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ABSTRACT

In general, Deep Neural Networks (DNNs) are evaluated by the generalization
performance measured on unseen data excluded from the training phase. Along
with the development of DNNs, the generalization performance converges to the
state-of-the-art and it becomes difficult to evaluate DNNs solely based on this
metric. The robustness against adversarial attack has been used as an additional
metric to evaluate DNNs by measuring their vulnerability. However, few studies
have been performed to analyze the adversarial robustness in terms of the geome-
try in DNNs. In this work, we perform an empirical study to analyze the internal
properties of DNNs that affect model robustness under adversarial attacks. In par-
ticular, we propose the novel concept of the Populated Region Set (PRS), where
trained samples are populated more frequently, to represent the internal properties
of DNNs in a practical setting. From systematic experiments with the proposed
concept, we provide empirical evidence to validate that a low PRS ratio has a
strong relationship with the adversarial robustness of DNNs.

1 INTRODUCTION

With the steep improvement of the performance of Deep Neural Networks (DNNs), their applica-
tions are expanding to the real world, such as autonomous driving and healthcare (LeCun et al.,
2015; Miotto et al., 2018; Huang & Chen, 2020). For real world application, it may be necessary to
choose the best model among the candidates. Traditionally, the generalization performance which
measures the objective score on the test dataset excluded in the training phase, is used to evaluate
the models (Bishop, 2006). However, it is non-trivial to evaluate DNNs based on this single metric.
For example, if two networks with the same structure have the similar test accuracy, it is ambiguous
which is better.

Robustness against adversarial attacks, measure of the vulnerability, can be an alternative to evaluate
DNNs (Szegedy et al., 2013; Goodfellow et al., 2014; Gu & Rigazio, 2014; Huang et al., 2015;
Jakubovitz & Giryes, 2018; Yuan et al., 2019; Zhong et al., 2021). Adversarial attacks aim to induce
model misprediction by perturbing the input with small magnitude. Most previous works were
focused on the way to find adversarial samples by utilizing the model properties such as gradients
with respect to the loss function. Given that the adversarial attack seeks to find the perturbation path
on the model prediction surface over the input space, robustness can be expressed in terms of the
geometry of the model. However, few studies have been performed to interpret the robustness with
the concept of the geometric properties of DNNs.

From a geometric viewpoint, the internal properties of DNNs are represented by the boundaries and
the regions (Baughman & Liu, 2014). It is shown that the DNNs with piece-wise linear activation
layers are composed of many linear regions, and the maximal number of these regions is mathe-
matically related to the expressivity of DNNs (Montúfar et al., 2014; Xiong et al., 2020). As these
approaches only provide the upper bound for the expressivity with the same structured model, it
does not explain how much information the model actually expresses.

In this work, we investigate the relationship between the internal properties of DNNs and the ro-
bustness. In particular, our approach analyzes the internal characteristics from the perspective of the
decision boundary (DB) and the decision region (DR), which are basic components of DNNs (Fawzi
et al., 2017). To avoid insensitivity of the maximal number of linear regions in the same structure
assumption, we propose the novel concept of the Populated Region Set (PRS), which is a set of DRs
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Figure 1: An illustrative comparison of two networks that have different PRS ratios (High and Low)
with similar test accuracy. (Left column) Each colored box image corresponds to the colored dot
in the right column. The orange/red box image is the perturbed image in each network under an
adversarial attack respectively. (Middle column) The network with a low PRS ratio learns more
sparse feature representation than that with a high PRS ratio. (Right column) Decision boundaries
and regions in the section of input space for the target layer. Contour indicates the logit value for
dog class.

containing at least one sample included in the training dataset. Since the PRS can be considered as
the feasible complexity of the model, we hypothesize that the size of PRS is related to the robustness
of network. To validate our hypothesis, we perform systematic experiments with various structures
of DNNs and datasets. Our observations are summarized as follows:

• The models with the same structure can have different size of PRS, although they have
similar generalization performance. In experiments, we observe that this difference leads
to different robustness of the network.

• We empirically show that the size of the PRS is related to the robustness against the ad-
versarial attack. The model with a small size of the PRS tends to show higher robustness
compared to that with a large size (in Section 4.1). We further observe that when the model
achieves a low PRS ratio, the linear classifier that maps the penultimate features to the log-
its has high cosine similarity between parameters corresponding to each class (in Section
4.2).

• We verify that the size of intersection of the PRS from the training/test dataset is related
to the robustness of model. The model with a high PRS inclusion ratio of test samples has
higher robustness than that with a low PRS inclusion ratio (in Section 5).

• We identify that the model with a small size of the PRS learns the sparse feature represen-
tation. In quantification, we observe the inversely correlated relationship between the size
of the PRS and sparsity of feature representation (in Section 6).

2 RELATED WORK

Adversarial robustness For the real-world application of DNNs, the adversarial attack, which re-
veals the vulnerability of DNNs (Goodfellow et al., 2014), is mainly used to validate the reliability of
the trained network. As an early stage for adversarial attacks, the fast gradient sign method (FGSM)
(Goodfellow et al., 2014) based on the gradient with respect to the loss function and the multi-step
iterative method (Kurakin et al., 2016) are proposed to create adversarial examples to change the
model prediction with a small perturbation. Recently, many studies on effective attacks in various
settings (e.g., white-box or black-box) have been performed to understand the undesirable decision
of the networks (Shaham et al., 2018; Madry et al., 2018; Chen et al., 2020). In terms of factors
affecting robustness, Yao et al. (2018) provide evidence to argue that training with a large batch size
can degrade the robustness of the model against the adversarial attack from the perspective of the
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Hessian spectrum. In contrast, Kamath et al. (2019) propose that the model with a constant ratio
between the learning rate and batch size does not degrade the model robustness even with a large
batch size as it converges to the flatter minima.

Geometric Analysis inside Deep Neural Networks With increasing interest in the expressive
power of DNNs, there have been several attempts to analyze DNNs from a geometric perspective
(Dauphin et al., 2014; Choromanska et al., 2015). In these studies, the characteristics of the decision
boundary or regions formulated by the DNNs are mainly discussed. Montúfar et al. (2014) show
that the cascade of the linear layer and the nonlinear activation organizes the numerous piece-wise
linear regions. They show that the complexity of the decision boundary is related to the maximal
number of these linear regions, which is determined by the depth and the width of the model. Xiong
et al. (2020) extend the notion of the linear region to the convolutional layers and show the better
geometric efficiency of the convolutional layers. Fawzi et al. (2018) reveal that classification regions
in DNNs are topologically connected and the decision boundary of natural images is flat in most
directions. It has also been shown that the manifolds learned by DNNs and the distributions over
them are highly related to the representation capability of a network (Lei et al., 2018). While these
studies highlight the benefits of increasing expressivity of DNNs as the number of regions increases,
interpreting the vulnerability of DNNs with the geometry is another important topic. Yang et al.
(2020) show that a model with thick decision boundaries induces robustness. Moosavi-Dezfooli
et al. (2019) show that a decision boundary with a small curvature acquires the high robustness of
the model. These approaches focus on the decision boundaries, while this paper suggests to focus
on the decision regions, which are composed by the surrounding decision boundaries.

3 INTERNAL PROPERTY OF DNNS

This section describes the internal properties of DNNs from the perspective of decision boundaries
(DBs) and regions (DRs). The DBs of the DNN classifier is mainly defined as the borderline between
DRs for classification, where the prediction probability of class i and the neighboring class j are the
same (Fawzi et al., 2018). To expand the notion of DBs and DRs to the internal feature-level, we re-
define the DBs in the classifier that generalizes the existing definition of DBs. We then propose the
novel concept of the Populated Region (PR) that describes the specific DRs used from the network
for training samples. PR is used to analyze the relationship between the trained parameters and the
characteristics of networks.

3.1 DECISION BOUNDARY AND REGION

Let the classifier withL number of layers be F (x) = fL(σ(fL−1σ(· · ·σ(f1(x)))) = fL:1(x), where
x is the sample in the input space X ⊂ RDx and σ(·) denotes the non-linear activation function1.
For the l-th layer, fl(·) denotes the linear operation and f il:1(·) denotes the value of the i-th element
of the feature vector fl:1(x) ∈ RDl . We define the DB for the i-th neuron of the l-th layer.

Definition 1 (Decision Boundary (DB)) The i-th decision boundary at the l-th layer is defined as

Bi
l = {x|f il:1(x) = 0, ∀x ∈ X}.

We note that the internal DBBi
l (l < L) divides the input spaceX based on the hidden representation

of the l-th layer (i.e., existence of feature and the amount of feature activation). There are a total of
Dl boundaries and the configuration of the DBs are arranged by the training. As input samples in
the same classification region are considered to belong to the same class, the input samples placed
on the same side of the internal DB Bi

l share the similar feature representation. In this sense, we
define the internal DR, which is surrounded by internal DBs.

Definition 2 (Decision Region (DR)) Let Vl ∈ {−1,+1}Dl be the indicator vector to choose pos-
itive or negative side of decision boundaries of the l-th layer. Then the decision regionDRVl

, which
shares the sign of feature representation, is defined as

DRVl
= {x|sign(fl:1(x)) = Vl, ∀x ∈ X}.

1Although there are various activation functions, we only consider ReLU activation for this paper.
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Figure 1 presents the internal properties for two networks trained on CIFAR-10 with similar test
accuracy. The right column in Figure 1 depicts the internal DBs and DRs in the network with a
high/low PRS ratio (top and bottom). We randomly select two test images (blue and green box) and
generate adversarial images for blue box (orange and purple box) in each network, respectively. We
make a hyperplane with these images to visualize the DBs and DRs in the 2D space. We identify
that the configuration of DBs and DRs appears to be different, although the two networks have the
same structure and similar test accuracy.

3.2 POPULATED REGION SET

It is well-studied that the number of DRs is related to the representation power of DNNs (Montúfar
et al., 2014; Xiong et al., 2020). In particular, the expressivity of DNNs with partial linear activation
function is quantified by the maximal number of the linear regions and this number is related to the
width and depth of the structure. We believe that although the maximal number can be one measure
of expressity, the trained DNNs with finite training data2 cannot handle the entire regions to solve the
task. To only consider DRs that the network uses in the training process, we devise the train-related
regions where training samples are populated more frequently. We define the Populated Region Set
(PRS), which is a set of DRs containing at least one sample included in the training dataset. PRS will
be used to analyze the relationship between the geometrical property and the robustness of DNNs in
a practical aspect.

Definition 3 (Populated Region Set (PRS)) From the set of every DRs of the model f and given
the dataset X , the Populated Region Set is defined as

PRS(X, f, l) = {DRVl
|x ∈ DRVl

∃ x ∈ X, ∀Vl ∈ {−1, 1}Dl}.

We can then define a Populated Region as a union of decision regions in PRS as

PR(X, f, l) = ∪DR∈PRS(X,f,l)DR.

We note that the size of the PRS is bounded to the size of given dataset X. When |PRS(X, f, l)| =
|X|, each sample in training dataset is assigned to each distinct DR in the l-th layer. To compare the
PRS of networks, we define the PRS ratio, |PRS(f,X ,l)|

|X | , which measures the ratio between the size
of the PRS and the given dataset.

Epochs EpochsLayer

(b) Network A (Batch size: 2048) and network B (Batch size: 128)(a) PRS ratio

■ Train accuracy ■ Test accuracy ■ PRS ratio in the penultimate layer (Layer 8)■ Network A ■ Network B

Figure 2: (a) The number of PRS for the depth of each layers. (b) Training/Test accuracy and the
PRS ratio on the penultimate layer on CNN-6 with batch size 2048/128. We select the networks at
the 300th epoch and call these two CNN-6 as Network A and B, respectively, throughout the paper
(PRS ratio of Network A: 0.99, and Network B: 0.007).

Figure 2 presents a comparison between two equivalent neural networks (A and B) with six convo-
lution blocks (CNN-6) trained on CIFAR-10 varying only the batch size (2048/128). Figure 2 (a)
presents the PRS ratio for the depth of layers in each model at the 300th epoch. We observe that only
the penultimate layer (l = 8) shows a different PRS ratio. Figure 2 (b) shows that the two networks
have largely different PRS ratios with similar training/test accuracy. From the above observation
and the fact that the penultimate layers are widely used as feature extraction, we only consider the
PRS ratio on the penultimate layer in the remainder of the paper.

Experimental setups For the systematic experiments, we select three different structures of DNNs
to analyze: (1) a convolutional neural network with six convolution blocks (CNN-6); (2) VGG-16

2In general, the number of training data is smaller than the maximal number of the linear region.
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(Simonyan & Zisserman, 2014); and (3) ResNet-18 (He et al., 2016). We train3 basic models with
fixed five random seeds and four batch sizes (64, 128, 512 and 2048) over three datasets: MNIST
(LeCun & Cortes, 2010), F-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009).
For the extensive analysis on the correlation between the PRS ratio and properties of network, we
extract candidates from each basic model with the grid of epochs. Then we apply the test accuracy
threshold to guarantee the sufficient performance. Finally, we obtain 947 models for analysis. The
details for the network architecture and the selection procedure are described in Appendix A-C.

4 ROBUSTNESS UNDER ADVERSARIAL ATTACKS

In this section, we perform experiments to analyze the relationship between the PRS ratio and the
robustness. We evaluate the robustness of the network using the fast gradient sign method (FGSM)
(Goodfellow et al., 2014), basic iterative method (BIM) (Kurakin et al., 2016) and projected gradient
descent (PGD) (Madry et al., 2018) method widely used for the adversarial attacks. The untargeted
adversarial attacks using training/test dataset are performed for the various perturbation (ε).

4.1 PRS AND ROBUSTNESS FOR MODELS

First, we compare the two models (Network A and B in Figure 2) with similar test accuracy but
different PRS ratio.4 Figure 3 presents the results of robust accuracy (RA) under the FGSM, BIM
(5-step), PGD-20 (20-step), and PGD-100 (100-step) on L∞. For each step, α = 2/255 is adopted.
We identify that Network B (low PRS ratio) is more robust than Network A (high PRS ratio) under
all adversarial attacks.
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FGSM BIM                                        PGD-20                                    PGD-100

Epsilon

Training (Network B)Training (Network A) Test (Network B)Test (Network A)

Figure 3: Robust accuracy under various adversarial attacks on networks A and B. The x-axis indi-
cates perturbation ε and the y-axis indicates the training/test robust accuracy under the attack.

As the PGD attack with a 20-step size shows the similar RA compare to a 100-step size, we focus
on an analysis under the PGD attack with a 20-step size in the rest of the paper. We measure the
PRS ratio and the RA in all models and datasets to verify the relationship between the PRS ratio and
the robustness. For the experiments, we take the magnitude of ε as follow: MNIST = 0.3, F-MNIST
= 0.1, and CIFAR10 = 0.0313 on L∞ norm. Figure 4 presents the experimental results according
to the model structure under the PGD attack. To quantify the relation, we calculate the slope of
the regression line and perform significance test to validate the trend. We also provide the result of
RA against the FGSM attack and AutoAttack (Croce & Hein, 2020) in Appendix G. From Figure
4, we identify that the PRS ratio has an inversely correlated relationship with the RA in most cases.
The complicated models (VGG-16 and ResNet-18) have lower PRS ratios compared to CNN-6, and
show even lower PRS ratios on the simple datasets (i.e., MNIST and F-MNIST).

PRS and Robustness for Training We also analyze how the PRS ratio and the RA change during
the training. We measure the PRS ratio and the RA under the PGD attack for three different networks
trained on CIFAR-10. Figure 5 presents the test accuracy, PRS ratio and RA for each training epoch.
Although the test accuracy of each model converges after the 50th epoch, the PRS ratio continues to
decrease after the 50th epoch and the RA continues to increase.

3Cross-entropy loss and Adam optimizer with learning rate 10−3 is used.
4We note that different PRS ratios are obtained by different batch size of Network A (2048) and B (128).
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Figure 4: Relationship between the PRS ratio and RA attacked by PGD method in various models
and datasets. The colored dots are for the independent models described in Appendix A. The colored
dashed lines indicate the trend for each dataset.

Epochs

Test Accuracy Robust Accuracy (RA) PRS ratio

CNN-6                                                            VGG-16                                                         ResNet-18

Epochs Epochs

Figure 5: PRS ratio and RA for training epochs on three different networks with CIFAR-10. The
blue line indicates the test accuracy, the orange line indicates the RA, and the green line indicates
the PRS ratio. The shaded lines depict the standard deviation for five fixed random seeds.

4.2 PRS AND FINAL LAYER

From the observations above, we empirically confirm that the PRS ratio is related to the robustness
against adversarial attacks. In order to investigate the evidence that the low PRS ratio causes ro-
bustness for the gradient-based attack, we perform an additional analysis of failed attack samples.
In the gradient-based attack, as the magnitude of the gradient is a crucial component to success, we
first count the ratio of the zero gradient samples in the failed attack samples. The Figure 6 (a) shows
the ratio of success samples (light green bar), failure samples with non-zero gradient (blue bar) and
zero gradient (red bar) in all samples. We note that the failed attack samples with non-zero gradients
maintain the index of the largest logit as the true class after attack. To analyze the reason of failure,
we examine the change of the logits under the adversarial attack. This change is shown in Figure
6 (b). To clarify the difference of the change of the logits between Network A and B, we select
the examples of successful attack on Network A but failed attack on Network B. In Network B, the
logits move on almost parallel direction, which causes the predicted label to be maintained as the
true class.

To explain the parallel change of the logit vector, we hypothesize that the DBs corresponding to
each class node have similar configuration in the input space. However, it is intractable to measure
the similarity between DBs in the entire network due to the highly non-linear structure and the high
dimensional input space. To simplify our hypothesis, we only measure the cosine similarity between
the parameters which map the features on the penultimate layer to logits (i.e., final layer). Figure 7
presents that the similarity matrices for Networks A and B. When we compare the matrix between
the two models at the 300th epoch, we identify that Network B (low PRS ratio) has greater cosine
similarity between each parameter in the final layer. We note that the cosine similarity between each
parameter in the final layer can be considered as the degree of parallelism for the normal vectors in
the linear classifier. We also confirm that the decrease of the PRS ratio is aligned with the increase
of the similarity of parameters in the Figure 7 (b), when we consider the graph in Figure 2. To verify
the relationship between PRS ratio and the cosine similarity between the parameters in the final
layer, we measure the PRS ratio and the cosine similarity between each parameter in all models.
Figure 8 shows the experiment results grouped according to the model structure. We identify that
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(a) Ratio of test samples (b) Illustrative examples for change of logits in attack failure cases

Figure 6: (a) Comparison of the ratio of the zero gradient in the failure attack for the test samples
under the PGD attack on L∞ with ε = 0.0313 and 20-step size (Network A and B). (b) The illustra-
tive examples of attacked samples on Network A and B which is failed on B, and the corresponding
logits before/after the attack. After the attack, the logits move on almost parallel direction with the
original logits in Network B. More examples are provided in Appendix C.

the PRS ratio has an inverse correlation for the cosine similarity between each parameter in the final
layer.

(a) Network A

Epoch 300 Epoch 1 Epoch 20 Epoch 50 Epoch 100 Epoch 200 Epoch 300

(b) Network B
0

1

Figure 7: (a) Cosine similarity matrix for the final layer on Network A. (b) Similarity matrix for
epochs on Network B. As the epoch increases, the cosine similarity for each parameter increases.
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Figure 8: Relationship between the PRS ratio and the cosine similarity in various models and
datasets. The colored dots represent the independent models. The colored dashed lines indicate
the trends for each of the datasets.

5 PRS AND TEST DATASET

Regarding the model as a mapping function from the input space to the feature space, handling
unseen data in a known feature domain is significant with regard to the generalization performance
of the model. Hence, if the majority of samples from the test dataset are assigned to the training PR,
the model can be considered to learn the informative and general concept of feature mapping. For
example, if the arbitrary test sample is mapped to the training PR, we expect that a similar decision
will appear. However, it is non-trivial to guess which type of decision will appear when the test
sample is mapped to out of the training PR.
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Figure 9: Test accuracy under adversarial attacks for inclusion/exclusion groups for CNN-6 on
CIFAR-10 for five fixed random seeds. The blue/orange line indicates the exclusion/inclusion
groups, respectively. The exclusion group is shown to be more vulnerable under adversarial attacks.

To investigate the differences between the test samples which are included/excluded in the training
PR, we evaluate the test accuracy under adversarial attack for each group. For a controlled compar-
ison, we divide both the inclusion and exclusion groups with 1k correctly predicted test samples.

Figure 9 shows the RA under the FGSM, BIM with a 5-step size, and the PGD with 20 and 100 step
size on L∞. Although the accuracy of each test group decreases as the epsilon becomes larger, we
observe that the inclusion group is more robust against all types of attacks compared to the exclusion
group. We also provide the result of other networks and datasets in Appendix I.

Figure 10 presents the PRS ratio and the inclusion ratio of the test samples for the training PR. We
compute the inclusion ratio as the ratio of the test samples mapped to the training PR. In Figure 10,
we identify that the PRS ratio and the inclusion ratio exist in inversely correlated relationship. As
we previously verify that the included test samples show high robustness, we empirically confirm
that the low PRS ratio is related to the robustness under adversarial attacks.
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Figure 10: Relationship between the PRS ratio and the inclusion ratio for CNN-6, VGG-16 and
ResNet-18 on the various datasets. The colored dashed lines indicate the trend for each dataset.

6 PRS AND TRAINED FEATURES

This section explores the trained features of the models with the different PRS ratios. First, we
visualize the feature maps directly for each depth of layers. Figure 11 shows illustrative examples
of feature maps. We identify that the model with the low PRS ratio learns more sparse features
compared to the model with the high PRS ratio. As the sparse features are considered as an inde-
pendent and informative representation (Ranzato et al., 2007; Lee et al., 2007), if the PRS ratio can
cause sparse feature representation in various cases, we conclude that the PRS ratio is related to the
informative features. To verify our hypothesis, we measure the trend between the PRS ratio and the
average sparsity for each network. The average sparsity of the model is calculated by taking the
average of the ratio of zero-valued features over the training dataset for all layers.

Figure 12 shows the relationship between the PRS ratio and the average sparsity in all cases. We
identify that CNN-6 and VGG-16 show an inversely correlated relationship throughout the dataset,
but it is difficult to find a clear relationship for ResNet-18. We conjecture that (1) skip connection, or
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Figure 11: Visualization of feature maps for CNN-6 trained on CIFAR-10. (First row) Feature maps
for Network A. (Second row) Feature maps for Network B.
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Figure 12: Relationship between the PRS ratio and the average sparsity for CNN-6, VGG-16 and
ResNet-18 on the various datasets. The colored dashed lines indicate the trend for each dataset.

(2) batch normalization can cause this phenomenon. To investigate the global feature representations
further, we visualize the projected feature space using t-SNE (van der Maaten & Hinton, 2008) for
the training dataset. In Figure 6, we can identify that the samples in low PRS ratio cases are more
densely located in each class, while the samples show widely spread pattern in each class in high
PRS ratio cases.

(a) MNIST (b) F-MNIST (c) CIFAR-10

Low PRS Ratio High PRS Ratio Low PRS Ratio High PRS Ratio Low PRS Ratio High PRS Ratio

Figure 13: Visualization of the projected feature space with t-SNE for CNN-6 trained with various
datasets. The colored code indicates the class. The samples in low PRS ratio cases are more densely
located in each class compared to the samples in high PRS ratio.

7 CONCLUSION

In this work, we perform an empirical study to analyze the internal properties of DNNs, which
affect the robustness under adversarial attacks. We propose the novel concept populated region set
to derive the relationship between the internal properties of DNNs and robustness in a practical
setting. From systematic experiments for the proposed concept, we suggest that the PRS ratio is
related to the robustness of DNNs and provide empirical evidence of this relationship: (1) The
network with the a low PRS ratio shows high robustness against the gradient-based attack compared
to the network with a high PRS ratio. In particular, the model with a low PRS ratio has a higher
degree of parallelism for the parameters in the final layer, which can support robustness. (2) The
network with a low PRS ratio includes more test samples in the training PR. We empirically verify
that this inclusion ratio is related to robustness from the observation that included test samples are
more robust than excluded test samples. (3) The network with a low PRS ratio learns sparse feature
representation to solve tasks. Moreover its global feature representation is more intensive than the
network with a high PRS ratio.
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