Safe Reinforcement Learning Framework Under a Linear Programming Formulation
Reinforcement learning (RL) has achieved remarkable progress in recent years, driven largely by advances in
deep learning. However, as RL agents are increasingly deployed in safety-critical domains such as robotics and
healthcare, the need to ensure safety has received limited attention. Standard RL formulations focus on maximis-
ing expected cumulative reward, but real-world environments rarely reduce to a single objective. Instead, agents
must balance reward maximisation and constraint satisfaction, such as avoiding unsafe states or limiting exposure
to risk in hazardous environments. A lot of recent safe RL methods modify state-of-the-art RL algorithms for
the unconstrained setting to a Lagrangian version. This entails iteratively updating the Lagrangian multiplier as a
weighting factor for the constraints and then optimising a policy over a weighted combination of reward maximi-
sation and constraint reduction. However, their drawbacks are not sustainable for safety-demanding applications:
they lack stability in performance and require extensive hyperparamater fine-tuning. One cause of these prob-
lems stem from the non-convex optimisation over policy parameters, often resulting in instability, hyperparameter
sensitivity, and limited convergence guarantees.

Instead of optimising the RL objective over the policy space, an alternative perspective rephrases the RL problem
as a linear program (LP), where we now optimise over the occupancy measure i(s,a) = (1—7) Y 72 7' Pr(s =
st,a = ay), for a given state-action pair (s, a) and +y being the discount factor. Intuitively, the occupancy measure
can be seen as a long-term visitation measure of a policy 7 for a given state-action pair. In this convex optimisation
framework, the objective is to maximise the (discounted) expected return with respect to the occupancy measure,
subject to linear constraints that preserve the flow of the occupancy measure between state-action pairs.

Most of the recent work relating to LP-based RL focuses on the theoretical properties of such algorithms in the
unconstrained setting. Our contribution lies in the investigation of the empirical benefits of LP-based RL for
the constraint setting, two aspects which have been underexplored in existing literature. In a very minimal and
modular way, we can add safety constraints that are also linear with respect to the occupancy measure. This yields
a constrained optimisation problem that remains convex and linear, significantly simplifying the optimisation
process.

To test our approach, we propose a simple stochastic primal-dual algorithm that alternates between updates of
the primal and dual variables based on samples from the environment. The Lagrangian multiplier is learned
as part of the dual variables and remains an interpretable signal of constraint importance, revealing the trade-off
between performance and safety. Preliminary experiments validate this formulation on various tasks representing
reward-based and state constraints but also less explored directions such as constraints on risk-preferences.
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then compare the distribution of their return and constraint values across initialisations. For the constraint values,
the interquartile range for PPOLag spans from 2 to 3. In contrast, the interquartile range from our approach ranges
from 0.000 to 0.031. A similar dispersion pattern can be observed for the return. This indicates that our approach
addresses the limitation of hyperparameter sensitivity of primal-dual methods in constrained settings.

These results yield a promising proof of concept that we want to build on. Our study highlights that safety
constraints can be incorporated into RL in a natural and modular way under the LP framework, preserving inter-
pretability and theoretical soundness. We believe that this perspective opens the door to a broader class of safe
RL algorithms which encapsulate an even wider range of constraint types which are both practical and reliable,
and we currently extend this line of work to more complex domains and settings.



