to the solution u, can be denoted as G† : f 7→ u.
Let us consider the source term:

f(x, y) =
π

K2

K∑
i,j=1

aij · (i2 + j2)−r sin(πix) sin(πjy), ∀(x, y) ∈ D, (D.2)

with r = −0.5. While training the models, we set K = 16 in Eq. (D.2) and select aij to possess
a uniform distribution between [−1, 1]. Beyond in-distribution testing, we also conduct out-of-
distribution testing by configuring K = 20.

For the training phase, we produce 1024 samples, and for the evaluation phase, we furnish 256
samples each for both in-distribution and out-of-distribution testing. These are attained by sampling
the precise solution, u, at a resolution of 64× 64 points on D = [0, 1]2. A validation set, composed
of 128 samples, is also constructed for model selection purpose. The data utilized for training is
normalized to the range [0, 1] with the same normalization constants as the training data. In Fig. 6, a
random in-distribution testing sample and an out-of-distribution testing sample, as well as predictions
made by FNO, CNO, and MambaNO, are depicted. When handling the Poisson equation, FNO is
obviously inferior to CNO and MambaNO. In terms of handling details, MambaNO is superior to
CNO.

Wave Equation. The given prototype represents a linear hyperbolic PDE,

utt − c2∆u = 0, in D × (0, T), u0(x, y) = f(x, y), (D.3)

19

Figure 6: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).
(Poisson Equation.)

Figure 7: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).
(Wave Equation.)

with a constant propagation speed c = 0.1. This represents a multiscale standing wave exhibiting
periodic pulsations over time, which are dependent on the variable K. Considering the initial
conditions defined by Eq. (D.2) where r = 1 and K = 24, it becomes possible to accurately compute
the exact solution. The exact value at time t > 0 is given by

u(x, y, t) =
π

K2

K∑
i,j

aij · (i2 + j2)−r sin(πix) sin(πjy) cos
(
cπt

√
i2 + j2

)
, ∀(x, y) ∈ D.

(D.4)
Our goal is to approximate the function at the moment when T = 5. For generating training and
in-distribution test instances, we configure T = 5, K = 24, and assign aij a uniform distribution
value from [−1, 1]. Conversely, for out-of-distribution evaluation, we adjust the decay exponent of
the modes to r = 0.85 and K = 32.

A total of 512 samples are generated for the training set, and 256 samples each are generated for
in-distribution and out-of-distribution testing by sampling the precise solution at a 64× 64 resolution.
We generate 128 samples to create a separate validation set. All training data are normalized to
fit within the [0, 1] interval, and the testing data are normalized using the same constants as those
employed for the training data. In Fig. 7, a random in-distribution testing sample and an out-of-
distribution testing sample, as well as predictions made by FNO, CNO, and MambaNO, are given.
The predictive performance of CNO is better than FNO, but our MambaNO is even better.

Transport Equation. The PDE is represented as follows,

ut + v · ∇u = 0, u(t = 0) = f, (D.5)

20

Figure 8: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).
(Smooth Transport.)

with a given velocity field and initial data f . By defining the constant velocity field v as v =
(vx, vy) = (0.2, 0.2), the solution u(x, y, t) is obtained as u(x, y, t) = f(x − vxt, y − vyt). We
consider two distinctive training data types, i.e., Smooth Transport and Discontinuous Transport.
Furthermore, in both instances, we generate 512 samples for training, 256 for validation, and 256
for both in-distribution and out-of-distribution testing, all derived from the precise solution. Every
sample is normalized to fit within the interval [0, 1].

Smooth Transport. The first kind comprises smooth initial data, configured as a radially symmetric
Gaussian. Its centers are chosen randomly and uniformly from the range (0.2, 0.4)2, and the corre-
sponding variance is consistently drawn from the set (0.003, 0.009). Formally, the initial conditions
are given by

f(x) =
1√

(2π)2 det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x = (x, y), µ = (µx, µy), (D.6)

where Σ = σI such that σ ∼ U(0.003, 0.009) and µx, µy ∼ U(0.2, 0.4). I is an identity matrix
and U(·) is the uniform distribution. Every sample is normalized to fit within the interval [0, 1].
For out-of-distribution testing, the centers of the Gaussian inputs are uniformly sampled from the
range (0.4, 0.6)2, implying that µx and µy are distributed uniformly between 0.4 and 0.6. The
data is generated at 64 × 64 resolution. In Fig. 8, a random in-distribution testing sample and an
out-of-distribution testing sample, as well as predictions made by FNO, CNO, and MambaNO, are
provided. The figures further validate the conclusions that MambaNO outperforms CNO and FNO.

Discontinuous Transport. The second variety is a discontinuous initial data, designed as the indicator
function of a radial disk. Here, the centers are uniformly pulled from (0.2, 0.4)2, and the radii are
chosen uniformly from the span (0.1, 0.2). For out-of-distribution testing, the disk centers are pulled
uniformly from (0.4, 0.6)2. Formally, the initial conditions are given by

f(x) = ISr(µ)(x), x = (x, y), µ = (µx, µy), (D.7)

where r ∼ U(0.1, 0.2), µx, µy ∼ U(0.2, 0.4), I is an indicator function, and Sr(µ) =
{x : ||x− µ||2 ≤ r} is the sphere of radius r with the center µ. Due to the infinite spectral
content in discontinuous data, the aliasing error tends to persist throughout data sampling. To alle-
viate this, firstly, we generate samples at a 128× 128 resolution. Then, by performing a frequency
domain downsampling of the generated data, we obtain the actual samples at a resolution of 64× 64.
In Fig. 9, a random in-distribution testing sample and an out-of-distribution testing sample, as well as
predictions made by FNO, CNO, and MambaNO, are depicted. The accompanying figures substanti-
ate the conclusions in Table 1, concurrently demonstrating a consistent superiority of MambaNO
over both CNO and FNO in testing scenarios.

Allen-Cahn Equation. This serves as a prototype for nonlinear parabolic PDEs,

ut = ∆u− ε2u(u2 − 1), (D.8)

with a reaction rate of ε = 220. This refers to the underlying operator G† : f 7→ u(., T) which maps
the initial conditions denoted by f to the final solution u recorded at a final time T equal to 0.0002.

21

Figure 9: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).
(Discontinuous Transport.)

Figure 10: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).
(Allen-Cahn Equation.)

The prescribed initial conditions for both training and in-distribution testing conform to the format
given in Eq. (D.2), where r equals 1, K equals 24, and coefficients aij are uniformly drawn from the
range [−1, 1]. For out-of-distribution testing, K is set to 16, and the initial decay, denoted by r, is
randomly selected from a uniform distribution within the range [0.85, 1.15] of the modes in Eq. (D.2).
This setup facilitates the evaluation of the model’s capacity to infer varying dynamics of the system.
Training and testing data are generated using a finite difference scheme on a grid, with a resolution of
642. Specifically, space is uniformly discretized at resolution s2 = 64× 64, with ∆x defined as 1/s.
Subsequently, given that an explicit method is employed, the time domain is uniformly discretized
with a time step ∆t approximately equal to 5.47× 10−7. N is set equal to ⌊T/∆t⌋+ 1. Here, Uni,j
signifies u(i∆x, j∆x, n∆t) for i, j = 0, 1, ..., s and n = 0, 1, ..., N . Additionally, zero-valued ghost
cells are incorporated at the boundaries. The finite difference scheme is delineated as follows:

Un+1
i,j = Uni,j +

∆t

∆x

(
Uni+1,j + Uni,j+1 + Uni−1,jU

n
i,j−1 − 4Uni,j

)
−∆tε2Uni,j

(
Uni,j · Uni,j − 1

)
,

(D.9)
for i, j = 0, 1, ..., s and n = 0, 1, ..., N . The selected ∆t meets the CFL condition, ensuring
∆t < (∆x)2

2ε . The generation process yields 256 training samples, 128 validation samples, and 128
each of in-distribution and out-of-distribution testing samples, maintaining a resolution of 64× 64.
Normalization of the training data is performed within the range [0, 1]. The testing data are normalized
using the same constants as those used for the training data. In Fig. 10, a random in-distribution
testing sample and an out-of-distribution testing sample, as well as predictions made by FNO, CNO,
and MambaNO, are provided. Reaffirming the conclusions drawn from Table 1, these figures again
demonstrate that MambaNO leads a slight edge compared to CNO and FNO.

22

Navier-Stokes Equation. The referenced PDEs provide a model for the motion of incompressible
fluids, with the formative principles being

ut + (u · ∇)u+∇p = ν∆u, div u = 0, (D.10)

for the torus D = T2, subject to periodic boundary conditions and a viscosity of ν = 4 × 10−4,
which are applied solely to Fourier modes of an amplitude ≥ 12. This approach effectively models
fluid flow under conditions of an extremely high Reynolds number. This refers to the underlying
operator G† : f 7→ u(., T) which maps the initial conditions denoted by f to the final solution u
recorded at a final time T equal to 1. Initially, we adopt the following conditions.

u0(x, y) =

tanh
(
2π y−0.25

ρ

)
for y + σδ(x) ≤ 1

2

tanh
(
2π 0.75−y

ρ

)
otherwise

v0(x, y) = 0

(D.11)

where σδ : [0, 1] → R is a variable of the initial data provided by

σδ(x) = δ

p∑
k=1

αk sin(2πkx− βk). (D.12)

The random variables αk and βk are independently and identically distributed, with uniform distri-
bution on the intervals [0, 1] and [0, 2π] respectively. The parameters δ and p are set as δ = 0.025
and p = 10. For the smoothing parameter, we select ρ = 0.1. Our initial conditions reference the
widely recognized thin shear layer issue. Here, the evolution of the shear layer occurs via vortex
shedding, leading to a complex array of vortices. The creation of training and in-distribution testing
samples employs a spectral viscosity method, initiating with a sinusoidal perturbation of the shear
layer. The layer exhibits a thickness of ρ = 0.1 and comprises 10 perturbation modes, each uniformly
sampled from the interval [−1, 1]. For the experiments conducted outside of the distribution, we
reduce ρ to ρ = 0.09 and relocate the shear layers closer to the midpoint of the domain, positioning
them at y = 0.3 and y = 0.7, as opposed to the locations y = 0.25 and y = 0.75 in the original
initial condition. This examination assesses the model’s capacity to accommodate a flow regimen
with a higher count, and variable locations, of the shed vortices. For the training set, we produce a
total of 750 samples and generate an additional 128 samples for use in the validation set, as well
as in-distribution and out-of-distribution testing. The Navier-Stokes equations are simulated with a
spectral viscosity method on a 128× 128 resolution to generate both the training and testing data,
and then these data are downsampled to a 64× 64 resolution. The target is to discern the operator
that bridges the initial velocity to velocity at T = 1. The training data are normalized within the
range [0, 1], whilst the testing data employ the training data’s normalization constants for its own
normalization. In Fig. 3, a random in-distribution testing sample and an out-of-distribution test
sample are given, as well as predictions made by FNO, CNO, and MambaNO. From the figure, we
can see that MambaNO obviously performs better than FNO and CNO, particularly in the parts within
the black box.

Darcy flow. The steady-state Darcy flow is described by the second order linear elliptic PDE,

−∇ · (a∇u) = f, in D, u|∂D = 0. (D.13)

In this equation, a represents the diffusion coefficient, while f = 1 denotes the forcing term. The
solution operator G†, symbolized as a 7→ u, establishes a mapping from the diffusion coefficient a
(expressed as a push forward of a Gaussian process) to the solution u. In this context, the input is the
diffusion coefficient a, denoted as a ∼ ψ#µ. Here, µ signifies a Gaussian Process with a zero mean
and a squared exponential kernel

k(x, y) = σ2 exp

(
|x− y|2

l2

)
, σ2 = 0.1. (D.14)

The function ψ : R → R assigns a value of 12 to positive components on the real line and 3 to
the negative elements. For this particular scenario, the push-forward measure is characterized by
a pointwise definition. The in-distribution and out-of-distribution samples are characterized by
variations in the length scales of the Gaussian process. For in-distribution testing, a length scale of
l = 0.1 is utilized. While for out-of-distribution tests, we employ a length scale of l = 0.05. For

23

Figure 11: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).
(Darcy flow.)

Figure 12: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).
(Flow past airfoils.)

the training session, 256 samples are generated. Additionally, the study sees the generation of 128
samples for a validation set, in-distribution, and out-of-distribution testing. The data corresponds to a
resolution of 64× 64. In Fig. 11, a random in-distribution testing sample and an out-of-distribution
testing sample, as well as predictions made by FNO, CNO, and MambaNO, are listed. The graphical
representation clearly demonstrates that the performance of FNO cannot catch up those of CNO
or MambaNO. In finer details, our model exhibits superior performance compared to CNO, thus
corroborating the values presented in Table 1.

Flow past airfoils. This flow is represented utilizing the compressible Euler equations in our model,

ut + divF (u) = 0, u = [ρ, ρv,E]⊥, F = [ρv, ρv ⊗ v + pI, (E + p)]v]⊥. (D.15)

The density ρ, velocity v, pressure p, and total energy E are interrelated in the modular framework,
guided by an ideal gas equation of state,

E =
1

2
ρ|u|2 + p

γ − 1
, (D.16)

where γ = 1.4. Other significant variables related to flow complicate matters, such as the speed of
sound a =

√
γp
ρ and the Mach number M = |u|

a . The airfoils under consideration are characterized
by perturbing to the established shape of the RAE2822 airfoil, implemented using Hicks-Henne Bump
functions. Specifically, in alignment with standard protocols in aerodynamic shape optimization,
we examine a reference airfoil shape where the upper and lower surface of the airfoil are situated
at (x, yUref(x/c)) and (x, yLref(x/c)) respectively. Here, c represents the chord length while yUref and
yLref correspond to the renowned RAE2822 airfoil. The reference shape subsequently undergoes

24

perturbations through the application of the Hicks-Henne Bump functions,

yL(ξ) = yLref(ξ) +

10∑
i=1

aLi Bi(ξ), yU(ξ) = yUref(ξ) +

10∑
i=1

aUi Bi(ξ),

which satisfies 

Bi(ξ) = sin3(πξqi),

qi =
ln 2

ln 14− ln i
,

ξ =
x

c
,

aLi =2(ψi − 0.5)(i+ 1)× 10−3,

aUi =2(ψi+10 − 0.5)(11− i)× 10−3,

i =1, ..., 10,

ψ ∈[0, 1]d.
We can now formally categorize the airfoil shape as S = {(x, y) ∈ D : x ∈ [0, c], yL ≤ y ≤ yU}
and consequently, designate the shape function f = χ[S](x, y), with χ symbolizing the characteristic
function. The foundational operator in focus, G† : f 7→ ρ, transitions the shape function f into
the flow’s density at the steady state of compressible Euler equations. The freestream boundary
conditions

T∞ = 1, M∞ = 0.729, p∞ = 1, α = 2.31◦

are employed, with the solution operator projecting the shape function onto the persistent state density
distribution. The data is ultimately interpolated onto a Cartesian grid of dimensions 128× 128 on the
underlying domain D = [−0.75, 1.75]2. Unit values are subsequently allocated to the density ρ(x, y)
for all coordinates (x, y) within the set S. The forms of the training data samples align with 20 bump
functions, with coefficients ψ uniformly drawn from [0, 1]2. Testing beyond the range of distribution
is conducted with 30 bump functions. Throughout the training and assessment stages, the discrepancy
between the acquired solution and the actual reality is solely computed for the points (x, y) that exist
outside the airfoil shape S. We produce 750 samples for the training set and 128 samples each for
the validation set, in-distribution testing set, and out-of-distribution testing set. In this controlled
examination, the data are not standardized. In Fig. 12, a random in-distribution testing sample and an
out-of-distribution testing sample, as well as predictions made by FNO, CNO, and MambaNO, are
depicted. Whether in general or in local details, MambaNO has achieved the best performance.

E More Ablation Studies

Please note, all the experimental data are relative to our default choice, which is marked with ∗. From
Fig. 1, it can be seen that MambaNO assumes a function input and throws it into a set of encoders,
where the input is space-wisely downsampled but channel-wisely widened. The depth of the encoder
determines how many scale-varied feature functions are within the model. Regarding the Depth, we
design the ablation experiments concerned, with the results shown in Table 4. When Depth = 4, the
model achieves the best balance among performance, inference time, parameters, and FLOPs.

As mentioned in the main body of the text, we expand the band-limited space of the original function
using an upsampling operation before employing the activation operator. Therefore, the ablation
experiments investigating the optimal value of upsampling factor Nf are also conducted. The results
are given in Table 4. As can be seen, the case with no upsampling, i.e., Nf=1, suffers severe aliasing
errors. while a fourfold upsampling provides a minor improvement, it significantly increases the
computational burden. Therefore, we consider that a twofold upsampling rate achieves a well balance
of efficacy and efficiency.

Meanwhile, in our cross-scan module, we used four different directional scans for the function.
We wanted to understand the specific impact of different directional scans on model performance
enhancement, so we conducted related ablation experiments, the results are as shown in the Table
5.We use the variable direction to represent the number of cross-scan directions in the experiment.
Evidently, we observe a superior effect when the direction = 4, thus motivating our selection of this
value.

25

Finally, we conducted relevant ablation experiments on the number of integrations in the encoder
and decoder, as shown in the Table 6. Here, [x, y,m, n] represents the number of integrations in the
encoder or decoder in Fig. 1, from top to bottom. When we discuss the encoder, the decoder is fixed
to the default selection with ∗; similarly, when discussing the decoder, the encoder is the default
selection. Our model is the best choice among all configurations.

Table 4: The ablation results by using different parameters. * indicates our default choice.

Parameter Test errors ↓ Time ↓ Params ↓ FLOPs ↓
a. Depth = 2 6.07× 0.63× 0.08× 0.61×
b. Depth = 3 2.94× 0.81× 0.28× 0.82×
c. Depth = 4* 1.00× 1.00× 1.00× 1.00×
d. Depth = 5 1.30× 1.21× 3.73× 1.17×
a. Nf=1 1.50× 0.78× 0.87× 0.83×
b. Nf=2* 1.00× 1.00× 1.00× 1.00×
c. Nf=4 0.97× 2.33× 1.52× 1.33×

Table 5: The ablation results by using different amounts of directions in Cross-Scan. * indicates our
default choice

Cross-Scan Directions Test errors↓ Time↓ Params↓ FLOPs↓
a. direction=1 1.51× 0.74× 0.81× 0.75×
b. direction=2 1.22× 0.85× 0.87× 0.84×
c. direction=4* 1.00× 1.00× 1.00× 1.00×

Table 6: The ablation results by using different amounts of integration. * indicates our default choice.

Encoder’s Integration Layers
Test errors↓ Time↓ Params↓ FLOPs↓Conv Integration Mamba Integration

a. [1,1,1,1] a. [1,1,1,1] 1.91× 0.77× 0.65× 0.67×
b. [2,2,2,2]* b. [2,2,2,2]* 1.00× 1.00× 1.00× 1.00×
c. [3,3,3,3] c. [3,3,3,3] 1.05× 1.94× 1.35× 1.33×
Decoder’s Mamba Integration Layers Test errors↓ Time↓ Params↓ FLOPs↓

a. [1,1,1,1] 1.58× 0.71× 0.86× 0.85×
b. [2,2,2,2]* 1.00× 1.00× 1.00× 1.00×
c. [3,3,3,3] 1.20× 1.53× 1.14× 1.15×

F More Comparative Experiments

In Table 4, the occasional performance decline observed with increasing model capacity can be
attributed to underfitting due to insufficient data samples. To address this, we conducted comparative
experiments on a larger dataset[33] (10,000 samples, with 7,000 used for training), evaluating the
same four O(N) complexity algorithms: Oformer [11], GNOT [12], CNO [13], and our MambaNO.
The quantitative results are presented in Table 7, and we also provide efficiency metrics for a more
in-depth comparison. As shown in Fig. 13, the accuracy of our model has further improved. Overall,
MambaNO still leads in performance among the four O(N) competitors, while ranking second in
terms of epochs used and training time, and third in terms of GPU memory usage (close to CNO).

G Hyperparameters

For all competing methods, we used the optimal parameters recommended in the original papers.
As for the proposed MambaNO, most of the hyperparameters, including encoder depth, upsampling
factor, scanning direction, and integration layers, have been ablated, with results and practical settings

26

Table 7: (Left) Relative median L1 test errors for OFormer, GNOT, CNO and MambaNO on
the 2DCFD dataset (The compressible Navier-Stokes equations in ‘PDEBENCH: An Extensive
Benchmark for Scientific Machine Learning’). (Right) MambaNO’s performance on the Navier-
Stokes equations under different dimension hyperparameters.

In/Out OFormer GNOT CNO MambaNO Dimensions 8 16 32 48

2DCFD In 1.71% 1.42% 1.35% 1.29% Navier-Stokes In 4.34% 2.74% 2.70% 3.21%
Out 3.32% 3.22% 2.57% 2.13% Equation Out 8.52% 5.95% 5.92% 7.14%

GPU memory usage 15736M 5718M 8433M 8858M GPU memory usage 5694M 8854M 15536M 22364M
Epochs 329 817 999 407 Epochs 999 802 851 907

Total Time 4.57h 5.22h 4.93h 4.75h Total Time 3.11h 3.27h 6.18h 15.02h

Figure 13: Visual predictions on representative in- (top row) and out-of-distribution (bottom row).

Table 8: MambaNO best-performing hyperparameters configuration for different benchmarks. η, γ,
and ω represent the learning rate, scheduler gamma, and weight decay, respectively. Convolution
Integration and Mamba Integration denote the quantities of each in a single layer of kernel integration.

Batch Size Epochs η γ ω Dimensions Convolution Integration Mamba Integration Params (M) FLOPs (G)

Poisson Equation 16 1000 0.001 0.98 1e-06 16 2 1 1.10 0.30
Wave Equation 16 1000 0.001 0.98 1e-10 32 2 1 4.33 1.01

Smooth Transport 16 1000 0.001 0.98 1e-06 16 2 2 1.38 0.36
Discontinuous Transport 16 1000 0.001 0.98 1e-06 16 2 2 1.38 0.36

Allen-Cahn 16 1000 0.001 0.98 1e-06 32 2 2 5.40 1.23
Navier-Stokes 16 1000 0.001 0.98 1e-10 16 2 2 1.38 0.36
Darcy Flow 16 1000 0.001 0.98 1e-06 32 2 2 5.40 1.23

Compressible Euler 16 1000 0.001 0.98 1e-10 32 3 2 6.97 1.53

provided in subsection E of the supplemental material. The remaining training parameters are listed
in Table 8. In terms of different PDEs, most parameters were fixed across all experiments, with some
fine-tuned for better performance.

H Broader Impacts

Our work will improve the speed and accuracy of solving PDE, which is beneficial to promote the
progress of related disciplines such as mathematics and physics; it has no negative impact on society.

27

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and Introduction are usually readers’ first impressions of a paper, so
they should accurately reflect the contribution and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Deliberate discussion of the limitations of work is an important part of scientific
research, which helps readers understand the scope of research and possible directions for
improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28

Answer: [Yes]
Justification: For each theoretical result, the paper provides a full set of assumptions and a
complete (and correct) proof in the main text or supplementary materials.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the entire process of the experiment in great detail in the
main text and supplementary materials, and submitted the code of the model we proposed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted the model code and part of the experimental dataset.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the related content of the experiment in great detail in the
main text and supplementary materials, and conducted ablation experiments on the selection
of model hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This is because our experimental design or data analysis method does not
include the calculation or display of error bars, and we believe that such information is not
critical for our research question.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The resources used for the experiments have been thoroughly explained in the
main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed potential societal impacts in our supplementary materials.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

31

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not carry such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators or original owners of the assets used,
such as code, data, and models. And we have correctly cited the relevant literature.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

32

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code alongside the compressed file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

33

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Related Work
	Learnable PDE Solvers
	Alias-free Framework

	Mamba Neural Operator
	Experiments and Analysis
	Experimental Settings
	In and Out-of-distribution Results
	Resolution Invariance

	Ablation Study
	Conlusion
	Definition
	Operator Aliasing Error
	Representation equivalent Neural Operators
	Discrete layers for MambaNO

	Proofs
	Proof of Equation 3.12
	Proof that MambaNO is a ReNO.

	Time Complexity Analysis of Other Models
	Representative PDE Benchmarks & Numerical Results
	More Ablation Studies
	More Comparative Experiments
	Hyperparameters
	Broader Impacts

