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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have significantly improved math-
ematical problem-solving, with models like
GPT-4 achieving human-level performance.
However, proficiently solving mathematical
problems differs fundamentally from effec-
tively teaching mathematics. To bridge this
gap, we introduce the Bi-GSM8K benchmark, a
bilingual English-Korean dataset enriched with
authentic teacher-generated solutions, student-
generated solutions, and annotations marking
students’ initial errors. This dataset facilitates a
comprehensive evaluation of how closely LLM-
generated solutions align with human educa-
tors’ reasoning and the precision of LLMs in
detecting initial student errors. Our experiments
showed alignment exact match rates between
student and teacher solutions of 74.4% for En-
glish and 75.0% for Korean. We further evalu-
ated various commercially available and open-
source LLMs, highlighting GPT-40’s superior
accuracy in initial error detection while rec-
ognizing open-source models’ computational
efficiency advantages. Our key contributions
include the open-source release of Bi-GSMS8K,
novel evaluation metrics, and comparative anal-
yses of LLM performance across languages.

1 Introduction

Recent advancements in LLMs have led to signif-
icant progress in mathematical problem-solving
tasks. Notably, GPT-4 has achieved accuracy rates
of 97% and 86% on GSM8K and MMLU bench-
marks, respectively, demonstrating performance
comparable to expert human levels. Additionally,
OpenAl’s o1 model has attained an accuracy of
74.4% (pass@1) on the AIME problems, fur-
ther evidencing its advanced reasoning capabili-
ties (Zhong et al., 2024; Achiam et al., 2023; Ope-
nAl, 2024). These results indicate that LLMs have
evolved from mere language-understanding tools
into sophisticated instruments capable of logical
reasoning and computational problem-solving.

However, effectively solving mathematical prob-
lems and proficiently teaching mathematics to stu-
dents constitute fundamentally distinct tasks. Prior
research has established that the competencies in-
volved in effectively solving mathematical prob-
lems, termed Common Content Knowledge (CCK),
differ significantly from the Mathematical Knowl-
edge for Teaching (MKT) required for effective
pedagogical practice (Understand, 1986; Ball et al.,
2008). Within educational contexts, this implies
that merely providing correct answers is insuf-
ficient; it is crucial to understand the student’s
thought processes and diagnose their errors accu-
rately (Copur-Gencturk and Tolar, 2022; Daheim
et al., 2024; Sonkar et al., 2024).

This perspective is increasingly prevalent in con-
temporary research on mathematics education us-
ing LLMs. In particular, there is a growing consen-
sus that aligning LLMs to think like experienced
educators rather than merely serving as answer-
generating machines maximizes educational effec-
tiveness. Recent studies have emphasized that, sim-
ilar to human teachers, LLMs must engage in di-
agnosing errors and providing feedback based on
students’ solution processes when imparting Ped-
agogical Content Knowledge (PCK) (Jiang et al.,
2024; Hu et al., 2025).

In this context, from a learning efficiency per-
spective, we emphasize the necessity for evalua-
tion metrics that assess Large Language Models
(LLMs) beyond simply providing direct answers.
Specifically, these metrics should evaluate: (1) how
closely an LLM-generated solution aligns with the
solution processes of human educators, and (2) the
accuracy with which an LLM identifies the initial
point of error in student-generated responses. To
facilitate such evaluation, it is essential to first es-
tablish evaluation datasets that include authentic
solution processes generated by teachers. However,
existing datasets, such as GSMS8K, contain only
mathematical problems accompanied by solved an-



swers, lacking genuine teacher-generated solution
processes (Cobbe et al., 2021). To address this gap,
we augment the GSMS8K dataset by incorporating
real teacher-generated solutions, thus creating the
Bi-GSMS8K benchmark. Furthermore, we extend
this benchmark to include student-generated so-
lution processes annotated explicitly with labels
marking students’ initial errors. Finally, we trans-
late the augmented dataset into a bilingual Korean-
English corpus, enabling the analysis of linguistic
differences in mathematical problem-solving.

Using this benchmark, we conducted experi-
ments evaluating the alignment accuracy of various
LLM-generated and student-generated solutions
compared to authentic teacher solutions. Results
indicate alignment accuracy rates of 74.4% for En-
glish and 75.0% for Korean in matching student
solutions with teacher solutions. We further com-
pared multiple commercially available open-source
LLMs with GPT-40, assessing both accuracy and
latency to determine practical applicability. Since
the Bi-GSM8K benchmark includes annotations
marking students’ initial errors, it enabled evalua-
tion of LLMs’ proficiency in detecting these initial
mistakes. In this evaluation, GPT-40 demonstrated
significantly superior performance. However, cer-
tain open-source models exhibited faster error anal-
ysis capabilities than larger commercial models,
highlighting their potential advantage in practical
educational contexts.

* Construction and open-source release of Bi-
GSMBS8K, a mathematical educational bench-
mark dataset including authentic human-
generated solution processes

* Proposal of novel evaluation metrics to as-
sess the accuracy of mathematical solution
processes

e Comparative analysis of alignment accu-
racy between LLM-generated and teacher-
generated answers, utilizing various LLMs
and examining differences across languages

2 Related Work

In this section, we review existing research related
to mathematical education and LLMs by analyzing
the characteristics influenced by problem-solving
approaches, instructional methods, and linguistic
differences.

2.1 Utilization and Limitations of LLMs in
Mathematics Education

Recently, there has been growing interest in lever-
aging LLMs within mathematics education, pri-
marily focusing on problem-solving and tutoring.
However, their performance differs significantly
between these domains. For instance, while LLMs
achieve an accuracy of 85.5% in algebraic problem-
solving tasks, their accuracy in generating educa-
tional dialogues as tutors is limited to 56.6%, high-
lighting frequent errors in tutoring scenarios (Gupta
et al., 2025). Integrating stepwise error detection
models has significantly enhanced the accuracy,
clarity, and educational validity of LLM-generated
feedback compared to standard methods (Daheim
et al., 2024).

Furthermore, LLMs fine-tuned on mathematical
tutoring datasets such as MATHDIAL can provide
more equitable and accurate feedback; however,
limitations remain in error prevention, correction,
and fully replacing human (Macina et al., 2023).
Although LLMs exhibit human-like performance
in replicating intelligent tutoring feedback or auto-
matic grading, their effectiveness diminishes sig-
nificantly with novel errors, student cognition diag-
nosis, or irrelevant content avoidance (Gupta et al.,
2025; Daheim et al., 2024; Macina et al., 2023;
McNichols et al., 2024; Jin et al., 2025; Baral et al.,
2024; Jin et al., 2024).

2.2 Challenges in Non-English Educational
Environments

The performance of LLMs on mathematical prob-
lems formulated in non-English languages remains
a significant challenge requiring further improve-
ment. For example, Wei et al. analyzed the perfor-
mance of various LLMs using the CMATH dataset,
which consists of elementary mathematics prob-
lems in Chinese, and found that GPT-4 achieved
an accuracy above 60%, whereas most other LLMs
showed considerably lower performance on non-
English mathematics tasks. Additionally, Nguyen
et al. applied ChatGPT to Korean middle and high
school mathematics problems, reporting an accu-
racy rate of 66.7%. Although this performance is
lower compared to English problems, the study
suggests that LLMs remain useful in evaluating
student responses. Moreover, multimodal-based as-
sessments such as those using the KoNET dataset
have revealed substantial performance degradation
of Al models when applied within Korean high



school educational settings (Park and Kim, 2025).
These studies clearly demonstrate ongoing perfor-
mance limitations of LLMs in non-English educa-
tional contexts.

2.3 Research Trends of LLMs for Educational
Purposes

Research on employing LLMs for educational
purposes broadly divides into two streams. The
first stream emphasizes enhancing mathematical
problem-solving skills, utilizing LLMs to gener-
ate customized mathematical problems or solution
methods to fine-tune student models and boost
learning effectiveness (Liang et al., 2023). The sec-
ond stream employs LLMs as tutors to simulta-
neously enhance students’ learning outcomes and
feedback generation capabilities (Scarlatos et al.,
2025). Approaches include training LLMs using
students’ learning outcomes as reward signals, as
well as employing schema-based strategies and
role-based prompts to generate structured and ped-
agogically beneficial feedback (Dixit and Oates,
2024; Hu et al., 2025; Scarlatos et al., 2025).

These studies indicate the potential utility of
LLMs in diverse pedagogical practices within math-
ematics education, such as problem generation,
problem-solving, feedback provision, and instruc-
tional design. Nevertheless, concerns remain re-
garding the accuracy of generated outputs, the sup-
port for autonomous learning, and overall research
reliability, underscoring ongoing areas for improve-
ment.

3 The Bi-GSMS8K Dataset

What considerations are necessary for LLMs to ef-
fectively teach mathematical problem-solving in
a manner comparable to human educators? A fun-
damental requirement for addressing this issue is
to systematically devise evaluation methodologies
capable of assessing how closely LLM-generated
responses resemble authentic teacher-generated so-
lution processes. To facilitate the training and eval-
uation of the proposed mathematical tutoring sys-
tem, we constructed the Bi-GSM8K dataset, which
comprises elementary-level mathematical problem-
solving processes. This dataset plays a critical role
in detecting student errors and analyzing their learn-
ing states. Specifically, Bi-GSMS8K contains struc-
tured solution procedures and includes both correct
and incorrect solution examples. The dataset was
entirely developed in Korean by domestic domain

experts, with an English version provided via auto-
matic translation.

We constructed the Bi-GSM8K dataset by auto-
matically translating the original English GSM8K
dataset into Korean, subsequently adapting it to
align with the Korean educational curriculum, and
meticulously correcting translation errors. The
dataset consists of a total of 500 items, each
provided in JSON format. Each item includes
curriculum-aligned fields indicating the educa-
tional domain and unit, as well as detailed sections
labeled problem, solution, the teacher-generated
correct solution (correct_solution), and the student-
generated erroneous solution (error_solution).

{

"area": "problem”,

"problem”: "Byeongjin went fishing with his family
yesterday. Byeongjin caught 4 fish, his wife caught 1,
the eldest son caught 3, the younger son caught 2, and
the youngest daughter caught 5. Unfortunately, 3 of the
fish were too small and were released back. If each fish
yields 2 fillets, how many fillets can Byeongjin’s family
make?",

"solution”: "Four hats with 3 stripes each have a total
of 4x3=«43=12»12 stripes.\n Three hats with 4 stripes
each have a total of 3x4=«34=12»12 stripes.\n Six hats
with no stripes have 6x0=«60=0»0 stripes.\n And two hats
with 5 stripes each have 2x5=«25=10»1@ stripes.\n The
total number of stripes on Byungjin’s hats is
12+12+0+10=«12+12+0+10=34»34 stripes.\n #i### 34"

"correct_solution": {

"step_1": "Byung-jin’s family caught 4 + 1 + 3 + 2 +
5 = «4+1+3+2+5=15»15 fish."”,

"step_2": "15 - 3 = «15-3=12» I stored 12 fish.",

"step_3": "Since you can obtain 2 fillets from each
fish, for 12 fish, you have 12 fish * 2 fillets per fish
= 24 fillets.”

3
"error_solution”: {
"step_1": "4+1+3+2+5 = 15",
"step_2": "15 * 2 = 30",
"step_3": "Answer: 30 fillets”
}
3}

Table 1: In the proposed Bi-GSMS8K dataset, exam-
ples are expanded beyond the original GSM8K format,
which included only “Problem” and “Solution” fields.
Bi-GSMSK additionally provides the teacher-generated
correct solution (correct_solution) and an erroneous
student-generated solution (error_solution). Further-
more, the Bi-GSMS8K dataset is offered as a bilingual
Korean-English corpus.

Given that the problems were translated from En-
glish, we performed an extensive validation process.
Proper nouns, units, and expressions were adjusted
to fit the standards of the Korean curriculum, and
errors originating from machine translation were
carefully revised. Teacher-generated solutions were
then added, and their accuracy was thoroughly re-
viewed, applying necessary corrections. Finally,
student-generated solutions were manually created
to intentionally reflect realistic student errors while



closely adhering to the teacher-generated correct
solutions. Mathematical expressions were format-
ted following the GSMS8K standard by enclosing
them within “« »” symbols. Following this meticu-
lous process, the Bi-GSMS8K dataset was finalized.
Table 1 illustrates a representative example from
the Bi-GSMS8K dataset.

The Bi-GSMS8K dataset possesses the following
key features:

¢ Automated Translation and Review: The
original GSM8K dataset was translated into
Korean via automated translation, then re-
vised to align with the Korean curriculum,
with corrections made for proper nouns, units,
and translation errors. Correct solutions un-
derwent multiple reviews for accuracy.

* Inclusion of Student Solutions: By incor-
porating varied student errors into student-
generated solutions and aligning them with
correct solutions, the dataset supports error
tracking, learning state analysis, and cus-
tomized feedback generation.

* Initial Error Annotation: Each item pro-
vides both the teacher’s correct solution and
the student’s erroneous solution, explicitly an-
notating the initial error point within the stu-
dent’s solution, thereby assisting accurate er-
ror diagnosis and remediation by the model.

The Bi-GSMS8K dataset provides a structured
data format enabling detailed analysis of errors
occurring within student-generated solutions. By
tracking specific error points, the dataset facilitates
the identification of student error patterns and en-
hances the precision of error diagnosis.

4 Evaluation Metric

The Bi-GSMS8K benchmark proposed in this study
provides data enabling the evaluation of solu-
tion processes generated by LLMs by directly
comparing them with those produced by experi-
enced human teachers. To achieve this compara-
tive evaluation, appropriate assessment methodolo-
gies are necessary. Specifically, this study intro-
duces two similarity-based evaluation methods: (1)
Ground Truth Alignment (GTA), which assesses
how closely generated solutions align with correct
teacher-generated solutions, and (2) Solution Error
Detection (SED), which identifies the initial error
point within student-generated solutions, thereby

systematically evaluating the capabilities of lan-
guage models.

4.1 Ground Truth Alignment

Evaluating narrative-style solutions of mathemati-
cal problems quantitatively is inherently challeng-
ing. Therefore, we propose GTA, which assesses
solution quality based on the similarity between
the predicted and ground-truth solutions. The sim-
ilarity measurement involves two key steps: (1)
assessing semantic similarity using measures such
as Cosine Similarity, Pearson Correlation, Sem-
Score, and BERTScore (Aynetdinov and Akbik,
2024; Zhang et al., 2019), and (2) determining
structural similarity using the Needleman-Wunsch
(NW) algorithm to align solution sequences needle-
man1970general. This dual-step process identifies
discrepancies and optimizes the similarity of rea-
soning paths.

Algorithm 1 NW Algorithm with Semantic Simi-
larity for Ground Truth Alignment

. Input: s1, s2, sim_m, sim_th
. Output: z_aln, y_aln
: m <+ len(sl), n + len(s2)
. Initialize bt_table of size (m + 1, n + 1)
for i = 0to m do
bt_table[t][0] + 1
. end for
for j = Oton do
bt_table[0][j] + 2
. end for
11: fori = 1to m do
12:  forj=1tondo
13: m_sc < score[i — 1][j — 1] + sim_m[i — 1][j — 1]
14: gap_p <+ gap_u X (1 — sim_m[i — 1][j — 1])
15: u_sc < scoreli — 1][j] — gap_p
16: I_sc < scorelil[j — 1] — gap_p
17: bt_table[i][j] < argmax(m_sc, u_sc, l_sc)
18:  end for
19: end for
20: i+ m,j < n
21: Initialize z_aln, y_aln
22: whilei > Oorj > 0do
23:  ifbt_table[i][j] = O then

> From up

> From left

SO0 U AL —

24: if sim_m[i — 1][j — 1] > sim_th then
25: Append aligned values to z_aln, y_aln
26: end if

27:  endif

28: Update indices ¢ and j

29: end while

30: Reverse z_aln, y_aln
31: Return z_aln, y_aln

In this study, we modified the conventional NW
algorithm specifically for aligning mathematical
solution processes. The NW algorithm numerically
quantifies the similarity between two strings and
identifies the most similar alignment, making it
suitable for static similarity comparisons of lengthy
texts. Typically, when comparing two texts, the NW
algorithm assigns fixed penalty scores for character
insertions or deletions. However, mathematical so-
lution processes inherently involve both sequential



Student Solution (s;)

D = the time (in minutes) it takes to clean the downstairs,
so the upstairs cleaning time is 2D + 5 minutes.

v

Thus, 3D = 38.

Therefore, the time it takes to clean the downstairs is D
=38/3 = 13 minutes.

Answer Solution (s;)

matching
D = the time (in minutes) it takes to clean the downstairs,
so the upstairs cleaning time can be expressed as 2D + 5
minutes.

missing

The total cleaning time is 38 minutes, so we set up the
equation: 3D + 5 =38,

matching

Subtracting 5 from both sides gives us: 3D = 33.
matching

Dividing both sides by 3, we get: D = 11 minutes.

missing
Therefore, the upstairs cleaning time is (2* 11) + 5= 27
minutes, so Dad took 27 minutes to clean the upstairs.

Figure 1: Upon submission of a student’s solution to the system, an initial comparison and alignment with the
correct solution is performed. This alignment employs Language Models (LMs), similarity functions, and the NW
algorithm to systematically analyze omitted steps or extraneous information in the student’s solution. Subsequently,
an independent LL.M-based error detection model operates separately from the alignment process to precisely
identify the initial point of error within the student’s solution.

order and detailed semantic content. Therefore, we
adjusted gap penalties according to semantic simi-
larity metrics (e.g., Cosine similarity, BERTScore),
assigning smaller penalties to semantically similar
sentences and larger penalties to dissimilar ones.
Additionally, matching scores are computed based
on substring similarities, enabling natural and pre-
cise alignment between solution steps. This allows
clear identification of differences between two so-
Iutions and facilitates alignment consistent with the
problem-solving flow.

Algorithm 1 describes the proposed procedure
for computing alignment scores between two solu-
tions (examples in Figure 1). Here, s; represents
the teacher-generated solution with m steps, and so
denotes the student-generated solution with n steps.
The inputs are two sequences (S1, S2), a similarity
matrix (s¢m_m) indicating semantic similarities
between solution steps, and a similarity threshold
(stm_th). A backtracking table bt_table for dy-
namic programming is initialized (line 4) with di-
mensions (m + 1) x (n + 1), storing directional
moves for reconstructing optimal alignments. The
first row and column of bt_table are initialized to
represent leftward and upward movements, respec-
tively.

Next, a backtracking table bt_table for dynamic
programming is initialized (line 4). The table has
dimensions (m+1) x (n+1), with each cell record-
ing the optimal move direction for backtracking.
The first row and first column of bt_table are ini-
tialized with left (represented by 2) and upward
(represented by 1) movements, respectively.

Subsequently, the remainder of bi_table is
filled using two nested loops. At each cell (i, j),

values for three possible movements are calcu-
lated, and the maximum value is selected and
recorded in bt_table[i|[j]. Diagonal movements
(matches) add the value from the diagonal cell
and sim_m/[i—1][j—1]; upward movements (dele-
tions) add penalties to values from the cell above;
leftward movements (insertions) add penalties to
values from the cell to the left. Once the table is
fully populated, an optimal alignment between the
sequences is determined by backtracking through
bt_table.

During the backtracking phase, alignments are
determined according to each cell’s recorded move-
ment direction. For diagonal movements (repre-
sented by 0), if the similarity is below the thresh-
old sim_th, the element s;[i—1] is aligned as
an "omission". If the similarity meets or exceeds
stm_th, the algorithm checks for duplicate align-
ments. Specifically, if sq[j—1] is already aligned
with another element in y_aln, the algorithm com-
pares similarity scores between the existing and
current alignments. If the existing alignment has a
higher similarity score, the current element s; [i—1]
is aligned as an "omission"; otherwise, the existing
alignment is replaced with the current one. If no
duplication occurs, the two elements are directly
aligned. For upward movements (represented by
1), the element s;[i—1] is aligned as an "omis-
sion". For leftward movements (represented by
2), an "unnecessary" is aligned with the element
s9[j—1]. After backtracking completes, the aligned
sequences x_aln.reverse() and y_aln.reverse(),
along with the similarity matrix sim_m, are re-
turned in the correct order.

Compared with conventional similarity-based



scoring (NW or cosine similarity), GTA aligns each
intermediate reasoning step with its ground-truth
counterpart, producing a fine-grained score that
captures logical coherence rather than superficial
lexical overlap. This step-aware alignment not only
yields stronger correlations with true solution qual-
ity but also pinpoints where a learner’s reasoning
diverges, enabling interpretable diagnostics and tar-
geted feedback.

4.2 Solution Error Detection

Identifying the initial error step is particularly cru-
cial in personalized tutoring scenarios. Precisely
pinpointing the moment when a student deviates
from the correct problem-solving strategy enables
the system to gain deeper insights into the student’s
conceptual understanding. This module aims to
accurately identify the initial erroneous step in a
student’s mathematical problem-solving process.

Your goal is to compare the correct solution to the student solution
and output the steps the student needs to review again. If the student’s
solution is correct, output 0.

Problem: Sohee feels bored with her current game and decides
to play a new one. In the new game, 80% of the 100 hours of gameplay
consists of repetitive and boring stages. However, through an expansion
pack, she can add 30 hours of enjoyable stages. Including the expansion
pack, how many hours of enjoyable stages can Sohee play?
Answer Solution: {

"step_1":"There are 1000.8=«1000.8=80»80 hours of boring stages in
the game.",

"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20
hours.",

"step_3":"With the expansion pack, the enjoyable gameplay time
increases to 20+30=«20+30=50»50 hours."

Student Solution: {

"step_1": "There are 1000.8=«1000.8=80»80 hours of boring stages
in the game.",

"step_2":"The enjoyable gameplay time is 100-80=«100-80=20»20
hours.",

"step_3":"The expansion pack has 300.8=«300.8=24»24 hours of
boring stages.",

"step_4":"The enjoyable gameplay time in the expansion pack is
30-24=«30-24=6»6 hours.",

"step_5":"The total enjoyable gameplay time is 50+6=«50+6=56»56
hours."

}

Q: Is the Student Solution incorrect? Write only the step number with
the first error or 0 if no error is found.
A:2

Problem: {problem}

Answer Solution: {answer_solution}

Student Solution: {student_solution}

Q: Is the Student Solution incorrect? Write only the step number with
the first error or O if no error is found.

A:

Table 2: Prompt Template for Solution Error Detection

The initial error detection module proposed in
this study leverages open-source LLMs and em-
ploys a few-shot learning approach, enabling accu-
rate error identification with only a small number
of examples. Specifically, we adopt a 3-shot learn-
ing setup, where each example comprises a math-

ematical problem, an Answer Solution, a Student
Solution, and a Q(Question) for determining the
presence of an error. The model compares the cor-
rect solution with the student’s solution and outputs
the step number corresponding to the first incorrect
reasoning; it returns O if no error is detected.

Table 2 presents an example of the prompt struc-
ture used in this task. Initially, the prompt provides
task instructions, followed by three example prob-
lems along with their correct and student-generated
solutions. Subsequently, it includes a query prompt-
ing the determination of whether an error has oc-
curred in the student’s solution and, if so, to identify
the initial erroneous step.

S Experiment

5.1 Experiment Settings and Models

In this study, we evaluated various open-source
LLMs using the mathematical Bi-GSM8K dataset.
The models selected for experimentation were as-
sessed comprehensively based on multilingual pro-
cessing capabilities, mathematical reasoning abili-
ties, response consistency, and computational effi-
ciency. Models ranging from 7B to 8B parameters
were specifically chosen due to their balance be-
tween performance and practicality, making them
suitable for real-world educational contexts. Ad-
ditionally, for the GTA module, BERTScore was
employed to measure nuanced semantic similarity
between the generated texts and ground-truth so-
lutions. This was facilitated by adopting multiple
pretrained transformer models. The primary hyper-
parameters for the open-source models were set
to a temperature of 1, a top_p of 0.75, a top_k of
40, and num_beams of 4. For GPT-40, the tem-
perature was adjusted to 0.75 to enhance response
consistency and stability.

5.2 Ground Truth Alignment

In this section, we evaluate the alignment perfor-
mance between student-generated solutions pro-
duced by the GPT-40 model and the teacher-
generated correct solutions. Table 3 summarizes
evaluation results of the GTA system across vari-
ous similarity metrics, models, and thresholds. It
reports exact match accuracy for English (EN) and
Korean (KO) datasets, along with computational
efficiency metrics such as latency (seconds) and
peak memory usage (MB). Except for the exact
match accuracy, all other values in Table 3 rep-
resent averages of results obtained from the En-



Similarity Model Threshold Exact Match Latency Peak Memory
EN KO (sec) (MB)
GPT-40 684 82.0 3.372
Llama-3.1-8B-Instruct 0.6 66.6 66.8 0.427 28681.48
DeepSeek-R1-Distill-Llama-8B 0.5 674 674 0.429 28681.48
Cosine DeepSeek-1lama3.1-Bllossom-8B 0.6 67.2 66.2 0.389 28658.35
Pearson Qwen2.5-7B—InsAmfct 0.5 632 652 0.406 27178.01
Semscore DeepSeek-R1-Distill-Qwen-7B 0.7 66.2  60.8 0.373 27178.21
DeepSeek-R 1-Distill-Qwen-7B-Multilingual 0.7 654 612 0.398 27162.12
Mistral-7B-Instruct-v0.3 0.7 66.8 672 0.501 27221.69
Phi-4-mini-instruct 0.5 628 654 0.183 14728.41
bart-large 0.6 71.8  72.0 0.070 703.91
BertScore bert-large-uncased 0.5 744 728 0.113 1010.21
deberta-v2-xlarge-mnli 0.7 72.6  75.0 0.213 2683.69
roberta-large 0.8 65.6  66.6 0.109 1040.56

Table 3: Comparative evaluation of Ground Truth Alignment scores, thresholds, and memory usage for each model

glish and Korean datasets. For the alignment perfor-
mance evaluation between student-generated and
teacher-generated solutions, 500 problems from the
Bi-GSMB8K dataset were utilized. Similarity thresh-
olds of [0.5,0.6,0.7,0.8,0.9] were applied to each
similarity metric. Detailed alignment examples are
provided in Appendix C.

The large-scale commercial API GPT-40, used
as a baseline, achieved the highest performance
with accuracies of 68.4% on the English dataset
and 82.0% on the Korean dataset, demonstrating
its advanced capabilities in language understanding
and reasoning.

In comparisons across similarity measurement
methods, BertScore-based models consistently out-
performed vector similarity-based models (Cosine,
Pearson, Semscore). Specifically, the bert-large-
uncased model recorded an accuracy of 74.4% on
the English dataset, approximately 6 percentage
points higher than GPT-40. On the Korean dataset,
the deberta-v2-xlarge-mnli model exhibited the
best performance with 75.0% accuracy. These re-
sults suggest that the contextualized embeddings
utilized in BERT-based models excel at detect-
ing semantic similarities, enabling more precise
alignment between student-generated and teacher-
generated solutions. Consequently, the importance
of context-aware embeddings in solution alignment
tasks is emphasized.

From a computational efficiency standpoint,
larger transformer models such as Llama-3.1-8B
and the DeepSeek series had an average latency of
approximately 0.4 seconds, while bart-large and
bert-large-uncased models demonstrated signifi-
cantly faster inference speeds at 0.07 seconds and
0.11 seconds, respectively. Memory usage showed
similar patterns; LLM-based models required sub-
stantial memory exceeding approximately 27,000

MB, whereas BERT-based models utilized signif-
icantly less, generally under 3,000 MB. Notably,
the bart-large model operated with only around 700
MB of memory, making it viable even in resource-
constrained environments. These experimental re-
sults clearly illustrate a trade-off between accuracy
and computational efficiency. GPT-4o0 delivered the
highest accuracy but faced limitations in real-world
tutoring applications due to computational over-
head and associated costs. Among more accessible
models, bert-large-uncased and deberta-v2-xlarge-
mnli models, utilizing BertScore, demonstrated the
most effective balance between performance and
efficiency.

5.3 Solution Error Detection

In this section, we evaluated the accuracy of var-
ious LLMs in identifying the initial errors made
by students during mathematical problem-solving.
Table 4 summarizes the results of the SED task
across multiple LLMs, reporting accuracy for both
English (EN) and Korean (KO) datasets, along with
computational efficiency metrics (throughput: re-
quests/sec, latency: seconds, memory usage: MB).
The evaluation utilized 500 items from the Bi-
GSMBS8K dataset, with detailed alignment examples
presented in Appendix D.

GPT-40, employed as a baseline commercial
API, demonstrated the highest accuracy, achieving
94.4% for English and 95.8% for Korean, indi-
cating top-tier performance. Particularly notable
is GPT-40’s superior accuracy on Korean data,
suggesting strong suitability for Korean-language
mathematics tutoring applications. Moreover, GPT-
40 achieved relatively rapid response times, with a
throughput of 0.1309 requests/sec and latency of
8.39 seconds, highlighting both its sophisticated
linguistic reasoning capabilities and computational



Model Accuracy  Throughput Latency Peak Memory
EN KO (requests/sec) (sec) (MB)

GPT-40 944 95.8 0.1309 8.39 -
Llama-3.1-8B-Instruct 804 752 0.0014 711.60 10896.85
DeepSeek-R1-Distill-Llama-8B 554 57.8 0.0014 720.06 10898.43
DeepSeek-llama3.1-Bllossom-8B 63.2 62.0 0.0014 716.86 10851.40
Qwen2.5-7B-Instruct 79.4  86.0 0.0013 783.91 11279.73
DeepSeek-R1-Distill-Qwen-7B 82.8 804 0.0013 801.63 11328.93
DeepSeek-R1-Distill-Qwen-7B-Multilingual | 86.4 83.4 0.0012 847.68 11281.79
Mistral-7B-Instruct-v0.3 67.0 67.0 0.0009 1168.91 15120.72
Phi-4-mini-instruct 76.6 78.6 0.0029 355.01 8075.12

Table 4: Comparative evaluation of Solution Error Detection scores, thresholds, and memory usage for each model

efficiency. Nonetheless, multilingual models based
on Qwen demonstrated relatively stronger perfor-
mance compared to single-language and basic mod-
els. For example, DeepSeek-R1-Distill-Qwen-7B-
Multilingual achieved commendable accuracy of
86.4% in English and 83.4% in Korean, while the
single-language counterpart, Qwen2.5-7B-Instruct,
attained 86.0% accuracy in Korean.

Conversely, lightweight models based on the
Llama series exhibited lower accuracy. Llama-3.1-
8B-Instruct achieved moderate accuracy levels of
80.4% in English and 75.2% in Korean, whereas
DeepSeek-R1-Distill-Llama-8B performed poorly
with accuracies of 55.4% and 57.8% in English
and Korean, respectively. Notably, the DeepSeek-
llama3.1-Bllossom-8B model, trained to think in
English and output in the input language, demon-
strated negative performance impacts upon integrat-
ing Korean data. This suggests that English-centric
cognitive strategies were inadequately adapted for
the Korean context or that the semantic quality
of training data was compromised, ultimately hin-
dering mathematical reasoning and error detection
capabilities.

In terms of computational efficiency, the Phi-4-
mini-instruct model exhibited exceptional resource
efficiency with a throughput of 0.0029 requests/sec,
latency of 355.01 seconds, and memory usage of
8075.12MB; however, its low accuracy limits its
practicality for real-time tutoring requiring imme-
diate feedback. Most open-source models showed
comparable or higher throughput and shorter la-
tencies than GPT-40, advantageous for real-time
responsiveness, yet their performance remains lim-
ited in complex problem-solving and deep linguis-
tic comprehension.

In this experiment, we evaluated various LLMs
on their ability to detect initial errors in stu-
dents’ mathematical solution processes. Open-
source models generally underperformed commer-

cial models in accuracy and computational effi-
ciency, with multilingual models exhibiting notable
performance variability across languages. Partic-
ularly, Llama series models trained primarily on
English data experienced performance degradation
when incorporating Korean data, underscoring the
necessity for language-specific optimization and
enhanced data quality for complex mathematical
reasoning tasks.

6 Conclusion

In this study, we introduced Bi-GSM8K, a bilingual
English-Korean benchmark dataset for mathemati-
cal problem-solving, constructed using student and
teacher solution processes.

This dataset provides foundational resources for
mathematics education, facilitating comprehensive
evaluation of alignment accuracy between student-
generated and teacher-generated solutions, as well
as assessing initial error detection performance
across various LLMs. Specifically, we introduced
an analytical approach combining similarity met-
rics, GPT, and the Needleman-Wunsch algorithm
to measure the semantic similarity between student-
generated and teacher-generated solutions.

Evaluation results indicate that certain recent
advanced open-source models exhibit performance
levels comparable or superior to commercial mod-
els such as GPT-40 in terms of accuracy and
computational efficiency. Specifically, BERT-based
models utilizing BertScore demonstrated high
alignment accuracy relative to computational ef-
ficiency, effectively distinguishing agreement be-
tween learner-generated and teacher-generated so-
lutions. Furthermore, separate experiments con-
ducted for English and Korean datasets revealed
distinct performance variations across languages.
In future research, we aim to validate the educa-
tional effectiveness of the system through interac-
tive experiments with real learners and educators.



Limitations

Limited Reflection of Authentic Learning
Environments in Dataset

The dataset utilized in this study comprises
elementary-level mathematical problems and tu-
toring dialogues, thus limiting the scope to specific
grades and difficulty levels, which constrains the
representation of diverse problem types. Addition-
ally, the student-generated mathematical solutions
were created by domain experts, potentially insuf-
ficiently reflecting the varied cognitive processes
and errors exhibited by real students. Consequently,
future research should focus on developing datasets
that encompass a broader range of problem types,
languages, and authentic learner-generated data.

Necessity for Improved Performance in
Complex Mathematical Reasoning

The open-source LLMs employed in this study
demonstrate performance degradation on tasks re-
quiring complex mathematical reasoning. This lim-
itation is likely due to insufficient training on high-
dimensional reasoning tasks or inherent difficulties
in processing mathematical expressions in certain
languages. To overcome these limitations, future
research should emphasize domain-specific train-
ing and integrate Retrieval-Augmented Generation
techniques to enhance reasoning capabilities.

Evaluation in Real Educational Environments

While this research evaluates system performance
through quantitative data-driven analyses, direct
verification of its applicability in actual classroom
or tutoring environments has not been performed.
In real educational settings, factors such as student
responses, class dynamics, and teacher interven-
tions significantly influence system effectiveness.
Therefore, comprehensive evaluations of system
practicality and educational efficacy require imple-
mentation in authentic educational contexts. Fu-
ture studies should conduct experiments involving
teachers and students to measure educational ef-
fectiveness and derive feedback mechanisms and
interface improvements that meet real-world de-
mands.

Limitations and Improvement Directions for
Solution Alignment Representation

In this study, we performed sentence-level align-
ment between student-generated and correct
(teacher-generated) solutions. However, this ap-

proach exhibits limitations in alignment accuracy,
as a single sentence may often encompass mul-
tiple solution steps. To precisely model students’
reasoning processes and effectively capture the in-
tricate relationships between student and teacher
solutions, a hierarchical and multi-layered repre-
sentational approach is required. Consequently, de-
veloping novel alignment methods capable of re-
flecting such complex structures is proposed as an
important direction for future research.

Need for Improvement in Model Efficiency and
Practicality

Most models evaluated in this study exhibited a
trade-off between accuracy and efficiency. Larger
models provided high accuracy at substantial com-
putational costs, whereas smaller models offered
higher efficiency but lower performance. Future re-
search should prioritize enhancing small-model per-
formance and optimizing computational efficiency
using hardware acceleration technologies, facilitat-
ing the development of real-time feedback systems
and improving model practicality.
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both Korean and English, each containing 500
items. A statistical summary of the problem lengths
is provided in Table 5.

The average length of English items was ap-
proximately 237 characters, significantly longer
than the average length of Korean items (122.88
characters). This discrepancy likely arises from
the automatic translation of Korean data into En-
glish, resulting in generally more detailed explana-
tions or structurally longer sentences in the English
items. Additionally, the standard deviation of En-
glish problems (90.91) is more than double that
of Korean problems (44.50), indicating a broader
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Metric , English , Korean
Count | 500.000 | 500.000
Mean | 237.004 | 122.876
Std 90.912 | 44.501
Min 62.000 | 36.000
25% 173.000 | 90.000
50% 220.000 | 117.000
75% 281.000 | 145.250
Max 592.000 | 304.000

Table 5: Statistical Summary of Problem Lengths

and more varied length distribution in the English
dataset.

Regarding minimum lengths, English problems
contain at least 62 characters, while Korean prob-
lems have a minimum of 36 characters, suggesting
that English texts generally include more informa-
tion. The maximum length further highlights this
difference, with English problems reaching up to
592 characters compared to the 304 characters of
Korean problems.

Quartile-based metrics exhibit similar trends,
consistently showing higher values for English
problems compared to their Korean counterparts,
thereby reinforcing the structural length disparity
across the entire dataset range. Notably, the me-
dian length of English problems is 220 characters,
approximately 1.88 times greater than the Korean
median of 117 characters.

These results might reflect the explicit and de-
tailed sentence structures often required by the En-
glish language during translation, as well as poten-
tial adjustments made by generative models to ac-
commodate stylistic differences between languages.
Such findings underscore the necessity of consider-
ing language-specific perceptions of difficulty and
interpretative approaches in subsequent analyses.

B Analysis of Solution Lengths

In this appendix, we present a quantitative statisti-
cal analysis of the lengths and steps of student-
generated and correct solutions from the Bi-
GSMSK dataset used in our experiments. The
dataset comprises problems provided in two lan-
guages, Korean and English, each consisting of 500
items.

B.1 Analysis of Solution Length by Steps

This section analyzes the lengths of complete solu-
tions written in Korean and English for both correct
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and student-generated solutions within the dataset.
The first analysis considers each solution as an inte-
grated unit without dividing it into individual steps.

Metric , Correct Solution Student Solution
Count 500.000 500.000
Mean 278.596 181.296

Std 136.449 117.530
Min 36.000 8.000

25% 174.750 99.750
50% 249.500 169.000
75% 353.000 244.000
Max 1006.000 689.000

Table 6: Statistical Summary of Solution Lengths (En-
glish)

The statistical analysis results for English so-
lutions are summarized in Table 6. The average
length of correct (teacher-generated) solutions is ap-
proximately 278.60 characters, roughly 1.54 times
longer than student-generated solutions, which av-
erage 181.30 characters. Notably, the standard de-
viation for correct solutions (136.45) is consider-
ably higher compared to that for student solutions
(117.53), indicating that correct solutions not only
tend to be lengthier but also exhibit greater variabil-
ity in structural complexity and explanatory depth.

Metric , Correct Solution Student Solution
Count 500.000 500.000
Mean 185.456 122.008

Std 82.344 75.418

Min 46.000 5.000

25% 123.000 70.000

50% 168.000 112.500
75% 237.000 166.000
Max 631.000 389.000

Table 7: Statistical Summary of Solution Lengths (Ko-
rean)

The statistical results for Korean solutions are
summarized in Table 7, displaying trends similar
to those observed in the English solutions. The
average length of correct (teacher-generated) so-
lutions in Korean is approximately 185.46 charac-
ters, approximately 1.5 times longer than student-
generated solutions, which average 122.01 charac-
ters. The standard deviation of correct solutions
(82.34) is slightly greater than that of student so-
lutions (75.42), suggesting more variability due to
detailed explanatory content. Furthermore, the max-
imum length of correct solutions (631 characters)
substantially surpasses that of student solutions
(389 characters).



Overall, correct solutions consistently exhibit
greater length compared to student solutions, re-
flecting their more detailed and stepwise explana-
tory nature. This pattern is consistent across both
languages, reinforcing the observation that teacher-
generated solutions generally present higher com-
plexity and explanatory completeness.

The subsequent analysis separately examines
solution lengths at the individual step level.

Metric , Correct Solution Student Solution
Count 1724 1340

Mean 80.80 67.65

Std 34.27 32.12

Min 6 6

25% 57 48

50% 74 63

75% 99 83

Max 265 282

Table 8: Statistical Summary of Step Lengths (English)

Metric , Correct Solution Student Solution
Count 1724 1340

Mean 53.79 45.53

Std 17.22 17.57

Min 7 5

25% 43 36

50% 51 44

75% 64 55

Max 135 157

Table 9: Statistical Summary of Step Lengths (Korean)

Tables 8 and 9 provide statistical summaries of
step-by-step solution lengths in English and Ko-
rean, respectively.

In English, the average step length of correct
solutions (80.80 characters) exceeds that of stu-
dent solutions (67.65 characters). Additionally, the
standard deviation and maximum-minimum values
show a broader distribution for correct solutions,
indicating that these solutions may contain more
detailed and complex explanations.

Similar trends appear in Korean solutions. Cor-
rect solutions have an average step length of 53.79
characters, longer than the 45.53 characters for stu-
dent solutions. Standard deviations for both groups
were comparable, while maximum lengths were
higher in student solutions, indicating the existence
of some student solutions with extensive explana-
tions.

Generally, correct solutions have longer and
more detailed step explanations than student
solutions, although exceptions exist regarding
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maximum-minimum lengths and range distribu-
tions.

Step , Correct Solution Student Solution

1 82.47 64.92
2 79.81 66.95
3 79.90 71.71
4 81.15 70.64
5 83.47 70.63
6 74.74 74.47
7 73.58 71.00
8 69.75 -

Table 10: Average Step Length per Step Number (En-
glish)

Step , Correct Solution Student Solution

1 54.20 43.04
2 53.32 45.39
3 53.84 48.37
4 54.81 48.73
5 53.26 47.54
6 50.98 49.94
7 51.50 54.00
8 53.75 -

Table 11: Average Step Length per Step Number (Ko-
rean)

Tables 10 and 11 display the average solution
length by individual steps for English and Korean,
respectively.

For English solutions, the average length of
correct solutions consistently surpasses that of stu-
dent solutions across the initial five steps, with the
largest discrepancy observed in step 1 (82.47 vs.
64.92 characters). Differences decrease in subse-
quent steps, with steps 67 showing minimal di-
vergence, and step 8 lacking student solution data,
suggesting that correct solutions tend to provide
longer, more detailed explanations early in the so-
lution process.

Korean solutions reveal a similar pattern, with
correct solutions typically longer than student so-
lutions across most steps, though student solutions
exceed correct solutions at step 7. Similar to En-
glish data, step 8 lacks student-generated solution
data. Compared to English, differences in length
per step are generally smaller in Korean solutions.

Overall, in both languages, the difference in
length per step decreases as solutions progress,
with correct solutions consistently providing more
comprehensive explanations.



B.2 Analysis of Solution Steps

This section analyzes the number of steps in the
Correct Solutions and Student Solutions within the
dataset. The number of solution steps is a crucial
metric indicating how granularly the solution pro-
cess is articulated, serving as an essential factor for
evaluating the detail and complexity of the solu-
tions.

Metric , Correct Solution , Student Solution

Count 500 500
Mean 3.448 2.680
Std 1.349 1.309
Min 2 1
25% 2 2
50% 3 3
75% 4 3
Max 8 7

Table 12: Statistical Summary of Step Counts by Solu-
tion Type

Table 12 summarizes statistical measures for
the step counts of both groups. The analysis was
conducted on 500 solution samples from each
group.

The Correct Solutions exhibited an average of
3.448 steps, noticeably higher than the Student So-
lutions, which averaged 2.680 steps. This indicates
a tendency for Correct Solutions to provide more
detailed and finely segmented explanations. The
standard deviation of step counts was similarly
around 1.3 for both groups, suggesting comparable
variability in the number of solution steps.

Regarding the minimum number of steps, Stu-
dent Solutions included instances starting from a
single step, whereas Correct Solutions always be-
gan from at least two steps. Additionally, the 75th
percentile step count was 4 for Correct Solutions
and 3 for Student Solutions, reinforcing the ob-
servation that Correct Solutions generally involve
more steps.

For maximum step counts, Correct Solutions
extended up to 8 steps, whereas Student Solutions
reached a maximum of 7 steps, indicating slightly
less granularity in student-generated explanations.

These results suggest that Student Solutions
tend to provide briefer explanations or omit certain
steps compared to Correct Solutions. Thus, step
count analysis serves as a valuable measure for
assessing the completeness and structural detail of
student-generated solutions.
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C Detailed Examples of Ground Truth Alignment

In this appendix, we present illustrative examples of the GTA results proposed in this paper. The "Predicted
Alignment" column in the table shows the alignment results from each model, with segments highlighted

in red indicating misaligned sections.

Problem

Yeona has a 2L water bottle next to her desk. She takes a sip every 5 minutes, and each sip is 40ml.
How many minutes does it take to finish one bottle of water?

Answer Solution

Sips.

step_1: First, find the total ml of the bottle: 2L * 1000ml/L = «2*1000=2000»2000ml
step_2: Then divide the total ml by the amount consumed per sip: 2000ml / 40ml = «2000/40=50»50

step_3: Then, multiply the number of sips by the time per sip to find the time it takes to drink the
bottle: 50 sips * 5 minutes/sip = «50%5=250»250 minutes.

Student Solution

step_1: Yeona’s water bottle is 200ml.

5 sips * 5 minutes/sip = 25 minutes

step_2: Divide 200ml by the amount consumed per sip. 200ml / 40ml = «200/40=5»5 sips.
step_3: To find the time it takes to drink the bottle, multiply the number of sips by the time per sip:

Predicted Alignment by GPT-40

Student Solution

Answer Solution

First, find the total ml of the bottle: 2L * 1000ml/L

«2*1000=2000»2000ml

Yeona’s water bottle is 200ml.

Divide 200ml by the amount consumed per sip. 200ml / 40ml =
«200/40=5»5 sips.

Then divide the total ml by the amount consumed per sip: 2000ml / 40ml
= «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the number of sips
by the time per sip: 5 sips * 5 minutes/sip = 25 minutes

Then, multiply the number of sips by the time per sip to find the time
it takes to drink the bottle: 50 sips * 5 minutes/sip = «50%5=250»250
minutes.

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm

Student Solution

Answer Solution

Yeona’s water bottle is 200ml.

First, find the total ml of the bottle: 2L * 1000ml/L =

«2*%1000=2000»2000ml

Divide 200ml by the amount consumed per sip. 200ml / 40ml
«200/40=5»5 sips.

Then divide the total ml by the amount consumed per sip: 2000ml / 40ml
= «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the number of sips
by the time per sip: 5 sips * 5 minutes/sip = 25 minutes

Then, multiply the number of sips by the time per sip to find the time
it takes to drink the bottle: 50 sips * 5 minutes/sip = «50%5=250»250
minutes.

Reference Alignment

Student Solution

Answer Solution

2L * 1000ml/L

First, find the total ml of the bottle:

«2*1000=2000»2000ml

Yeona’s water bottle is 200ml.

Divide 200ml by the amount consumed per sip. 200ml / 40ml
«200/40=5»5 sips.

Then divide the total ml by the amount consumed per sip: 2000ml / 40ml
= «2000/40=50»50 sips.

To find the time it takes to drink the bottle, multiply the number of sips
by the time per sip: 5 sips * 5 minutes/sip = 25 minutes

Then, multiply the number of sips by the time per sip to find the time
it takes to drink the bottle: 50 sips * 5 minutes/sip = «50%5=250»250
minutes.

Table 13: Example Results of Ground Truth Alignment using GPT-40 and BERTScore with bert-large-uncased and

NW Algorithm (English)
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Problem

ot AT Gol 2L ZHS a1 LIk SEur g A npA ], & Bt 29
A 40mIgIL T}, 2 3 Ji= d 2 ol Aetar

Answer Solution

step_1: HA ¥ O] & ml £~& 25Ut 2L * 1000ml/L = «2#1000=2000»2000ml

step_2: 18 o2 £ ml & 3 EaY A= doE tsyrth: 2000ml / 40ml =
«2000/40=50»50 ==

step_3: 19 o3 Ha Slgo a5 AZHa 55to] H& pHA= H dele AlkE 2y
50 B * 58/ HF = «50%5=250»2505

Student Solution

step_1: 1oFo] &2 200ml Y o}

step_2: 200mlE 3 R 2 vlA|= 9F O 2 54 t200ml / 40ml = «200/40=5»5 X =

step_3: g Slgeof] BE AZHS Hoto] B miA= o dge AE FSUth S Bg *5
B/ = «5%5=25»255

Predicted Alignment by GPT-40

m{o
O
o
=

Student Solution Answer Solution

B W4 we] & ml £E &Yk 2L ¢ 1000m/L =
«2¥1000=2000»2000m]

glote] =12 200ml Yo -

200mlE 3 REY wiAE ofo @ U ch00ml / 40ml 32 oS £ ml 42 9 B3 upAE ko 2 stk 2000ml /
«200/40=5»5 B2 40ml = «2000/40=50»50 -2

g 35 mgg A7 %%5}01 B oA b A A & | O9 oS Bg 3l EJ“**V—%ﬁ sto] & A= o] A=
20T 5 B % SE/R T (5%5205,05 5 NZHe ULk 50 B3 * SE/RT = «50%52250»2505

Predicted Alignment by BERTScore + bert-large-uncased + NW algorithm

Student Solution Answer Solution

oofo] EH.L 200mlIQ LT} Wz ®el EF ml 45 ZEUtk 2L ¢ 1000mI/L =
«2*1000=2000»2000ml

200mlE 3 B miAE oFozm URUTh00ml / 40ml = | I3 TS E ml £ ¢ BE2Y opAlE ko & s ch 2000ml /

«200/40=5»5 R+ 40ml = «2000/40 50»50 2

Lg Slgo] BEy ARk Foto] WS oA e o 2ee AE | O3 o BE Slg] BEY ARk Foto] S oA H ZEE

LUt 5 B # SE/E = (55= 25»25-f A|ZHS 5T 50 B * SE/RE = «50%5= 250»250-f

Reference Alignment

Student Solution Answer Solution

_ Wz "o £ ml $£E& ZHYchk 2L * 1000ml/L =
«2%1000=2000»2000ml

goto] B2 200mlIG U},
200mlE 3 BT oAl oFo = UEUTi200ml / 40ml

I8 ohE & ml 5 3 HEY A E Y& tesyth 2000ml /

«200/40=5»5 B2 40ml = «2000/40=50»50 -2
B3 glpo] BRI AZHe Foto] W uhA e E Al AR F | O3 o BF 35 BRI A7He 13}01 g kAl o dele
SUthsma* 5—'—/9_ = «5%5=05»258 A 7He U TH 50 B2 * SE/EE = (50%5=250»2502

Table 14: Example Results of Ground Truth Alignment using GPT-40 and BERTScore with bert-large-uncased and
NW Algorithm (Korean)
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D Detailed Examples of Solution Error Detection

In this appendix, we provide illustrative examples of SED results within the solutions proposed in this
paper. In the provided tables, red-colored sections indicate incorrect responses, while blue-colored sections
represent correct responses.

Problem

Three cats were sitting on a fence meowing at the moon. The first cat meowed 3 times per minute.
The second cat meowed twice as often as the first cat. The third cat meowed at 1/3 the frequency of
the second cat. What is the total number of times the three cats meowed in 5 minutes?

Answer Solution

step_1: The second cat meowed twice as often as the first cat, which meowed 3 times per minute,
resulting in a total of 2*3=«2*3=6»6 meows per minute.

step_2: The third cat meowed at 1/3 the frequency of the second cat, resulting in a total of
6/3=«6/3=2»2 meows per minute.

step_3: Therefore, the three cats meow 3+6+2=«3+6+2=11»11 times per minute.

step_4: In 5 minutes, three cats meow 5*11=55 times.

Student Solution

step_1: The second cat meows 2*3=«2*3=6»6 times.

step_2: The third cat meows 3*%1/3=«3*1/3=1»1 time.

step_3: The three cats meow 3+6+1=«3+6+1=10»10 times per minute.

step_4: For 5 minutes, the three cats meow 10*5=«10*5=50»50 times.

GPT-40

step_2

Llama-3.1-8B-Instruct

step_2

DeepSeek-R1-Distill-Llama-8B

step_3

DeepSeek-llama3.1-Bllossom-8B

step_3

Qwen2.5-7B-Instruct

step_3

DeepSeek-R1-Distill-Qwen-7B

step_1

DeepSeek-R1-Distill-Qwen-7B-Multilingual

step_1

Mistral-7B-Instruct-v0.3

step_3

Phi-4-mini-instruct

step_2

Answer

step_2

Table 15: Example Results of Solution Error Detection using GPT-40 and Open LLMs (English)
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Problem

< o ORI AAE . 3 WA 1o o
A agolnd = W A7 oFgIsiguLIc 1ol
13 M2 opg AT BoFo] A mhel7} SE et

s15Fo] Al vl 7k Zetelel] of &
RS AT F A 1ol
A WA ToFol s % wa) Jopole
oFS AL F S5 Aup 7R

Answer Solution

step_1: = §17f 11¢Fol= A A 11¢fol7t £ 3¥ of&-dt= AKX & v o A5 of&-5h
9 F 2¥3=«2*3=6»6"1 9] ok FFH T

step_2: Al A 11oFo]= I WA 110F0]Q] 1/3 HIE & oA o B 2 Bt £ 6/3=«6/3=2»2
ol ofgAH S 5T

step_3: wretA] A ata] o] 119Fo|= B 3+642=«3+642=11»11H oA H 1},

step_4: 52 EQF J10Fo] A ufa]= 5% 1=«5%11=55»55H oF- 7 2t}

Student Solution

step_1: TTHA] 110Fo] = 2%3=«2*3=6»6 oA T}

step_2: A|HA] oFol = 3#1/3=«3*1/3=1»1 1 oF&7 Ut}
step_3: Al| 19Fo]= Bt 3+6+1=«3+6+1=10»10H oF- A H 1}
step_4: SE-5SE Al IOl 52 10%5=«10%5=50»50H oF-g-AH Y}

GPT-4o0

step_2

Llama-3.1-8B-Instruct

step_2

DeepSeek-R1-Distill-Llama-8B

step_3

DeepSeek-llama3.1-Bllossom-8B

step_3

Qwen2.5-7B-Instruct

step_2

DeepSeek-R1-Distill-Qwen-7B

step_2

DeepSeek-R1-Distill-Qwen-7B-Multilingual

step_2

Mistral-7B-Instruct-v(.3

No errors

Phi-4-mini-instruct

step_2

Answer

step_2

Table 16: Example Results of Solution Error Detection using GPT-40 and Open LLMs (Korean)
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