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Abstract
Recent advancements in Large Language Mod-001
els (LLMs) have significantly improved math-002
ematical problem-solving, with models like003
GPT-4 achieving human-level performance.004
However, proficiently solving mathematical005
problems differs fundamentally from effec-006
tively teaching mathematics. To bridge this007
gap, we introduce the Bi-GSM8K benchmark, a008
bilingual English-Korean dataset enriched with009
authentic teacher-generated solutions, student-010
generated solutions, and annotations marking011
students’ initial errors. This dataset facilitates a012
comprehensive evaluation of how closely LLM-013
generated solutions align with human educa-014
tors’ reasoning and the precision of LLMs in015
detecting initial student errors. Our experiments016
showed alignment exact match rates between017
student and teacher solutions of 74.4% for En-018
glish and 75.0% for Korean. We further evalu-019
ated various commercially available and open-020
source LLMs, highlighting GPT-4o’s superior021
accuracy in initial error detection while rec-022
ognizing open-source models’ computational023
efficiency advantages. Our key contributions024
include the open-source release of Bi-GSM8K,025
novel evaluation metrics, and comparative anal-026
yses of LLM performance across languages.027

1 Introduction028

Recent advancements in LLMs have led to signif-029

icant progress in mathematical problem-solving030

tasks. Notably, GPT-4 has achieved accuracy rates031

of 97% and 86% on GSM8K and MMLU bench-032

marks, respectively, demonstrating performance033

comparable to expert human levels. Additionally,034

OpenAI’s o1 model has attained an accuracy of035

74.4% (pass@1) on the AIME problems, fur-036

ther evidencing its advanced reasoning capabili-037

ties (Zhong et al., 2024; Achiam et al., 2023; Ope-038

nAI, 2024). These results indicate that LLMs have039

evolved from mere language-understanding tools040

into sophisticated instruments capable of logical041

reasoning and computational problem-solving.042

However, effectively solving mathematical prob- 043

lems and proficiently teaching mathematics to stu- 044

dents constitute fundamentally distinct tasks. Prior 045

research has established that the competencies in- 046

volved in effectively solving mathematical prob- 047

lems, termed Common Content Knowledge (CCK), 048

differ significantly from the Mathematical Knowl- 049

edge for Teaching (MKT) required for effective 050

pedagogical practice (Understand, 1986; Ball et al., 051

2008). Within educational contexts, this implies 052

that merely providing correct answers is insuf- 053

ficient; it is crucial to understand the student’s 054

thought processes and diagnose their errors accu- 055

rately (Copur-Gencturk and Tolar, 2022; Daheim 056

et al., 2024; Sonkar et al., 2024). 057

This perspective is increasingly prevalent in con- 058

temporary research on mathematics education us- 059

ing LLMs. In particular, there is a growing consen- 060

sus that aligning LLMs to think like experienced 061

educators rather than merely serving as answer- 062

generating machines maximizes educational effec- 063

tiveness. Recent studies have emphasized that, sim- 064

ilar to human teachers, LLMs must engage in di- 065

agnosing errors and providing feedback based on 066

students’ solution processes when imparting Ped- 067

agogical Content Knowledge (PCK) (Jiang et al., 068

2024; Hu et al., 2025). 069

In this context, from a learning efficiency per- 070

spective, we emphasize the necessity for evalua- 071

tion metrics that assess Large Language Models 072

(LLMs) beyond simply providing direct answers. 073

Specifically, these metrics should evaluate: (1) how 074

closely an LLM-generated solution aligns with the 075

solution processes of human educators, and (2) the 076

accuracy with which an LLM identifies the initial 077

point of error in student-generated responses. To 078

facilitate such evaluation, it is essential to first es- 079

tablish evaluation datasets that include authentic 080

solution processes generated by teachers. However, 081

existing datasets, such as GSM8K, contain only 082

mathematical problems accompanied by solved an- 083
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swers, lacking genuine teacher-generated solution084

processes (Cobbe et al., 2021). To address this gap,085

we augment the GSM8K dataset by incorporating086

real teacher-generated solutions, thus creating the087

Bi-GSM8K benchmark. Furthermore, we extend088

this benchmark to include student-generated so-089

lution processes annotated explicitly with labels090

marking students’ initial errors. Finally, we trans-091

late the augmented dataset into a bilingual Korean-092

English corpus, enabling the analysis of linguistic093

differences in mathematical problem-solving.094

Using this benchmark, we conducted experi-095

ments evaluating the alignment accuracy of various096

LLM-generated and student-generated solutions097

compared to authentic teacher solutions. Results098

indicate alignment accuracy rates of 74.4% for En-099

glish and 75.0% for Korean in matching student100

solutions with teacher solutions. We further com-101

pared multiple commercially available open-source102

LLMs with GPT-4o, assessing both accuracy and103

latency to determine practical applicability. Since104

the Bi-GSM8K benchmark includes annotations105

marking students’ initial errors, it enabled evalua-106

tion of LLMs’ proficiency in detecting these initial107

mistakes. In this evaluation, GPT-4o demonstrated108

significantly superior performance. However, cer-109

tain open-source models exhibited faster error anal-110

ysis capabilities than larger commercial models,111

highlighting their potential advantage in practical112

educational contexts.113

• Construction and open-source release of Bi-114

GSM8K, a mathematical educational bench-115

mark dataset including authentic human-116

generated solution processes117

• Proposal of novel evaluation metrics to as-118

sess the accuracy of mathematical solution119

processes120

• Comparative analysis of alignment accu-121

racy between LLM-generated and teacher-122

generated answers, utilizing various LLMs123

and examining differences across languages124

2 Related Work125

In this section, we review existing research related126

to mathematical education and LLMs by analyzing127

the characteristics influenced by problem-solving128

approaches, instructional methods, and linguistic129

differences.130

2.1 Utilization and Limitations of LLMs in 131

Mathematics Education 132

Recently, there has been growing interest in lever- 133

aging LLMs within mathematics education, pri- 134

marily focusing on problem-solving and tutoring. 135

However, their performance differs significantly 136

between these domains. For instance, while LLMs 137

achieve an accuracy of 85.5% in algebraic problem- 138

solving tasks, their accuracy in generating educa- 139

tional dialogues as tutors is limited to 56.6%, high- 140

lighting frequent errors in tutoring scenarios (Gupta 141

et al., 2025). Integrating stepwise error detection 142

models has significantly enhanced the accuracy, 143

clarity, and educational validity of LLM-generated 144

feedback compared to standard methods (Daheim 145

et al., 2024). 146

Furthermore, LLMs fine-tuned on mathematical 147

tutoring datasets such as MATHDIAL can provide 148

more equitable and accurate feedback; however, 149

limitations remain in error prevention, correction, 150

and fully replacing human (Macina et al., 2023). 151

Although LLMs exhibit human-like performance 152

in replicating intelligent tutoring feedback or auto- 153

matic grading, their effectiveness diminishes sig- 154

nificantly with novel errors, student cognition diag- 155

nosis, or irrelevant content avoidance (Gupta et al., 156

2025; Daheim et al., 2024; Macina et al., 2023; 157

McNichols et al., 2024; Jin et al., 2025; Baral et al., 158

2024; Jin et al., 2024). 159

2.2 Challenges in Non-English Educational 160

Environments 161

The performance of LLMs on mathematical prob- 162

lems formulated in non-English languages remains 163

a significant challenge requiring further improve- 164

ment. For example, Wei et al. analyzed the perfor- 165

mance of various LLMs using the CMATH dataset, 166

which consists of elementary mathematics prob- 167

lems in Chinese, and found that GPT-4 achieved 168

an accuracy above 60%, whereas most other LLMs 169

showed considerably lower performance on non- 170

English mathematics tasks. Additionally, Nguyen 171

et al. applied ChatGPT to Korean middle and high 172

school mathematics problems, reporting an accu- 173

racy rate of 66.7%. Although this performance is 174

lower compared to English problems, the study 175

suggests that LLMs remain useful in evaluating 176

student responses. Moreover, multimodal-based as- 177

sessments such as those using the KoNET dataset 178

have revealed substantial performance degradation 179

of AI models when applied within Korean high 180

2



school educational settings (Park and Kim, 2025).181

These studies clearly demonstrate ongoing perfor-182

mance limitations of LLMs in non-English educa-183

tional contexts.184

2.3 Research Trends of LLMs for Educational185

Purposes186

Research on employing LLMs for educational187

purposes broadly divides into two streams. The188

first stream emphasizes enhancing mathematical189

problem-solving skills, utilizing LLMs to gener-190

ate customized mathematical problems or solution191

methods to fine-tune student models and boost192

learning effectiveness (Liang et al., 2023). The sec-193

ond stream employs LLMs as tutors to simulta-194

neously enhance students’ learning outcomes and195

feedback generation capabilities (Scarlatos et al.,196

2025). Approaches include training LLMs using197

students’ learning outcomes as reward signals, as198

well as employing schema-based strategies and199

role-based prompts to generate structured and ped-200

agogically beneficial feedback (Dixit and Oates,201

2024; Hu et al., 2025; Scarlatos et al., 2025).202

These studies indicate the potential utility of203

LLMs in diverse pedagogical practices within math-204

ematics education, such as problem generation,205

problem-solving, feedback provision, and instruc-206

tional design. Nevertheless, concerns remain re-207

garding the accuracy of generated outputs, the sup-208

port for autonomous learning, and overall research209

reliability, underscoring ongoing areas for improve-210

ment.211

3 The Bi-GSM8K Dataset212

What considerations are necessary for LLMs to ef-213

fectively teach mathematical problem-solving in214

a manner comparable to human educators? A fun-215

damental requirement for addressing this issue is216

to systematically devise evaluation methodologies217

capable of assessing how closely LLM-generated218

responses resemble authentic teacher-generated so-219

lution processes. To facilitate the training and eval-220

uation of the proposed mathematical tutoring sys-221

tem, we constructed the Bi-GSM8K dataset, which222

comprises elementary-level mathematical problem-223

solving processes. This dataset plays a critical role224

in detecting student errors and analyzing their learn-225

ing states. Specifically, Bi-GSM8K contains struc-226

tured solution procedures and includes both correct227

and incorrect solution examples. The dataset was228

entirely developed in Korean by domestic domain229

experts, with an English version provided via auto- 230

matic translation. 231

We constructed the Bi-GSM8K dataset by auto- 232

matically translating the original English GSM8K 233

dataset into Korean, subsequently adapting it to 234

align with the Korean educational curriculum, and 235

meticulously correcting translation errors. The 236

dataset consists of a total of 500 items, each 237

provided in JSON format. Each item includes 238

curriculum-aligned fields indicating the educa- 239

tional domain and unit, as well as detailed sections 240

labeled problem, solution, the teacher-generated 241

correct solution (correct_solution), and the student- 242

generated erroneous solution (error_solution). 243

{
"area": "problem",
"problem": "Byeongjin went fishing with his family

yesterday. Byeongjin caught 4 fish, his wife caught 1,
the eldest son caught 3, the younger son caught 2, and
the youngest daughter caught 5. Unfortunately, 3 of the
fish were too small and were released back. If each fish
yields 2 fillets, how many fillets can Byeongjin’s family
make?",
"solution": "Four hats with 3 stripes each have a total

of 4×3=«43=12»12 stripes.\n Three hats with 4 stripes
each have a total of 3×4=«34=12»12 stripes.\n Six hats
with no stripes have 6×0=«60=0»0 stripes.\n And two hats
with 5 stripes each have 2×5=«25=10»10 stripes.\n The
total number of stripes on Byungjin’s hats is
12+12+0+10=«12+12+0+10=34»34 stripes.\n #### 34",

"correct_solution": {
"step_1": "Byung-jin’s family caught 4 + 1 + 3 + 2 +

5 = «4+1+3+2+5=15»15 fish.",
"step_2": "15 - 3 = «15-3=12» I stored 12 fish.",
"step_3": "Since you can obtain 2 fillets from each

fish, for 12 fish, you have 12 fish * 2 fillets per fish
= 24 fillets."
},
"error_solution": {
"step_1": "4+1+3+2+5 = 15",
"step_2": "15 * 2 = 30",
"step_3": "Answer: 30 fillets"

}
}

Table 1: In the proposed Bi-GSM8K dataset, exam-
ples are expanded beyond the original GSM8K format,
which included only “Problem” and “Solution” fields.
Bi-GSM8K additionally provides the teacher-generated
correct solution (correct_solution) and an erroneous
student-generated solution (error_solution). Further-
more, the Bi-GSM8K dataset is offered as a bilingual
Korean-English corpus.

Given that the problems were translated from En- 244

glish, we performed an extensive validation process. 245

Proper nouns, units, and expressions were adjusted 246

to fit the standards of the Korean curriculum, and 247

errors originating from machine translation were 248

carefully revised. Teacher-generated solutions were 249

then added, and their accuracy was thoroughly re- 250

viewed, applying necessary corrections. Finally, 251

student-generated solutions were manually created 252

to intentionally reflect realistic student errors while 253
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closely adhering to the teacher-generated correct254

solutions. Mathematical expressions were format-255

ted following the GSM8K standard by enclosing256

them within “« »” symbols. Following this meticu-257

lous process, the Bi-GSM8K dataset was finalized.258

Table 1 illustrates a representative example from259

the Bi-GSM8K dataset.260

The Bi-GSM8K dataset possesses the following261

key features:262

• Automated Translation and Review: The263

original GSM8K dataset was translated into264

Korean via automated translation, then re-265

vised to align with the Korean curriculum,266

with corrections made for proper nouns, units,267

and translation errors. Correct solutions un-268

derwent multiple reviews for accuracy.269

• Inclusion of Student Solutions: By incor-270

porating varied student errors into student-271

generated solutions and aligning them with272

correct solutions, the dataset supports error273

tracking, learning state analysis, and cus-274

tomized feedback generation.275

• Initial Error Annotation: Each item pro-276

vides both the teacher’s correct solution and277

the student’s erroneous solution, explicitly an-278

notating the initial error point within the stu-279

dent’s solution, thereby assisting accurate er-280

ror diagnosis and remediation by the model.281

The Bi-GSM8K dataset provides a structured282

data format enabling detailed analysis of errors283

occurring within student-generated solutions. By284

tracking specific error points, the dataset facilitates285

the identification of student error patterns and en-286

hances the precision of error diagnosis.287

4 Evaluation Metric288

The Bi-GSM8K benchmark proposed in this study289

provides data enabling the evaluation of solu-290

tion processes generated by LLMs by directly291

comparing them with those produced by experi-292

enced human teachers. To achieve this compara-293

tive evaluation, appropriate assessment methodolo-294

gies are necessary. Specifically, this study intro-295

duces two similarity-based evaluation methods: (1)296

Ground Truth Alignment (GTA), which assesses297

how closely generated solutions align with correct298

teacher-generated solutions, and (2) Solution Error299

Detection (SED), which identifies the initial error300

point within student-generated solutions, thereby301

systematically evaluating the capabilities of lan- 302

guage models. 303

4.1 Ground Truth Alignment 304

Evaluating narrative-style solutions of mathemati- 305

cal problems quantitatively is inherently challeng- 306

ing. Therefore, we propose GTA, which assesses 307

solution quality based on the similarity between 308

the predicted and ground-truth solutions. The sim- 309

ilarity measurement involves two key steps: (1) 310

assessing semantic similarity using measures such 311

as Cosine Similarity, Pearson Correlation, Sem- 312

Score, and BERTScore (Aynetdinov and Akbik, 313

2024; Zhang et al., 2019), and (2) determining 314

structural similarity using the Needleman-Wunsch 315

(NW) algorithm to align solution sequences needle- 316

man1970general. This dual-step process identifies 317

discrepancies and optimizes the similarity of rea- 318

soning paths. 319

Algorithm 1 NW Algorithm with Semantic Simi-
larity for Ground Truth Alignment
1: Input: s1, s2, sim_m, sim_th
2: Output: x_aln, y_aln
3: m← len(s1), n← len(s2)
4: Initialize bt_table of size (m + 1, n + 1)
5: for i = 0 to m do
6: bt_table[i][0]← 1 ▷ From up
7: end for
8: for j = 0 to n do
9: bt_table[0][j]← 2 ▷ From left
10: end for
11: for i = 1 to m do
12: for j = 1 to n do
13: m_sc← score[i− 1][j − 1] + sim_m[i− 1][j − 1]
14: gap_p← gap_u× (1− sim_m[i− 1][j − 1])
15: u_sc← score[i− 1][j]− gap_p
16: l_sc← score[i][j − 1]− gap_p
17: bt_table[i][j]← argmax(m_sc, u_sc, l_sc)
18: end for
19: end for
20: i← m, j ← n
21: Initialize x_aln, y_aln
22: while i > 0 or j > 0 do
23: if bt_table[i][j] = 0 then
24: if sim_m[i− 1][j − 1] ≥ sim_th then
25: Append aligned values to x_aln, y_aln
26: end if
27: end if
28: Update indices i and j
29: end while
30: Reverse x_aln, y_aln
31: Return x_aln, y_aln

In this study, we modified the conventional NW 320

algorithm specifically for aligning mathematical 321

solution processes. The NW algorithm numerically 322

quantifies the similarity between two strings and 323

identifies the most similar alignment, making it 324

suitable for static similarity comparisons of lengthy 325

texts. Typically, when comparing two texts, the NW 326

algorithm assigns fixed penalty scores for character 327

insertions or deletions. However, mathematical so- 328

lution processes inherently involve both sequential 329
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Figure 1: Upon submission of a student’s solution to the system, an initial comparison and alignment with the
correct solution is performed. This alignment employs Language Models (LMs), similarity functions, and the NW
algorithm to systematically analyze omitted steps or extraneous information in the student’s solution. Subsequently,
an independent LLM-based error detection model operates separately from the alignment process to precisely
identify the initial point of error within the student’s solution.

order and detailed semantic content. Therefore, we330

adjusted gap penalties according to semantic simi-331

larity metrics (e.g., Cosine similarity, BERTScore),332

assigning smaller penalties to semantically similar333

sentences and larger penalties to dissimilar ones.334

Additionally, matching scores are computed based335

on substring similarities, enabling natural and pre-336

cise alignment between solution steps. This allows337

clear identification of differences between two so-338

lutions and facilitates alignment consistent with the339

problem-solving flow.340

Algorithm 1 describes the proposed procedure341

for computing alignment scores between two solu-342

tions (examples in Figure 1). Here, s1 represents343

the teacher-generated solution with m steps, and s2344

denotes the student-generated solution with n steps.345

The inputs are two sequences (s1, s2), a similarity346

matrix (sim_m) indicating semantic similarities347

between solution steps, and a similarity threshold348

(sim_th). A backtracking table bt_table for dy-349

namic programming is initialized (line 4) with di-350

mensions (m + 1) × (n + 1), storing directional351

moves for reconstructing optimal alignments. The352

first row and column of bt_table are initialized to353

represent leftward and upward movements, respec-354

tively.355

Next, a backtracking table bt_table for dynamic356

programming is initialized (line 4). The table has357

dimensions (m+1)×(n+1), with each cell record-358

ing the optimal move direction for backtracking.359

The first row and first column of bt_table are ini-360

tialized with left (represented by 2) and upward361

(represented by 1) movements, respectively.362

Subsequently, the remainder of bt_table is363

filled using two nested loops. At each cell (i, j),364

values for three possible movements are calcu- 365

lated, and the maximum value is selected and 366

recorded in bt_table[i][j]. Diagonal movements 367

(matches) add the value from the diagonal cell 368

and sim_m[i−1][j−1]; upward movements (dele- 369

tions) add penalties to values from the cell above; 370

leftward movements (insertions) add penalties to 371

values from the cell to the left. Once the table is 372

fully populated, an optimal alignment between the 373

sequences is determined by backtracking through 374

bt_table. 375

During the backtracking phase, alignments are 376

determined according to each cell’s recorded move- 377

ment direction. For diagonal movements (repre- 378

sented by 0), if the similarity is below the thresh- 379

old sim_th, the element s1[i−1] is aligned as 380

an "omission". If the similarity meets or exceeds 381

sim_th, the algorithm checks for duplicate align- 382

ments. Specifically, if s2[j−1] is already aligned 383

with another element in y_aln, the algorithm com- 384

pares similarity scores between the existing and 385

current alignments. If the existing alignment has a 386

higher similarity score, the current element s1[i−1] 387

is aligned as an "omission"; otherwise, the existing 388

alignment is replaced with the current one. If no 389

duplication occurs, the two elements are directly 390

aligned. For upward movements (represented by 391

1), the element s1[i−1] is aligned as an "omis- 392

sion". For leftward movements (represented by 393

2), an "unnecessary" is aligned with the element 394

s2[j−1]. After backtracking completes, the aligned 395

sequences x_aln.reverse() and y_aln.reverse(), 396

along with the similarity matrix sim_m, are re- 397

turned in the correct order. 398

Compared with conventional similarity-based 399
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scoring (NW or cosine similarity), GTA aligns each400

intermediate reasoning step with its ground-truth401

counterpart, producing a fine-grained score that402

captures logical coherence rather than superficial403

lexical overlap. This step-aware alignment not only404

yields stronger correlations with true solution qual-405

ity but also pinpoints where a learner’s reasoning406

diverges, enabling interpretable diagnostics and tar-407

geted feedback.408

4.2 Solution Error Detection409

Identifying the initial error step is particularly cru-410

cial in personalized tutoring scenarios. Precisely411

pinpointing the moment when a student deviates412

from the correct problem-solving strategy enables413

the system to gain deeper insights into the student’s414

conceptual understanding. This module aims to415

accurately identify the initial erroneous step in a416

student’s mathematical problem-solving process.417

Your goal is to compare the correct solution to the student solution
and output the steps the student needs to review again. If the student’s
solution is correct, output 0.

Problem: Sohee feels bored with her current game and decides
to play a new one. In the new game, 80% of the 100 hours of gameplay
consists of repetitive and boring stages. However, through an expansion
pack, she can add 30 hours of enjoyable stages. Including the expansion
pack, how many hours of enjoyable stages can Sohee play?
Answer Solution: {

"step_1":"There are 1000.8=«1000.8=80»80 hours of boring stages in
the game.",

"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20
hours.",

"step_3":"With the expansion pack, the enjoyable gameplay time
increases to 20+30=«20+30=50»50 hours."
}
Student Solution: {

"step_1": "There are 1000.8=«1000.8=80»80 hours of boring stages
in the game.",

"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20
hours.",

"step_3":"The expansion pack has 300.8=«300.8=24»24 hours of
boring stages.",

"step_4":"The enjoyable gameplay time in the expansion pack is
30-24=«30-24=6»6 hours.",

"step_5":"The total enjoyable gameplay time is 50+6=«50+6=56»56
hours."
}

Q: Is the Student Solution incorrect? Write only the step number with
the first error or 0 if no error is found.
A: 2

Problem: {problem}
Answer Solution: {answer_solution}
Student Solution: {student_solution}
Q: Is the Student Solution incorrect? Write only the step number with
the first error or 0 if no error is found.
A:

Table 2: Prompt Template for Solution Error Detection

The initial error detection module proposed in418

this study leverages open-source LLMs and em-419

ploys a few-shot learning approach, enabling accu-420

rate error identification with only a small number421

of examples. Specifically, we adopt a 3-shot learn-422

ing setup, where each example comprises a math-423

ematical problem, an Answer Solution, a Student 424

Solution, and a Q(Question) for determining the 425

presence of an error. The model compares the cor- 426

rect solution with the student’s solution and outputs 427

the step number corresponding to the first incorrect 428

reasoning; it returns 0 if no error is detected. 429

Table 2 presents an example of the prompt struc- 430

ture used in this task. Initially, the prompt provides 431

task instructions, followed by three example prob- 432

lems along with their correct and student-generated 433

solutions. Subsequently, it includes a query prompt- 434

ing the determination of whether an error has oc- 435

curred in the student’s solution and, if so, to identify 436

the initial erroneous step. 437

5 Experiment 438

5.1 Experiment Settings and Models 439

In this study, we evaluated various open-source 440

LLMs using the mathematical Bi-GSM8K dataset. 441

The models selected for experimentation were as- 442

sessed comprehensively based on multilingual pro- 443

cessing capabilities, mathematical reasoning abili- 444

ties, response consistency, and computational effi- 445

ciency. Models ranging from 7B to 8B parameters 446

were specifically chosen due to their balance be- 447

tween performance and practicality, making them 448

suitable for real-world educational contexts. Ad- 449

ditionally, for the GTA module, BERTScore was 450

employed to measure nuanced semantic similarity 451

between the generated texts and ground-truth so- 452

lutions. This was facilitated by adopting multiple 453

pretrained transformer models. The primary hyper- 454

parameters for the open-source models were set 455

to a temperature of 1, a top_p of 0.75, a top_k of 456

40, and num_beams of 4. For GPT-4o, the tem- 457

perature was adjusted to 0.75 to enhance response 458

consistency and stability. 459

5.2 Ground Truth Alignment 460

In this section, we evaluate the alignment perfor- 461

mance between student-generated solutions pro- 462

duced by the GPT-4o model and the teacher- 463

generated correct solutions. Table 3 summarizes 464

evaluation results of the GTA system across vari- 465

ous similarity metrics, models, and thresholds. It 466

reports exact match accuracy for English (EN) and 467

Korean (KO) datasets, along with computational 468

efficiency metrics such as latency (seconds) and 469

peak memory usage (MB). Except for the exact 470

match accuracy, all other values in Table 3 rep- 471

resent averages of results obtained from the En- 472
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Similarity Model Threshold Exact Match Latency Peak Memory
EN KO (sec) (MB)

- GPT-4o - 68.4 82.0 3.372 -

Cosine
Pearson

Semscore

Llama-3.1-8B-Instruct 0.6 66.6 66.8 0.427 28681.48
DeepSeek-R1-Distill-Llama-8B 0.5 67.4 67.4 0.429 28681.48
DeepSeek-llama3.1-Bllossom-8B 0.6 67.2 66.2 0.389 28658.35
Qwen2.5-7B-Instruct 0.5 63.2 65.2 0.406 27178.01
DeepSeek-R1-Distill-Qwen-7B 0.7 66.2 60.8 0.373 27178.21
DeepSeek-R1-Distill-Qwen-7B-Multilingual 0.7 65.4 61.2 0.398 27162.12
Mistral-7B-Instruct-v0.3 0.7 66.8 67.2 0.501 27221.69
Phi-4-mini-instruct 0.5 62.8 65.4 0.183 14728.41

BertScore

bart-large 0.6 71.8 72.0 0.070 703.91
bert-large-uncased 0.5 74.4 72.8 0.113 1010.21
deberta-v2-xlarge-mnli 0.7 72.6 75.0 0.213 2683.69
roberta-large 0.8 65.6 66.6 0.109 1040.56

Table 3: Comparative evaluation of Ground Truth Alignment scores, thresholds, and memory usage for each model

glish and Korean datasets. For the alignment perfor-473

mance evaluation between student-generated and474

teacher-generated solutions, 500 problems from the475

Bi-GSM8K dataset were utilized. Similarity thresh-476

olds of [0.5, 0.6, 0.7, 0.8, 0.9] were applied to each477

similarity metric. Detailed alignment examples are478

provided in Appendix C.479

The large-scale commercial API GPT-4o, used480

as a baseline, achieved the highest performance481

with accuracies of 68.4% on the English dataset482

and 82.0% on the Korean dataset, demonstrating483

its advanced capabilities in language understanding484

and reasoning.485

In comparisons across similarity measurement486

methods, BertScore-based models consistently out-487

performed vector similarity-based models (Cosine,488

Pearson, Semscore). Specifically, the bert-large-489

uncased model recorded an accuracy of 74.4% on490

the English dataset, approximately 6 percentage491

points higher than GPT-4o. On the Korean dataset,492

the deberta-v2-xlarge-mnli model exhibited the493

best performance with 75.0% accuracy. These re-494

sults suggest that the contextualized embeddings495

utilized in BERT-based models excel at detect-496

ing semantic similarities, enabling more precise497

alignment between student-generated and teacher-498

generated solutions. Consequently, the importance499

of context-aware embeddings in solution alignment500

tasks is emphasized.501

From a computational efficiency standpoint,502

larger transformer models such as Llama-3.1-8B503

and the DeepSeek series had an average latency of504

approximately 0.4 seconds, while bart-large and505

bert-large-uncased models demonstrated signifi-506

cantly faster inference speeds at 0.07 seconds and507

0.11 seconds, respectively. Memory usage showed508

similar patterns; LLM-based models required sub-509

stantial memory exceeding approximately 27,000510

MB, whereas BERT-based models utilized signif- 511

icantly less, generally under 3,000 MB. Notably, 512

the bart-large model operated with only around 700 513

MB of memory, making it viable even in resource- 514

constrained environments. These experimental re- 515

sults clearly illustrate a trade-off between accuracy 516

and computational efficiency. GPT-4o delivered the 517

highest accuracy but faced limitations in real-world 518

tutoring applications due to computational over- 519

head and associated costs. Among more accessible 520

models, bert-large-uncased and deberta-v2-xlarge- 521

mnli models, utilizing BertScore, demonstrated the 522

most effective balance between performance and 523

efficiency. 524

5.3 Solution Error Detection 525

In this section, we evaluated the accuracy of var- 526

ious LLMs in identifying the initial errors made 527

by students during mathematical problem-solving. 528

Table 4 summarizes the results of the SED task 529

across multiple LLMs, reporting accuracy for both 530

English (EN) and Korean (KO) datasets, along with 531

computational efficiency metrics (throughput: re- 532

quests/sec, latency: seconds, memory usage: MB). 533

The evaluation utilized 500 items from the Bi- 534

GSM8K dataset, with detailed alignment examples 535

presented in Appendix D. 536

GPT-4o, employed as a baseline commercial 537

API, demonstrated the highest accuracy, achieving 538

94.4% for English and 95.8% for Korean, indi- 539

cating top-tier performance. Particularly notable 540

is GPT-4o’s superior accuracy on Korean data, 541

suggesting strong suitability for Korean-language 542

mathematics tutoring applications. Moreover, GPT- 543

4o achieved relatively rapid response times, with a 544

throughput of 0.1309 requests/sec and latency of 545

8.39 seconds, highlighting both its sophisticated 546

linguistic reasoning capabilities and computational 547
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Model Accuracy Throughput Latency Peak Memory
EN KO (requests/sec) (sec) (MB)

GPT-4o 94.4 95.8 0.1309 8.39 -

Llama-3.1-8B-Instruct 80.4 75.2 0.0014 711.60 10896.85
DeepSeek-R1-Distill-Llama-8B 55.4 57.8 0.0014 720.06 10898.43
DeepSeek-llama3.1-Bllossom-8B 63.2 62.0 0.0014 716.86 10851.40
Qwen2.5-7B-Instruct 79.4 86.0 0.0013 783.91 11279.73
DeepSeek-R1-Distill-Qwen-7B 82.8 80.4 0.0013 801.63 11328.93
DeepSeek-R1-Distill-Qwen-7B-Multilingual 86.4 83.4 0.0012 847.68 11281.79
Mistral-7B-Instruct-v0.3 67.0 67.0 0.0009 1168.91 15120.72
Phi-4-mini-instruct 76.6 78.6 0.0029 355.01 8075.12

Table 4: Comparative evaluation of Solution Error Detection scores, thresholds, and memory usage for each model

efficiency. Nonetheless, multilingual models based548

on Qwen demonstrated relatively stronger perfor-549

mance compared to single-language and basic mod-550

els. For example, DeepSeek-R1-Distill-Qwen-7B-551

Multilingual achieved commendable accuracy of552

86.4% in English and 83.4% in Korean, while the553

single-language counterpart, Qwen2.5-7B-Instruct,554

attained 86.0% accuracy in Korean.555

Conversely, lightweight models based on the556

Llama series exhibited lower accuracy. Llama-3.1-557

8B-Instruct achieved moderate accuracy levels of558

80.4% in English and 75.2% in Korean, whereas559

DeepSeek-R1-Distill-Llama-8B performed poorly560

with accuracies of 55.4% and 57.8% in English561

and Korean, respectively. Notably, the DeepSeek-562

llama3.1-Bllossom-8B model, trained to think in563

English and output in the input language, demon-564

strated negative performance impacts upon integrat-565

ing Korean data. This suggests that English-centric566

cognitive strategies were inadequately adapted for567

the Korean context or that the semantic quality568

of training data was compromised, ultimately hin-569

dering mathematical reasoning and error detection570

capabilities.571

In terms of computational efficiency, the Phi-4-572

mini-instruct model exhibited exceptional resource573

efficiency with a throughput of 0.0029 requests/sec,574

latency of 355.01 seconds, and memory usage of575

8075.12MB; however, its low accuracy limits its576

practicality for real-time tutoring requiring imme-577

diate feedback. Most open-source models showed578

comparable or higher throughput and shorter la-579

tencies than GPT-4o, advantageous for real-time580

responsiveness, yet their performance remains lim-581

ited in complex problem-solving and deep linguis-582

tic comprehension.583

In this experiment, we evaluated various LLMs584

on their ability to detect initial errors in stu-585

dents’ mathematical solution processes. Open-586

source models generally underperformed commer-587

cial models in accuracy and computational effi- 588

ciency, with multilingual models exhibiting notable 589

performance variability across languages. Partic- 590

ularly, Llama series models trained primarily on 591

English data experienced performance degradation 592

when incorporating Korean data, underscoring the 593

necessity for language-specific optimization and 594

enhanced data quality for complex mathematical 595

reasoning tasks. 596

6 Conclusion 597

In this study, we introduced Bi-GSM8K, a bilingual 598

English-Korean benchmark dataset for mathemati- 599

cal problem-solving, constructed using student and 600

teacher solution processes. 601

This dataset provides foundational resources for 602

mathematics education, facilitating comprehensive 603

evaluation of alignment accuracy between student- 604

generated and teacher-generated solutions, as well 605

as assessing initial error detection performance 606

across various LLMs. Specifically, we introduced 607

an analytical approach combining similarity met- 608

rics, GPT, and the Needleman-Wunsch algorithm 609

to measure the semantic similarity between student- 610

generated and teacher-generated solutions. 611

Evaluation results indicate that certain recent 612

advanced open-source models exhibit performance 613

levels comparable or superior to commercial mod- 614

els such as GPT-4o in terms of accuracy and 615

computational efficiency. Specifically, BERT-based 616

models utilizing BertScore demonstrated high 617

alignment accuracy relative to computational ef- 618

ficiency, effectively distinguishing agreement be- 619

tween learner-generated and teacher-generated so- 620

lutions. Furthermore, separate experiments con- 621

ducted for English and Korean datasets revealed 622

distinct performance variations across languages. 623

In future research, we aim to validate the educa- 624

tional effectiveness of the system through interac- 625

tive experiments with real learners and educators. 626
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Limitations627

Limited Reflection of Authentic Learning628

Environments in Dataset629

The dataset utilized in this study comprises630

elementary-level mathematical problems and tu-631

toring dialogues, thus limiting the scope to specific632

grades and difficulty levels, which constrains the633

representation of diverse problem types. Addition-634

ally, the student-generated mathematical solutions635

were created by domain experts, potentially insuf-636

ficiently reflecting the varied cognitive processes637

and errors exhibited by real students. Consequently,638

future research should focus on developing datasets639

that encompass a broader range of problem types,640

languages, and authentic learner-generated data.641

Necessity for Improved Performance in642

Complex Mathematical Reasoning643

The open-source LLMs employed in this study644

demonstrate performance degradation on tasks re-645

quiring complex mathematical reasoning. This lim-646

itation is likely due to insufficient training on high-647

dimensional reasoning tasks or inherent difficulties648

in processing mathematical expressions in certain649

languages. To overcome these limitations, future650

research should emphasize domain-specific train-651

ing and integrate Retrieval-Augmented Generation652

techniques to enhance reasoning capabilities.653

Evaluation in Real Educational Environments654

While this research evaluates system performance655

through quantitative data-driven analyses, direct656

verification of its applicability in actual classroom657

or tutoring environments has not been performed.658

In real educational settings, factors such as student659

responses, class dynamics, and teacher interven-660

tions significantly influence system effectiveness.661

Therefore, comprehensive evaluations of system662

practicality and educational efficacy require imple-663

mentation in authentic educational contexts. Fu-664

ture studies should conduct experiments involving665

teachers and students to measure educational ef-666

fectiveness and derive feedback mechanisms and667

interface improvements that meet real-world de-668

mands.669

Limitations and Improvement Directions for670

Solution Alignment Representation671

In this study, we performed sentence-level align-672

ment between student-generated and correct673

(teacher-generated) solutions. However, this ap-674

proach exhibits limitations in alignment accuracy, 675

as a single sentence may often encompass mul- 676

tiple solution steps. To precisely model students’ 677

reasoning processes and effectively capture the in- 678

tricate relationships between student and teacher 679

solutions, a hierarchical and multi-layered repre- 680

sentational approach is required. Consequently, de- 681

veloping novel alignment methods capable of re- 682

flecting such complex structures is proposed as an 683

important direction for future research. 684

Need for Improvement in Model Efficiency and 685

Practicality 686

Most models evaluated in this study exhibited a 687

trade-off between accuracy and efficiency. Larger 688

models provided high accuracy at substantial com- 689

putational costs, whereas smaller models offered 690

higher efficiency but lower performance. Future re- 691

search should prioritize enhancing small-model per- 692

formance and optimizing computational efficiency 693

using hardware acceleration technologies, facilitat- 694

ing the development of real-time feedback systems 695

and improving model practicality. 696
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Metric English Korean

Count 500.000 500.000
Mean 237.004 122.876
Std 90.912 44.501
Min 62.000 36.000
25% 173.000 90.000
50% 220.000 117.000
75% 281.000 145.250
Max 592.000 304.000

Table 5: Statistical Summary of Problem Lengths

and more varied length distribution in the English835

dataset.836

Regarding minimum lengths, English problems837

contain at least 62 characters, while Korean prob-838

lems have a minimum of 36 characters, suggesting839

that English texts generally include more informa-840

tion. The maximum length further highlights this841

difference, with English problems reaching up to842

592 characters compared to the 304 characters of843

Korean problems.844

Quartile-based metrics exhibit similar trends,845

consistently showing higher values for English846

problems compared to their Korean counterparts,847

thereby reinforcing the structural length disparity848

across the entire dataset range. Notably, the me-849

dian length of English problems is 220 characters,850

approximately 1.88 times greater than the Korean851

median of 117 characters.852

These results might reflect the explicit and de-853

tailed sentence structures often required by the En-854

glish language during translation, as well as poten-855

tial adjustments made by generative models to ac-856

commodate stylistic differences between languages.857

Such findings underscore the necessity of consider-858

ing language-specific perceptions of difficulty and859

interpretative approaches in subsequent analyses.860

B Analysis of Solution Lengths861

In this appendix, we present a quantitative statisti-862

cal analysis of the lengths and steps of student-863

generated and correct solutions from the Bi-864

GSM8K dataset used in our experiments. The865

dataset comprises problems provided in two lan-866

guages, Korean and English, each consisting of 500867

items.868

B.1 Analysis of Solution Length by Steps869

This section analyzes the lengths of complete solu-870

tions written in Korean and English for both correct871

and student-generated solutions within the dataset. 872

The first analysis considers each solution as an inte- 873

grated unit without dividing it into individual steps. 874

Metric Correct Solution Student Solution

Count 500.000 500.000
Mean 278.596 181.296
Std 136.449 117.530
Min 36.000 8.000
25% 174.750 99.750
50% 249.500 169.000
75% 353.000 244.000
Max 1006.000 689.000

Table 6: Statistical Summary of Solution Lengths (En-
glish)

The statistical analysis results for English so- 875

lutions are summarized in Table 6. The average 876

length of correct (teacher-generated) solutions is ap- 877

proximately 278.60 characters, roughly 1.54 times 878

longer than student-generated solutions, which av- 879

erage 181.30 characters. Notably, the standard de- 880

viation for correct solutions (136.45) is consider- 881

ably higher compared to that for student solutions 882

(117.53), indicating that correct solutions not only 883

tend to be lengthier but also exhibit greater variabil- 884

ity in structural complexity and explanatory depth. 885

Metric Correct Solution Student Solution

Count 500.000 500.000
Mean 185.456 122.008
Std 82.344 75.418
Min 46.000 5.000
25% 123.000 70.000
50% 168.000 112.500
75% 237.000 166.000
Max 631.000 389.000

Table 7: Statistical Summary of Solution Lengths (Ko-
rean)

The statistical results for Korean solutions are 886

summarized in Table 7, displaying trends similar 887

to those observed in the English solutions. The 888

average length of correct (teacher-generated) so- 889

lutions in Korean is approximately 185.46 charac- 890

ters, approximately 1.5 times longer than student- 891

generated solutions, which average 122.01 charac- 892

ters. The standard deviation of correct solutions 893

(82.34) is slightly greater than that of student so- 894

lutions (75.42), suggesting more variability due to 895

detailed explanatory content. Furthermore, the max- 896

imum length of correct solutions (631 characters) 897

substantially surpasses that of student solutions 898

(389 characters). 899
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Overall, correct solutions consistently exhibit900

greater length compared to student solutions, re-901

flecting their more detailed and stepwise explana-902

tory nature. This pattern is consistent across both903

languages, reinforcing the observation that teacher-904

generated solutions generally present higher com-905

plexity and explanatory completeness.906

The subsequent analysis separately examines907

solution lengths at the individual step level.908

Metric Correct Solution Student Solution

Count 1724 1340
Mean 80.80 67.65
Std 34.27 32.12
Min 6 6
25% 57 48
50% 74 63
75% 99 83
Max 265 282

Table 8: Statistical Summary of Step Lengths (English)

Metric Correct Solution Student Solution

Count 1724 1340
Mean 53.79 45.53
Std 17.22 17.57
Min 7 5
25% 43 36
50% 51 44
75% 64 55
Max 135 157

Table 9: Statistical Summary of Step Lengths (Korean)

Tables 8 and 9 provide statistical summaries of909

step-by-step solution lengths in English and Ko-910

rean, respectively.911

In English, the average step length of correct912

solutions (80.80 characters) exceeds that of stu-913

dent solutions (67.65 characters). Additionally, the914

standard deviation and maximum-minimum values915

show a broader distribution for correct solutions,916

indicating that these solutions may contain more917

detailed and complex explanations.918

Similar trends appear in Korean solutions. Cor-919

rect solutions have an average step length of 53.79920

characters, longer than the 45.53 characters for stu-921

dent solutions. Standard deviations for both groups922

were comparable, while maximum lengths were923

higher in student solutions, indicating the existence924

of some student solutions with extensive explana-925

tions.926

Generally, correct solutions have longer and927

more detailed step explanations than student928

solutions, although exceptions exist regarding929

maximum-minimum lengths and range distribu- 930

tions. 931

Step Correct Solution Student Solution

1 82.47 64.92
2 79.81 66.95
3 79.90 71.71
4 81.15 70.64
5 83.47 70.63
6 74.74 74.47
7 73.58 71.00
8 69.75 -

Table 10: Average Step Length per Step Number (En-
glish)

Step Correct Solution Student Solution

1 54.20 43.04
2 53.32 45.39
3 53.84 48.37
4 54.81 48.73
5 53.26 47.54
6 50.98 49.94
7 51.50 54.00
8 53.75 -

Table 11: Average Step Length per Step Number (Ko-
rean)

Tables 10 and 11 display the average solution 932

length by individual steps for English and Korean, 933

respectively. 934

For English solutions, the average length of 935

correct solutions consistently surpasses that of stu- 936

dent solutions across the initial five steps, with the 937

largest discrepancy observed in step 1 (82.47 vs. 938

64.92 characters). Differences decrease in subse- 939

quent steps, with steps 6–7 showing minimal di- 940

vergence, and step 8 lacking student solution data, 941

suggesting that correct solutions tend to provide 942

longer, more detailed explanations early in the so- 943

lution process. 944

Korean solutions reveal a similar pattern, with 945

correct solutions typically longer than student so- 946

lutions across most steps, though student solutions 947

exceed correct solutions at step 7. Similar to En- 948

glish data, step 8 lacks student-generated solution 949

data. Compared to English, differences in length 950

per step are generally smaller in Korean solutions. 951

Overall, in both languages, the difference in 952

length per step decreases as solutions progress, 953

with correct solutions consistently providing more 954

comprehensive explanations. 955
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B.2 Analysis of Solution Steps956

This section analyzes the number of steps in the957

Correct Solutions and Student Solutions within the958

dataset. The number of solution steps is a crucial959

metric indicating how granularly the solution pro-960

cess is articulated, serving as an essential factor for961

evaluating the detail and complexity of the solu-962

tions.963

Metric Correct Solution Student Solution

Count 500 500
Mean 3.448 2.680
Std 1.349 1.309
Min 2 1
25% 2 2
50% 3 3
75% 4 3
Max 8 7

Table 12: Statistical Summary of Step Counts by Solu-
tion Type

Table 12 summarizes statistical measures for964

the step counts of both groups. The analysis was965

conducted on 500 solution samples from each966

group.967

The Correct Solutions exhibited an average of968

3.448 steps, noticeably higher than the Student So-969

lutions, which averaged 2.680 steps. This indicates970

a tendency for Correct Solutions to provide more971

detailed and finely segmented explanations. The972

standard deviation of step counts was similarly973

around 1.3 for both groups, suggesting comparable974

variability in the number of solution steps.975

Regarding the minimum number of steps, Stu-976

dent Solutions included instances starting from a977

single step, whereas Correct Solutions always be-978

gan from at least two steps. Additionally, the 75th979

percentile step count was 4 for Correct Solutions980

and 3 for Student Solutions, reinforcing the ob-981

servation that Correct Solutions generally involve982

more steps.983

For maximum step counts, Correct Solutions984

extended up to 8 steps, whereas Student Solutions985

reached a maximum of 7 steps, indicating slightly986

less granularity in student-generated explanations.987

These results suggest that Student Solutions988

tend to provide briefer explanations or omit certain989

steps compared to Correct Solutions. Thus, step990

count analysis serves as a valuable measure for991

assessing the completeness and structural detail of992

student-generated solutions.993
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C Detailed Examples of Ground Truth Alignment994

In this appendix, we present illustrative examples of the GTA results proposed in this paper. The "Predicted995

Alignment" column in the table shows the alignment results from each model, with segments highlighted996

in red indicating misaligned sections.997

Problem
Yeona has a 2L water bottle next to her desk. She takes a sip every 5 minutes, and each sip is 40ml.
How many minutes does it take to finish one bottle of water?
Answer Solution
step_1: First, find the total ml of the bottle: 2L * 1000ml/L = «2*1000=2000»2000ml
step_2: Then divide the total ml by the amount consumed per sip: 2000ml / 40ml = «2000/40=50»50
sips.
step_3: Then, multiply the number of sips by the time per sip to find the time it takes to drink the
bottle: 50 sips * 5 minutes/sip = «50*5=250»250 minutes.
Student Solution
step_1: Yeona’s water bottle is 200ml.
step_2: Divide 200ml by the amount consumed per sip. 200ml / 40ml = «200/40=5»5 sips.
step_3: To find the time it takes to drink the bottle, multiply the number of sips by the time per sip:
5 sips * 5 minutes/sip = 25 minutes
Predicted Alignment by GPT-4o

Student Solution Answer Solution

_ First, find the total ml of the bottle: 2L * 1000ml/L =
«2*1000=2000»2000ml

Yeona’s water bottle is 200ml. _

Divide 200ml by the amount consumed per sip. 200ml / 40ml =
«200/40=5»5 sips.

Then divide the total ml by the amount consumed per sip: 2000ml / 40ml
= «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the number of sips
by the time per sip: 5 sips * 5 minutes/sip = 25 minutes

Then, multiply the number of sips by the time per sip to find the time
it takes to drink the bottle: 50 sips * 5 minutes/sip = «50*5=250»250
minutes.

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm

Student Solution Answer Solution

Yeona’s water bottle is 200ml. First, find the total ml of the bottle: 2L * 1000ml/L =
«2*1000=2000»2000ml

Divide 200ml by the amount consumed per sip. 200ml / 40ml =
«200/40=5»5 sips.

Then divide the total ml by the amount consumed per sip: 2000ml / 40ml
= «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the number of sips
by the time per sip: 5 sips * 5 minutes/sip = 25 minutes

Then, multiply the number of sips by the time per sip to find the time
it takes to drink the bottle: 50 sips * 5 minutes/sip = «50*5=250»250
minutes.

Reference Alignment

Student Solution Answer Solution

_ First, find the total ml of the bottle: 2L * 1000ml/L =
«2*1000=2000»2000ml

Yeona’s water bottle is 200ml. _

Divide 200ml by the amount consumed per sip. 200ml / 40ml =
«200/40=5»5 sips.

Then divide the total ml by the amount consumed per sip: 2000ml / 40ml
= «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the number of sips
by the time per sip: 5 sips * 5 minutes/sip = 25 minutes

Then, multiply the number of sips by the time per sip to find the time
it takes to drink the bottle: 50 sips * 5 minutes/sip = «50*5=250»250
minutes.

Table 13: Example Results of Ground Truth Alignment using GPT-4o and BERTScore with bert-large-uncased and
NW Algorithm (English)
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Problem
연아는책상옆에 2L짜리물병을두고있습니다. 5분마다한모금씩마시는데,한모금당물의
양은 40ml입니다.물한병을다마시는데몇분이걸리나요?
Answer Solution
step_1:먼저병의총 ml수를찾습니다: 2L * 1000ml/L = «2*1000=2000»2000ml
step_2: 그런 다음 총 ml 수를 한 모금당 마시는 양으로 나눕니다: 2000ml / 40ml =
«2000/40=50»50모금
step_3:그런다음모금횟수에모금당시간을곱하여병을마시는데걸리는시간을찾습니다:
50모금 * 5분/모금 = «50*5=250»250분
Student Solution
step_1:연아의물병은 200ml입니다.
step_2: 200ml를한모금당마시는양으로나눕니다200ml / 40ml = «200/40=5»5모금
step_3:모금횟수에모금당시간을곱하여병을마시는데걸리는시간을찾습니다: 5모금 * 5
분/모금 = «5*5=25»25분
Predicted Alignment by GPT-4o

Student Solution Answer Solution

_ 먼저 병의 총 ml 수를 찾습니다: 2L * 1000ml/L =
«2*1000=2000»2000ml

연아의물병은 200ml입니다. _

200ml를 한 모금당 마시는 양으로 나눕니다200ml / 40ml =
«200/40=5»5모금

그런 다음 총 ml 수를 한 모금당 마시는 양으로 나눕니다: 2000ml /
40ml = «2000/40=50»50모금

모금횟수에모금당시간을곱하여병을마시는데걸리는시간을찾
습니다: 5모금 * 5분/모금 = «5*5=25»25분

그런다음모금횟수에모금당시간을곱하여병을마시는데걸리는
시간을찾습니다: 50모금 * 5분/모금 = «50*5=250»250분

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm

Student Solution Answer Solution

연아의물병은 200ml입니다. 먼저 병의 총 ml 수를 찾습니다: 2L * 1000ml/L =
«2*1000=2000»2000ml

200ml를 한 모금당 마시는 양으로 나눕니다200ml / 40ml =
«200/40=5»5모금

그런 다음 총 ml 수를 한 모금당 마시는 양으로 나눕니다: 2000ml /
40ml = «2000/40=50»50모금

모금횟수에모금당시간을곱하여병을마시는데걸리는시간을찾
습니다: 5모금 * 5분/모금 = «5*5=25»25분

그런다음모금횟수에모금당시간을곱하여병을마시는데걸리는
시간을찾습니다: 50모금 * 5분/모금 = «50*5=250»250분

Reference Alignment

Student Solution Answer Solution

_ 먼저 병의 총 ml 수를 찾습니다: 2L * 1000ml/L =
«2*1000=2000»2000ml

연아의물병은 200ml입니다. _

200ml를 한 모금당 마시는 양으로 나눕니다200ml / 40ml =
«200/40=5»5모금

그런 다음 총 ml 수를 한 모금당 마시는 양으로 나눕니다: 2000ml /
40ml = «2000/40=50»50모금

모금횟수에모금당시간을곱하여병을마시는데걸리는시간을찾
습니다: 5모금 * 5분/모금 = «5*5=25»25분

그런다음모금횟수에모금당시간을곱하여병을마시는데걸리는
시간을찾습니다: 50모금 * 5분/모금 = «50*5=250»250분

Table 14: Example Results of Ground Truth Alignment using GPT-4o and BERTScore with bert-large-uncased and
NW Algorithm (Korean)
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D Detailed Examples of Solution Error Detection998

In this appendix, we provide illustrative examples of SED results within the solutions proposed in this999

paper. In the provided tables, red-colored sections indicate incorrect responses, while blue-colored sections1000

represent correct responses.1001

Problem
Three cats were sitting on a fence meowing at the moon. The first cat meowed 3 times per minute.
The second cat meowed twice as often as the first cat. The third cat meowed at 1/3 the frequency of
the second cat. What is the total number of times the three cats meowed in 5 minutes?
Answer Solution
step_1: The second cat meowed twice as often as the first cat, which meowed 3 times per minute,
resulting in a total of 2*3=«2*3=6»6 meows per minute.
step_2: The third cat meowed at 1/3 the frequency of the second cat, resulting in a total of
6/3=«6/3=2»2 meows per minute.
step_3: Therefore, the three cats meow 3+6+2=«3+6+2=11»11 times per minute.
step_4: In 5 minutes, three cats meow 5*11=55 times.
Student Solution
step_1: The second cat meows 2*3=«2*3=6»6 times.
step_2: The third cat meows 3*1/3=«3*1/3=1»1 time.
step_3: The three cats meow 3+6+1=«3+6+1=10»10 times per minute.
step_4: For 5 minutes, the three cats meow 10*5=«10*5=50»50 times.
GPT-4o
step_2
Llama-3.1-8B-Instruct
step_2
DeepSeek-R1-Distill-Llama-8B
step_3
DeepSeek-llama3.1-Bllossom-8B
step_3
Qwen2.5-7B-Instruct
step_3
DeepSeek-R1-Distill-Qwen-7B
step_1
DeepSeek-R1-Distill-Qwen-7B-Multilingual
step_1
Mistral-7B-Instruct-v0.3
step_3
Phi-4-mini-instruct
step_2
Answer
step_2

Table 15: Example Results of Solution Error Detection using GPT-4o and Open LLMs (English)

16



Problem
고양이세마리가울타리에앉아달을향해야옹거리고있었습니다.첫번째고양이는분당 3번
야옹거렸습니다.두번째고양이는첫번째고양이보다두배더자주야옹거렸습니다.그리고
세 번째 고양이는 두 번째 고양이의 1/3 빈도로 야옹거렸습니다. 고양이 세 마리가 5분 동안
야옹거리는총횟수는얼마입니까?
Answer Solution
step_1:두번째고양이는첫번째고양이가분당 3번야옹하는것보다두배더자주야옹하여
분당총 2*3=«2*3=6»6번의야옹을했습니다.
step_2:세번째고양이는두번째고양이의 1/3빈도로야옹거렸으므로분당총 6/3=«6/3=2»2
번의야옹거림을보였습니다.
step_3:따라서세마리의고양이는분당 3+6+2=«3+6+2=11»11번야옹거립니다.
step_4: 5분동안고양이세마리는 5*11=«5*11=55»55번야옹거립니다.
Student Solution
step_1:두번째고양이는 2*3=«2*3=6»6번야옹거립니다.
step_2:세번째고양이는 3*1/3=«3*1/3=1»1번야옹거립니다.
step_3:세고양이는분당 3+6+1=«3+6+1=10»10번야옹거립니다.
step_4: 5분동안세고양이들은 10*5=«10*5=50»50번야옹거립니다.
GPT-4o
step_2
Llama-3.1-8B-Instruct
step_2
DeepSeek-R1-Distill-Llama-8B
step_3
DeepSeek-llama3.1-Bllossom-8B
step_3
Qwen2.5-7B-Instruct
step_2
DeepSeek-R1-Distill-Qwen-7B
step_2
DeepSeek-R1-Distill-Qwen-7B-Multilingual
step_2
Mistral-7B-Instruct-v0.3
No errors
Phi-4-mini-instruct
step_2
Answer
step_2

Table 16: Example Results of Solution Error Detection using GPT-4o and Open LLMs (Korean)
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