
Under review as a conference paper at ICLR 2023

NEVER REVISIT: CONTINUOUS EXPLORATION IN
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, intrinsic motivations are wildly used for exploration in multi-agent rein-
forcement learning. However, we discover that coming with intrinsic rewards is
the issue of revisitation – the relative values of intrinsic rewards, estimated based
on neural networks, fluctuate during learning, causing failures of rediscovering
promising areas after detachment of exploration. Consequently, agents risk explor-
ing some sub-spaces repeatedly and being stacked nearing the fixed initial point.
In this paper, we formally define the concept of revisitation, based on which we
propose an observation-distribution matching approach to detect the appearance
of revisitation. According to each detected revisitaion, we dynamically augment
branches for agents’ local Q-networks and the mixing network to achieve sufficient
representational capacity. Furthermore, we use historical joint observations to
adjust intrinsic rewards to reduce the probability of and penalize the occurrence
of revisitation. By virtue of these advances, our method achieves superior perfor-
mance on three challenging Google Research Football (GRF) scenarios and three
StarCraft II micromanagement (SMAC) maps with sparse rewards.

0

20

40

60

80

100

Co
ve

ra
ge

 ra
te

 (%
)

0

20

40

60

80

100

Co
ve

ra
ge

 ra
te

 (%
)

0

20

40

60

80

100

Co
ve

ra
ge

 ra
te

 (%
)

QMIX CDS NRT (ours)

Figure 1: The issue of revisitation. During learning, we will store the joint observation distribution
induced by the joint policy π every 100k time steps, named historical point time. Meanwhile,
for every 100k time step, we will calculate the JS distance between the current distribution and
all historical points, named checkpoint time. Experiments are carried out on a 6 × 12 maze task
introduced in Sec. 4. Left: Basic exploration scheme (QMIX (Rashid et al., 2018) with ϵ-greedy
exploration) achieves a coverage rate of the joint observation space less than 20%. Middle: Adding
CDS (Li et al., 2021) intrinsic incentives improves the coverage rate to 80%. However, the fluctuating
JS distances indicate that agents are periodically revisiting some sub-spaces. Consequently, most
samples are wasted on revisitation. Right: Revisitation is avoided based on our method, and the
JS distances are large and stable before converging to an optimal strategy, indicating continuous
exploration achieved by our approach.

1 INTRODUCTION

Multi-agent cooperation is ubiquitous in real-world problems, such as sensor networks (Zhang &
Lesser, 2013) and traffic light control (Zhang et al., 2019). To introduce intelligence into multi-
agent systems and achieve sophisticated cooperative behavior, multi-agent reinforcement learning
(MARL) has been gaining increasing interest in recent years. Advanced MARL methods have
largely pushed forward the performance of machine learning algorithms on tasks such as StarCraft II
micromanagement (Rashid et al., 2018; Wang et al., 2021b), Hanabi (Bard et al., 2020; Foerster et al.,
2019), and robotic control (Kurin et al., 2020).

1

Under review as a conference paper at ICLR 2023

Despite these achievements, a problem persists and prevents MARL from extending successfully
to more complex problems. The action-observation space grows exponentially with the number of
agents, and the efficiency of exploration strategies in such search spaces largely limits the learning
efficiency of MARL algorithms. Basic exploration (Wang et al., 2020b) schemes, like ϵ-greedy,
adopted by many previous works (Wang et al., 2021a; Yu et al., 2021; de Witt et al., 2020) appear to
struggle even in tasks with a moderate number of agents. For example, in a 6 × 12 maze game with
two agents (Fig. 4 (b)), QMIX (Rashid et al., 2018) using independent search can only cover less
than 20% of the joint observation space (Fig. 1 left) and struggles to find any rewards.

Various intrinsic motivations are introduced into MARL algorithms to enhance their exploration
ability by encouraging interaction among agents (Wang et al., 2020b), maximizing a measurements of
behavioral randomness (Houthooft et al., 2016; Mahajan et al., 2019; Gupta et al., 2021), and spurring
individuality (Jiang & Lu, 2021) and diversity (Li et al., 2021). These methods significantly enlarge
the sub-space that can be explored. For example, the coverage rate increases from ∼ 20% to ∼ 80%
using the CDS (Li et al., 2021) diversity-encouragement incentives (Fig. 1 middle). However, in this
paper, we find that coming with the augmented exploration is a revisitation problem that severely
hurts the expected exploration ability and prevents learning efficiently.

Revisitation refers to the situation where, with an enlarged exploration space, agents forget the areas
they have visited before after the detachment (Ecoffet et al., 2019) of exploration, causing them
to return and re-explore. In this way, agents are stacked nearing the fixed initial point and can not
explore continuously. Meanwhile, revisitation in some sub-spaces can repeatedly happen, making this
issue more detrimental. For example, in Fig. 1 (middle), we present the empirical joint observation
distribution induced by CDS (Li et al., 2021) policies at different training time steps. It can be
observed that similar distributions occur periodically during learning, and the algorithm wastes most
training samples on unvalued, revisited experiences.

In this paper, we give a formal definition of revisitation in multi-agent settings, according to which we
propose a framework for solving this issue. To provide sufficient policy representation capacity, we
add branches to agents’ local Q-networks and the mixing network when revisitation occurs to achieve
a dynamically growing neural network structure. Besides that, we use historical samples to calculate
joint observation novelty for adjusting intrinsic rewards. Meanwhile, for each revisitation, we further
introduce a KL divergence between its historical point’s recorded joint observation distribution and
the current one to penalize it to happen again.

Based on the above merits for detecting and preventing revisitation, our approach NRT (Never Revisit)
achieves nearly 100% coverage rate on the maze task (Fig. 1 right) with continuous exploration
(Fig. 4 in Sec. 4). Furthermore, we benchmark our approach on both Google Research Football (GRF,
Kurach et al. (2020)) and SMAC (Samvelyan et al., 2019) in the sparse reward setting, and find that
NRT significantly pushes forward state of the art. Ablation studies show that adding branches is the
most important component in revisitation avoidance and performance improvement for challenging
tasks. At the same time, the proposed intrinsic reward adjustment modules are critical in achieving
continuous exploration.

2 BACKGROUND

In this paper, we formulate multi-agent coordination tasks as Dec-POMDP Oliehoek et al. (2016),
which can be defined as a tuple G = ⟨I, S,A, P,R,O, n, γ⟩, where I is the set of agents, S is the
state space, A is the action space, P is the transition function, R is the reward function, O is the
observation space, n is the number of agents, and γ ∈ [0, 1) is the discount factor. During sampling,
each agent i ∈ I observes its unique information oi and selects an action ai ∈ A independently.
According to the joint action a and environment transition function P (s′|s,a), the environment
transfers to a new state s′ and provides a reward that is shared across all agents.

2.1 CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION

Our approach follows a recently advanced multi-agent optimization framework of centralized training
with decentralized execution (CTDE) Lowe et al. (2017); Foerster et al. (2018); Sunehag et al. (2018);
Rashid et al. (2018). In this framework, each agent executes only based on its local action-observation
history. This distributed decision-making tackles the exponentially growing joint action space. For

2

Under review as a conference paper at ICLR 2023

stable optimization, agents are trained in a centralized manner with access to global information to
achieve reasonable credit assignment across agents. The individual-global-max (IGM) principle Son
et al. (2019) further guarantees the consistency between the local and global Q-function based on
value factorization. With the above advantages, some algorithms Son et al. (2020); Wang et al.
(2021a); Ma et al. (2021) have achieved remarkable progress in challenging cooperation tasks.

2.2 CDS

Although the CTDE framework has been proven to accelerate training with value factorization, it still
has to face a giant search space. Diversity in exploration is required for sophisticated cooperation.
Li et al. (2021) introduced CDS, which achieves diversity when necessary via shared experiences.
Some of the most salient novelties are: (1) Introduce an intrinsic reward function as shown in Eq. 1
based on Iπ (τT ; id) to encourage specialty of individual trajectories. (2) Provide an independent
Q-network for each agent to estimate local Q-value after combining with one shared Q-network. (3)
Add an L1 regularization on independent Q-values to encourage sharing crucial knowledge while
keeping enough policy representation capacity of necessary diversity.

rICDS = βEid [β2DKL (SoftMax (β1Q (· | τt, id)) |p (· | τt))
+β1 log qϕ (ot+1 | τt, at, id)− log p (ot+1 | τt, at)] ,

(1)

where id is the identity of each agent, β, β1 and β2 are hyper-parameters introduced in CDS, and
τT = (o0, a0, o1, . . . , oT) is the variable of one agent’s trajectory. In this paper, we use rICDS as an
example to expose and solve one crucial potential problem of existing intrinsic motivation methods,
revisitation as shown in Fig. 1 (middle).

3 METHOD

3.1 REVISITATION DETECTION

We first define the concept of revisitation in multi-agent settings. Our definition is based on the
empirical joint observation distribution induced by the joint policy π: ρπ(o) = Eπ[

1
T

∑T
t=0 1ot=o].

Intuitively, when ρπ(o) changes significantly, the agent team starts to explore a new sub-space. Still,
if, after a significant change, ρπ(o) degenerates to a distribution that has occurred before, revisitation
happens. Formally, we have the following definition:
Definition 1. A δ-revisitation occurs at time step t if there exists a time step t′′ < t so that

1. maxt′∈(t′′,t) DJS

[
ρπt′′ (o)∥ρπt′ (o)

]
> δ;

2. DJS

[
ρπt′′ (o)∥ρπt

(o)
]
< δ.

Here, DJS is the Jensen-Shannon distance between two distributions. The first condition describes the
ability of many multi-agent exploration algorithms. As the learning progresses, agents are encouraged
to explore new sub-spaces, leading to a shift in the empirical joint observation distribution. The
second condition depicts the occurrence of revisitation. After exploring a new sub-space for a while,
the agents may forget previously learned knowledge, possibly due to limited network representative
capacity, and start to re-explore previously visited sub-spaces.

Under discrete observation space, we can estimate ρπ(o) with the Monte Carlo (MC) method.
However, in continuous observation space, it is intractable to use MC. In practice, we estimate
the joint observation distribution ρπ(o) using an a variational auto-encoder parameterized by ξ, by
minimizing the evidence lower bound:

Lρ(ξ) = Eq(z|o;ξ)[log p(o, z; ξ)− log q(z | o; ξ)], (2)

where z is a latent variable to reconstruct o, and pξ(o) =
∫
pξ(o | z)p(z)dz ≈ 1

L

∑L
i=1 pξ(o | zi)

for zi ∼ p(z), where p(z) is a prior of the latent variable vector, which is modeled by a standard
Gaussian distribution N (z | 0, I) and L is fixed as 32 in this paper.

During training, for every 100k time step, we store the current joint observation distribution estimator
pξt into a buffer, and check for each previous version pξt′′ whether they satisfy the two conditions

3

Under review as a conference paper at ICLR 2023

listed in Definition 1. If the conditions are satisfied, we call (t′′, t′, t) a revisitation tuple and
store (ρπt′′ (o), ρπt′ (o), ρπt

(o)) with (ρπt′′ (oi), ρπt′ (oi), ρπt
(oi)) for each agent i ∈ I , where

ρπ(oi) = Eπ

[
1
T

∑T
t=0 1oi,t=oi

]
is estimated along with ρπ(o).

3.2 AUGMENTATION OF THE TRAINING FRAMEWORK

!!

""

!#

""
!#

Relu

Relu

#"$"

#!(%%" , '%" , *+!) #&(%%" , '%" , *+&)
…

)%" , '%"'!, *+% MLP

GRU

MLP

. .

.

Default Mixing Network Branch

Default Local-Q Branch

Default
Switcher

Default
Switcher

Training Time Line

JS Distance

Historical Point

Checkpoint Time

Detected
Revisitation

Augmented Mixing Network Branch

Augmented Local-Q Branch

> - > -

Initialized with the latest default branch

Augmented Switcher

Branches

Main Body

L1 Norm
Create

ℎ%"'! ℎ%"

Figure 2: Dynamic augmentation of NRT (Never Revisit)’s neural network structure (using one
detected revisitation as an example).

To achieve sufficient policy representation capacity for handling revisitation while benefiting from
parameter sharing, we dynamically augment partial neural networks (branches) as shown in Fig. 2.
In this paper, we follow the CTDE framework as discussed in Sec. 2.1 with a mixing network as
QMIX (Rashid et al., 2018), whose weights are produced by separate hyper networks with an input
of state and are followed by an absolute activation function to ensure the IGM principle. Starting
from the beginning of training, we provide a default mixing network branch (a part of the mixing
network), a default local-Q branch (the last layer of local Q-networks), and the main body of our
neural networks. The main body is painted blue, while branches are painted green. After one detection
of revisitation, we will create a related augmented mixing network branch and a related augmented
local-Q branch with the same structure as the default ones to increase representational capacity. Their
parameters are initialized according to the latest default branches.

Along with our dynamic augmentation structure is a question about how to switch different branches.
Formally, for b th augmented branch, we define the associated joint observation set Ωb based on the
definition of related revisitation tuple (t′′b , t

′
b, tb) introduced in Sec. 3.1.

Ωb = {o|| log ρπt′′
b

(o)− log ρπt′
b

(o)}| > δ} ∩ {o|| log ρπt′′
b

(o)− log ρπtb
(o)}| < δ}. (3)

However, during decentralized execution, one agent can only obtain its observation. Thus, we further
introduce the marginal set Ωi

b for each agent i ∈ I as shown in Eq. 4. If agent i’s local observation
oi ∈ Ωi

b, the related b th augmented local-Q branch will be activated for both sampling and training.
If none of augmented branches is activated or created, agents will choose the default branch.

Ωi
b = {oi|| log ρπt′′

b

(oi)− log ρπt′
b

(oi)}| >
δ

n
} ∩ {oi|| log ρπt′′

b

(oi)− log ρπtb
(oi)}| <

δ

n
}. (4)

4

Under review as a conference paper at ICLR 2023

There are two questions coming with Eq. 4, (1) how to switch augmented local-Q branches when oi
belongs to several sets simultaneously, and (2) how to switch augmented mixing network branches
when agents switch various local-Q branches. As for question (1), we will check according to the
created order and activate the earliest branch. As for question (2), each augmented mixing network
branch will be activated only when more than half of agents choose the corresponding augmented
local-Q branch. Our neural networks will switch to the default branch if none of augmented branches
is activated or created. Because the whole trajectory is spliced from different branches, we expect
credit assignments across agents (achieved by the mixing network) to not differ too much for stability.
Thus we add an L1 regularization to mixing network branches to encourage them to work only when
necessary. More details and the pseudo-code of NRT’s sampling process are discussed in Sec. B.1

3.3 AUXILIARY SUPPORTING INCENTIVES

!!, … , !"
$(&; ()|!) $(,#; ()|!, &)

Intrinsic
Reward

$(!; ())
CDS Intrinsic Motivation

short-sighted
novelty module

K-nearest
filter filter -

Intrinsic reward adjustment

detected revisitation

.$%&' .'

,(), &()*!

MLP

GRU

MLP MLP

Agent (/((!(), &())

检测到0)属于被
遗忘过的状态，
使用专属MLP做决策

/!(!(), &()) /"(!(), &())

1!

0)

1+
0) 1+

ReluRelu

针对每一个类，附加专属的额外modules计算Q_tot

/),)

JS

store periodically

stored

Figure 3: NRT (Never Revisit)’s intrinsic reward adjustment modules.

A possible shortcoming of the methods introduced above is that when revisitation occurs frequently,
there may be too many branches. Thus, we design adjustment modules for intrinsic motivations to
attempt to (1) prevent the appearance of revisitation in advance, and (2) penalize the occurrence of
revisitation.

To prevent revisitation in advance, we adjust intrinsic rewards with historical joint observations. In
this paper, we periodically store joint observation sequences (every ten episodes) in an independent
buffer without deletion. During training, for time efficiency, we form a compact sub-sampling buffer
with 10 trajectories from the whole learning period. As inspired by Badia et al. (2020), based on joint
observation novelty estimated by K-nearest approach, we calculate the weight of intrinsic rewards:
α = 1√∑

oN ∈Nk(o) K(o,oN)+ϵ
, where Nk(o) is the k nearest neighbors of o in the compact buffer,

and ϵ is a small constant (0.001) for numeric stability. The kernel function K(·, ·) is defined as
K(x, y) = ϵ

d2(x,y)+ϵ , where d is the Euclidean distance.

For penalizing revisitation to forbid it to occur again, we additionally add 5 trajectories from
each revisitation to the compact sub-sampling buffer discussed above to refresh the estimated joint
observation novelty. Furthermore, we introduce rp =

∑
(t′′,t′,t)∈R DKL

(
pπt′′ (o) ∥pπ (o)

)
, where

pπ is the current joint policy. Overall, the intrinsic reward used in our paper is

rI = rICDS · clip(1 + ᾱ, L1, L2) + βpr
p, (5)

where ᾱ = α−µe

σe
is the running average of α, clip means we clip the running average so that it is in

the range [L1, L2], rICDS is the intrinsic reward introduced by CDS (Li et al., 2021) as shown in Eq. 1,
and βp is a hyper-parameter tuning the weight of rp, which is fixed as 0.001 in our experiments.

4 DIDACTIC EXAMPLE

In this section, we present a maze task (shown in Fig. 5 (b)) to demonstrate the existence of
revisitation, its influence on exploration, and how our approach improves learning performance by

5

Under review as a conference paper at ICLR 2023

NRT

CDS

> 0.2

0.0

Figure 4: Comparison against baselines with visitation heat maps.

avoiding revisitation. In this task, two agents are initialized at the blue point and are expected to
simultaneously reach two red points located in different corners of a 6 × 12 maze within 50 steps.
Each agent can observe its own and teammate’s coordinates. The action set of both agents includes
one-step movement in four directions and an idle action for doing nothing. Only when agents reach
two red points simultaneously, the episode will terminate immediately with a team reward of 100.
For any other cases, reward is set to 0.

(b) Environment

revisitation detected

(a)Another perspective of
JS distance changing

Figure 5: Structure of the maze and continuous
exploration achieved by our approach.

Fig. 4 shows the comparison of our approach
against baseline algorithms, including state-
of-the-art value function factorization learn-
ing methods (QMIX (Rashid et al., 2018) and
QPLEX (Wang et al., 2021a)) and multi-agent
exploration algorithms (CDS (Li et al., 2021)
and MAVEN (Mahajan et al., 2019)). Experi-
mental results demonstrate the advantage of our
approach in exploration, as NRT is the only algo-
rithm that obtains the episode reward of 100.We
further provide visitation heat maps of NRT and
CDS within three periods (0 ∼ 0.5M, 0.5M ∼ 1.0M, and 1.0M ∼ 1.5M). NRT continuously encourage
agents to explore further, while agents trained by CDS are stacked nearing the fixed initial points and
waste most training samples on revisited experiences after the detachment of previous exploration.

In Fig. 5 (a), we further show another perspective of the 3D plot of JS distance plot to demonstrate
continuous exploration achieved by our approach after detecting revisitation. The circle in Fig. 5 (a)
highlights a time step when a revisitation is detected. At this time, our approach (1) adds a new branch
as described in Sec. 3.2; (2) ensures that the joint observations where the revisitation happens are
sampled when calculating the intrinsic reward; and (3) adds punishment of revisitation. In this way,
our approach effectively prevents the reappearance of revisitation, leading to continuous exploration.

5 EXPERIMENT

In Sec. 4, we introduce a toy maze environment to illustrate our approach’s efficiency of exploration
while showing the significant harm of repeat revisitation learned by current advanced multi-agent
algorithms. In this section, we will compare our approach against baselines on Google Research
Football (GRF) Kurach et al. (2020) and SMAC (Samvelyan et al., 2019) in the sparse reward setting,
which are currently the most challenging benchmarks for testing cooperation between agents. We
show the median and variance of every evaluation’s average performance of our approach, baselines,
and ablations tested with three random seeds (seed=0,1,2).

6

Under review as a conference paper at ICLR 2023

5.1 GRF

The GRF benchmark provides numerous scenarios varying in agent numbers and difficulty. In this
paper, we use three representative scenarios to demonstrate the significance of considering revisitation.
Agents’ initial locations for each scenario are shown in Appendix A. Following the convention of
Kurach et al. (2020) and Li et al. (2021), the state and each agent’s observation are based on the
official simple 115 representation vector, while observations are established according to relative
positions. Each agent has a discrete action space of 19 dimensions, including moving and several
basic actions, such as passing and shooting. Environmental rewards are only provided at the end of
one episode. Agents will get +100 if they score, else get −1.

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0

50

100

Te
st

 W
in

 %

Academy 3 vs 1 with Keeper (Determinsitic)

0.0 0.5 1.0 1.5 2.0
T (mil)

0

50

100

Academy Counterattack Easy (Determinsitic)

0.0 0.5 1.0 1.5 2.0 2.5
T (mil)

0

50

100

Academy Counterattack Hard (Determinsitic)

0.0 0.5 1.0 1.5 2.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

Academy 3 vs 1 with Keeper (Stochastic)

0 1 2 3
T (mil)

0

25

50

75

Academy Counterattack Easy (Stochastic)

0 1 2 3 4
T (mil)

0

20

40

60

80

Academy Counterattack Hard (Stochastic)

NRT (ours) CDS MAVEN QMIX QPLEX

Figure 6: Comparison of our approach against baseline algorithms on GRF with deterministic
environment seeds or stochastic environment seeds.

Fig. 6 demonstrates the comparison between our approach with baseline algorithms in the determin-
istic and stochastic settings. Here we first analyze experiment results in the deterministic setting.
In Academy 3 vs 1 with Keeper, QPLEX can achieve similar learning efficiency with our ap-
proach, while CDS and QMIX can also achieve a 100% winning rate. However, in more complex
scenarios, Academy Counterattack Hard in particular, the outperformance of our approach is
obvious, showing the advantages of considering revisitation. In Academy 3 vs 1 with Keeper and
Academy Counterattack Easy, CDS performs similar with QMIX. With our additional supporting
incentives, NRT achieves more efficient exploration.

Like the deterministic counterpart, our approach maintains its outperformance in the stochastic
setting, as shown in Fig. 6. Because opposing players’ behavior might differ across various random
environment seeds, the average winning rates during evaluation are nearly impossible to be 100%. In
this case, our approach still shows clear superiority in all three scenarios. In challenging scenarios,
such as Academy Counterattack Easy, CDS outperforms QMIX. Following the guidance of our
intrinsic reward adjustment module, the performance is further raised in all three scenarios.

Ablation Study To understand the contribution of each component in the proposed NRT framework,
we conduct three ablations: (1) ablate augmented branches, (2) ablate auxiliary dynamic weight of
intrinsic motivations, and (3) ablate auxiliary KL punishment after the detection of revisitation. We
respectively name them NRT-ab-new-branch, NRT-ab-alpha, and NRT-ab-KL. To further understand
the necessity of detecting revisitation, we conduct two ablations based on vanilla CDS: (1) store joint
observation distributions every 100k time steps and add the KL divergence between each of them and
the current one as intrinsic rewards during training, (2) estimate the distribution of all sampled joint
observations and add the KL divergence between it and the current one as intrinsic rewards during
training. We respectively name them CDS-KL-Each and CDS-KL-All.

7

Under review as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0
T (mil)

0

50

100
Te

st
 W

in
 %

Academy Counterattack Easy (Deterministic)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T (mil)

0

50

100

Academy Counterattack Hard (Deterministic)

0 1 2 3 4
T (mil)

0

20

40

60

80

Academy Counterattack Hard (Stochastic)

NRT NRT-ab-alpha NRT-ab-KL NRT-ab-branch CDS CDS-KL-Each CDS-KL-All

Figure 7: Ablation studies on three GRF tasks.

We compare NRT with its ablations on three representative tasks: Academy Counterattack Easy
under the deterministic setting and Academy Counterattack Hard under both settings. From
Fig. 7 left to Fig. 7 right, the difficulty of the environment increases, accompanied by a sharp
decline in the performance of NRT-ab-new-branch. This phenomenon reveals the importance of
constructing dynamic augmentation of neural networks according to the degree of exploration in
complex environments. The performance of NRT-ab-alpha and NRT-ab-KL in three tasks illustrates
that the combined effect of our auxiliary supporting incentives makes our approach outperform CDS.
CDS-KL-Each performs well in Academy Counterattack Hard under the deterministic setting
but fails on the other two scenarios, while CDS-KL-All performs similarly to vanilla QMIX. This
phenomenon demonstrates the necessity of dynamically checking the exploration situation and
making targeted adjustments when revisitation occurs.

5.2 SMAC

In this section, we test our approach on SMAC, consisting of various maps with different agent
numbers and various agent types. Previous work has achieved remarkable performance in many chal-
lenging tasks. However, their success heavily relays on dense rewards provided by the environment,
which includes changes in the blood volume of our agents and opposing agents. In this paper, we
consider SMAC tasks in the sparse reward setting. Agents will only receive rewards at the end of one
episode. Agents will get +100 if they win, else get -1, which maintains the same as that in GRF.

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0

50

100

Te
st

 W
in

 %

3m (sparse reward)

0.0 0.5 1.0 1.5 2.0
T (mil)

0

50

100

2s vs 1sc (sparse reward)

0 1 2 3
T (mil)

0

50

100

2m vs 1z (sparse reward)

NRT (ours) CDS MAVEN QMIX QPLEX

Figure 8: Comparison of our approach against baseline algorithms on SMAC in the sparse reward
setting.

Fig. 8 demonstrates the comparison between our approach with baseline algorithms in three easy
SMAC maps with sparse reward. QMIX achieves good performance with dense rewards (Rashid
et al., 2018). However, vanilla QMIX can not learn any strategies to win in all three easy maps
based on sparse rewards as shown in Fig. 8. Using QMIX as the mixing network, CDS can learn
valuable strategies in 3m with its intrinsic motivations as discussed in Sec. 2.2. However, CDS still
learns nothing to win in 2m vs 1z. Our approach, adjusting intrinsic rewards of CDS based on the
detection of revisitation, outperforms CDS in all three maps. The comparison between NRT and CDS
supports our above discussion about one potential drawback of current intrinsic motivation methods,
revisitation, which seriously influences exploration efficiency. QPLEX achieves good performance in
3m with its duplex dueling network architecture, but still learns nothing to win in other two maps.

8

Under review as a conference paper at ICLR 2023

MAVEN achieves remarkable performance in 2m vs 1z, but performs similar with QMIX in other
two maps. Compared with QPLEX and MAVEN, NRT can adapt to all three maps, showing its
exploration efficiency.

6 RELATED WORK

Exploration Bonuses. Exploration is one key factor that determines the efficiency of deep reinforce-
ment learning (Houthooft et al., 2016; Trott et al., 2019; Raileanu & Rocktäschel, 2020; Zintgraf
et al., 2021; Chen et al., 2021). Starting from the classic ϵ-greedy action selector, numerous advanced
algorithms are proposed to enhance the efficiency of exploration. Count-based exploration methods
directly use visit counts to guide an agent’s behavior towards reducing uncertainty (Strehl & Littman,
2008; Bellemare et al., 2016; Martin et al., 2017; Ostrovski et al., 2017; Tang et al., 2017; Machado
et al., 2020). A representative method is Random Network Distillation (RND), using prediction errors
to estimate count-based rewards (Burda et al., 2018b; Osband et al., 2018; 2019; Ciosek et al., 2019).
The prediction errors are also used in Pathak et al. (2017); Burda et al. (2018a); Pathak et al. (2019);
Dean et al. (2020) to achieve self-organized intrinsic motivations.

Exploration in the Multi-Agent Setting. Exploration is more crucial in the multi-agent setting,
because the search space grows exponentially with the number of agents. Besides exploring the
environment, we also need to consider diversity across agents to achieve sophisticated coordination.
In the multi-agent setting, agents’ exploration can be jointly encouraged (Mahajan et al., 2019; Gupta
et al., 2021; Zheng et al., 2021; Liu et al., 2021), encouraged in pairs (Wang et al., 2020b; Ndousse
et al., 2021), or independently encouraged for being special from the whole group (Jiang & Lu,
2021; Li et al., 2021). Exploration can also be encouraged through the factorization of roles (Wang
et al., 2020a; 2021b). In this paper, we choose CDS (Li et al., 2021) as the intrinsic motivation for
exploration because it is the current state-of-the-art algorithm in many challenging benchmarks.

Forgetting. Revisitation discussed in our paper also relates to the forgetting of previous policies,
which is wildly discussed in lifelong learning with the multi-task setting (Rebuffi et al., 2017; Li &
Hoiem, 2017; Rolnick et al., 2019; Von Oswald et al., 2019). Some advanced algorithms have studied
this topic by extending the supervised regularization (Kirkpatrick et al., 2017) or replay (Isele &
Cosgun, 2018; Yan et al., 2022) paradigms, exacerbating the stability-plasticity tension. Others, on the
other hand, have proposed multi-stage processes in which the agent first applies existing knowledge
to the current task and then incorporates newly acquired knowledge into a shared repository (Schwarz
et al., 2018; Mendez et al., 2020). However, forgetting is rarely discussed in single-task and multi-
agent reinforcement learning, which also has the possibility of forgetting during exploration. The key
question is how to detect and forbid it automatically without any information about the stages agents
are in during learning.

In this paper, we attempt to answer this question to enhance exploration efficiency. Ecoffet et al.
(2019) and Ecoffet et al. (2021) intuitively show a hypothetical example of revisitation caused by
detachment in intrinsic motivations. They solve it by storing all visited states and related policies to
access. Before sampling, they will first check which state to return from the whole state space, which
is challenging to execute in a large continuous search space, especially in multi-agent settings. In this
paper, we empirically show policies’ repeated revisitation in the multi-agent setting and solve it based
on much fewer memories. Our approach maintains active detection and prevention of revisitation.
We hope this paper can stimulate a rethinking of intrinsic motivations for more effective exploration
in single-task multi-agent learning.

7 CLOSING REMARKS

In this paper, we investigate the intrinsic motivation methods for multi-agent exploration, and find
the revisitation issue that prevents these methods from achieving efficient exploration in complex
tasks based on sparse rewards. For future work, we plan to study the interplay between the number of
augmented branches and the scale of the proposed intrinsic rewards. We hope our work can encourage
more studying on the limitation of current exploration methods based on intrinsic motivations to push
forward the boundary of artificial intelligence.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never give
up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Haipeng Chen, Wei Qiu, Han-Ching Ou, Bo An, and Milind Tambe. Contingency-aware influence
maximization: A reinforcement learning approach. In Uncertainty in Artificial Intelligence, pp.
1535–1545. PMLR, 2021.

Kamil Ciosek, Vincent Fortuin, Ryota Tomioka, Katja Hofmann, and Richard Turner. Conserva-
tive uncertainty estimation by fitting prior networks. In International Conference on Learning
Representations, 2019.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Victoria Dean, Shubham Tulsiani, and Abhinav Gupta. See, hear, explore: Curiosity via audio-visual
association. Advances in Neural Information Processing Systems, 33:14961–14972, 2020.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson, Matthew
Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent reinforcement
learning. In International Conference on Machine Learning, pp. 1942–1951, 2019.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Böhmer, and Shimon Whiteson. Uneven: Universal
value exploration for multi-agent reinforcement learning. In International Conference on Machine
Learning, pp. 3930–3941. PMLR, 2021.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pp. 1109–1117, 2016.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Jiechuan Jiang and Zongqing Lu. The emergence of individuality. In International Conference on
Machine Learning, pp. 4992–5001. PMLR, 2021.

10

Under review as a conference paper at ICLR 2023

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 4501–4510, 2020.

Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson. My body
is a cage: the role of morphology in graph-based incompatible control. In International Conference
on Learning Representations, 2020.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning. arXiv e-prints, pp. arXiv–2106,
2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Iou-Jen Liu, Unnat Jain, Raymond A Yeh, and Alexander Schwing. Cooperative exploration for
multi-agent deep reinforcement learning. In International Conference on Machine Learning, pp.
6826–6836. PMLR, 2021.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pp. 6379–6390, 2017.

Xiaoteng Ma, Yiqin Yang, Chenghao Li, Yiwen Lu, Qianchuan Zhao, and Jun Yang. Modeling the
interaction between agents in cooperative multi-agent reinforcement learning. In Proceedings of
the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 853–861,
2021.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with
the successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 5125–5133, 2020.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, pp. 7611–7622,
2019.

Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based exploration
in feature space for reinforcement learning. arXiv preprint arXiv:1706.08090, 2017.

Jorge Mendez, Boyu Wang, and Eric Eaton. Lifelong policy gradient learning of factored policies
for faster training without forgetting. Advances in Neural Information Processing Systems, 33:
14398–14409, 2020.

Kamal K Ndousse, Douglas Eck, Sergey Levine, and Natasha Jaques. Emergent social learning
via multi-agent reinforcement learning. In International Conference on Machine Learning, pp.
7991–8004. PMLR, 2021.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Ian Osband, Benjamin Van Roy, Daniel J Russo, Zheng Wen, et al. Deep exploration via randomized
value functions. J. Mach. Learn. Res., 20(124):1–62, 2019.

11

Under review as a conference paper at ICLR 2023

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2721–2730. JMLR. org, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787,
2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pp. 4292–4301, 2018.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual
learning. In International Conference on Machine Learning, pp. 4528–4537. PMLR, 2018.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 5887–5896, 2019.

Kyunghwan Son, Sungsoo Ahn, Roben Delos Reyes, Jinwoo Shin, and Yung Yi. Qtran++: Improved
value transformation for cooperative multi-agent reinforcement learning, 2020.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087.
International Foundation for Autonomous Agents and Multiagent Systems, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in neural information processing systems, pp.
2753–2762, 2017.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. Advances in Neural Information
Processing Systems, 32, 2019.

Johannes Von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. International Conference on Learning Representations (ICLR), 2021a.

12

Under review as a conference paper at ICLR 2023

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles. In Proceedings of the 37th International Conference on Machine
Learning, 2020a.

Tonghan Wang, Jianhao Wang, Wu Yi, and Chongjie Zhang. Influence-based multi-agent exploration.
In Proceedings of the International Conference on Learning Representations (ICLR), 2020b.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang. Rode:
Learning roles to decompose multi-agent tasks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021b.

Qingsen Yan, Dong Gong, Yuhang Liu, Anton van den Hengel, and Javen Qinfeng Shi. Learning
bayesian sparse networks with full experience replay for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 109–118, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Chongjie Zhang and Victor Lesser. Coordinating multi-agent reinforcement learning with limited
communication. In Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems, pp. 1101–1108. International Foundation for Autonomous Agents and
Multiagent Systems, 2013.

Zhi Zhang, Jiachen Yang, and Hongyuan Zha. Integrating independent and centralized multi-agent
reinforcement learning for traffic signal network optimization. arXiv preprint arXiv:1909.10651,
2019.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 34:3757–3769, 2021.

Luisa M Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann, and
Shimon Whiteson. Exploration in approximate hyper-state space for meta reinforcement learning.
In International Conference on Machine Learning, pp. 12991–13001. PMLR, 2021.

13

Under review as a conference paper at ICLR 2023

A EXPERIMENT SETTING

The visualization of the initial position of each agent is shown in Fig. 9. The difficulty of scenarios
increases from Academy 3 vs 1 with Keeper to Academy Counterattack Hard based on a no-
ticeable difference between the number of agents and the initial distance of each agent to the goal
and opposing players.

Academy 3 vs 1 with Keeper Academy Counterattack HardAcademy Counterattack Easy

Figure 9: Visualization of the initial position of each agent in three GRF scenarios considered in our
paper, where blue points represent our controlled team, red points represent the opposing team, and
yellow point represents the ball.

B ARCHITECTURE AND HYPER-PARAMETERS

In this paper, we use simple network structures for the local Q-networks and the mixing networks as
baselines. Agents use a partially shared module to represent local Q-functions as CDS (Li et al., 2021).
Following the setting of CDS, agents share a trajectory encoding network made up of two layers: a
fully connected layer followed by a GRU layer with a 64-dimensional hidden state for individual
Q-functions. Following the trajectory encoding network, all agents share a one-layer Q network, with
each agent having its own Q network with the same structure as the shared Q network. To estimate the
global action values, we use QMIX-style mixing networks, which include two 32-dimensional hidden
layers activated by ReLU. Hypernetworks condition on global states to generate mixing network
parameters. These options apply to QMIX Rashid et al. (2018) as well.

All experiments are optimized using RMSprop with a learning rate of 5× 10−4, γ of 0.99, and no
momentum or weight decay. We use ϵ-greedy with ϵ anneals linearly from 1.0 to 0.05 over 50K
time steps and keep constant for the rest of the training while selecting actions. We will evaluate
the latest policies 32 times every 10k steps to calculate the average winning rate. For our approach,
all baselines and ablations, we introduce a prioritized replay buffer with the same α of 0.3 and use
TD(0.8) while calculating target values.

The intrinsic motivation introduced in CDS includes three hyper-parameters: β, β1, and β2, with
another hyper-parameter λ controls the weight of L1 regularization on independent local Q-networks.
In this paper, we roughly fine-tune these hyper-parameters while ensuring CDS uses the same hyper-
parameters during comparison. For the maze game, we use {β, β1, β2 λ} as {0.15, 0.5, 0.5, 0.01}.
For all GRF scenarios, we use {β, β1, β2, λ} as {0.05, 0.5, 1.0, 0.1}, which is the same as the original
CDS setting in GRF environments.

In our approach, we introduce several special hyper-parameters and some basic settings to establish our
framework. δ in Definition 1 is fixed as 4 in all experiments. η in Eq. 3 is fixed to 1 in all experiments.
To reduce the size of the replay buffer loading trajectories to calculate α, we will save trajectories
every ten times. The weight of L1 normalization on independent mixing networks is fixed to 0.1 in all
experiments. {L1, L2, βp} is set to {0.5, 2.0, 10−3} for the maze game. For all GRF scenarios, βp

is set to 0.001. {L1, L2} is set to {0.5, 2.0} for the scenario Academy Counterattack Easy based
on both stochastic and deterministic environment setting. Meanwhile, {L1, L2} is set to {1.0, 2.0}
for other scenarios. For all SMAC maps, {L1, L2, βp} is set to {1.0, 4.0, 10−3}.

We use the codes provided by the authors for all baseline algorithms.

14

Under review as a conference paper at ICLR 2023

B.1 SUPPLEMENTARY INTERPRETATION OF NRT’S DYNAMICALLY AUGMENTED NEURAL
NETWORK STRUCTURE

In this paper, at the beginning of learning, when no revisitation is detected, we maintain local
Q-networks as CDS (Li et al., 2021) with a QMIX-style mixing network to estimate Qtot.

Based on each revisitation, we separate the whole joint observation space into sub-spaces with
Eq. 3. In this section, for convenience, we use sub-space to represent sub- joint observation space
which is dynamically separated along with the detection of revisitaion. To provide sufficient policy
representation capacity, we dynamically augment the neural network structure for each sub-space as
shown in Fig. 2.

The last layers of agents’ local Q-networks are independent across sub-spaces, while the previous
layers are shared for benefits in learning efficiency from parameter sharing. Here we name the
augmented last layer of agents’ local Q-networks as the augmented local-Q branch activated in the
sub-space of related revisitation. The original last layer of agents’ local Q-networks initialized at the
beginning of learning is named as default local-Q branch activated when no revisitation is detected
or in the sub-space related to no revisitation.

For achieving sufficient representational capacity of the mixing network, we augment it along with
augmentations of local Q-networks as shown in Fig. 2.

The original QMIX (Rashid et al., 2018) calculates Qtot with:

Qtot = ([Q1, ..., Qn]W1 + b1)W
T
2 + b2, (6)

where Qi is the local Q-value of agent i ∈ I , W1 is a n×m matrix, b1 and W2 are vectors with m
dimensions, b2 is a variable with 1 dimension. W1 and W2 are both with non-negative values. W1,
W2, b1, and b2 are all outputs of several hypernetworks with the state as input.

However, the shared mixing network might not have enough capacity while the number of local-Q
branches increasing. Thus we further expand the mixing network. Our QMIX-style mixing network
is

Qtot = ([Q1, ..., Qn]W1 + b1)(W
T
2 +WT

B) + b2 + bB

= (([Q1, ..., Qn]W1 + b1)W
T
2 + b2) + (([Q1, ..., Qn]W1 + b1)W

T
B + bB)

= QS
tot +QI

tot,

(7)

where WB is a vector with m dimensions and bB is a variable with 1 dimension. QS
tot is shared

among sub-spaces with shared parameters W1, b1, W2, and b2. QI
tot is an individual part of each

sub-space’s mixing network with individual parameters WB and bB . Here we name the augmented
WB and bB related to each revisitation as the augmented mixing network branch. The original WB

and bB initialized at the beginning of learning is named as default mixing network branch activated
when no revisitation is detected or the sub-space related to no revisitation.

In its current form, the mixing network relays on QS
tot or QI

tot arbitrarily. On the contrary, we expect
credit assignments across agents (achieved by the mixing network) to not differ too much between
sub-spaces for stability. Thus we add an L1 regularization to mixing network branches to encourage
them to work only when necessary.

The original QMIX (Rashid et al., 2018) train Qtot with

L(θ) =
b∑

i=1

[(
ytoti −Qtot(τ ,u, s; θ)

)2]
, (8)

where ytot = r+ γmaxu′ Qtot (τ
′,u′, s′; θ−), θ− are the parameters of a target network as in DQN,

and b is the batch size of transitions sampled from the replaybuffer.

In this paper, we train Qtot with

15

Under review as a conference paper at ICLR 2023

L(θ) =
b∑

i=1

[(
ytoti −Qtot(τ ,u, s; θ)

)2]
+

b∑
i=1

||QI,−
tot ||1, (9)

where (1) ytot = rE + rI + γmaxu′ Qtot (τ
′,u′, s′; θ−), rE is environmental rewards, and rI

can be any intrinsic rewards. In this paper, we use intrinsic rewards from CDS (Li et al., 2021),
which is named as rICDS. (2) QI,−

tot = (stopgrad([Q1, ..., Qn]W1 + b1))W
T
B + bB is an additional

regularization loss item. stopgrad is used to stop gradient back-propagation. Thus we can only
regularize parameters related to each mixing network branch.

During decentralized execution, one agent can only obtain its local observation. Thus, we introduce
the marginal condition Eq. 4 based on Eq. 3 to guide each agent to select local-Q branches for sampling
as shown in Algorithm 1. To maintain consistency between sampling and training, Algorithm 1 is
also used to select each agent’s local Q-network branches while training. To solve the question about
how to switch augmented mixing network branches when agents switch various local-Q branches at
one time step, each augmented mixing network branch will be activated only when more than half of
agents choose the corresponding augmented local-Q branch. Otherwise, the default mixing network
branch is switched.

Algorithm 1 The sampling process of NRT

1: while Simulating do
2: if no augmented local-Q branches then
3: All agents activate the default local-Q branch to select actions
4: else
5: for agent i ∈ I do
6: for augmented branch id b from the earliest created branch to the latest created branch do
7: if oi ∈ Ωi

b based on Eq. 4 then
Agent i activates the b th augmented local-Q branch to select actions and stops
searching augmented branches.

8: end if
9: end for

10: if no augmented local-Q branch is activated by agent i then
Agent i activates the default local-Q branch to select actions.

11: end if
12: end for
13: end if
14: end while
15: Return trajectories for training.

C EXPERIMENTAL DETAILS

C.1 JS DISTANCES CALCULATED DURING TRAINING IN GRF
GRF

CDS NRT (ours)QMIX

Figure 10: JS distances calculated during training in Academy Counterattack Hard under the
deterministic setting

16

Under review as a conference paper at ICLR 2023

We further show JS distances calculated during training in Academy Counterattack Hard under
the deterministic setting as a representative of GRF environments. The definition of the x-y axis is
the same as that introduced in Sec. 4. Similar to our toy maze environment, JS distances between
historical points and checkpoints periodically fluctuate under the training of QMIX and CDS, as shown
in Fig. 10 left and middle. Meanwhile, under our approach’s guidance of preventing revisitation,
policies learned in complex environments achieve stable improvement, as shown in Fig. 10 right.
Taking advantage from stable improved exploration, our approach achieves outstanding performance
in challenging GRF scenarios.

C.2 THE 2D-COLOR PLOT OF JS DISTANCES DURING TRAINING

QMIX CDS NRT (ours)

Figure 11: The 2D-color plot of Fig. 1.

Detected
Revisitation

Figure 12: The 2D-color plot of JS distances be-
tween polices learned by our approach until con-
verge.

We demonstrate the 2D-Color Plot of Fig. 1
as shown in Fig. 11 for readers to follow our
work’s motivations easier. During learning, we
will store the joint observation distribution in-
duced by the joint policy π every 100k time
steps, named historical point time (the y-axis
in Fig. 11). Meanwhile, for every 100k time
step, we will calculate the JS distance between
the current distribution and all historical points,
named checkpoint time (the x-axis in Fig. 11).
Half of each picture in Fig. 11 is printed in the
same color. That is because checkpoint time is
always larger than historical times while calcu-
lating the JS distances. For each historical point,
it is compared with checkpoints after it every
100k time steps. In Fig. 11 right, most JS dis-
tances are large and stable until coverage to the
optimal strategy, after our approach detects and solves revisitation at the early period of learning.

In Fig. 12, we show and enlarge a part of Fig. 11 right to demonstrate our approach’s learning
progress before coverage clearly. Through the whole learning period, revisitation means that the
exploration achieved at one learning period is actually driving the joint policy to be similar to
some historical policies. For example, in Fig. 12, if we choose the joint observation distribution
counted at 300k time-step as the historical point, checkpoints at 400k and 500k time-step indicate
that intrinsic motivations are driving agents to explore the environment. However, if we choose the
joint observation distribution counted at 100k time-step as the historical point, checkpoints at 400k
and 500k time-step indicate that intrinsic motivations are driving agents to re-explore the sub-space
that has been explored at 100k time-step. In this paper, we call this phenomenon revisitation and
attempt to solve it with (1) augmented neural networks for sufficient policy representation capacity,
(2) adjusted intrinsic motivation weight according to joint observation novelty compared with each
revisitation historical point, and (3) further punishment of revisitation based on KL divergence. Based
on these novelties, our approach forbids revisitation to occur again and achieves the optimal strategy
in the maze exploration task by driving agents to explore away from both 100k time-step and 300k
time-step, indicating reliable exploration efficiency.

17

Under review as a conference paper at ICLR 2023

As for baselines such as QMIX (explores with ϵ-greedy) and CDS (explores with intrinsic motivations),
revisitation occurs periodically, which heavily influences exploration efficiency and causes agents to
be stacked nearing the fixed initial points as shown in Fig. 4.

C.3 WILL THE SIZE OF REPLAY BUFFER INFLUENCE REVISITAION?

Buffer: 250k Buffer: 500k
JS

 d
ist

an
ce

Checkpoint time Checkpoint time

Figure 13: JS distances calculated during training with the CDS algorithm in our maze environment
based on historical point at 200k time steps

Coming up with the phenomenon of revisitation based on intrinsic motivations is one natural question:
Which role does the replay buffer play in revisitation? Here we still use CDS as an example of
intrinsic motivations and test it in our maze environment. Fig. 13 demonstrates that the size of replay
buffer has trivial influence on revisitaion. In Fig. 13 left, it seems that revisitation occurs according to
the size of the replay buffer. However, after we multiply the replay buffer’s size from 250k time steps
to 500k time steps, the interval of periodical revisitation is similar to that with smaller replay buffer
as shown in Fig. 13 right. Thus, in this paper, we choose to fix our replay buffer’s size as baselines
and adjust intrinsic motivations with augmented policy representation capacity.

C.4 EXPERIMENTAL RESULTS PLOTTED WITH MEANS AND STANDARD DEVIATIONS

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

Academy 3 vs 1 with Keeper (Determinsitic)

0.0 0.5 1.0 1.5 2.0
T (mil)

0

25

50

75

100
Academy Counterattack Easy (Determinsitic)

0.0 0.5 1.0 1.5 2.0 2.5
T (mil)

0

25

50

75

100
Academy Counterattack Hard (Determinsitic)

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

Te
st

 W
in

 %

Academy 3 vs 1 with Keeper (Stochastic)

0 1 2 3
T (mil)

0

20

40

60

Academy Counterattack Easy (Stochastic)

0 1 2 3 4
T (mil)

0

20

40

60

Academy Counterattack Hard (Stochastic)

NRT (ours) CDS MAVEN QMIX QPLEX

Figure 14: Comparison of our approach against baseline algorithms on GRF with deterministic
environment seeds or stochastic environment seeds.

We re-plot our experimental results with means and standard deviations as shown in Fig. 14 and
Fig. 15. The comparison between our algorithm and baseline is consistent with that measured with

18

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
T (mil)

0

25

50

75

100
Te

st
 W

in
 %

3m (sparse reward)

0.0 0.5 1.0 1.5 2.0
T (mil)

0

20

40

60

80

2s vs 1sc (sparse reward)

0 1 2 3
T (mil)

0

25

50

75

100
2m vs 1z (sparse reward)

NRT (ours) CDS MAVEN QMIX QPLEX

Figure 15: Comparison of our approach against baseline algorithms on SMAC with sparse rewards.

median performance. In general, our approach achieves better performance in 4 out of 6 GRF
scenarios (slightly better in Academy 3 vs 1 with Keeper based on the stochastic environment)
and 2 out of 3 SMAC maps.

19

	Introduction
	Background
	Centralized Training with Decentralized Execution
	CDS

	Method
	Revisitation Detection
	Augmentation of the Training Framework
	Auxiliary Supporting Incentives

	Didactic Example
	Experiment
	GRF
	SMAC

	Related Work
	Closing Remarks
	Experiment Setting
	Architecture and Hyper-parameters
	Supplementary Interpretation of NRT's Dynamically Augmented Neural Network Structure

	Experimental Details
	JS Distances Calculated During Training in GRF
	The 2D-Color Plot of JS Distances During Training
	Will the Size of Replay Buffer Influence Revisitaion?
	Experimental Results Plotted with Means and Standard Deviations

