
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CODE-ENABLED LANGUAGE MODELS CAN
OUTPERFORM REASONING MODELS ON DIVERSE TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning models (RMs), language models (LMs) trained with reinforcement
learning to produce long-form natural language reasoning, have been remarkably
successful, but they still cost large amounts of compute and data to train and
can be slow and expensive to run. In this paper, we show that ordinary LMs
can already be elicited to be strong reasoners at a level comparable to or even
surpass their corresponding RMs (e.g., DeepSeek V3 vs R1) without finetuning,
across diverse domains from instruction following and creative generation to
mathematical reasoning. This is achieved by combining the CodeAct approach,
where LMs interleave natural language reasoning with code executions in a multi-
step fashion, with few-shot bootstrap in-context learning—from as few as five
training problems. Analyzing four matched pairs of LMs and RMs, we find
that our framework, coined CodeAdapt, enables three LMs to outperform the
corresponding RMs on average over eight tasks (up to 22.9%) while being 10-
81% more token efficient, and delivers superior performance for six tasks on
average over models (up to 35.7%). The code-augmented reasoning traces further
display rich and varied problem-solving strategies. Our findings support that (1)
CodeAdapt-style learning and reasoning may be domain general and robust and
(2) code-enabled LMs are cognitively relevant and powerful systems, potentially
providing a strong foundation for in-weight reinforcement learning.

1 INTRODUCTION

Language models (LMs) have rapidly become versatile general-purpose systems, yet their ability to
reliably perform complex, multi-step reasoning remains a central challenge (Berglund et al., 2023;
Wu et al., 2024; Phan et al., 2025). The advent of reasoning models (RMs) marks a significant
milestone addressing this challenge: LMs trained via large-scale reinforcement learning (RL) to
incentivize long-form natural language reasoning chains demonstrate remarkable gains on a wide
range of reasoning domains (OpenAI et al., 2024; Guo et al., 2025; Gemini Team et al., 2025), and
this paradigm works particularly well on tasks where completions are easily or objectively verifiable,
such as math competitions and programming (Li et al., 2025; Chen et al., 2025b).

Nonetheless, the improvements come at substantial cost. Even though training DeepSeek R1, an
exemplar reasoning model, from the base V3 model requires significantly less resources than training
frontier non-reasoning models from scratch, the amount of data and compute is still prohibitive for
most small organizations and academic entities (Guo et al., 2025). Furthermore, deploying RMs also
escalates costs, as they can be slow and expensive to run—characteristic of their long reasoning chains
and inference-time scaling behaviors (Sui et al., 2025), and because they are not superior to standard
LMs on all tasks (Aggarwal et al., 2025), they are not one-size-fit-all to common use cases. These
considerations raise a fundamental question: must we spend these resources to achieve advanced
reasoning, or might there be more economical alternatives that reach comparable performance?

In this paper, we investigate whether a simple alternative approach that we call CodeAdapt can
compete with expensive reasoning models: equipping standard LMs with iterative code execution
capabilities and minimal in-context bootstrap learning. The approach combines CodeAct (Wang
et al., 2024a)—which allows models to write and execute Python code across multiple conversational
turns—with a lightweight training procedure using just five training problems per task domain.
While CodeAct and similar agentic frameworks have primarily been developed and evaluated for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Problem: Please generate a paragraph: with exactly 4 sentences ending with 'walk', 'tumbling', 'another', and 'lunatic'. 

Solution: Every morning, I enjoy taking a peaceful walk. Down from the trees, the leaves were tumbling. [...] 

a) CodeAct (LLM+Code) — Example reasoning trace on a constrained generation problem

Reasoning is
distributed across
language and code 
 
.. to meta-reason
about strategies,
implement
verification steps,
decompose problems
into sub-problems,
etc. 

When ready, the
system returns the
answer 

<return var=paragraph> 

Here's my plan: generate four sentences in code, then check requirements, finally stitch them together.  
 

cr
ea

te
_a

nd
_v

er
ify

_p
ar

ag
ra

ph

I notice that the second sentence ends with 'trees' instead of 'tumbling'. Let me fix it.  
 
 

fix
_s

en
te

nc
e

Feedback shows
outputs, errors and
remaining reasoning
budget (tokens, time
and turns) 

 
 

sentence1 = "Every morning, I enjoy taking a peaceful walk."
sentence2 = "The leaves were tumbling down from the trees."
sentence3 = "I saw a bird flying towards another."
sentence4 = "The man shouting in the street seemed like a lunatic."
sentences = [sentence1, sentence2, sentence3, sentence4]
def verify_paragraph(sentences):
 if len(sentences) != 4: return f"Paragraph has {len(sentences)} != 4"
 required_last_w = ['walk', 'tumbling', 'another', 'lunatic']
 for i, s in enumerate(sentences):
 last_w = s.split()[-1].lower()
 if last_w != required_last_w[i]:
 return f"Sentence {i+1} ends with '{last_w}' != '{required_last_w[i]}'"
 return "All requirements met", " ".join(sentences)
verification_result, paragraph = verify_paragraph(sentences)
print(verification_result)

sentence2 = "Down from the trees, the leaves were tumbling."
sentences = [sentence1, sentence2, sentence3, sentence4]
verification_result, paragraph = verify_paragraph(sentences)
print(verification_result)

c) CodeAdapt (CodeAct+GFL) can outperform expensive reasoning models

b) Generalization-guided Few-shot Learning (GFL)

Problem 1  Problem 2  Problem N 

Solution 1 
 

Solution 1 
 

Solution 1 
 

Solution 2 
 

Solution 2 
 

Solution 2 
 

Solution M 
 

Solution M 
 

Solution M 
 

Step 1: Generate M solutions for each of N training problems 
Step 2: Use each of the M/2 best solutions to each problem as an in-context example and  
………….measure performance on the N-1 remaining problems 
Step 3: Pick K best solutions on K different problems as final in-context examples 

... 

... 

... 

1

... 

... 

... 

... 

1 1

23

2

1

3

solution with best
direct score on
given problem 

solution with best
generalization
score across
problems 

1

<output cell="create_and_verify_paragraph">Sentence 2 ends with 'trees' != 'tumbling'</output> 
Remaining budget: 236 secs, 15589 tokens, 9 steps. 

<output cell="fix_sentence">All requirements met</output> Remaining budget: 235 secs, 15414 tokens, 8 steps. 

Figure 1: CodeAdapt architecture and performance. (a) We combine an iterative code-execution
LM reasoning framework inspired by CodeAct (Wang et al., 2024a) with (b) a novel lightweight
in-context learning procedure, and (c) show that this simple combination can help a set of LMs from
different providers outperform corresponding reasoning models evaluated on eight diverse tasks.

action-driven tasks such as digital assistance and data analysis (Wang et al., 2025; Huang et al., 2025),
and while prior work has noted code’s potential for enhancing reasoning (e.g., Chen et al., 2023; Gao
et al., 2023; Li et al., 2024), a critical question remains unexplored: can this iterated problem solving
paradigm, combined with minimal domain adaptation, serve as a direct competitor to reasoning
models, and if so on which tasks? Now the growing availability of open-weight reasoning models
permits such comparisons, and we provide a systematic evaluation of this possibility: comparing
four “instruct” LMs equipped with CodeAct and few-shot training against their reasoning-trained
counterparts across eight diverse tasks spanning instruction following, language processing, and logic
puzzles. Our results demonstrate that overall this combination consistently matches or outperforms
reasoning models (up to 22.9% per model and 35.7% per task) without any finetuning or domain-
specific scaffolding. CodeAdapt achieves this capability with a handful of training examples rather
than substantial RL training overhead and 10-81% improved inference-time token efficiency.

We motivate our framework and interpret the finding through the lens of extended cognition (Clark
& Chalmers, 1998): the idea that human cognitive processes are not confined to the boundaries
of the brain but can extend into external tools and environments that become integral parts of the
thinking process. In our setting, the code interpreter serves as a workspace where models can offload
structured computations, verify hypotheses through execution, and build upon intermediate results—
transforming code from a mere output format into an active reasoning substrate. This represents a
form of modular reasoning (Mahowald et al., 2024), where models dynamically partition cognitive
work: keeping high-level planning, intuitive reasoning and contextual understanding internal while
externalizing precise calculations, control flow, iterative searches, and systematic verification to
executable code. Rather than requiring models to internalize all reasoning patterns through large-
scale training, this approach leverages the complementary strengths of neural language processing
and symbolic computation, allowing models to reason with code rather than merely about code. It
adapts to a domain efficiently without human demonstrations, consistent with the hypothesis that
program-like representations explain how humans learn so fast (Lake et al., 2017; Rule et al., 2020).

Overall, our work makes three primary contributions. First, we present one of the first systematic
empirical comparisons demonstrating that instruct LMs equipped with iterative code execution and
minimal domain adaptation can match or exceed the performance of expensively trained reasoning
models across diverse tasks. Second, we introduce CodeAdapt, which builds upon a lightweight but
effective learning methodology that achieves this performance using only five training problems per
domain, contrasting sharply with typical RL for reasoning. Third, we conduct in-depth examination
of CodeAdapt, including ablation studies and analyses on reasoning patterns and resource usage—
furthering our understanding of hybrid reasoning frameworks and their cognitive connections. More
broadly, our work suggests that the path to better AI systems may lie not only in scaling compute
and data (which CodeAdapt is synergistic with), but in designing richer cognitive architectures that
effectively distribute learning and reasoning across multiple computational substrates.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Reasoning with language models. Our work contributes to the vibrant and growing literature on
LM reasoning. Early work builds on the idea of eliciting an intermediate reasoning trace (Chain-
of-Thought, or CoT) from LMs (Nye et al., 2021; Wei et al., 2022), either by prompting alone
(Kojima et al., 2022; Zhou et al., 2022a) or supervised fine-tuning (Chung et al., 2024), or algorithmic
scaffolding (Yao et al., 2023b; Besta et al., 2024). Recently, a popular paradigm to further improve a
base model’s CoT reasoning capability is to post-train it with reinforcement learning (RL), which
requires a set of training problems and a reward model (e.g., a verifier) that can assign scores to
LLM responses, with algorithms like GRPO (Shao et al., 2024) and its variants (Chen et al., 2025a;
Liu et al., 2025; Zheng et al., 2025). RL post-training approaches have dramatically improved
the reasoning abilities of LLMs, from early work like STaR (Zelikman et al., 2022) to the latest
breakthroughs in training reasoning models (RMs) such as DeepSeek R1 (Guo et al., 2025), but
they are both expensive to train and deploy. In this work, we directly compare RMs against a much
cheaper alternative to improving an LM’s reasoning capability, CodeAdapt, with results showing that
it can bring large benefits relative to RL post-training on a range of tasks.

Code-augmented reasoners and agents. Allowing LLMs to express solutions as code has been
been shown to be effective in formal reasoning domains such as math and logic (Chen et al., 2023;
Gao et al., 2023; Olausson et al., 2023; Li et al., 2024), and a line of work explores automatically
switching between natural language and code reasoning in such domains (Han et al., 2024; Chen
et al., 2024; Du et al., 2025). Although formal reasoning is a direct fit for code, here we explore
whether code can be helpful as a “tool for thought” more generally, including in domains involving
language and creativity. Code has also served as a framework to implement agentic systems, where
LMs can take external actions on the digital or physical world (Liang et al., 2022; Wong et al., 2023;
Murty et al., 2024; Yang et al., 2024). This includes CodeAct (Wang et al., 2024a), which extends
ReAct (Yao et al., 2023c) and results in a framework that employs code to unify action representations
and tool use (Wang et al., 2024b; 2025; Feng et al., 2025; Huang et al., 2025). Our work builds upon
CodeAct, but it also includes an in-context bootstrapping component that self-explores reasoning
trajectories, eliminating the need for expert demonstrations.

Prompt optimization. Generating and selecting in-context reasoning trajectories is an instance
of prompt optimization, a complementary route to improving an LM’s performance. This has been
studied both with manual “prompt engineering” (White et al., 2023; Sahoo et al., 2024) as well as
with automatic, domain-agnostic prompt optimization methods (Zhou et al., 2022b; Hu et al., 2024;
Xiang et al., 2025; Yuksekgonul et al., 2024). The DSPy software system provides a comprehensive
framework for automating prompt optimization that can be applied to multiple components of an LM
pipeline (Khattab et al., 2023). In addition to optimizing in-context exemplars (Wan et al., 2024),
other approaches include evolving reflections, curating strategies, or creating reasoning templates
(Renze & Guven, 2024; Fernando et al., 2023; Zhou et al., 2024). We focus on bootstrapping few-shot
exemplars, exploring this paradigm in an extremely low-data regime (up to 5 training problems per
task, as Section 3.2 details). Even in this regime, we find that a lightweight learning phase can bring
large gains compared to RL. Investigating the best ways to compare and combine prompt optimization
with finetuning and RL is an activate area of research (Soylu et al., 2024; Agrawal et al., 2025).

3 LEARNING TO REASON IN LANGUAGE AND CODE WITH CODEADAPT

Can code-enabled LLMs match expensively trained reasoning models at a fraction of the cost?
To investigate this question, we combine two techniques: iterative code execution via CodeAct
and lightweight self-taught in-context learning from just a few problems per task. We coin the
resulting combination CodeAdapt, a hybrid reasoning system that bridges the gap between symbolic
computation—long considered essential for rigorous human thinking (Boole, 1854; Fodor, 1975;
Dehaene et al., 2022)—and the impressive language processing abilities of modern LMs. Where
purely symbolic approaches suffer from brittleness (Russell & Norvig, 2020; Santoro et al., 2021),
our system uses natural language to guide and interpret symbolic operations, creating a more flexible
and robust problem-solving framework. The following subsections detail our reasoning system
and learning procedure that enables competitive performance across diverse reasoning tasks. All
experimental prompts are provided in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 HYBRID REASONING IN LANGUAGE AND CODE

We first present the implementation of our hybrid reasoning setup, which is built upon the CodeAct
framework (Wang et al., 2024a). The system consists of two primary components that interact in a
multi-turn/step loop, as illustrated in Figure 1:

• Language module: an LM that generates messages combining natural language reasoning, and
code snippets. The natural language serves dual purposes: direct problem-specific reasoning
(e.g., “here is my tentative answer: ...”) and meta-reasoning about strategy selection (e.g., “I
will first generate a candidate answer, then check it with code”).

• Code module: a Python environment that interprets messages, executes code, maintains state,
and provides feedback. When the language module sends a message, the workspace parses it to
identify code blocks and return statements. Code blocks are executed and the persistent state is
updated accordingly.

After each turn, the code module provides the language module with execution results and information
about remaining resources. This feedback enables the language module to adapt its approach based
on intermediate results and resource constraints. Our system operates within limited resources (maxi-
mum 4 min. computation time, 16k output tokens, or 10 reasoning steps per problem), simulating
cognitively realistic, real-world reasoning under constraints (Simon et al., 1972; Lieder & Griffiths,
2020). The loop terminates when the language module decides to return a solution or when resources
are exhausted (in which case the LM is given a final chance to return an answer).

Figure 1 shows an excerpt of a hybrid reasoning trace on a problem from the Collie benchmark
(Yao et al., 2023a): generate a 4-sentence paragraph where sentences end with specific words (see full
example in App. Sec. E). Over several reasoning steps, the agent outlines its strategy, generates a first
attempt, checks constraints in code, detects an error and corrects it, before returning a correct answer.

This setup enables CodeAdapt to implement a myriad of problem solving strategies. Chain-of-
Thought reasoning can be implemented as a single LLM call with an appropriate prompt (Wei
et al., 2022; Kojima et al., 2022); Program-of-Thought or similar approaches translate to a single
reasoning step with direct code execution (Chen et al., 2023); other decomposition or verification
based approaches can be implemented through iterative LM calls with appropriate subtasks (Wang
et al., 2023; Madaan et al., 2023). The LM can switch between these approaches based on problem
requirements and intermediate results, particularly when faced with errors or resource constraints.

3.2 LEARNING TO REASON WITH GENERALIZATION-GUIDED FEW-SHOT LEARNING

While CodeAct provides LMs with powerful computational tools, models may struggle to use them
effectively in zero-shot settings despite detailed prompting. To address this, we provide models
with a small set of training problems (only 5 per task) along with their verifiers, allowing the
system to generate its own solution attempts and learn from this self-generated experience. The
learning procedure, Generalization-guided Few-shot Learning (GFL), helps models discover effective
reasoning strategies without requiring in-weight fine-tuning or reinforcement learning.

GFL addresses a key insight: not all correct solutions are equally instructive. A solution might reach
the right answer by luck or problem-specific tricks without demonstrating a generalizable problem-
solving strategy. Instead of selecting examples based solely on correctness, GFL identifies solutions
that help the model solve other problems—solutions that teach transferable hybrid reasoning patterns.
Formally, let L be a code-enabled language model which can be conditioned on a (potentially empty)
sequence of examples E, U(p, r) be a task-specific utility function of a response r to a problem p,
and T be a set of training problems, GFL’s objective is to find argmaxE Ep∼T U(p,L(p|E)).

The method itself is simple but novel to the best of our knowledge: (1) generate M solution attempts
for each of N = 5 training problems, with an opportunity to retry in the same context if the solution
does not score perfectly, (2) test the top M/2 solutions each as a one-shot example on the remaining
problems,1, and (3) select the top K solutions that provide the highest average performance across
problems (max. one per original problem)—see Alg 1. With our parameters, this process only
costs 90 model calls per task, yet unlocks models to discover and internalize effective strategies
for combining language and code in reasoning tasks. We set M = 6 to balance exploration and

1One could use all M solutions but our filtering eliminates worse solutions and saves compute.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Generalization-guided Few-shot Learning
Step 1: Generate M reasoning traces for each of N training
problems along with their scores.
candidates← dict()
for problem ∈ trainProblems do

examples← []
for j ∈ {1, · · · ,M} do

trace← L(problem)
score← EvalSolution(trace, problem)
if score < maxScore then

trace2← L(problem|past=trace)
score2← EvalSolution(trace2, problem)
if score2 > score then

trace, score← trace2, score2
end if

end if
examples.append(⟨trace, score⟩)

end for
candidates[problem]← examples

end for

Step 2: Evaluate generalization for each candidate example and
select top K as in-context examples.
candidates← FilterTopByScore(candidates,M/2)
selected← dict()
for p ∈ trainProblems do

genScores← []
for (trace, traceScore) ∈ candidates[p] do

scores← [traceScore]
for p′ ∈ trainProblems \ {p} do

newTrace← L(p′|ex=trace)
score← EvalSolution(newTrace, p′)
scores.append(score)

end for
avgScore← Mean(scores)
genScores.append(⟨trace, avgScore⟩)

end for
selected[task]← FilterTop1ByGenScore(genScores)

end for
return FilterTopByGenScore(selected,K)

tractability and K = 2 to keep it small and accord to common few-shot agent setups (Yao et al.,
2023a; Shinn et al., 2023), so the subsequent experiments are run with 2-shot in-context examples.

GFL also comes with an intuitive baseline: one can randomly select top in-context examples purely
based on problem scores without generalization measures, which is a a form of straightforward
bootstrap few-shot learning (BFL). We implement and test BFL as a baseline for the experiments.

4 EXPERIMENTS AND RESULTS

We evaluate CodeAdapt across four recent strong LMs from different providers, three of which are
open-weight: DeepSeek V3, Gemini 2.0 Flash, Qwen 3 30B A3B Instruct, and Qwen 2.5 Coder 32B.
This ensures our findings generalize across model variations. The corresponding reasoning models
are DeepSeek R1, Gemini 2.5 Flash Lite Thinking, Qwen 3 30B A3B Thinking, and QwQ 32B.
Models details and the relationships between the paired models are explained in Appendix Sec. B.

4.1 BENCHMARKS AND BASELINES

Domains. We evaluate CodeAdapt against baselines and reasoning models on eight tasks across three
broad domains that are important for common LM use cases and test different aspects of reasoning.
The categories are inspired by LiveBench (White et al., 2025), and we take two tasks from it directly.

Instruction following: These tasks require both creative, fluid generation and precise constraint
satisfaction—capabilities where current LMs still struggle. (1) IFBench: all test problems from
Pyatkin et al. (2025), a recently developed instruction following benchmark. (2) Collie: a subset of
problems from challenging categories in the Collie constrained generation dataset (Yao et al., 2023a),
where when created even then-frontier models like GPT-4 score at most 65%.

Language processing: These tasks demand strong linguistic reasoning abilities regarding both compre-
hension and production. (1) MuSR: a challenging and popular reading comprehension benchmark that
requires reasoning (Sprague et al., 2024). We take all problems from the hardest “object placement”
category. (2) Creativity: A novel task based on the Divergent Association Task in psychology
(Olson et al., 2021), where given 3 seed words, the system must generate 7 additional words that are
maximally different from each other and the seeds, as measured by the average pairwise cosine dis-
tance in GloVe word-embedding space (Pennington et al., 2014). (3) Typos: A task from LiveBench
that tests a highly common use case of LMs—fixing misspellings of a given piece of text.

Formal Reasoning: These tasks test mathematical and logical reasoning where symbolic manipulation
and verification are critical. (1) Countdown: a novel arithmetic reasoning task where given numbers
1-10, the system must reach a target number selected in 1-100 using each number exactly once with
basic arithmetic operations, inspired by and extends the 24 game (Wurgaft et al., 2025). (2) AIME:
US high school math olympiad problems, now a standard benchmark for reasoning models. We
take all the problems from 2023 to 2025 (Veeraboina, 2023). (3) Zebra: zebra puzzles are logical
constraint satisfaction problems also known as Einstein puzzles, taken from LiveBench.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Instruction Language Formal
Model and Method IFBench Collie MuSR Creativity Typos Countdown AIME Zebra Avg.

n = 289 n = 195 n = 59 n = 55 n = 45 n = 95 n = 85 n = 95

Deepseek V3 35.6 33.3 55.1 76.3 50.2 22.1 34.1 51.1 39.6
+ CodeAct (0-shot) 42.4 54.9 56.4 76.7 64.0 12.6 43.5 54.5 47.3
+ CodeAdapt (2-shot BFL) 56.2 79.0 61.4 85.3 80.4 14.7 37.6 68.9 59.6
+ CodeAdapt (2-shot GFL) 56.7 77.9 69.5 86.5 80.4 71.6 40.0 78.2 67.2
DeepSeek R1 36.2 41.0 51.3 78.2 48.4 84.2 70.6 86.6 54.7

Gemini 2.0 Flash 33.2 37.9 54.2 78.8 52.9 36.8 36.5 50.0 41.7
+ CodeAct (0-shot) 45.7 51.8 49.2 73.5 52.9 27.4 47.1 56.6 48.6
+ CodeAdapt (2-shot BFL) 52.9 68.7 57.6 85.9 69.8 97.9 32.9 69.5 63.9
+ CodeAdapt (2-shot GFL) 54.2 62.1 60.6 86.3 72.4 98.9 43.5 65.8 63.9
Gemini 2.5 Flash Lite Thinking 42.2 44.6 50.4 78.0 49.8 87.4 65.9 45.8 53.0

Qwen 3 30B A3B Instruct 37.2 18.5 61.4 75.1 75.1 94.7 58.8 65.3 49.8
+ CodeAct (0-shot) 45.7 35.9 43.2 70.9 48.4 37.9 71.8 61.3 48.3
+ CodeAdapt (2-shot BFL) 43.9 36.9 65.3 83.0 68.4 89.5 78.8 76.8 58.7
+ CodeAdapt (2-shot GFL) 51.9 35.9 64.0 78.6 67.1 87.4 74.1 73.9 59.6
Qwen 3 30B A3B Thinking 50.9 52.3 57.6 73.8 76.0 94.7 75.3 78.2 63.8
Qwen 2.5 Coder 32B 34.8 16.4 54.2 74.2 31.1 5.3 10.6 38.7 29.4
+ CodeAct (0-shot) 30.6 25.1 47.0 74.0 22.2 47.4 29.4 45.8 35.9
+ CodeAdapt (2-shot BFL) 33.6 35.9 49.2 86.8 42.2 85.3 31.8 49.2 45.5
+ CodeAdapt (2-shot GFL) 38.6 38.5 57.2 84.1 60.9 100.0 37.6 72.9 53.4
Qwen QwQ 32B 39.3 20.0 55.5 73.6 56.9 60.0 75.3 80.8 48.9

Avg. CoT (0-shot) 35.2 26.5 56.2 76.1 52.3 39.7 35.0 51.2 46.6
Avg. CodeAct (0-shot) 41.1 41.9 48.9 73.8 46.9 31.3 47.9 54.5 48.3
Avg. CodeAdapt (2-shot, BFL) 46.7 55.1 58.4 85.3 65.2 71.8 45.3 66.1 61.7
Avg. CodeAdapt (2-shot, GFL) 50.3 53.6 62.8 83.9 70.2 89.5 48.8 72.7 66.5
Avg. Reasoning model 42.1 39.5 53.7 75.9 57.8 81.6 71.8 72.8 61.9

Table 1: CodeAdapt can outperform reasoning models. Combining the multi-turn code-enabled
LM system CodeAct (Wang et al., 2024a) with simple in-context learning strategies (either boot-
strap few-shot learning (BFL) or generalization-guided few-shot learning (GFL) often outperforms
corresponding reasoning models, for four different LMs on eight diverse tasks. Numbers indicate
accuracies spanning from 0 to 100, except for Creativity where they measure word diversity. Bold in-
dicates the best-performance method (for given domain and model family), while underline indicates
not statistically different from the best.

Baselines. The default baseline is Chain-of-Thought 0-shot (Kojima et al., 2022). We also compare
CodeAct 0-shot (CodeAdapt without training) and CodeAdapt with BFL instead of GFL. The main
comparison is with the reasoning models (RMs).

4.2 MAIN RESULTS

Table 1 shows our main results on tasks spanning instruction following, language processing, and
formal reasoning. We compare “instruct” models (e.g., DeepSeek V3, Gemini 2.0 Flash) and their
corresponding “reasoning” versions, obtained via RL post-training (e.g., DeepSeek R1, Gemini 2.5
Flash Lite Thinking). We evaluate the models paired with training-free improvement methods, 0-shot
CodeAct, and the 2-shot CodeAdapt settings where examples are selected either by BFL or GFL.
We make the following observations:

Reasoning post-training improves significantly on instruction following and formal reasoning,
but has mixed impact on linguistic reasoning. Reasoning models overall perform significantly
better than their instruct counterparts, with drastic gains especially in formal reasoning. For instance,
while DeepSeek V3 only achieves 22.1% success rate on the Countdown task, DeepSeek R1 achieves
84.2%, whereas Qwen 2.5 32B models improve from 5.3% to 60.0% with RL on the same task. Gains
are consistent, albeit smaller, on the instruction following tasks: for instance, Gemini models go
from 37.9% to 44.6% on Collie. In language tasks, however, we see various instances where RL has
minimal or negative impact on performance: in Typos, DeepSeek V3 drops from 50.2% to 48.4% in
R1, and Gemini from 52.9% to 49.8%. On the whole, all reasoning models yield gains, though the
improvements are unevenly distributed, and we find several cases of performance degradation.

CodeAdapt consistently improves the LM. Unlike RL-enhanced RMs, CodeAdapt has a consistent
positive impact, including in language processing tasks: in all 3 of those tasks, average perfor-
mance with CodeAdapt is significantly higher across models (e.g., average of 70.2% on Typos with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CodeAdapt, compared to 52.3% with base models using CoT and 57.8% for reasoning models). In
fact, this trend also follows in the other domains; we see an increased average performance across all
tasks. This is not the case for off-the-shelf CodeAct. As with RL, CodeAct’s performance in linguistic
tasks overall decreases, but sometimes this happens even in formal reasoning such as Countdown:
the model may not know how to implement a good code solution even if there is one. This shows that
here CodeAdapt is meaningfully distinct from and more powerful than CodeAct.

LMs with CodeAdapt generally outperform corresponding RMs. We find the gains from
CodeAdapt are broadly competitive or larger than those of RL: for instance, the best performance
across all linguistic tasks for all models is achieved by one of the CodeAdapt variants (either with
BFL or GFL), and on the vast majority of instruction following tasks with the sole exceptions of Qwen
3 on Collie and Qwen 2.5 Coder on IFBench. Even in formal reasoning CodeAdapt outperforms
in Countdown (except for V3/R1) and still brings improvements in cases where RL achieves the
best performance (e.g., in AIME). As to selecting few-shot examples for CodeAdapt, across all
models GFL yields a better average task performance compared to the simpler BFL baseline. Overall,
we observe that our lightweight strategies of few-shot bootstrapping and code execution to yield
significant performance gains: exceeding the RMs for 3 out of 4 models and on 6 out of 8 tasks
(while matching them on Zebra and still improving on AIME over CoT).

Instruction Language Formal

Model and Method IFBench Collie MuSR Creativity Typos Countdown AIME Zebra Avg.

Deepseek v3 (CoT) 35.6 33.3 55.1 76.3 50.2 22.1 34.1 51.1 51.1
+ CoT (2-shot, GFL) 31.3 33.8 52.5 81.9 66.2 50.5 32.9 51.6 51.6
+ CodeAdapt (2-shot, GFL) 56.7 77.9 69.5 86.5 80.4 71.6 40.0 78.2 78.2

Gemini 2-0 Flash (CoT) 33.2 37.9 54.2 78.8 52.9 36.8 36.5 50.0 50.0
+ CoT (2-shot, GFL) 37.7 49.7 58.1 84.7 82.2 38.9 32.9 43.9 43.9
+ CodeAdapt (2-shot, GFL) 54.2 62.1 60.6 86.3 72.4 98.9 43.5 65.8 65.8

Table 2: Ablation of the CodeAct component of CodeAdapt. CodeAdapt outperforms similarly
trained CoT over almost settings. Bold indicate best method (for given domain and base model),
while underline indicates not statistically different from the best.

4.3 ABLATION STUDIES

2 6 10
Budget of interaction turns

0.45

0.50

0.55

0.60

0.65

Av
g

sc
or

e
ac

ro
ss

 d
om

ai
ns

Deepseek
Gemini

Figure 2: CodeAdapts performs
better with more budget. Aver-
age over all tasks +/− SEM.

Ablating CodeAct. CodeAdapt combines two ingredients:
multi-step code-enabled reasoning (CodeAct) and our new in-
context learning strategy (GFL). The results above show that GFL
is essential compared to BFL. Now, to test whether GFL alone
accounts for the improvements, we apply it to plain chain-of-
thought prompting—removing the multi-step code component.
We use two models, DeepSeek and Gemini, for ablation stud-
ies to save cost. Table 2 shows that full CodeAdapt still beats
CoT+GFL, demonstrating that both the multi-step code mech-
anism and the in-context learning procedure are crucial for the
performance gains.

Varying computation budget. All previous results use a budget of up to 10 iterative, hybrid
reasoning steps. Figure 2 shows that CodeAdapt benefits from more resources: DeepSeek gains 21%
and Gemini 15 % when allowed 10 turns instead of 2, providing another perspective on inference-time
scaling (cf. Muennighoff et al., 2025).

4.4 RESOURCE USAGE
Deepseek V3 Gemini 2.0 Qwen 3 Qwen 2.5

Output tokens 43.1% 80.5% 10.3% 53.6%
Computation time 39.2% 43.8% 16.0% 47.5%

Table 3: CodeAdapt uses fewer resources. Percent
savings of CodeAdapt over corresponding reasoning
models averaged across tasks (bold indicates signifi-
cant difference with a paired t-test).

CodeAdapt is much cheaper to train, but it
is also cheaper to run. Compared to RMs,
we found that in aggregate CodeAdapt solves
tasks 16% to 47% faster using 10% to 80%
fewer tokens depending on the model we use
(Table 3). Appendix Figure 5 and 6 show that
these savings in time and tokens hold across

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

10k

20k IFBench

0

10k

20k Collie

0

10k

20k MuSR

0

10k

20k Creativity

0

10k

20k Typos

0

10k

20k Countdown

0

10k

20k AIME

0

10k

20k Zebra

O
ut

pu
t

to
ke

ns

Deepseek v3

Deepseek v3 +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) DeepSeek R1

Figure 3: Token usage for different of DeepSeek models across domains. Each violin plot
represents the distribution of output tokens spent over the set of evaluation questions for each domain.
Dots indicate the means. In most domains, reasoning models use more tokens than iterative code-
enabled strategies like CodeAct and CodeAdapt.

most tasks. Notably, we find that CodeAdapt uses fewer tokens than 0-shot CodeAct, suggesting
that our lightweight training improves resource efficiency—likely by helping models use the code
environment more effectively and reducing errors that require retries. Overall, CodeAdapt achieves
superior performance over chain-of-thought baselines while requiring only marginal additional tokens
and time. This contrasts with reasoning models, whose performance gains come at the cost of
expensive training while also incurring higher inference overhead.

4.5 ANALYSIS

To understand CodeAdapt’s problem-solving behavior, we conducted a systematic analysis of its
reasoning patterns across different domains. Using 25 reasoning traces per domain from Gemini
(150 total), we extract both quantitative metrics and qualitative characteristics to assess how the
system adapts its strategies to different problem types. We capture several categories of features: (1)
resource usage: tokens generated, interaction turns; (2) reasoning strategies: exhaustive search, task
decomposition, iterative refinement, code-use; (3) strategy adaptation: strategy switching, debugging;
and (4) metacognitive behaviors: progress monitoring, expression of uncertainty, resource awareness.

For features requiring semantic judgment, we use GPT-4.1-mini as a judge with structured prompts
(see Appendix C.2). Additionally, we use it to generate descriptions of the reasoning strategy
employed by the CodeAdapt agent and compute embedding-based similarity measures to compare
strategies across and within domains, e.g., “The agent employs a hybrid approach, combining
expression generation with Python-based evaluation and verification.”

IF Bench
Collie MuSR

Creativity Typos
Countdown AIME

Zebra

IF Bench

Collie

MuSR

Creativity

Typos

Countdown

AIME

Zebra

0.90 0.90 0.87 0.88 0.89 0.86 0.85 0.85

0.90 0.94 0.88 0.89 0.90 0.86 0.84 0.85

0.87 0.88 0.95 0.87 0.87 0.83 0.84 0.84

0.88 0.89 0.87 0.96 0.87 0.85 0.84 0.85

0.89 0.90 0.87 0.87 0.95 0.85 0.83 0.84

0.86 0.86 0.83 0.85 0.85 0.94 0.86 0.87

0.85 0.84 0.84 0.84 0.83 0.86 0.88 0.85

0.85 0.85 0.84 0.85 0.84 0.87 0.85 0.96

Figure 4: Strategy similarities. Pairwise
cosine distance between embeddings of
reasoning strategies.

CodeAdapt tailors strategies to problem demands.
Statistical analyses reveal significant variation in rea-
soning approaches across domains. Using chi-square
tests for binary features and ANOVA for continuous
measures (N = 200), we found that different domains
elicit distinct reasoning strategies with varying code uti-
lization (p < 10−10), verification (p < 10−10), strategy
switching (p < 10−9) exhaustive search (p < 10−10),
iterative refinement patterns (p < 4 × 10−3), and task
decomposition (p < 0.02), after Bonferroni corrections.
Similarly, metacognitive behaviors related to capability
assessment, progress monitoring, and resource manage-
ment differed significantly across domain (p < 10−2),
as did resource usage metrics (output tokens, total to-
kens, and interaction turns, all p < 10−10).

The strategy descriptions generated by our LM judge show significantly higher embedding co-
sine similarity within domains than between domains (Figure 4), providing further evidence that
CodeAdapt tailors its approach to the specific demands of each problem class. Tasks with more diverse
tasks(IFBench and AIME) exhibit lower intra-domain strategy similarity than more homogeneous
domains, indicating fine-grained adaptation even within broader categories.

Each task elicits distinctive reasoning patterns suited to its unique challenges. Zebra problems, which
involve systematic constraint satisfaction, leads CodeAdapt to adopt more code-centered approaches

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(∼80% of tasks) with systematic symbolic verifications, more exhaustive search approaches (∼80%
of tasks) and relatively little refinement (∼20%) or debugging (∼10%) compared to other domains (all
p < 10−2 compared to average across all domains, chi-square). By contrast in MuSR, CodeAadapt
rarely leveraged any code (<10% of tasks), while in Typos, it uses comparatively more debugging and
iterated refinement strategies than in other domains (both p < 10−5). Readers can see the diversity of
example reasoning strategies in Appendix E.

CodeAdapt blends natural language and code reasoning. The proportion of reasoning occurring
in code versus natural language varied dramatically by domain—from a predominantly code-based
approach in Zebra and Countdown (∼80%) to hybrid strategies in IF Bench, Typos or AIME
(∼20%) to language-focused approaches in MuSR and Creativity (only ∼10% code-based). This
distribution reflects the inherent structure of each problem type: logical constraint problems benefit
from systematic symbolic processing, creativity ideation relies more on language, while mathematical
problems might involve a blend of language- and code-based reasoning.

CodeAdapt demonstrates metacognitive abilities. Our analyses reveal three distinct types of
metacognition in CodeAdapt’s reasoning traces: monitoring of solution progress, awareness of its
own limits, and reasoning about resource constraints. The frequency of these metacognitive behaviors
varies significantly by domain, occurring rarely in MuSR, which often relies on straightforward
language reasoning, but frequently in IF Bench, Typos, or AIME, which requires more exploratory and
iterative approaches. These metacognitive behaviors often accompanied strategy shifts in response to
errors or resource limitations. E.g., after repeatedly failing to satisfy the constraint in an IFBench
problem, CodeAdapt reflects on its progress and strategy: “This is more difficult than I initially
anticipated. I keep missing the second-to-last word. I need to be more methodical.” In Zebra, after
using a compute-intensive search method, it notes “I’ll try to be more efficient with my code and use
functions to avoid repetition. I’ll also be more mindful of the time limit.” In Countdown, it proactively
reasons about strategy selection based on cost: ”Given the limited number of turns and the complexity
of the problem, I’ll start with the generate and evaluate approach, but I’ll limit the number of attempts
to avoid timeouts. [...] If this doesn’t work quickly, I’ll switch to a template-based approach [...]”.

5 DISCUSSION

Implications for LM research. In this work, we have significantly improved the reasoning capabili-
ties of instruct LMs through the CodeAdapt framework: imbuing them with multi-step agentic code
executions and an efficient, self-taught in-context learning procedure. We show that CodeAdapt can
allow LMs to match or surpass the corresponding RMs from the same model family. The framework
and findings have several implications. One is that modern instruct-tuned LMs already possess strong
reasoning abilities even just implicitly. Just like some argue that RL (only) amplifies such abilities in
the model (Zhao et al., 2025; Yue et al., 2025), our work indicates that multi-step hybrid reasoning
may be another effective (and much cheaper) way to elicit reasoning from LMs. Second, code-based
reasoning likely does not just help with formal reasoning tasks—as a representation code can provide
useful abstractions and utilities for many kinds of tasks, and moreover CodeAdapt does not enforce
code usage, so it in principle does not lose any generality of natural language. Lastly, as much recent
work begins to explore, hybrid reasoning is synergistic to RL training—RL can significantly boost
multi-step tool use just like it does for CoT-only reasoning (Feng et al., 2025; Qian et al., 2025), so in
the future ways of combining RL and CodeAdapt might lead to versatile and powerful systems.

Limitations and future work. In addition to the common limitations on model variation and task
coverage in LM reasoning research, we do not claim CodeAdapt, although already highly effective,
is the best way to elicit reasoning from instruct LMs, leaving the search for better alternatives to
CodeAct and GFL for future work. We also do not claim that LMs with CodeAdapt can replace
RMs—there will be many tasks where RMs do better (like AIME), and we emphasize that integrating
CodeAdapt with RL and more tools and libraries (e.g., Internet search) is an exciting area of research.

Connections to human cognition. As motivated in the introduction, our work has direct connections
to theories of human cognition. Program-like representations have long been proposed to account
for humans’ systematicity in thought and efficiency in learning (Fodor, 1975; Goodman et al., 2008;
Lake et al., 2015; Chollet, 2019; Quilty-Dunn et al., 2023). Our work suggests similar patterns with
LM agents. Additionally, our learning procedure GFL bakes generalization measures explicitly into
the objective, which can be seen as a humanlike form of rational learning (Griffiths et al., 2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work evaluates how well CodeAdapt, an problem solving architecture that learns from a few train-
ing problems and reasons through natural language plus code execution can match the performance
of expensively trained reasoning models. We believe this research advances our understanding of AI
reasoning capabilities without introducing novel ethical concerns beyond those inherent to language
models generally. Code-execution agents do inherit the limitations of their underlying language
models, including potential biases and hallucinations. Additionally, enabling models to generate
and execute arbitrary code requires careful safety considerations. In our experiments, all models
operate within sandboxed environments with restricted computational resources and no external file or
network access. We strongly encourage practitioners deploying code-execution agents to implement
appropriate guardrails, human oversight, and security measures to mitigate potential risks. We note
that hybrid language-code reasoning offers potential safety benefits: the explicit code generation
makes the model’s computational steps more interpretable and verifiable than purely neural reasoning
processes. This transparency can facilitate human oversight and error detection, as stakeholders
can inspect both the logical approach and the specific computations performed. We view hybrid
language-code reasoning as a promising direction for developing more capable, cost-effective, and
interpretable AI systems. Such capabilities could benefit education, research, and problem-solving
applications, provided they are developed and deployed responsibly with attention to the safety
considerations outlined above.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we will make our codebase publicly available upon acceptance, including
our CodeAdapt implementation, all prompts, and the full evaluation pipeline. We provide all
benchmark tasks used in our evaluation, including our novel Creativity and Countdown tasks.
Our experiments use publicly available models accessed through APIs, with full documentation
of model versions and sampling parameters provided in the appendix. While access to specific
API-only models may change over time, our methodology is designed to be model-agnostic and
should generalize to other language models. These resources will enable researchers to reproduce our
results, extend our analysis to new domains and models, and build upon our framework for future
work on hybrid language-code reasoning systems.

REFERENCES

Pranjal Aggarwal, Seungone Kim, Jack Lanchantin, Sean Welleck, Jason Weston, Ilia Kulikov, and
Swarnadeep Saha. Optimalthinkingbench: Evaluating over and underthinking in llms. arXiv
preprint arXiv:2508.13141, 2025.

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. The reversal curse: Llms trained on” a is b” fail to learn” b is a”. arXiv preprint
arXiv:2309.12288, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 17682–17690, 2024.

George Boole. An investigation of the Laws of Thought. Walton & Maberly, 1854.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen
Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive llm agents.
arXiv preprint arXiv:2502.01600, 2025a.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=YfZ4ZPt8zd.

Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma, Chuchu Fan, and Chi Wang. Steering large
language models between code execution and textual reasoning. arXiv preprint arXiv:2410.03524,
2024.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Andy Clark and David Chalmers. The extended mind. analysis, 58(1):7–19, 1998.

Stanislas Dehaene, Fosca Al Roumi, Yair Lakretz, Samuel Planton, and Mathias Sablé-Meyer.
Symbols and mental programs: a hypothesis about human singularity. Trends in Cognitive
Sciences, 26(9):751–766, 2022.

Weihua Du, Pranjal Aggarwal, Sean Welleck, and Yiming Yang. Agentic-r1: Distilled dual-strategy
reasoning. arXiv preprint arXiv:2507.05707, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Jerry A. Fodor. The Language of Thought. Harvard University Press, 1975.

Kanishk Gandhi, Denise H J Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah Goodman. Stream of search (sos): Learning to search in language. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=2cop2jmQVL.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Gemini Team, Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva,
Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing
the frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. arXiv preprint arXiv:2507.06261, 2025.

Noah D Goodman, Joshua B Tenenbaum, Jacob Feldman, and Thomas L Griffiths. A rational analysis
of rule-based concept learning. Cognitive science, 32(1):108–154, 2008.

Thomas L Griffiths, Nick Chater, and Joshua B Tenenbaum. Bayesian models of cognition: Reverse
engineering the mind. MIT Press, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633–638, 2025.

Simeng Han, Tianyu Liu, Chuhan Li, Xuyuan Xiong, and Arman Cohan. Hybridmind: Meta
selection of natural language and symbolic language for enhanced llm reasoning. arXiv preprint
arXiv:2409.19381, 2024.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, See-Kiong Ng,
and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. Advances in Neural
Information Processing Systems, 37:86309–86345, 2024.

11

https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=2cop2jmQVL

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan Li,
Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. biorxiv,
2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling
declarative language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714,
2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in neural information processing systems,
volume 35, pp. 22199–22213, 2022.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
code emulator. In International Conference on Machine Learning, pp. 28259–28277. PMLR, 2024.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Falk Lieder and Thomas L Griffiths. Resource-rational analysis: Understanding human cognition as
the optimal use of limited computational resources. Behavioral and brain sciences, 43:e1, 2020.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2023.

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and
Evelina Fedorenko. Dissociating language and thought in large language models. Trends in
cognitive sciences, 28(6):517–540, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. Bagel: Bootstrap-
ping agents by guiding exploration with language. arXiv preprint arXiv:2403.08140, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cedegao E Zhang, Armando Solar-Lezama, Joshua B
Tenenbaum, and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by combining
language models with first-order logic provers. arXiv preprint arXiv:2310.15164, 2023.

Jay A Olson, Johnny Nahas, Denis Chmoulevitch, Simon J Cropper, and Margaret E Webb. Naming
unrelated words predicts creativity. Proceedings of the National Academy of Sciences, 118(25):
e2022340118, 2021.

OpenAI, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Valentina Pyatkin, Saumya Malik, Victoria Graf, Hamish Ivison, Shengyi Huang, Pradeep Dasigi,
Nathan Lambert, and Hannaneh Hajishirzi. Generalizing verifiable instruction following. arXiv
preprint arXiv:2507.02833, 2025.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur,
and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958, 2025.

Jake Quilty-Dunn, Nicolas Porot, and Eric Mandelbaum. The best game in town: The reemergence of
the language-of-thought hypothesis across the cognitive sciences. Behavioral and Brain Sciences,
46:e261, 2023.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning. https://qwenlm.
github.io/blog/qwq-32b/, March 6 2025.

Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024.

Joshua S Rule, Joshua B Tenenbaum, and Steven T Piantadosi. The child as hacker. Trends in
cognitive sciences, 24(11):900–915, 2020.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson, 4 edition,
2020.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
A systematic survey of prompt engineering in large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927, 2024.

Adam Santoro, Andrew Lampinen, Kory Mathewson, Timothy Lillicrap, and David Raposo. Symbolic
behaviour in artificial intelligence. arXiv preprint arXiv:2102.03406, 2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Herbert A Simon et al. Theories of bounded rationality. Decision and organization, 1(1):161–176,
1972.

Dilara Soylu, Christopher Potts, and Omar Khattab. Fine-tuning and prompt optimization: Two great
steps that work better together. arXiv preprint arXiv:2407.10930, 2024.

13

https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-
of-thought helps mainly on math and symbolic reasoning. arXiv preprint arXiv:2409.12183,
2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
for large language models. arXiv preprint arXiv:2503.16419, 2025.

Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime-problem-set-1983-2024.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Sercan Arik. Teach better or show smarter? on
instructions and exemplars in automatic prompt optimization. Advances in Neural Information
Processing Systems, 37:58174–58244, 2024.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan,
Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI software developers
as generalist agents. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried, and Graham Neubig. What are tools anyway?
a survey from the language model perspective. arXiv preprint arXiv:2403.15452, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh Sandha,
Siddartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and
Micah Goldblum. Livebench: A challenging, contamination-free LLM benchmark. In The
Thirteenth International Conference on Learning Representations, 2025.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar,
Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S Siegel, Jiahai Feng, Noa Korneev, Joshua B
Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natural language
guidance. arXiv preprint arXiv:2312.08566, 2023.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. In Kevin Duh, Helena Gomez, and Steven Bethard
(eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
1819–1862, Mexico City, Mexico, June 2024. Association for Computational Linguistics.

Daniel Wurgaft, Ben Prystawski, Kanishk Gandhi, Cedegao E Zhang, Joshua B Tenenbaum, and
Noah D Goodman. Scaling up the think-aloud method. arXiv preprint arXiv:2505.23931, 2025.

14

https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://openreview.net/forum?id=OJd3ayDDoF

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Fengwei Teng, Jinhao Tu, Xinbing Liang, Sirui
Hong, Chenglin Wu, and Yuyu Luo. Self-supervised prompt optimization. arXiv preprint
arXiv:2502.06855, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Shunyu Yao, Howard Chen, Austin W. Hanjie, Runzhe Yang, and Karthik Narasimhan. Collie:
Systematic construction of constrained text generation tasks, 2023a.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023c.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv e-prints, pp. arXiv–2406, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems, volume 35, pp. 15476–15488,
2022.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022a.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-compose
reasoning structures. Advances in Neural Information Processing Systems, 37:126032–126058,
2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The eleventh international
conference on learning representations, 2022b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A BENCHMARKS DETAILS

This section provides additional details about the selection and adaptation of the domains and tasks
we employ for evaluation.

Instruction following For this domain, we take all 294 test problems from IFBench. For our
second task, we choose problems from the Collie constrained generation benchmark (Yao et al.,
2023a), which contains 13 problem groups. Among them, the original GPT-4 has scored above 90%
on four groups and below 65% on the rest (most of which much lower), so we randomly select 200
problems from those nine challenging groups as our second task Collie. All problems in this
domain are objectively verifiable.

Language processing For this domain, our first task is MuSR, and we take all problems from the
most challenging “object placement” categories, where there are 64 passages each with 4 questions.
Each passage constitutes a problem. The second task is a novel word generation task that is based on
the well-known Divergent Association Task in psychology that intends to measure human creativity
(Olson et al., 2021). The original task asks people to come up with 10 nouns that are as different from
each other as possible, and scoring is based on GloVe word similarities (Pennington et al., 2014).
Here, we convert this setup into a benchmark design. For each problem, 3 seed words are given, and
the goal is to come up with 7 words that are as different from each other and also as different from
the 3 given words as possible. So each problem vary the seed words. We use Grok 3 (a strong model
not studied in this work) to come up with the seed words based on initial human provided examples
and we manually review the generation. The resulting task Creativity consists of 60 problems
(similar to the size of most LiveBench language tasks), where 20 are with given concrete nouns, 20
are with given abstract nouns, and 20 are with combinations. Similar to the original psychological
test, scores are computed over 5 out of the 7 words to account for invalid responses. Most humans
score around 75-85 according to Olson et al. (2021). The third task is Typos taken from LiveBench,
where each problem demands a typo-free version of the original input passage. MuSR and Typos
have objective answers.

Formal reasoning For this domain, we include tasks that involve mathematical and logical
reasoning—important areas where LMs’ performance rapidly improve, partly due to the rise of
LMs, but still lack robustness. The first task in this domain is a novel one inspired by the commonly
used 24 game and variants (sometimes called “Countdown”) for studying LM and human reasoning
(e.g., Yao et al., 2023b; Gandhi et al., 2024; Wurgaft et al., 2025). Here we create a variant where
the agent is given numbers 1 to 10 (ten numbers), and the goal is to reach a target number n using
each number exactly once with basic arithmetic operations. Our task Countdown includes all
integers n from 1 to 100, thus a benchmark with 100 problems. The second task is AIME: US high
school math olympiad problems. We take all problems from the years 2023, 2024, and 2025. The
third task, Zebra, directly comes from LiveBench. It is also called Einstein puzzles, which are
logical problems that have a constrain satisfaction formal structure. All problems in this domain have
objective answers.

B MODEL DETAILS

We use a balanced decoding temperature T = 0.5 for all models and settings.

Models used: We select 4 models (from three providers, of different sizes and architectures,
including primarily open-weight but also API-only ones): gemini-2.0-flash-001 from
Google (Gemini Team et al., 2025), qwen2.5-coder-32B-instruct (Hui et al., 2024) and
qwen3-30b-a3b-instruct-2507 (Yang et al., 2025) from Alibaba, and deepseek-v3
from DeepSeek (Liu et al., 2024). The last two have direct corresponding reasoning mod-
els: qwen3-30b-a3b-thinking-2507 and deepseek-r1 (Guo et al., 2025), respec-
tively. For Gemini, gemini-flash-2.0-flash-thinking is no longer available, so
we use gemini-2.5-flash-lite-thinking, which has the same pricing structure with
gemini-2.0-flash and Google explicitly compares these two model families (2.5 Flash Lite
and 2.0 Flash) in their release posts (Gemini Team et al., 2025). For Qwen 2.5, we choose QwQ-32B,
which is the only reasoning model in the Qwen 2.5 series and has the same model size (Qwen Team,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2025). We run the DeepSeek and Qwen 3 models through the Fireworks inference platform and the
Qwen 2.5 models through the Together inference platform. For reasoning trace analysis, we use
gpt-4.1-mini-2025-04-14.

CodeAdapt: Each problem solving attempt allows at most 16k output tokens and 4 minutes of
execution time. Each language model call can generate at most 4096 tokens. We give the model
10 turns to solve the problem, and if it fails to provide a final answer within 10 turns we give it an
additional turn to make a final guess. Each turn has a timeout of 60 seconds.

Below is the pseudocode for the high-level reasoning loop between the language and code modules
in CodeAdapt.

Algorithm 2 CodeAdapt Reasoning Loop

1: state← initialize state()
2: while not completed and budget not exhausted do
3: reasoning step← LM(task, feedback, remaining budget)
4: code cells, return value← parse(reasoning step)
5: for cell in code cells do
6: state.add cell(cell.name, cell.code)
7: result, state← execute code(cell)
8: feedback.add(result)
9: end for

10: if return value then
11: return extract answer(return value)
12: end if
13: remaining budget← update budget(budget)
14: end while
15: return ‘Budget exhausted’

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C PROMPT DETAILS

The code module formats its feedback in the following way:

• Parsing: it parses the message from the language module to identify code-cells and answer-
submission commands.

• Code execution: it then proceeds to execute code cells and update its internal state accordingly.
• Error tracing: if the code fails to execute, it generates an error trace.
• Feedback formatting: if the code failed, the error is showed in ⟨error cell=cell name⟩⟨/error⟩

tags. If the code ran correctly, its printed output is shown in ⟨ output cell=cell name⟩⟨/output⟩
tags. When the code did not produce any output, the feedback reads ”Cell {cell name} has
been executed but returned no output”. Finally, the feedback indicates the used and remaining
computation time, output tokens, and interaction turns. This formatted message is appended to
the conversation and sent back to the meta-reasoner. Examples of feedback can be seen in the
reasoning traces shown in Appendix Section E.

C.1 CODEADAPT PROMPTS

CodeAdapt prompts structures

[Learning Prompt]

{system_prompt}

You must begin your message with <turn> and end it with </turn>. You
must write code within code tags, including both the xml tags and the
markdown tags:
<code name="cell_name">
```python
# code goes here
print("Hello, world!")
```
</code>
At the end of your message, you MUST return your answer using either
<return>Answer text goes here</return> or <return
var="variable_name">. Please still follow any problem-specific
instructions about the output format.

NEW PROBLEM

{problem}

[Evaluation Prompt]

{system_prompt}

{training_examples}

Please use these examples as inspirations to solve the problem, while
being creative, flexible, and adaptive. You must begin your message
with <turn> and end it with </turn>. You must write code within code
tags, including both the xml tags and the markdown tags:
<code name="cell_name">
```python
# code goes here
print("Hello, world!")
```
</code>

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

At the end of your message, you MUST return your answer using either
<return>Answer text goes here</return> or <return
var="variable_name">. Please still follow any problem-specific
instructions about the output format.

NEW PROBLEM

{problem}

CodeAdapt System Prompt

Problem-Solving Agent Instructions

You are a genius problem solver and an expert Python programmer. You solve problems using a
metacognitive approach: you think through challenging tasks using a blend of natural
language reasoning and executable code - your natural language articulates both direct
reasoning and strategic planning (meta-reasoning), while your code is interpreted and
executed by a Python environment, allowing you to perform reasoning through computational
operations. You excel at this way of writing reasoning programs.

How to interact

You ("Assistant")
1. Think and plan in natural language
2. Write code cells:

<code name="cell_name">
```python
# your_code_here
print('print information you want to observe')
```
</code>
Info:
- All Python code must be written within code cells
- Previous cells can be overwritten
- Close cells with </code>
- Use print statement to observe code variables and results of computation

3. Return your final answer with:
<return>answer in plain text</return>
or
<return var="answer_variable"> where answer_variable is a string
Info:
- Answers variable and answers in plain text must be strings
- When you return your answer, your message should not contain other code blocks. Do

all the necessary code-based reasoning beforehand

Reasoning Workspace ("User"):
- Executes code and update the global_dict state
- Provides outputs in <output name="cell_name"> tags
- Provides possible errors in <error name="cell_name"> tags
- Provides information remaining reasoning budget (maximum tokens, computation time, and
interaction steps)

Iterative reasoning
Reasoning will occur over up to 10 reasoning turns between you and the reasoning workspace.
Each message will implement reasoning through language generation and code. When you need
code to be executed, or you are ready to return an answer, you can send your message to the
reasoning workspace so it can be parsed and executed. Each of your messages can include
several code cells. Do not terminate a message before you actually need feedback from the
system.

Programming Environment

You can use any Python builtins. The following libraries are preloaded and can be used
directly:
<code name="libraries">
```python
import collections
import copy
from enum import Enum
import itertools
import json
import math
import random
import re
import string
from typing import *

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

import numpy as np
import scipy
import sympy as sp
```
</code>
You are NOT allowed to import or use any other libraries (trying to import or use other
libraries will result in an error). These here are ALREADY IMPORTED, no need to import them.

Variables persist between code cells (like in Jupyter).

You do not have access to Internet links. Do not write asynchronous functions.

Reasoning tips

Here is a list of advice and information about how to reason well:
- First analyze the problem. You can think about different possible solving strategies,
evaluate them, then pick the most promising
- Given that strategy, list all possible things that could go wrong, and find a way to
prevent these errors and mistakes
- Break problems into steps and subproblems whenever possible
- Single messages can include multiple code cells
- Be obsessive about evaluating your answers and intermediate results
- Verify that your solution meets all requirements, using code when possible
- Code-based verification functions must provide useful feedback so you know what went
wrong and how to improve your solution
- Keep your code modular. Efficiently define and store important variables for later reuse
- Use print() to inspect useful variables

Formatting tips
- Be mindful of the number of reasoning steps: fill each message with as much reasoning and
code as you can to minimize the number of calls to the reasoning workspace
- Always run your code cells and observe their results before returning an answer. Do not
do both in the same message
- Make sure <return>...</return> only contains your answer and nothing else

Resources
For each problem, you are given a limit of:
- 16k output tokens for your messages
- 4 min of total compute time and 60 secs of compute per reasoning turn
- up to 10 interaction turns with the reasoning workspace (10 messages from you to the
system)

Tips to remain within reasoning budget:
- Reason about the remaining budget and plan your next step to solve the problem before it
runs out
- Try to do as much as you can in each message. Only end a message when you need feedback
from the systems
- NEVER write code that could loop forever
- Make sure the code in each of your messages will run in < 1min
- Make sure not to use list(itertools.permutations(a_list)) or
list(itertools.combinations(a_list)) as this will quickly overload the memory if a_list is
not small

Be mindful of and adapt your strategy to the limited reasoning resources that you have.

C.2 PROMPT FOR ANALYSIS OF REASONING TRACES

We used the following prompt to extract features from 25 randomly-sampled reasoning traces for
each of the eight domains. The prompt were used in conjunction with a Pydantic response format
and T = 0, using the gpt-4.1-2025-04-14 model from OpenAI.

Prompt to extract features of reasoning traces

SYSTEM PROMPT: You are a reasoning expert and will be tasked with analyzing reasoning
traces of large language models writing their own reasoning programs

PROMPT:
Instructions
Analyze the following reasoning traces of an LLM reasoner (Assistant) thinking through a
task using a blend of natural language reasoning, and code execution, receiving feedback
formatted as USER messages.

Looking at this reasoning trace, please answer the following questions:

* verification: did the assistant use verification functions implemented in code to check
its reasoning steps? (True/False)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

* strategy_switching: how many times did the assistant change reasoning strategy during the
reasoning trace? (int >= 0)

* metacognition_capabilities: did the assistant demonstrate reflective judgements about the
limits of its capabilities or expressed uncertainty? e.g. 'This approach is too risky', 'I
would probably not succeed this way', 'I'm unsure whether I'm on the right path'
(True/False)

* metacognition_progress: did the assistant reflect about its progress towards solving the
task and used these thoughts to adapt its reasoning? e.g. 'I'm on the right path!', 'I'm
not making any progress, I need to change strategy' (True/False)

* metacognition_budget_reasoning: did the assistant reason about the resource efficiency of
its approach e.g. 'I won't be able to solve it this way, it could not converge in time', or
reason about its budget (remaining tokens, turns and limit compute time) (True/False)

* debugging: did the assistant have to debug its code? Answer False if it didn't use any
code. (True/False)

* brute_forcing: did the assistant try to brute force the problem, eg by trying all
possible combinations? Answer no if it's unclear how the problem could be brute forced.
(True/False)

* decomposition: did the assistant decompose the problem into sub-problems before trying to
solve it? (True/False)

* refinement: did the assistant do several steps of refinement of its solutions as a
function of solution verifications / feedback it generated? (True/False)

* code_reasoning_ratio: how much of the reasoning was implemented in code (vs language),
e.g. 100 if all in code, 0 if all in language, 25 if 25% of reasoning occured in code, etc.
(0<=int<=100)

Before your answer the questions, please take the time to analyze the reasoning trace and
look at supporting elements to justify your answer to each of the questions.

Your analysis should be organized as follows:

* general_trace_description: describe the reasoning trace in details: what was the task
about, how did the agent prepare to solve it, what did the assistant do, which problem it
encountered, how it adapted, etc. This should be several paragraphs.

* reasoning_strategy_description: describe the reasoning strategy used in the main trace.
Try to keep it high-level, beyond the specific instantiation for this task. This
description should be usable by another agent solving a similar but different task. Do not
describe the task here.

* specific_answer_justifications: take each question one by one, discuss relevant elements
and give a justification for your answer, eg:

* verification: [relevant elements (up to 5 sentences)] + [answer]

* strategy_switching [relevant elements (up to 5 sentences)] + [answer]

After this is done, answer all the questions.

{reasoning_trace_without_training_examples}

C.3 CHAIN-OF-THOUGHT PROMPT

CoT 0-shot

NEW PROBLEM

{problem}

Solve this problem. Let's think step by step. After working through
your reasoning, put your answer in the last line of your response
after "Answer:". Don't output anything afterwards.

D RESOURCE USAGE

Figures 5 and 6 show that CodeAdapt often runs faster and spends fewer tokens than reasoning
models across most domains and base models. Note that time estimations might be susceptible to
variability in API responsiveness, but this should average out since we use the same API across
algorithms. This said, computation time taking into account API calls reflect the real-life usage users
make of these models.

The API costs for training CodeAdapt on all eight domains ranges from ∼$2.5 for Gemini to ∼$22
for the three other models. The costs of evaluating CodeAdapt on these domains range from ∼$3.6
for Gemini to ∼$38 for Qwen 3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0

10k

20k IFBench

0

10k

20k Collie

0

10k

20k MuSR

0

10k

20k Creativity

0

10k

20k Typos

0

10k

20k Countdown

0

10k

20k AIME

0

10k

20k Zebra

O
ut

pu
t

to
ke

ns

Deepseek v3

Deepseek v3 +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) DeepSeek R1

0

10k

20k IFBench

0

10k

20k Collie

0

10k

20k MuSR

0

10k

20k Creativity

0

10k

20k Typos

0

10k

20k Countdown

0

10k

20k AIME

0

10k

20k Zebra

O
ut

pu
t

to
ke

ns

Gemini 2.0 Flash

Gemini 2.0 Flash +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) Gemini 2.5 Flash Lite Thinking

0

10k

20k IFBench

0

10k

20k Collie

0

10k

20k MuSR

0

10k

20k Creativity

0

10k

20k Typos

0

10k

20k Countdown

0

10k

20k AIME

0

10k

20k Zebra

O
ut

pu
t

to
ke

ns

Qwen 3

Qwen 3 +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) Qwen 3 30B A3B Thinking

0

10k

20k IFBench

0

10k

20k Collie

0

10k

20k MuSR

0

10k

20k Creativity

0

10k

20k Typos

0

10k

20k Countdown

0

10k

20k AIME

0

10k

20k Zebra

O
ut

pu
t

to
ke

ns

Qwen 2.5 Coder 32B

Qwen 2.5 Coder 32B +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) Qwen QwQ 32B

Figure 5: Token usage for different algorithms and domains. Each violin plot represents the distribu-
tion of output tokens spent over the set of evaluation questions for each domain. Dots indicate the
means. In most domains, CodeAdapt uses significantly fewer tokens than reasoning models.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0

50

100

150

200 IFBench

0

50

100

150

200 Collie

0

50

100

150

200 MuSR

0

50

100

150

200 Creativity

0

50

100

150

200 Typos

0

50

100

150

200 Countdown

0

50

100

150

200 AIME

0

50

100

150

200 Zebra

Ti
m

e
(s

ec
s)

Deepseek v3

Deepseek v3 +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) DeepSeek R1

0

50

100

150

200 IFBench

0

50

100

150

200 Collie

0

50

100

150

200 MuSR

0

50

100

150

200 Creativity

0

50

100

150

200 Typos

0

50

100

150

200 Countdown

0

50

100

150

200 AIME

0

50

100

150

200 Zebra

Ti
m

e
(s

ec
s)

Gemini 2.0 Flash

Gemini 2.0 Flash +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) Gemini 2.5 Flash Lite Thinking

0

50

100

150

200 IFBench

0

50

100

150

200 Collie

0

50

100

150

200 MuSR

0

50

100

150

200 Creativity

0

50

100

150

200 Typos

0

50

100

150

200 Countdown

0

50

100

150

200 AIME

0

50

100

150

200 Zebra

Ti
m

e
(s

ec
s)

Qwen 3

Qwen 3 +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) Qwen 3 30B A3B Thinking

0

50

100

150

200 IFBench

0

50

100

150

200 Collie

0

50

100

150

200 MuSR

0

50

100

150

200 Creativity

0

50

100

150

200 Typos

0

50

100

150

200 Countdown

0

50

100

150

200 AIME

0

50

100

150

200 Zebra

Ti
m

e
(s

ec
s)

Qwen 2.5 Coder 32B

Qwen 2.5 Coder 32B +CodeAct (0-shot) +CodeAdapt (2-shot BFL) +CodeAdapt (2-shot GFL) Qwen QwQ 32B

Figure 6: Computation time for different algorithms and domains. Each violin plot represents the
distribution of computation time over the set of evaluation questions for each domain. Dots indicate
the means. In most domains, CodeAdapt runs significantly faster than reasoning models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E EXAMPLE TRAJECTORIES

Here are some examples of CodeAdapt reasoning traces exemplifying classic reasoning patterns, and
failure cases.

Collie, DeepSeek V3 (Figure 1, full example)

SCORE: 1
Answered in 3 turns and 5 secs with 850 output tokens (1.25 cts)
COMMENT: CodeAdapt proposes sentences, then uses code to verify they satisfy the
constraints. Observing that one sentence did not satisfy the constraint, it regenerates it.
When all constraints are met, it returned the answer.

QUESTION:
Please generate a paragraph:
1) with exactly 4 sentences;
2) with sentences having the last word to be 'walk', 'tumbling', 'another', 'lunatic',
respectively.

The paragraph should be a coherent paragraph. Wrap your final answer between <answer> and
</answer> tags. Your answer can contain multiple lines if necessary to meet the
instructions. No other tags should be used in your answer.

ASSISTANT:

<turn>Let me approach this problem systematically. I need to create a coherent paragraph
with exactly 4 sentences, where each sentence ends with a specific word: 'walk',
'tumbling', 'another', and 'lunatic' respectively.

First, I'll create a template for the paragraph with placeholders for the sentences, then
I'll craft each sentence to end with the required word while maintaining coherence.

Let me implement this in code:
<code name="create_paragraph">
```python
# Create sentence templates with required last words
sentence1 = "Every morning, I enjoy taking a peaceful walk."
sentence2 = "The leaves were tumbling down from the trees."
sentence3 = "I saw a bird flying towards another."
sentence4 = "The man shouting in the street seemed like a lunatic."

# Combine sentences to form the paragraph
paragraph = " ".join([sentence1, sentence2, sentence3, sentence4])

# Verify the paragraph meets the requirements
def verify_paragraph(p):

sentences = [s.strip() for s in p.split('.') if s.strip()]

# Check number of sentences
if len(sentences) != 4:

return f"Paragraph has {len(sentences)} sentences instead of 4"

# Check last words
required_last_words = ['walk', 'tumbling', 'another', 'lunatic']
for i, s in enumerate(sentences):

last_word = s.split()[-1].lower()
if last_word != required_last_words[i]:

return f"Sentence {i+1} ends with '{last_word}' instead of
'{required_last_words[i]}'"

return "All requirements met"

verification_result = verify_paragraph(paragraph)
print(verification_result)
print("\nGenerated paragraph:")
print(paragraph)
```
</code>

Let me execute this code to verify that the paragraph meets all requirements and then
return the final answer.

</turn>

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

USER:

<output cell="create_paragraph">
Sentence 2 ends with 'trees' instead of 'tumbling'

Generated paragraph:
Every morning, I enjoy taking a peaceful walk. The leaves were tumbling down from the
trees. I saw a bird flying towards another. The man shouting in the street seemed like a
lunatic.
</output>

Remaining budget:
- 3 secs used, 236 secs left,
- 411 output tokens used, 15589 output tokens left,
- 1 thinking steps performed, 9 steps left.

ASSISTANT:

<turn>I notice that the second sentence ends with 'trees' instead of 'tumbling'. This is
because the word 'tumbling' is not the last word of the sentence. Let me fix this by
restructuring the sentence so that 'tumbling' becomes the last word.

<code name="fix_sentence">
```python
# Fix the second sentence
sentence2 = "Down from the trees, the leaves were tumbling."

# Recreate the paragraph
paragraph = " ".join([sentence1, sentence2, sentence3, sentence4])

# Verify again
verification_result = verify_paragraph(paragraph)
print(verification_result)
print("\nGenerated paragraph:")
print(paragraph)
```
</code>

Let me execute this fix and verify that all requirements are now met. If successful, I'll
return the final paragraph.

</turn>

USER:

<output cell="fix_sentence">
All requirements met

Generated paragraph:
Every morning, I enjoy taking a peaceful walk. Down from the trees, the leaves were
tumbling. I saw a bird flying towards another. The man shouting in the street seemed like a
lunatic.
</output>

Remaining budget:
- 4 secs used, 235 secs left,
- 586 output tokens used, 15414 output tokens left,
- 2 thinking steps performed, 8 steps left.

ASSISTANT:

<turn>The verification shows that all requirements are now met. I'll now return the final
paragraph wrapped in <answer> tags as instructed.

<return>Every morning, I enjoy taking a peaceful walk. Down from the trees, the leaves were
tumbling. I saw a bird flying towards another. The man shouting in the street seemed like a
lunatic.</return>

</turn>

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

AIME, Gemini 2.0 Flash

SCORE: 1
Answered in 8 turns and 86 secs with 17201 output tokens (2.05 cts)
COMMENT: CodeAct uses code to solve the problem, but after several iterations it realizes
that the code should have returned a valid solution already, and suspects the code might be
wrong. It then updates the code and finds the correct solution. Here again, reasoning is
distributed over code (running calculations) and language (initial planning, meta-cognitive
insight, re-planning).

QUESTION:
Let \(b\ge 2\) be an integer. Call a positive integer \(n\) \(b\text-\textit{eautiful}\) if
it has exactly two digits when expressed in base \(b\) and these two digits sum to \(\sqrt
n\). For example, \(81\) is \(13\text-\textit{eautiful}\) because \(81 = \underline{6} \
\underline{3}_{13} \) and \(6 + 3 = \sqrt{81}\). Find the least integer \(b\ge 2\) for
which there are more than ten \(b\text-\textit{eautiful}\) integers. The final answer
should be an integer between 0 and 999 (inclusive) with no additional formatting (only the
integer).

ASSISTANT:

<turn>
Okay, I understand the problem. We are looking for the smallest base $b \ge 2$ such that
there are more than 10 integers n that are b-beautiful. A number n is b-beautiful
if it has exactly two digits in base b, say $n = a b + c$, where a and c are digits
in base b (i.e., $0 \le a, c < b$), and $a+c = \sqrt{n}$. Also, a must be greater than
0 since n has two digits.

So, we have $n = ab + c$ and $\sqrt{n} = a+c$. Squaring the second equation, we get $n =
(a+c)ˆ2$.
Thus, $ab+c = (a+c)ˆ2 = aˆ2 + 2ac + cˆ2$.
Rearranging, we have $ab = aˆ2 + 2ac + cˆ2 - c$, so $b = \frac{aˆ2 + 2ac + cˆ2 - c}{a} = a
+ 2c + \frac{cˆ2 - c}{a} = a + 2c + \frac{c(c-1)}{a}$.
Since b must be an integer, a must divide $c(c-1)$. Also, we need $b \ge 2$ and $0 < a
< b$ and $0 \le c < b$.

We want to find the smallest b for which there are more than 10 such n.
Let's iterate through possible values of b and count the number of b-beautiful integers.

Here's my plan:
1. Iterate through bases b from 2 onwards.
2. For each base b, iterate through possible values of a and c such that $1 \le a <
b$ and $0 \le c < b$.
3. Check if a divides $c(c-1)$.
4. If it does, calculate $b' = a + 2c + \frac{c(c-1)}{a}$.
5. If $b' = b$, then we have found a b-beautiful number $n = (a+c)ˆ2$.
6. Count the number of b-beautiful numbers for each base b.
7. Stop when the count exceeds 10 and return that base b.
<turn>
<code name="find_b">
```python
def count_beautiful(b):

count = 0
for a in range(1, b):

for c in range(b):
if (c * (c - 1)) % a == 0:

if a + 2*c + (c * (c - 1)) // a == b:
count += 1

return count

b = 2
while True:

num_beautiful = count_beautiful(b)
print(f"b = {b}, num_beautiful = {num_beautiful}")
if num_beautiful > 10:

print(f"The least integer b is {b}")
answer = b
break

b += 1
```
</code>

</turn>

USER:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

<output cell="find_b">
b = 2, num_beautiful = 0
b = 3, num_beautiful = 1

[... author truncated output here for space purposes]

b = 100, num_beautiful = 3
b = 101, num_beautiful = 3

[output truncated after 100 lines..]
</output>

Remaining budget:
- 4 secs used, 235 secs left,
- 740 output tokens used, 15260 output tokens left,
- 1 thinking steps performed, 9 steps left.

ASSISTANT:

<turn>
```
b = 102, num_beautiful = 1
b = 103, num_beautiful = 7
[... author truncated output here for space purposes]
b = 392, num_beautiful = 3
b = 393, num_beautiful = 3
b =
</turn>

----------------
USER:

Your message did not include a code block or return statement.

Please continue problem solving, and remember to only respond with messages that contain
code blocks or return statements. It might be that you made minor formatting mistakes. If
you are unsure about the format, please refer to the examples.

Remaining budget:
- 26 secs used, 213 secs left,
- 4836 output tokens used, 11164 output tokens left,
- 2 thinking steps performed, 8 steps left.

----------------
ASSISTANT:

<turn>
I apologize for the previous incomplete response. I will continue the execution to find the
least integer $b \ge 2$ for which there are more than ten $b$-beautiful integers.
<code name="find_b_continued">
```python
def count_beautiful(b):

count = 0
for a in range(1, b):

for c in range(b):
if (c * (c - 1)) % a == 0:

if a + 2*c + (c * (c - 1)) // a == b:
count += 1

return count

b = 2
while True:

num_beautiful = count_beautiful(b)
print(f"b = {b}, num_beautiful = {num_beautiful}")
if num_beautiful > 10:

print(f"The least integer b is {b}")
answer = b
break

b += 1
```
</code>

</turn>

----------------
USER:

<output cell="find_b_continued">
b = 2, num_beautiful = 0
b = 3, num_beautiful = 1

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

[... author truncated output here for space purposes]
b = 100, num_beautiful = 3
b = 101, num_beautiful = 3

[output truncated after 100 lines..]
</output>

Remaining budget:
- 29 secs used, 210 secs left,
- 5063 output tokens used, 10937 output tokens left,
- 3 thinking steps performed, 7 steps left.

----------------
ASSISTANT:

<turn>
```
b = 331, num_beautiful = 7
b = 332, num_beautiful = 3
[... author truncated output here for space purposes]

b = 621, num_beautiful = 3
b = 622, num_beautiful = 3
b =
</turn>

USER:

Your message did not include a code block or return statement.

Please continue problem solving, and remember to only respond with messages that contain
code blocks or return statements. It might be that you made minor formatting mistakes. If
you are unsure about the format, please refer to the examples.

Remaining budget:
- 51 secs used, 188 secs left,
- 9159 output tokens used, 6841 output tokens left,
- 4 thinking steps performed, 6 steps left.

ASSISTANT:

<turn>
```
b = 623, num_beautiful = 3
b = 624, num_beautiful = 3
[... author truncated output here for space purposes]

b = 914, num_beautiful = 3
b =
</turn>

----------------
USER:

Your message did not include a code block or return statement.

Please continue problem solving, and remember to only respond with messages that contain
code blocks or return statements. It might be that you made minor formatting mistakes. If
you are unsure about the format, please refer to the examples.

Remaining budget:
- 73 secs used, 166 secs left,
- 13255 output tokens used, 2745 output tokens left,
- 5 thinking steps performed, 5 steps left.

----------------
ASSISTANT:

<turn>
```
b = 915, num_beautiful = 3
b = 916, num_beautiful = 3
[... author truncated output here for space purposes]
b = 998, num_beautiful = 3
b = 999, num_beautiful = 3
```

I have iterated up to 999 and the number of beautiful numbers is never greater than 10. I
suspect there may be an error in my code. I will re-examine the conditions.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

$n = ab + c$ and $\sqrt{n} = a+c$. Thus $ab+c = (a+c)ˆ2$.
$b = \frac{(a+c)ˆ2 - c}{a} = \frac{aˆ2 + 2ac + cˆ2 - c}{a} = a + 2c + \frac{cˆ2 - c}{a} = a
+ 2c + \frac{c(c-1)}{a}$.
We need $1 \le a < b$ and $0 \le c < b$.

Let's try a different approach. Instead of iterating through $b$, let's iterate through $a$
and $c$ and compute $b$.
Then check if the conditions are met.

<code name="find_b_new">
```python
def find_least_b():

b = 2
while True:

count = 0
for a in range(1, b):

for c in range(b):
if (c * (c - 1)) % a == 0:

new_b = a + 2*c + (c * (c - 1)) // a
if new_b == b:

count += 1
if count > 10:

return b
b += 1

print(find_least_b())
```
</code>

</turn>

----------------
USER:

<output cell="find_b_new">
211
</output>

Remaining budget:
- 82 secs used, 157 secs left,
- 14813 output tokens used, 1187 output tokens left,
- 6 thinking steps performed, 4 steps left.

----------------
ASSISTANT:

<turn>
Okay, the code returned 211. Let's verify this answer.
<code name="verify_answer">
```python
def count_beautiful(b):

count = 0
for a in range(1, b):

for c in range(b):
if (c * (c - 1)) % a == 0:

if a + 2*c + (c * (c - 1)) // a == b:
count += 1

return count

b = 211
num_beautiful = count_beautiful(b)
print(f"b = {b}, num_beautiful = {num_beautiful}")
```
</code>

</turn>

----------------
USER:

<output cell="verify_answer">
b = 211, num_beautiful = 15
</output>

Remaining budget:
- 84 secs used, 155 secs left,
- 14974 output tokens used, 1026 output tokens left,
- 7 thinking steps performed, 3 steps left.
Only 3 left! Make sure you will be ready to answer within the next 3 turns! Adapt your
strategy if necessary.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Start your next message by reasoning about how you will solve the task in the next 3 turns.

----------------
ASSISTANT:

<turn>
Okay, I have verified that when $b=211$, the number of $b$-beautiful integers is 15, which
is greater than 10. Since the problem asks for the *least* integer $b$, and I have found a
$b$ that satisfies the condition, I am confident that the answer is 211.
<return>211</return>

</turn>

Typos, Qwen 2.5 Coder 32B

SCORE: 1.0
Answered in 3 turns and 13 secs with 1367 output tokens (2.36 cts)
COMMENT: CodeAdapt distributes reasoning over language and code by generating pairs of
words with typos and their correction. It leverages code to apply these corrections
meticulously, but when printing the result, it observes a typo it had missed the first time
and corrects that one before returning the final answer.

--------------------------------
QUESTION:
Please output this exact text below, with no changes at all except for **fixing the
misspellings**. Please leave all other stylistic decisions like commas and US vs British
spellings as in the original text. Wrap your final answer between <answer> and </answer>
tags.

Estimating relative camera poses beteen images has been a central probelm in cmoputer
vision. Methods thast fidn correspondences and solve forhten fundamental matrix offer high
precision in most cases. Conversely, methods predicting pose driectly useing neural
networks are more robust to limited overlap adn can infer absolute translation scale, but
atther expense of reduced precision. We sohw how to combine the best of both methods; our
approach yields results that are both precice and robust, hwile alos accurately inferring
translation scales. At the heart of our modle lies a Transformer that (1) learns to balance
between solved and learned pose estimations, and (2) provides a prior to guide a solver. A
comprehensive analysis supports our design choices andd demonstrates that our method adapts
flexibly to various feature extractors anbd correspondence estimators, showing
state-of-teh-art perfomance in 6DoF pose estimation on Matterport3D, InteriorNet,
StreetLearn, adn Map-free Relocalization.

----------------
ASSISTANT:

<turn>
Let's start by identifying the misspellings in the given text and correcting them. I'll
write a Python function to systematically identify and correct these misspellings.

<code name="correct_misspellings">
```python
Original text with misspellings
text_with_misspellings = """Estimating relative camera poses beteen images has been a
central probelm in cmoputer vision. Methods thast fidn correspondences and solve forhten
fundamental matrix offer high precision in most cases. Conversely, methods predicting pose
driectly useing neural networks are more robust to limited overlap adn can infer absolute
translation scale, but atther expense of reduced precision. We sohw how to combine the best
of both methods; our approach yields results that are both precice and robust, hwile alos
accurately inferring translation scales. At the heart of our modle lies a Transformer that
(1) learns to balance between solved and learned pose estimations, and (2) provides a prior
to guide a solver. A comprehensive analysis supports our design choices andd demonstrates
that our method adapts flexibly to various feature extractors anbd correspondence
estimators, showing state-of-teh-art perfomance in 6DoF pose estimation on Matterport3D,
InteriorNet, StreetLearn, adn Map-free Relocalization."""

Dictionary of misspellings and their corrections
misspellings = {

"beteen": "between",
"probelm": "problem",
"cmoputer": "computer",
"thast": "that",
"fidn": "find",
"solve forhten": "solve for the",
"driectly": "directly",
"useing": "using",
"adn": "and",
"atther": "at the",

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

"sohw": "show",
"precice": "precise",
"hwile": "while",
"alos": "also",
"modle": "model",
"andd": "and",
"state-of-teh-art": "state-of-the-art",
"perfomance": "performance"

}

Function to correct misspellings
def correct_misspellings(text, misspellings):

for misspelling, correction in misspellings.items():
text = text.replace(misspelling, correction)

return text

Correcting the text
corrected_text = correct_misspellings(text_with_misspellings, misspellings)
print(corrected_text)
```
</code>

</turn>

----------------
USER:

<output cell="correct_misspellings">
Estimating relative camera poses between images has been a central problem in computer
vision. Methods that find correspondences and solve for the fundamental matrix offer high
precision in most cases. Conversely, methods predicting pose directly using neural networks
are more robust to limited overlap and can infer absolute translation scale, but at the
expense of reduced precision. We show how to combine the best of both methods; our approach
yields results that are both precise and robust, while also accurately inferring
translation scales. At the heart of our model lies a Transformer that (1) learns to balance
between solved and learned pose estimations, and (2) provides a prior to guide a solver. A
comprehensive analysis supports our design choices and demonstrates that our method adapts
flexibly to various feature extractors anbd correspondence estimators, showing
state-of-the-art performance in 6DoF pose estimation on Matterport3D, InteriorNet,
StreetLearn, and Map-free Relocalization.
</output>

Remaining budget:
- 9 secs used, 230 secs left,
- 536 output tokens used, 15464 output tokens left,
- 1 thinking steps performed, 9 steps left.

----------------
ASSISTANT:

<turn>
It looks like there is one remaining misspelling in the text: "anbd" should be "and". Let's
correct that and then return the final corrected text.

<code name="correct_final_misspelling">
```python
def correct_final_misspelling(text):

corrections = {
"anbd": "and"

}
for misspelling, correction in corrections.items():

text = text.replace(misspelling, correction)
return text

corrected_text = correct_final_misspelling(corrected_text)
print(corrected_text)
```
</code>

</turn>

----------------
USER:

<output cell="correct_final_misspelling">
Estimating relative camera poses between images has been a central problem in computer
vision. Methods that find correspondences and solve for the fundamental matrix offer high
precision in most cases. Conversely, methods predicting pose directly using neural networks

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

are more robust to limited overlap and can infer absolute translation scale, but at the
expense of reduced precision. We show how to combine the best of both methods; our approach
yields results that are both precise and robust, while also accurately inferring
translation scales. At the heart of our model lies a Transformer that (1) learns to balance
between solved and learned pose estimations, and (2) provides a prior to guide a solver. A
comprehensive analysis supports our design choices and demonstrates that our method adapts
flexibly to various feature extractors and correspondence estimators, showing
state-of-the-art performance in 6DoF pose estimation on Matterport3D, InteriorNet,
StreetLearn, and Map-free Relocalization.
</output>

Remaining budget:
- 11 secs used, 228 secs left,
- 662 output tokens used, 15338 output tokens left,
- 2 thinking steps performed, 8 steps left.

----------------
ASSISTANT:

<turn>
The final corrected text is ready. Let's return it wrapped between <answer> and </answer>
tags.

<return>
Estimating relative camera poses between images has been a central problem in computer
vision. Methods that find correspondences and solve for the fundamental matrix offer high
precision in most cases. Conversely, methods predicting pose directly using neural networks
are more robust to limited overlap and can infer absolute translation scale, but at the
expense of reduced precision. We show how to combine the best of both methods; our approach
yields results that are both precise and robust, while also accurately inferring
translation scales. At the heart of our model lies a Transformer that (1) learns to balance
between solved and learned pose estimations, and (2) provides a prior to guide a solver. A
comprehensive analysis supports our design choices and demonstrates that our method adapts
flexibly to various feature extractors and correspondence estimators, showing
state-of-the-art performance in 6DoF pose estimation on Matterport3D, InteriorNet,
StreetLearn, and Map-free Relocalization.
</return>

</turn>

Zebra, Qwen 3 30B A3B

SCORE: 1.0
Answered in 7 turns and 15 secs with 2859 output tokens (3.87 cts)
COMMENT: CodeAct maps this reasoning problem into a constraint-satisfaction problem and
solves it in code.

--------------------------------
QUESTION:
There are 3 people standing in a line. From left to right, they are numbered 1 to 3.
Each person has a set of attributes: Hobby, Movie-Genre, Sport.
The attributes have the following possible values:
Hobby: gardening, rock-climbing, singing
Movie-Genre: drama, fantasy, comedy
Sport: baseball, cricket, water-polo
Each person has a unique value for each attribute.
You know the following about the people:
The person who watches comedy and the person who plays water-polo have different parity
positions
The person who likes rock-climbing is somewhere between the person who watches comedy and
the person who likes singing
The person who watches fantasy is not anywhere to the left of the person who watches comedy
The person who plays baseball is not anywhere to the right of the person who watches fantasy
The person who plays baseball and the person who watches fantasy have different parity
positions
In the above, 'parity position' means the evenness or oddness of the person's position in
the line.
Given this information, answer the following questions:
What is the movie genre of the person who plays cricket?
At what position is the person who watches drama?
At what position is the person who watches fantasy?
What sport does the person who likes singing play?
Think step by step and explain your reasoning, then output your answers in order in the
format:
<solution>answer1, answer2, answer3, ...</solution>
For instance, if there were 3 questions and the answers were A, B, and C, the output would
be:
<solution>A, B, C</solution>

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

If the answer to a question is a number, be sure to put it in numerical form (e.g. '3'
instead of 'three').

----------------
ASSISTANT:

<turn>
I need to solve this logic puzzle step by step. There are 3 people in positions 1, 2, 3
(left to right), each with unique values for Hobby, Movie-Genre, and Sport.

The attributes are:
- Hobby: gardening, rock-climbing, singing
- Movie-Genre: drama, fantasy, comedy
- Sport: baseball, cricket, water-polo

I'll represent each person as a dictionary with keys for each attribute, and solve by
systematically applying the constraints.

Let me first parse all the constraints and convert them into logical conditions:

1. "The person who watches comedy and the person who plays water-polo have different parity
positions"

comedy position and water-polo position have different parity (one even, one odd)

2. "The person who likes rock-climbing is somewhere between the person who watches comedy
and the person who likes singing"

rock-climbing is between comedy and singing in position (not necessarily adjacent)

3. "The person who watches fantasy is not anywhere to the left of the person who watches
comedy"

fantasy position comedy position

4. "The person who plays baseball is not anywhere to the right of the person who watches
fantasy"

baseball position fantasy position

5. "The person who plays baseball and the person who watches fantasy have different parity
positions"

baseball position and fantasy position have different parity (one even, one odd)

I'll use a brute-force approach with permutations since 3! = 6 for each attribute, and
total combinations are 6ˆ3 = 216, which is manageable.

I'll generate all possible permutations for each attribute and filter based on constraints.

Let me start by writing code to generate all possible configurations and apply constraints.

</turn>

----------------
USER:

Your message did not include a code block or return statement.

Please continue problem solving, and remember to only respond with messages that contain
code blocks or return statements. It might be that you made minor formatting mistakes. If
you are unsure about the format, please refer to the examples.

Remaining budget:
- 2 secs used, 237 secs left,
- 369 output tokens used, 15631 output tokens left,
- 1 thinking steps performed, 9 steps left.

----------------
ASSISTANT:

<turn>
<code name="setup">
```python
from itertools import permutations

Define the possible values for each attribute
hobbies = ['gardening', 'rock-climbing', 'singing']
movie_genres = ['drama', 'fantasy', 'comedy']
sports = ['baseball', 'cricket', 'water-polo']

Generate all possible permutations for each attribute
all_hobbies = list(permutations(hobbies))
all_movie_genres = list(permutations(movie_genres))
all_sports = list(permutations(sports))

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Create a list of all possible configurations
Each configuration is a tuple: (hobbies, movie_genres, sports)
where each is a tuple of length 3 representing positions 1-3
configurations = [(h, m, s) for h in all_hobbies for m in all_movie_genres for s in
all_sports]
print(f"Total configurations to check: {len(configurations)}")
```
</code>

</turn>

----------------
USER:

<output cell="setup">
Total configurations to check: 216
</output>

Remaining budget:
- 3 secs used, 236 secs left,
- 577 output tokens used, 15423 output tokens left,
- 2 thinking steps performed, 8 steps left.

----------------
ASSISTANT:

<turn>
Now I'll implement a function to check all the constraints on a given configuration. I'll
go through each constraint one by one and filter out invalid configurations.

Let me define the constraint checking function:

</turn>

----------------
USER:

Your message did not include a code block or return statement.

Please continue problem solving, and remember to only respond with messages that contain
code blocks or return statements. It might be that you made minor formatting mistakes. If
you are unsure about the format, please refer to the examples.

Remaining budget:
- 4 secs used, 235 secs left,
- 620 output tokens used, 15380 output tokens left,
- 3 thinking steps performed, 7 steps left.

----------------
ASSISTANT:

<turn>
<code name="check_constraints">
```python
def check_constraints(config):

h, m, s = config # hobbies, movie_genres, sports

Find positions (1-indexed) of each value
pos_hobby = {h[i]: i+1 for i in range(3)}
pos_movie = {m[i]: i+1 for i in range(3)}
pos_sport = {s[i]: i+1 for i in range(3)}

Constraint 1: comedy and water-polo have different parity positions
comedy_pos = pos_movie['comedy']
water_polo_pos = pos_sport['water-polo']
Different parity means one is odd, one is even
if (comedy_pos % 2) == (water_polo_pos % 2):

return False

Constraint 2: rock-climbing is between comedy and singing
rock_climbing_pos = pos_hobby['rock-climbing']
comedy_pos = pos_movie['comedy']
singing_pos = pos_hobby['singing']
rock-climbing is between comedy and singing if:
(comedy < rock_climbing < singing) or (singing < rock_climbing < comedy)
if not ((comedy_pos < rock_climbing_pos < singing_pos) or (singing_pos <

rock_climbing_pos < comedy_pos)):
return False

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Constraint 3: fantasy is not to the left of comedy
fantasy position >= comedy position
fantasy_pos = pos_movie['fantasy']
if fantasy_pos < comedy_pos:

return False

Constraint 4: baseball is not to the right of fantasy
baseball position <= fantasy position
baseball_pos = pos_sport['baseball']
if baseball_pos > fantasy_pos:

return False

Constraint 5: baseball and fantasy have different parity positions
if (baseball_pos % 2) == (fantasy_pos % 2):

return False

return True

Test the constraint function with a sample configuration
test_config = all_hobbies[0], all_movie_genres[0], all_sports[0]
print(f"Test configuration passes constraints: {check_constraints(test_config)}")
```
</code>

</turn>

----------------
USER:

<output cell="check_constraints">
Test configuration passes constraints: False
</output>

Remaining budget:
- 7 secs used, 232 secs left,
- 1115 output tokens used, 14885 output tokens left,
- 4 thinking steps performed, 6 steps left.

----------------
ASSISTANT:

<turn>
Now I'll filter all configurations to find the valid ones that satisfy all constraints.
Since there might be multiple valid configurations, I'll check if there's a unique solution
for the required answers.

Let me run the filtering process:

</turn>

----------------
USER:

Your message did not include a code block or return statement.

Please continue problem solving, and remember to only respond with messages that contain
code blocks or return statements. It might be that you made minor formatting mistakes. If
you are unsure about the format, please refer to the examples.

Remaining budget:
- 8 secs used, 231 secs left,
- 1164 output tokens used, 14836 output tokens left,
- 5 thinking steps performed, 5 steps left.

----------------
ASSISTANT:

<turn>
<code name="filter_configurations">
```python
Filter configurations that satisfy all constraints
valid_configs = []
for config in configurations:

if check_constraints(config):
valid_configs.append(config)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

print(f"Number of valid configurations: {len(valid_configs)}")

If there's exactly one valid configuration, we can extract the answers
if len(valid_configs) == 1:

h, m, s = valid_configs[0]
Extract positions
pos_hobby = {h[i]: i+1 for i in range(3)}
pos_movie = {m[i]: i+1 for i in range(3)}
pos_sport = {s[i]: i+1 for i in range(3)}

Answer the questions
1. What is the movie genre of the person who plays cricket?
cricket_pos = pos_sport['cricket']
movie_genre_cricket = m[cricket_pos - 1] # m is 0-indexed

2. At what position is the person who watches drama?
drama_pos = pos_movie['drama']

3. At what position is the person who watches fantasy?
fantasy_pos = pos_movie['fantasy']

4. What sport does the person who likes singing play?
singing_pos = pos_hobby['singing']
sport_singing = s[singing_pos - 1] # s is 0-indexed

print(f"Answer 1 (movie genre of cricket player): {movie_genre_cricket}")
print(f"Answer 2 (position of drama watcher): {drama_pos}")
print(f"Answer 3 (position of fantasy watcher): {fantasy_pos}")
print(f"Answer 4 (sport of singing person): {sport_singing}")

Return the answers in the required format
print(f"<solution>{movie_genre_cricket}, {drama_pos}, {fantasy_pos},

{sport_singing}</solution>")
else:

print(f"Multiple valid configurations found: {len(valid_configs)}")
Let's examine the answers across all valid configs
answers = []
for config in valid_configs:

h, m, s = config
pos_hobby = {h[i]: i+1 for i in range(3)}
pos_movie = {m[i]: i+1 for i in range(3)}
pos_sport = {s[i]: i+1 for i in range(3)}

Answer 1: movie genre of cricket player
cricket_pos = pos_sport['cricket']
movie_genre_cricket = m[cricket_pos - 1]

Answer 2: position of drama watcher
drama_pos = pos_movie['drama']

Answer 3: position of fantasy watcher
fantasy_pos = pos_movie['fantasy']

Answer 4: sport of singing person
singing_pos = pos_hobby['singing']
sport_singing = s[singing_pos - 1]

answers.append((movie_genre_cricket, drama_pos, fantasy_pos, sport_singing))

Check if all valid configs have the same answers
unique_answers = set(answers)
if len(unique_answers) == 1:

movie_genre_cricket, drama_pos, fantasy_pos, sport_singing = unique_answers.pop()
print(f"All valid configurations have the same answers:")
print(f"Answer 1: {movie_genre_cricket}")
print(f"Answer 2: {drama_pos}")
print(f"Answer 3: {fantasy_pos}")
print(f"Answer 4: {sport_singing}")
print(f"<solution>{movie_genre_cricket}, {drama_pos}, {fantasy_pos},

{sport_singing}</solution>")
else:

print(f"Answers vary across valid configurations: {unique_answers}")
Print all valid configurations for debugging
for i, config in enumerate(valid_configs):

h, m, s = config
pos_hobby = {h[i]: i+1 for i in range(3)}
pos_movie = {m[i]: i+1 for i in range(3)}
pos_sport = {s[i]: i+1 for i in range(3)}

print(f"Valid config {i+1}:")
print(f" Hobbies: {h}")

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

print(f" Movie-Genres: {m}")
print(f" Sports: {s}")
print(f" Cricket player's movie genre: {m[pos_sport['cricket']-1]}")
print(f" Drama watcher position: {pos_movie['drama']}")
print(f" Fantasy watcher position: {pos_movie['fantasy']}")
print(f" Singing person's sport: {s[pos_hobby['singing']-1]}")
print()

```
</code>

</turn>

----------------
USER:

<output cell="filter_configurations">
Number of valid configurations: 1
Answer 1 (movie genre of cricket player): drama
Answer 2 (position of drama watcher): 3
Answer 3 (position of fantasy watcher): 2
Answer 4 (sport of singing person): cricket
<solution>drama, 3, 2, cricket</solution>
</output>

Remaining budget:
- 13 secs used, 226 secs left,
- 2215 output tokens used, 13785 output tokens left,
- 6 thinking steps performed, 4 steps left.

----------------
ASSISTANT:

<turn>
I have successfully filtered all possible configurations and found exactly one valid
configuration that satisfies all 5 constraints.

The answers are:
1. The movie genre of the person who plays cricket is drama
2. The person who watches drama is at position 3
3. The person who watches fantasy is at position 2
4. The person who likes singing plays cricket

I've verified that this is the only valid configuration, so the answers are unique.

<return><solution>drama, 3, 2, cricket</solution></return>

</turn>

Memory error due to combinatorial search, Collie, Gemini 2.0 Flash

CONTEXT: In this example, the agent attempts to generate all possible permutations of
letters to create a 13-letter word under constraints. It hits a memory error (max 100MB).

[...]

----------------
ASSISTANT:

<turn>
I see, the issue is that my template replacement is not working as expected. Let me correct
the code.

<code name="generate_combinations_2">
```python
import itertools

def generate_combinations():
letters = "abcdefghijklmnopqrstuvwxyz"
for combo in itertools.product(letters, repeat=3):

yield "".join(combo)

template = list("___s___f__l__")

possible_words = []
for c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 in
itertools.product("abcdefghijklmnopqrstuvwxyz", repeat=10):

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

template_copy = template[:]
template_copy[0] = c1
template_copy[1] = c2
template_copy[2] = c3
template_copy[5] = c4
template_copy[6] = c5
template_copy[9] = c6
template_copy[10] = c7
template_copy[12] = c8
word = "".join(template_copy)
if len(word) == 13:

possible_words.append(word)

print(len(possible_words))
#print(possible_words[:10])
```
</code>

<execute name="generate_combinations_2">

</turn>

----------------
USER:

<output cell="generate_combinations_2">

[Execution interrupted due to resource limits]
</output>

<error cell="generate_combinations_2">
Memory limit exceeded: usage grew beyond 500MB
</error>

Remaining budget:
- 14 secs used, 225 secs left,
- 1226 output tokens used, 14774 output tokens left,
- 5 thinking steps performed, 5 steps left.

----------------
ASSISTANT:

<turn>
That's not good. Generating all possible combinations is too memory-intensive. I need a
more efficient approach. I'll try generating a smaller set of combinations and then using
the LLM to refine them.

Given the limited resources, I'll simplify the process. I'll ask the LLM to generate a
single candidate word, and then I'll verify its validity. If it's invalid, I'll have to
return "No valid word found."

[...]

F LANGUAGE MODEL USAGE

Language models are used as a general-purpose assist tool (LM-empowered IDEs, writing refinements,
etc.) for the present study. They do not play a significant role in research ideation or paper drafting.

38


	Introduction
	Related work
	Learning to reason in language and code with CodeAdapt
	Hybrid reasoning in language and code
	Learning to reason with generalization-guided few-shot learning

	Experiments and results
	Benchmarks and baselines
	Main results
	Ablation studies
	Resource usage
	Analysis

	Discussion
	Benchmarks details
	Model details
	Prompt details
	CodeAdapt prompts
	Prompt for analysis of reasoning traces
	Chain-of-Thought prompt

	Resource usage
	Example trajectories
	Language model usage

