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Abstract

Neural network models have achieved high performance on a wide variety
of complex tasks, but the algorithms that they implement are notoriously
difficult to interpret. It is often necessary to hypothesize intermediate vari-
ables involved in a network’s computation in order to understand these
algorithms. For example, does a language model depend on particular
syntactic properties when generating a sentence? Yet, existing analysis
tools make it difficult to test hypotheses of this type. We propose a new
analysis technique – circuit probing – that automatically uncovers low-level
circuits that compute hypothesized intermediate variables. This enables
causal analysis through targeted ablation at the level of model parameters.
We apply this method to models trained on simple arithmetic tasks, demon-
strating its effectiveness at (1) deciphering the algorithms that models have
learned, (2) revealing modular structure within a model, and (3) tracking
the development of circuits over training. Across these three experiments
we demonstrate that circuit probing combines and extends the capabili-
ties of existing methods, providing one unified approach for a variety of
analyses. Finally, we demonstrate circuit probing on a real-world use case:
uncovering circuits that are responsible for subject-verb agreement and
reflexive anaphora in GPT2-Small and Medium.

1 Introduction
Transformer models are the workhorse of modern machine learning, driving breakthroughs
in subfields as disparate as NLP (Devlin et al., 2018; Radford et al., 2019; Brown et al., 2020),
computer vision (Dosovitskiy et al., 2020), and reinforcement learning (Chen et al., 2021).
Despite their success, little is known about the algorithms that they learn to implement.
This central problem has inspired a flurry of analysis and interpretability research trying
to “open the black box” (Rogers et al., 2021; Elhage et al., 2021; Belinkov, 2022). Despite
considerable effort, these models remain almost entirely opaque.

One challenge inherent to interpreting a model that succeeds at a complex task is that
researchers often do not have a complete picture of the algorithm that they are attempting
to uncover. However, they may be able to propose high-level causal variables that are
constituents of such an algorithm. For example, one may intuit that computing the syntactic
number of the subject noun of a sentence might be useful for language modeling (Chomsky,
1965; Linzen et al., 2016). This variable must be causally implicated in an algorithm that
solves the language modeling task, as it constrains the rest of the sentence due to agreement
rules (i.e. the syntactic number of the main verb must match the syntactic number of the
subject). However, it leaves open infinite possibilities in which other variables influence
the prediction of the next token. Though we focus on language modeling, this discussion
applies more generally to any complex domain where neural networks are applied, from
vision (Dosovitskiy et al., 2020) to astronomy (Ćiprijanović et al., 2020) to protein folding
(Jumper et al., 2021).
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Figure 1: Schematic visualization of circuit probing for an intermediate variable representing
the syntactic number of the subject of a sentence. Plural subjects are represented in red and
singular subjects in blue. At step T0, prior to training a binary mask, the model component
(Attention block or MLP) produces residual stream updates (red and blue arrows; Elhage
et al. (2021)) that are not partitioned by syntactic number (i.e. they will point in seemingly-
random directions). Circuit probing optimizes a binary mask over model weights. By the
end of mask optimization, the circuit will produce updates that are partitioned by syntactic
number (i.e. point in one direction for singular subjects and another for plural subjects).

We propose circuit probing to enable the investigation of intermediate variables in Transform-
ers (Vaswani et al., 2017). Circuit probing introduces a trainable binary mask over model
weights that is optimized to uncover a circuit1 that computes a high-level intermediate
variable (if one exists). This technique combines the best aspects of standard probing and
causal analysis methods, allowing researchers to (1) test whether high-level intermediate
variables are represented by the model, (2) test whether they are causally implicated in
the model behavior (rather than simply decodable from model representations), and (3)
reveal the particular subset of model weights that compute it. We first demonstrate the
benefits of circuit probing over existing methods using simple arithmetic tasks, showing
that it is more faithful to the underlying model than existing methods (i.e. it only provides
evidence in support of causal variables that are actually represented by the model) and
reliably uncovers circuits that are causally implicated in model behavior. We then use circuit
probing to analyze two syntactic phenomena on GPT2-Small and Medium (Radford et al.,
2019), uncovering particular circuits responsible for subject-verb agreement and reflexive
anaphora agreement2.

2 Circuit Probing
When attempting to interpret a model that is performing some task, one must often hy-
pothesize the existence of an intermediate variable that the model is computing. Circuit
probing attempts to (1) measure whether this intermediate variable is computed and (2)
identify the components of the model that are responsible for computing it (i.e. a circuit).
Similar to prior work (Conmy et al., 2023; Cao et al., 2021), we attempt to to uncover model
components by optimizing a binary mask over frozen model weights.

Recent work has shown that neural networks often exhibit structure at the level of subnet-
works (Csordás et al., 2020; Lepori et al., 2023b; Hod et al., 2021). In light of this, we attempt
to uncover circuits within individual attention and MLP blocks. These layers produce addi-
tive updates to the residual stream (Elhage et al., 2021). Intuitively, circuits that compute an
intermediate variable should produce outputs that are partitioned according to that variable.
For example, if a circuit is computing the syntactic number of the subject noun, then that
circuit should produce outputs that fall into one of two equivalence classes, corresponding
to singular subjects and plural subjects. Thus, we optimize a binary mask such that — if
the variable is computed by the model within a particular layer — the outputs of that layer

1Similar to prior work Wang et al. (2022), we take the term“circuit” to mean “any subgraph of the
computational graph describing a full model”. We isolate circuits within individual attention and
MLP blocks, and our circuits are composed of neurons. In general, circuit probing can be applied at
any level of granularity, as long as the subgraph produces an update to the residual stream.

2We release our code at: https://github.com/mlepori1/Circuit Probing. Circuit probing is imple-
mented using the NeuroSurgeon package (Lepori et al., 2023a).
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are clustered according to that variable. A natural optimization objective for this is the
soft nearest neighbors loss (See Appendix D), a contrastive loss that minimizes the (cosine)
distance between outputs from the same class, and maximizes the (cosine) distance between
outputs from different classes (Salakhutdinov & Hinton, 2007; Frosst et al., 2019). Circuit
probing is illustrated in Figure 1.

In this work, we mask at the neuron level (i.e. over columns in the matrices of the linear
transformations that comprise MLP and attention blocks in the Transformer) in both MLP
and attention blocks. We use continuous sparsification (Savarese et al., 2020), a pruning
technique that anneals a soft mask into a discrete mask over training, to learn the binary
mask (See Appendix C). We also train with l0 regularization to encourage sparse binary
masks. If this process is successful, it results in a sparse circuit within a model component
that computes the hypothesized intermediate variable. See Algorithm 1 for pseudocode.

Circuit Probing Evaluation: We evaluate circuit probing in two ways: (1) We train a 1-
nearest neighbor classifier on the output vectors produced by the discovered circuit, and
then test this classifier on held-out data. If circuit probing succeeds in finding a circuit that
computes a particular intermediate variable, then its output vectors will be partitioned by
the possible labels of this variable, and we expect this classifier to achieve high performance.
We employ a rather conservative strategy here, randomly sampling only 1 output vector for
each label to train the nearest neighbors classifier.3 See Algorithms 2 for pseudocode. (2)
We ablate the discovered circuit (i.e. invert the learned binary mask) and analyze how the
model’s behavior changes.

Causality: This ablation is equivalent to asking the counterfactual question, “How does
the model’s output change if it does not compute a particular intermediate variable, z, in
a particular block?”, assuming that the circuit is only causally implicated in computing z.
We note that this assumption is unlikely to be completely true, as neurons are typically
polysemantic (Elhage et al., 2022). However, (1) we attempt to mitigate this by encouraging
maximally sparse subnetworks using L0 regularization and (2) prior work has suggested
that sparse circuits may be surprisingly monosemantic (Hamblin et al., 2022).

Algorithm 1 Training Step
Input: Model Mθ , Batch B, Probe Layer i,

Mask Params m
1: Mθ = [Mθ0...(i−1), Mθi, Mθ(i+1)...N ]

2: B = {x, y}
3: Freeze(θ)
4: v← Mθi⊙m(Mθ0...(i−1)(x))
5: loss← soft neighbors(v, y)
6: loss += |m| ▷ L0 loss
7: backpropagate(loss, m)

Algorithm 2 Evaluation
Input: Model Mθ , Train Data DTrain,
Test Data DTest, Probe Layer i, Mask m

1: Mθ = [Mθ0...(i−1), Mθi, Mθ(i+1)...N ]

2: DTrain = {x, y}, DTest = {x′}
3: v← Mθi⊙m(Mθ0...(i−1)(x))
4: knn← train knn(v, y)
5: v′ ← Mθi⊙m(Mθ0...(i−1)(x′))
6: ŷ←predict knn(knn, v′)

3 Baselines
Circuit probing accomplishes two distinct goals: (1) it allows one to measure how well a
circuit partitions inputs according to an intermediate variable (i.e. it provides a probing
accuracy measurement), and (2) it allows one to perform causal analysis by ablating circuits.
Prior methods accomplish either one of these goals, but not both. Thus, we use different
baselines for each type of analysis. When analyzing probing accuracy, we compare circuit
probing to ‘‘vanilla probing” (henceforth “probing”) and contrastive probing. Probing
involves learning a classifier to decode information about a hypothesized intermediate
variable from model activations (Tenney et al., 2019; Hewitt & Manning, 2019; Ettinger, 2020;
Li et al., 2022; Nanda et al., 2023). Prior work has demonstrated that probing oftentimes
mischaracterizes the underlying computations performed by the model (Hewitt & Liang,
2019; Zhang & Bowman, 2018; Voita & Titov, 2020)). We empirically demonstrate that circuit

3We note that this is equivalent to a linear classifier whose weights are defined by the sampled
vector for each class.
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probing is more faithful to a model’s computation than linear or nonlinear probing (See
Sections 4.2, 4.3)4. Contrastive probing is an ablation of circuit probing where we train linear
probes using a similar contrastive objective. We present results in Appendix R, and find
that this method largely fails.

When performing causal analysis, we compare to three existing methods: causal abstraction
analysis, amnesic probing, and counterfactual embeddings. Causal abstraction analysis
intervenes on the activation vectors produced by Transformer layers to localize intermediate
variables to particular vector subspaces (Geiger et al., 2021; 2023; Wu et al., 2023). However,
it requires hypothesizing a complete causal graph – a high-level description of how inputs
are mapped to predictions, including all interactions between intermediate variables. This
is impossible for most real-world tasks on which we want to apply neural networks (such
as language modeling, to which we apply circuit probing in Section 4.4). We empirically
demonstrate the utility of boundless distributed alignment search (boundless DAS; Wu
et al. (2023)), a state-of-the-art causal abstraction analysis technique, and show that circuit
probing arrives at the same results (See Sections 4.1, 4.2, 4.3). Amnesic probing seeks to erase
linearly-decodable information about an intermediate variable, and then observe the effect
of this erasure on downstream behavior (Elazar et al., 2021). If this behavior is changed,
then the intermediate variable is implied to exist within the original network. Though many
techniques have been employed to erase linearly-decodable information (Ravfogel et al.,
2020; 2022; Shao et al., 2023), we use the state-of-the-art LEACE method in our amnesic
probing experiments (Belrose et al., 2023). We empirically demonstrate that circuit probing is
more faithful to a model’s computation than amnesic probing in Sections 4.2 and 4.3. Finally,
counterfactual embeddings (Tucker et al., 2021) were introduced to enable causal analysis
using particular probes. We find that counterfactual embeddings are fairly uninformative in
our experiments (See Sections 4.1 and 4.2).

4 Experiments
We present four diverse experiments in order to illustrate the breadth of questions that
circuit probing can help address. Experiments 1, 2, and 3 investigate toy models trained on
simple arithmetic tasks, where full causal graphs are easy to construct. These experiments
both (1) nuance or reproduce results from prior work and (2) compare circuit probing against
existing analysis methods. We compare circuit probing against linear and nonlinear probing
when assessing circuit probing’s ability to decode intermediate variables and compare
against amnesic probing, causal abstraction analysis, and counterfactual embeddings when
performing causal analysis. Experiment 4 applies circuit probing to language models to
demonstrate that the method scales to a more realistic model and setting5.

4.1 Experiment 1: Deciphering Neural Network Algorithms
Goal: One of the central goals of interpretability research is to characterize the algorithms
that models implement Olah (2022). This lofty goal is made substantially more tractable
when we can adjudicate between two hypothesized alternatives. We demonstrate that
all probing methods and most causal analysis methods produce converging results when
characterizing the algorithm implemented by a model trained on a simple arithmetic task.
Task: We train a 1-layer GPT2 model to solve a task defined by the function (a2 − b2)(mod P),
where P is set to 113, and a and b are input variables. The input sequences are of the form
[a, b, P], and the model is tasked with predicting the answer based on the output embedding
of the final token. All inputs are symbolic – they are one-hot vector mappings to learnable
embeddings. We exhaustively generate all possible data points with a and b, taking values
0− 112. Note that this input-output mapping permits at least two possible solutions, because
a2− b2 = (a+ b)× (a− b). We use circuit probing to determine which of the two alternative
solutions the trained neural network adopts. Specifically, we search for the intermediate
variables a2, (−1 ∗ b2), (a + b), and (a− b), all mod 113. We optimize binary masks using
the output vectors from the attention and MLP blocks when they are operating on the P
token, which is where the final prediction is made.

4In the main text we probe the residual stream of the model, see Appendix Q for results of probing
individual updates to the residual stream. Both methods give approximately the same results.

5See Appendix B for all data and hyperparameter details.
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(a) Causal graphs representing the
Multitask dataset in Experiment 2.
Note that Task 1 and Task 2 share
one intermediate variable (blue)
and differ by one intermediate vari-
able (red and green).

(b) Experiment 2 probing accuracy for circuit, linear,
and nonlinear probes. We find that circuit probing and
linear probing generally converge to find evidence of
the Free and Shared variable for both tasks and no evi-
dence of the irrelevant variable (“other”). On the other
hand, nonlinear probing suggests that the irrelevant
variable is represented.

Probing: We expect all methods to achieve high accuracy on either a2 and −1 ∗ b2 or a + b
and a− b. This would adjudicate between the two alternative solutions to the arithmetic task.
Indeed, we see that circuit probing, linear probing, and nonlinear probing6 on the attention
block all converge to ceiling accuracy for the variables in a2 − b2, and floor accuracy for the
variables in (a+ b)× (a− b) (See Appendix E). All methods converge toward more negative
results from the MLP block, indicating that the intermediate variables are computed by the
attention block (See Appendix E for MLP results).
Causal Analysis: We confirm that the circuits uncovered by circuit probing are causal in
Appendix F. Amnesic probing weakly supports these conclusions (See Appendix G) and
causal abstraction analysis strongly supports these conclusions (See Appendix H). On the
other hand, we find that counterfactual embeddings fail to elicit counterfactual behavior
in all cases, and thus do not provide evidence in either direction (See Appendix I). Finally,
we run a transfer learning experiment, which behaviorally demonstrates that the model
is representing the task as a2 − b2, rather than (a + b)× (a− b) (See Appendix J). Overall,
our results demonstrate that circuit probing agrees with existing causal techniques when
characterizing the algorithm implemented by a small model trained on a simple task.

4.2 Experiment 2: Modularity of Intermediate Variables
Goal: We now apply circuit probing to analyze the internal organization of Transformer
models, which has been the subject of several recent studies (Lepori et al., 2023b; Csordás
et al., 2020; Hod et al., 2021; Mittal et al., 2022). We show that circuit probing can be used to
characterize whether computations are implemented in a modular and reusable manner
within a Transformer, and that other methods fail to reveal such structure.
Task: We train a model on a simple multitask modular arithmetic task, represented by the
causal graph in Figure 2a. We set P = 29, P′ = 31, P′′ = 23. The input sequences are of the
form [T, a, b, c, N], and the model is tasked with predicting the solution. N is a separator
token, and T is a task token. For Task 1, we exhaustively generate all possible data points
with a and b, taking values 0− 112, and c being a random token in the same range. Similarly,
for Task 2. Note that both tasks share one intermediate variable (a “shared variable”), and
each task has one intermediate variable that the other does not (a “free variable”). First, we
probe for intermediate variables. We use circuit probing to probe each task individually,
assessing which intermediate variables are computed when solving Task 1, and which
are computed when solving Task 2. Specifically, we search for the intermediate variables
a(mod P), b(mod P’), and c(mod P”). We optimize binary masks using the output vectors
from the attention and MLP blocks when they are operating on the N token, which is where
the final prediction is made. Next, we investigate modularity directly. We hypothesize that
the model implements a reusable computation for the shared variable a(mod P) — that the

6(Non)linear probes are always trained to map from the residual stream of the final input token
in the sequence (after the attention block and after the MLP block) to the value of the intermediate
variable that we are attempting to decode.
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same computation is used in both Task 1 and Task 2. Similarly, we hypothesize that the
free variables are implemented modularly — that Task 1’s free variable computation can be
ablated without completely destroying performance on Task 2, and vice-versa.
Probing: We expect models to compute their free and shared variables (a(mod P) and
b(mod P’) for Task 1, and a(mod P) and c(mod P”) for Task 2), and not to compute the
other variable. Our probing results for the attention block are shown in Figure 2b. Circuit,
linear, and nonlinear probes decode free and shared variables with high accuracy, indicating
that the relevant variables for a given task are computed in the attention block. However,
nonlinear probing (and only nonlinear probing) reliably decodes the other variable. This
accords with prior work questioning whether expressive probes accurately reflect the causal
structure of neural networks (Voita & Titov, 2020; Zhang & Bowman, 2018).
Causal Analysis: Causal abstraction analysis agrees with circuit probing and linear probing
(see Appendix K), causally implicating the free and shared variables for each task. On the
other hand, counterfactual embeddings generated from the nonlinear probes once again
fail to produce evidence that any variables are causal (see Appendix L). We conclude that
counterfactual embeddings act more as adversarial examples for our trained nonlinear
probe, rather than as meaningful counterfactual inputs to the model. Next, we perform
a causal analysis to understand whether the model exhibits modularity. We expect that
ablating the circuit computing the shared variable for either task should destroy performance
across both tasks. On the other hand, we expect that ablating the circuit computing the free
variable for Task 1 should destroy performance on Task 1 while having less of an effect on
Task 2 performance (and vice-versa). In Appendix M, we analyze the morphology of the two
free variable circuits returned by circuit probing and find that the circuits are only distinct in
one tensor within the attention block. Thus, we only ablate circuit weights within that tensor.
From Table 1, we see that ablating the circuit that computes the shared variable for either
Task 1 or Task 2 destroys performance on both tasks. On the other hand, ablating the free
variable in Task 1 destroys performance on Task 1, while maintaining some performance on
Task 2. We observe the same trend for the free variable in Task 2. We run a similar analysis
using amnesic probing and find that amnesic probing does not reveal this internal structure.
We present results from amnesic probing on the residual stream after the attention block
in Table 1. Overall, our results demonstrate that circuit probing is superior to competing
techniques at characterizing how models structure their computations.

4.3 Experiment 3: Circuit Probing as a Progress Measure
Goal: Circuit probing allows us to gain insight into the training dynamics of Transformers
at the level of intermediate variables. Recent work has shown that models may abruptly
learn to generalize long after they overfit to the training data (Power et al., 2022). Despite
this rather discontinuous switch from overfitting to generalization (often called grokking),
Nanda et al. (2022) revealed that the circuit that computes the generalizable algorithm is
formed continuously throughout training. While their work required reverse-engineering
the entire algorithm to gain this insight into circuit formation, we reproduced their finding
in a slightly different setting using circuit probing (which only requires us to hypothesize a
high-level intermediate variable).
Task: We train a model on the task (a2 + b)(mod P), with P = 113. The input sequences are of
the form [a, b, P], and the model is tasked with predicting the solution. Our model exhibits
grokking on this task - it generalizes long after it overfits. Generalization performance
increases rather slowly from epoch 0 until 10000, then rapidly climbs to near-perfect accuracy
by epoch 17500. See Figure 3a. First, we probe for the development of the intermediate
variable a2 throughout training. Next, we perform a selectivity analysis on the trained model
– we probe for a variable that is not causally implicated in model behavior (b2) and verify
that circuit probing does not decode this intermediate variable.
Probing: First, we investigate the development of the circuit computing a2. We expect the
performance of circuit probing to increase steadily throughout training, converging to a
high value before the overall model generalizes. This finding would align with Nanda et al.
(2022)’s finding that “circuit formation” occurs continuously, and that it completes before
the overall model generalizes. We provide results from circuit, linear, and nonlinear probing
on the attention block (See Appendix N for MLP results). From Figure 3b, we see that circuit
probing accuracy increases throughout training, achieving >90% accuracy before epoch
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Method Train Task Variable Task 1 Ablation Acc. Task 2 Ablation Acc.

Circuit Probing Task 1 Shared 3.7% 3.7%
Circuit Probing Task 1 Free 3.2% 28.1%
Circuit Probing Task 2 Shared 3.6% 3.6%
Circuit Probing Task 2 Free 48% 4.8%

Amnesic Probing Task 1 Shared 3.6% 3.3%
Amnesic Probing Task 1 Free 2.2% 2.9%
Amnesic Probing Task 2 Shared 2.7% 2.4%
Amnesic Probing Task 2 Free 3.7% 4.5%

Table 1: Experiment 2 circuit probing ablation and amnesic probing results. Both causal
interventions require training (a binary mask for circuit probing, and an affine transfor-
mation for amnesic probing). “Train Task” refers to the task that was used for training
these interventions. Targeted ablations of the circuits returned by circuit probing reveal a
stark difference between the internal representations of the Free and Shared variables. A
targeted ablation of the shared variable circuit destroys performance on both tasks, whereas
a targeted ablation of Task 1’s free variable harms performance on Task 1 far more (under-
lined) than Task 2 (bolded). The same is true in the opposite direction. We do not see these
differences when performing amnesic probing.

10000. Thus, we can conclude that the circuit that allows the model to generalize is formed
before the overall model’s generalization behavior would imply. However, this circuit is
not available from the outset and is developed throughout training. Linear and nonlinear
probing tell a markedly different story, implying that the variable required to generalize was
present nearly from the beginning of training. Next, we present results from our selectivity
analysis. We expect our probing methods to achieve poor accuracy when probing for b2, a
variable that is not causally implicated in model behavior. At the end of training, circuit
probing achieves 54.9% accuracy7 at decoding b2 from the fully trained model, whereas
linear and nonlinear probing achieves 100% accuracy. These values are remarkably steady
throughout training (See Figure 3c).
Causal Analysis: Causal abstraction analysis confirms that the a2 intermediate variable gets
progressively more relevant as training progresses, and that b2 is never causally implicated
in model behavior (See Appendix O). We find that ablating the circuits uncovered in the
attention block by circuit probing for both a2 and b2 destroys model performance (See
Appendix P). However, this is not a problem — the probing results make it clear that the
circuit for b2 is not successfully computing that intermediate variable in the first place, so
the effect of ablating it is hard to predict. However, the linear classifier does decode both
intermediate variables, and so amnesic probing is needed to clarify whether those variables
are causal. We find that amnesic probing for a2 incorrectly implies that this variable is causal
right from the start, dropping test accuracy to near 0 throughout training. Amnesic probing
for b2 also incorrectly implies that this variable is causal throughout training, consistently
dropping test accuracy (See Figure 3d). However, by the end of training, the effect of erasing
information about b2 is notably diminished. These results characterize an expected but
important failure case of amnesic probing: a2 and b2 are linearly decodable from the identity
of a and b, so erasing all linearly-decodable information about either requires one to destroy
the input. Overall these results demonstrate that circuit probing is more faithful to the
underlying circuitry than existing methods.

4.4 Experiment 4: Circuit Probing in Language Models
Goal: The previous experiments focused on toy tasks in which a full causal graph could be
specified. However, the reason that we are interested in developing interpretability tools
is to analyze models that are used in practice on tasks where a causal graph cannot be
constructed. Here, we use circuit probing to investigate how pretrained GPT2-Small and
GPT2-Medium perform language modeling. In particular, we investigate two linguistic
dependencies that rely on syntactic number: subject-verb agreement and reflexive anaphora.

7Random chance for circuit probing is 50%, as only two distinct integers in our dataset map to the
same value of b2(mod 113) and we are using a 1-nearest neighbor classifier.
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(c) Selectivity Analysis
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Figure 3: (a) We see generalization long after overfitting. (b) Probing for a2. Linear and
nonlinear probing converge to perfect accuracy very early in training, while circuit probing
reveals that the circuit for a2 is formed gradually through training. (c) Probing results for b2,
which is not causally implicated in the task a2 + b. Circuit probing reveals that this variable
is not represented at any point during training, whereas other methods imply that it is
represented from the start of training. (d) Amnesic Probing incorrectly implies that (1) a2 is
causally implicated from the start, and (2) b2 is causally implicated throughout training.

Subject-verb agreement refers to the English-language phenomenon where the subject of
a sentence must agree with the main verb of a sentence in syntactic number. For example:
The keys are on the table is grammatical, whereas The keys is on the table is ungrammatical.
We hypothesize that an intermediate variable representing the syntactic number of the
subject noun is computed when predicting the main verb of a sentence. Reflexive Anaphora
ensures that reflexive pronouns agree with their referents. For example: the consultants
injured themselves is grammatical, and the consultants injured herself is ungrammatical. We
hypothesize that an intermediate variable representing the syntactic number of the referent
is computed when predicting a reflexive pronoun.
Task: We use the templates from Marvin & Linzen (2018) to generate sentence prefixes,
where the continuation of the prefixes are likely to be either a main verb (when studying
subject-verb agreement) or a reflexive pronoun (when studying reflexive anaphora). See
Appendix S for example prefixes. We run circuit probing on sentences containing one
distractor, which is a non-subject or non-referent noun (e.g. “cabinet” in the keys to the cabinet
are on the table). For each phenomenon, we run circuit probing on the last token of sentence
prefixes to uncover the circuit that computes the syntactic number of the subject noun or
referent. We then ablate the discovered circuit and evaluate the model’s ability to continue
held-out sentence prefixes grammatically. Specifically, we assess whether the model is more
likely to predict tokens that are consistent or inconsistent with the syntactic number of the
subject/referent. For subject-verb agreement, we inspect the logits for the tokens is and
are – if the logit for is is higher than the logit for are when the subject is singular (e.g. The
officer...), then we consider the model to have succeeded on that sentence prefix. For reflexive
anaphora, we run the analysis twice, once comparing the logits of herself and themselves, and
again comparing the logits of himself and themselves. We evaluate models on IID sentences
with one distractor noun and on an OOD dataset of sentences that contain two distractor
nouns (See Appendix S for examples). We hypothesize that the same circuit computes the
relevant linguistic dependency for both sentence structures. Even if we recover positive
results from this analysis, it is possible that we are simply destroying the entire model,
rather than ablating a specialized circuit. As a control, we sample 5 random subnetworks
from the complement set of neurons that are in our circuit and rerun the ablation analysis.
Randomly-sampled subnetworks always contain the same number of neurons as our circuit.
Probing: See Appendix T.1 and U for an investigation of circuit probing accuracy. Generally,
we find that most attention layers can compute the correct syntactic number, but that MLPs
only begin to achieve good performance in the middle layers of GPT2-Small and Medium.
See Appendix Y for linear probe accuracy for all GPT2 settings.
Causal Analysis: For both syntactic dependencies, we expect that ablating the discov-
ered circuit will render the model worse at distinguishing the syntactic number of the
subject/referent. We expect that ablating random subnetworks should not harm model
performance on any dataset. We present results from GPT2-Small in the main body, and

8



Published as a conference paper at COLM 2024

IID OOD
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Subject-Verb Agreement

Condition
Ablate Subnetwork
Ablate Random
Full Model

IID OOD
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reflexive Anaphora - Masc.

Condition
Ablate Subnetwork
Ablate Random
Full Model

IID OOD
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reflexive Anaphora - Fem.

Condition
Ablate Subnetwork
Ablate Random
Full Model

IID OOD
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Reflexive Anaphora - Masc.

Condition
Ablate Subnetwork
Ablate Random
Full Model

Figure 4: Experiment 4 GPT2-Small ablation results on layer 6’s attention block. Across both
Subject-Verb Agreement (Left) and Reflexive Anaphora evaluated using the masculine (Mid-
dle) and feminine (Right) pronoun, we see that ablating the discovered circuit renders the
model worse at distinguishing syntactic number. Ablating randomly sampled subnetworks
has does not hurt the model’s ability to distinguish singular and plural subjects/referents.

present GPT2-Medium results in Appendix U8. For both phenomena, we find that the de-
pendency is computed in layer 6’s attention block9. Ablating the circuit returned by circuit
probing drops performance substantially for IID and OOD datasets for both phenomena,
while ablating random subnetworks does not impact model performance (See Figure 4).
Other blocks do not exhibit this characteristic pattern as strongly (See Appendix T.2). This
accords with prior work suggesting that syntactic dependencies are represented in middle
layers of Transformers (Tenney et al., 2019; Vig & Belinkov, 2019). See Appendix V for an
analysis of circuit overlap, Appendix W for qualitative results, and Appendix X for results
demonstrating that syntactic number of individual tokens is computed earlier in the model.

5 Discussion
Related Work: Circuit probing is related to recent efforts in mechanistic interpretability — a
burgeoning field that attempts to reverse-engineer neural network algorithms. Through
substantial manual effort, researchers have uncovered the algorithms that both toy models
(Olsson et al., 2022; Nanda et al., 2022; Chughtai et al., 2023) and more realistic models (Wang
et al., 2022; Hanna et al., 2023; Merullo et al., 2023) are implementing. More broadly, there
has been substantial work analyzing the syntactic (Linzen & Baroni, 2021; Goldberg, 2019;
Tenney et al., 2018; McCoy et al., 2018) and semantic capabilities Pavlick (2022; 2023); Yu &
Ettinger (2020); Hupkes et al. (2020); Dziri et al. (2023) of language models. Circuit probing
is also related to work that attempts to decompose models into functional subnetworks
Csordás et al. (2020); Hamblin et al. (2022); Lepori et al. (2023b); Zhang et al. (2021); Panigrahi
et al. (2023); Hod et al. (2021); Cao et al. (2021). The success of circuit probing is further
evidence that subnetworks are a useful lens through which to analyze models.

Conclusion: We introduce circuit probing, a novel method for uncovering low-level circuits
that compute high-level intermediate variables. Through four experiments, we have shown
that one can gain insights into the underlying algorithms the model is implementing,
how these algorithms are structured within the model, and how they develop throughout
training. Circuit probing combines and extends the capabilities of existing methods and
outperforms them in several settings. However, it is currently unknown how multiple
circuits compose within a given block to create one additive update to the residual stream,
so one cannot replace individual variables to perform counterfactual interventions. Future
work might seek to understand how circuits compose with one another for this purpose.

8Our results on GPT2-Medium are largely reproduce what we find in GPT2-Small for reflexive
anaphora. We fail to identify a circuit that computes subject-verb agreement dependencies.

9For reflexive anaphora, we note that models achieves higher accuracy when predicting the
masculine pronoun. This is evidence of gender bias in language models, which has been well-
documented elsewhere (Marvin & Linzen, 2018; May et al., 2019; Rudinger et al., 2018; Weidinger
et al., 2021).
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6 Ethics Statement

Circuit probing can be used to uncover computations that a neural network is performing.
This may have future implications for bias, fairness, and safety of neural network models.
However, we emphasize that the current iteration of circuit probing should not be used
in isolation to assess models for social biases in real-world systems. Circuit probing can
provide positive evidence that a computation is implemented, but cannot yet be used to
provide evidence that a computation is definitely not implemented in a real-world system.
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Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability.
Advances in Neural Information Processing Systems, 36:16318–16352, 2023.
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A Reproducibility Statement

To foster reproducibility, we provide details on model training and hyperparameters in
Appendices B and C. We provide details of our experimental design for all experiments
throughout the main text, as well as in our appendices. Additionally, we provide a high-
level explanation of the circuit probing algorithm in Section 2, and provide details on the
loss function in Appendix D. Finally, we make our code publicly available.

B Data and Hyperparameter Details

All 1-layer GPT2 models have 4 attention heads, an embedding size of 128, and an MLP
dimension of 512. We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
0.001 and train with weight decay.

Experiment 1 We train a 1-layer GPT2 model on 60% of all possible datapoints for this
task, leaving the other 40% held out as a test set. For circuit probing, we train our mask on
all examples from the train set (See Appendix C for those training hyperparameters) using a
batch size of 500, and use updates generated from train set examples to train the 1-nearest
neighbors classifier. We evaluate on the held-out test set.

For linear and nonlinear probing, we train for 100 epochs, using a learning rate of 0.1.
We use this same learning rate for generating counterfactual embeddings. Our nonlinear
classifier uses ReLU nonlinearity, and has a hidden size of 256.

For Boundless DAS, we train for 250 epochs, with 2500 training examples using the Adam
optimizer with a learning rate of 0.01.

For transfer experiments, we finetune on 60% of each dataset, using the Adam optimizer
with a learning rate of 0.001. We train with weight decay. We train for fewer epochs with a2

because the models converge very early in training.

Experiment 2 All details are the same as in Experiment 1.

Experiment 3 We train a 1-layer GPT2 model on 33.3% of all possible datapoints for this
task, which gives us the grokking behavior that we wish to investigate. All other details are
the same as Experiment 1.

Experiment 4 We train circuit probing on 2000 examples for each dataset and test on 1000
examples, otherwise all details are the same.

C Continuous Sparsification Details

Continuous sparsification enables us to train binary masks over model weights. Our loss
function is defined as:

min
mi∈{0,1}

Lso f t neighbors(Cθ⊙mi ) + λ||m|| (1)

Where m is our binary mask, Cθ is a model component, with weights θ, and ||m|| is our l0
regularizer, and Lso f t neighbors is the soft nearest neighbors loss described in Appendix D

Typically, optimizing such a binary mask is intractable, given the combinatorial nature of
a discrete binary mask over a large parameter space. Instead, continuous sparsification
reparameterizes the loss function by introducing another variable, s ∈ Rd:

min
si∈Rd

Lso f t neighbors(Cθ⊙σ(β·si)
+ λ||σ(β · si)||1 (2)

In Equation 2, σ is the sigmoid function, applied elementwise, and β is a temperature
parameter. During training, β is increased after each epoch according to an exponential
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schedule to a large value βmax. Note that, as β −→ ∞, σ(β · si) −→ H(si), where H(si) is the
heaviside function.

H(s) =
{

0, s < 0
1, s > 0

}
(3)

Thus, during training, we interpolate between a soft mask (σ) and a discrete mask (H).
During inference, we simply substitute σ(βmax · si)) for H(si). Notably, we apply continuous
sparsification to a frozen model in an attempt to reveal the internal structure of this model.
In contrast, the original work introduced continuous sparsification in the context of model
pruning and jointly trained θ and s.

For all experiments, we train binary masks with the Adam optimizer (Kingma & Ba, 2014),
with a learning rate of 0.001. We fix βmax = 200, initialize the mask parameters to 0, and
train for 90 epochs. The λ parameter must scale with the number of parameters per layer.
For all 1-layer GPT2 experiments, we set λ = 1E− 6. For GPT2-Small and Medium, we set
λ = 1E− 7 and 1E− 8, respectively.

D Soft Nearest Neighbors Loss

Given input embeddings x to a model component C and intermediate variable labels
y, in a batch with b samples, Equation 4 defines the full optimization objective. λ is a
hyperparameter that scales the l0 regularization strength. Intuitively, this loss function
pushes members of the same class towards each other, according to some distance metric,
and members of different classes far from each other. Concretely, this partitions the output
space of transformer layers into equivalence classes defined by the variable that we are
searching for.

minmn∈{0,1} −
1
b
( ∑

i∈1..b

∑j∈1...b,
j ̸=i,

yi=yj

ecosine dist(Cθ⊙m(xi),Cθ⊙m(xj))

∑k∈1...b,
k ̸=i

ecosine dist(Cθ⊙m(xi),Cθ⊙m(xk))
) + λ ∑

n∈1...|m|
mn (4)

E Experiment 1: Probing Results

In Table 2, we see that all methods converge to show that the model is computing a2 − b2,
rather than (a + b)× (a− b).

In Figure 5, we present results from Experiment 1 for all probing methods on the MLP
block. First, we note that all methods perform worse at decoding a2 and −1 ∗ b2. We note
that chance accuracy for circuit probing is effectively 50%, whereas chance for probing
methods is 0.8% (1 out of 113). This is because circuit probing results are generated by a
1-nearest neighbors classifier trained on the outputs of the MLP block after masking. For the
variable a2 and −1 ∗ b2, there are only two distinct integers that map to the same value of
that variable (i.e. 42(mod 113) = 1112(mod 113) = 4). Because we are training the classifier
with 1 vector per variable label, 50% of the underlying integers are represented in the 1-NN
training set. Thus, circuit probing accuracy of 50% means that the block is merely decoding
the identity of the underlying token rather than meaningfully computing an intermediate
variable.

F Experiment 1: Circuit Probing Causal Analysis Results

Table 3 contains the results from running a causal analysis on the circuits discovered in
Experiment 1. We note two things: (1) ablating the circuits for a2 or −1 ∗ b2 destroys model
performance, and (2) circuit probing returns empty subnetworks for a + b and a− b. This is
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Method a2 −1 ∗ b2 a + b a− b

Circuit 99% 99% 1% 1%
Linear 100% 100% 0% 0%
Nonlinear 100% 100% 1% 1%

Table 2: Experiment 1 probing accuracy for circuit, linear, and nonlinear probes. All
methods converge to the conclusion that the model is representing a2 − b2, rather than
(a + b) ∗ (a− b).
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Figure 5: MLP probe accuracy for Experiment 1. All methods decode a2 and −1 ∗ b2 worse
in the MLP than in the attention block. Note that chance accuracy for circuit probing is
effectively 50%.

a useful feature of using l0 regularization when training binary masks – if there is no signal
for a given variable, circuit probing is encouraged to return a maximally sparse (i.e. empty)
subnetwork.

G Experiment 1: Amnesic Probing Results

In Table 4, we provide results from running amnesic probing using LEACE (Belrose et al.,
2023) on the model in Experiment 1. LEACE requires fitting an affine transformation over
an embedding to surgically erase all linearly-decodable information about an intermediate
variable. We fit this transformation on the residual streams of the P token taken from the test
set. We then erase the linearly-decodable information from these same embeddings, patch
them back into the model, and compute its post-intervention test accuracy. We find that
erasing the intermediate variable a2 or −b2 after the attention block completely destroys
model performance. Erasing a + b or a− b also harms performance, though not quite as
much. This weakly supports the conclusions from circuit probing, but raises important

Variable Full Model Test Acc. Ablated Test Acc. % Parameters in Circuit

a2 100% 0.8% 53.3%
−b2 100% 0.9% 53.5%
a + b 100% 100% 0%
a− b 100% 100% 0%

Table 3: Experiment 1 task performance after ablating the circuit returned by circuit probing.
We see that ablating the circuit responsible for either a2 or −b2 destroys test accuracy.
However, we see that circuit probing returns an empty circuit for both a + b and a− b, due
to l0 regularization. Thus, ablating this empty circuit has no effect.
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Component a2 −b2 a + b a− b

Attn. 1.8% 1.8% 35.3% 35.2%
MLP 100% 99.9% 99.3% 99.4%

Table 4: Amnesic Probing results for Experiment 1. We note a greater performance drop
when erasing a2 or −b2 than a + b or a− b in the residual stream after the attention block.

Component a2 −b2 a + b a− b

Attn. 98% 99% 1% 1%
MLP 2% 2% 2% 2%

Component Task a (mod P) b (mod P’) c (mod P”)

Attn. 1 93% 93% -
MLP 1 3% 3% -
Attn. 2 93% - 94%
MLP 2 4% - 4%

Table 5: Causal abstraction analysis results for Experiment 1 (top) and Experiment 2 (bottom).
Using boundless distributed alignment search, we reveal that the attention blocks in both
models contain the same causal intermediate variables that circuit probing discovers.

questions about the utility of LEACE when linear probes perform poorly (as is the case for
a + b or a− b, see Section 4.1).

H Experiment 1: Causal Abstraction Analysis Results

In Table 5, we provide results from running Causal abstraction analysis using Boundless
DAS (Wu et al., 2023) on both Experiment 1 and Experiment 2. Causal abstraction analysis
creates interventions on model representations in order to elicit counterfactual behavior
in the downstream model. For example, in the case of a2 − b2, the model might intervene
to change the value of a2 to a′2. The intervention is considered successful if the overall
model outputs the answer to a′2 − b2. Causal abstraction analysis reports statistics in terms
of the success of its counterfactual embeddings, rather than its ability to decode model
representations.

These results support the results generated by circuit probing in Experiment 1. Causal
abstraction analysis reveals evidence for a2 and −1 ∗ b2, but not a + b and a− b.

I Experiment 1: Counterfactual Embeddings

We present counterfactual embedding results from Experiment 1 in Table 6. Counterfactual
embeddings are embeddings that are optimized to fool a probing classifier. Formally, given
a probe, Pθ trained to decode an intermediate variable, V, consider a residual stream state e
such that Pθ(e) = Vi. We freeze Pθ and optimize e such that Pθ(e′) = Vj. If Pθ is decoding
information that is causally implicated in the underlying model, then replacing e with
e′ should change the output to the output one would expect from setting variable V to
Vj. We report counterfactual embedding success – the percentage of embeddings that are
successfully optimized to fool the probing classifier. We see that all linear probing classifiers
can be fooled by counterfactual embeddings. We see that nonlinear classifiers can be fooled
by counterfactual embeddings only for a2 and −1 ∗ b2. Recall that all classifiers performed
poorly at decoding a + b and a− b.

Next, we analyze counterfactual behavior success – the percent of counterfactual embed-
dings that actually elicit counterfactual behavior in the overall model. We see that all sets
of counterfactual embeddings fail to elicit counterfactual behavior. Taken in isolation, one
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Counterfactual Embedding Success

Probe a2 −b2 a + b a− b

Linear 100% 100% 100% 100%
Nonlinear 100% 100% 1% 1%

Counterfactual Behavior Success

Probe a2 −b2 a + b a− b

Linear 1% 1% 1% 1%
Nonlinear 1% 1% 0% 0%

Table 6: Experiment 1 counterfactual embedding results. (Top) Counterfactual embedding
success – the percent of examples where the counterfactual optimization procedure creates
an example that changes probe outputs to a particular class. We see that this optimiza-
tion process largely succeeds, except for a + b and a − b in nonlinear probes. (Bottom)
Counterfactual behavior success – the percent of counterfactual embeddings that elicit coun-
terfactual behavior in the model. We see very poor performance on this metric, indicating
that counterfactual embeddings are not producing the expected behavioral outcomes.

might conclude that these probes are not decoding causally-relevant information, and thus
that models are not actually computing a2 and −1 ∗ b2. However, given the success of every
other analysis technique at causally implicating a2 and −1 ∗ b2, we may instead conclude
that counterfactual embeddings are acting as adversarial examples to the probing classifier,
and are destroying the embedding with respect to the underlying model.

J Experiment 1: Transfer Learning

To further confirm our findings in Experiment 1, we analyze whether training on a2 − b2

confers any benefits when finetuning on different tasks. In particular, we finetune the GPT2
model on a task defined by a2(mod 113), and separately on a task defined by a+ b(mod 113).
If the model is solving the task using a2 − b2, we expect that finetuning should help the
model solve a2 faster than training a randomly initialized model, because the model already
represents the variable necessary to solve the finetuning task. Similarly, we expect the
finetuning to a + b will be slower than training a randomly initialized model, because the
model represents variables that are explicitly not useful for solving the finetuning task.
From Figure 6, that is exactly what we see.

K Experiment 2: Causal Abstraction Analysis Results

In Experiment 2, causal abstraction analysis reveals evidence that the model is using vari-
ables a(mod P) and b(mod P’) when solving Task 1, and a(mod P) and c(mod P”) when
solving Task 2 (See Table 5). Unfortunately, there is no causal model that involves c(mod P’)
when solving Task 1, and b(mod P”) when solving Task 2, and so it does not make sense to
run causal abstraction analysis in this setting.

L Experiment 2: Counterfactual Embedding Analysis

Here, we run a causal analysis of the nonlinear probes using counterfactual embeddings.
Counterfactual embeddings are designed to reveal whether probes are reflecting information
that is causally implicated in model behavior. We summarize the relevant details of their
technique here but defer to Tucker et al. (2021) for a full treatment. Given a probe, Pθ trained
to decode an intermediate variable, V, consider a residual stream state e such that Pθ(e) = Vi.
We freeze Pθ and optimize e such that Pθ(e′) = Vj. If Pθ is decoding information that is
causally implicated in the underlying model, then replacing e with e′ should change the
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Figure 6: (Left) Transfer performance for a2. We see that pretraining on a2 − b2 confers a
benefit to the model when finetuning on a2. (Right) Transfer performance for a + b. We see
that pretraining on a2 − b2 is a detriment when finetuning on a + b.

Task Probe Var. CE Success Model Acc. Counterfactual Acc.

1 Free 100% 2.1% 2.2%
1 Other 100% 1.8% 1.5%
1 Shared 100% 2.5% 2.4%
2 Free 100% 2.1% 2.1%
2 Other 100% 2.3% 2.1%
2 Shared 100% 2.2% 3.0%

Table 7: Experiment 2 counterfactual embedding results. Counterfactual embeddings that
created by “free” and “shared” variable probes should result in a different prediction being
made in the overall model. Counterfactual embeddings created by the “other” variable
probe should have no effect on the overall model’s prediction. We see that this does not
happen. Though all counterfactual embeddings succeed at changing the probe prediction
(CE Success), they also all change the overall model prediction (Model Acc.), but not to the
correct counterfactual answer (Counterfactual Acc.).

output according to the counterfactual variable. If this information is not causally implicated
in the underlying model, then replacing e with e′ should have no effect, preserving the
original model output.

We generate counterfactual embeddings for both tasks using the nonlinear probes trained
to decode the “free” and “other” variables from the residual stream after the attention
block. We record the percentage of examples whose output is maintained before and after
substituting the counterfactual embedding (the “Model Accuracy”). We expect this value to
be high for the “other” variable, and low for the “free” and “shared” variables, indicating
that the features that the nonlinear probe uses to decode the “other” variable are not causal.
Conversely, we record the percentage of examples whose output is changed according to
the counterfactual variable (the “Counterfactual Accuracy”). We expect this value to be high
for the “free” and “shared” variables and low for the “other” variable. This would indicate
that only the “free” and “shared” variables are causal.

From Table 7, we see that both Model Accuracy and Counterfactual Accuracy drop to
near-zero after patching in counterfactual embeddings for either “free”, “shared”, or “other”
variables. This suggests that counterfactual embeddings act more as adversarial examples
to the probe, rather than providing useful information about causally-relevant variables.
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Figure 7: Experiment 2: Visualizing the distribution of circuits throughout the tensors
comprising an attention block. We see that the circuits computing the free variables for
Task 1 and Task 2 almost completely overlap in the c proj tensor, but are mostly distinct in
the c attn tensor.

M Experiment 2: Circuit Overlap Analysis

From Figure 7, we see that the two circuits computing the free variables in Task 1 and Task 2
are largely distinct in attn.c_attn, but nearly completely overlapping in attn.c_proj.
With this insight, we ablate circuit parameters just within attn.c_attn. We can also visu-
alize the distribution of circuits through attention heads. In Figure 8, we see that circuit
probing recovers structures that exist between particular attention heads (i.e. no single
attention head is fully devoted to an intermediate variable), but also partially localizes the
two Free variables into specific heads (head 1 for Task 1, head 2 for Task 2).

N Experiment 3: MLP Probe Accuracy

Here we present the linear, nonlinear, and circuit probe accuracy on the MLP block through-
out training for Experiment 3. In Figure 9, we see very messy results, further reinforcing that
the intermediate variable a2 is computed in the attention block. We also present amnesic
probe accuracy after erasing each intermediate variable from the residual stream after the
MLP block in Experiment 3. In Figure 10, we see that test accuracy monotonically increases
throughout training, generally reflecting the test accuracy of the underlying model. This
indicates that amnesic probing does not erase any important information

O Experiment 3: Causal Abstraction Analysis

We present results from running causal abstraction analysis throughout training for the
variables a2 and b2. a2 should be causally implicated in model behavior by the end of
training, as the model generalizes to unseen data according to the function a2 + b. b2 should
never be causal, as it is not relevant to the task. We see the expected patterns in Figure 11.

P Experiment 3: Circuit Probing Causal Analysis

Figure 12 provides our results from ablating the circuits uncovered by circuit probing
throughout training. Probing results already indicate that the circuit uncovered for b2 fails
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Figure 8: Circuit probing recovers some elements of known structure within Transformers.
In particular, we see that Head 1 largely computes the Free variable in Task 1, and Head 2
largely computes the Free variable in Task 2. However, we also note that circuits extend
beyond individual attention heads.
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Figure 9: Experiment 3: MLP Probing results. We see chaotic results from all probes,
indicating that the intermediate variable a2 is not computed in the MLP block.
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Figure 10: Experiment 3: MLP Amnesic Probing results. We see that amnesic probing has
little impact on test accuracy throughout training.
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Figure 11: Experiment 3: Causal abstraction analysis results for both a2 and b2. a2 becomes
causal in the attention block throughout training, indicating a switch from memorization to
generalization. b2 never becomes causal, as expected.
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Figure 12: Experiment 3: Ablating the circuits discovered by circuit probing in the attention
layer destroys performance for both a2 (which should be causal towards the end of training)
and b2 (which should never be causal). In the MLP block, ablating circuits becomes less
detrimental over time for both variables.
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Figure 13: Experiment 1: Results from linear and nonlinear probing on updates from
Attention (left) or MLP (right) layers.

to actually compute this variable, so the effect of ablating this set of parameters is hard to
predict. Here, we see that it destroys performance.

Q Experiments 1-3: Probing on Update Vectors

Circuit probing operates on updates to the residual stream (i.e. vectors generated by MLPs
or Attention Layers), rather than the residual stream itself. However, in the main text,
we follow common convention and present results from linear and nonlinear probing on
the residual stream. In this section we present linear and nonlinear probing results from
Experiments 1-3, where we probe the update vectors from MLPs and Attention Layers. In
general, we find that probing on either the residual stream or individual vector updates
gives extremely similar results. See Figures 13,14,15.

R Experiments 1-3: Contrastive Linear Probe

In this section we present an ablation of the circuit probing algorithm, where we optimize
a linear probe using a contrastive objective. Formally, we define a linear probe, P, which
maps from intermediate representations (either residual stream states, Attention updates, or
MLP updates) to an embedding dimension d. We optimize P using the soft-neighbors loss
defined in D. Intuitively, this probe should produce similar embeddings for representations
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Figure 14: Experiment 2: Results from linear and nonlinear probing on updates from
Attention (left) or MLP (right) layers on Task 1 (top) or Task 2 (bottom).

that belong to the same class, and different embeddings for representations that belong
to different classes. We evaluate this probe using the same procedure outline in Section 2.
For ease of comparison, we fix d = 113, which equates the number of parameters in the
contrastive probe and the linear probes used in Experiments 1-3. In general, we find that
this probe produces fairly poor results (Figure 16). Thus, we cannot attribute the success of
circuit probing merely to a different optimization objective.

S Experiment 4: Language Prefix Examples

Here, we present several examples of sentence prefixes for subject-verb agreement and
reflexive anaphora.

Subject-Verb Agreement:

IID: 1-Distractor

1. the farmers that the taxi driver admires (are)
2. the authors behind the assistants (are)
3. the consultant that the skaters like (is)

OOD: 2-Distractors

1. the books by the architects next to the executives (are)
2. the customer that the skaters like and the ministers hate (is)
3. the pilots in front of the dancers to the side of the parents (is)

Reflexive Anaphora:

IID: 1-Distractor

25



Published as a conference paper at COLM 2024

0 5000 10000 15000 20000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Probe Accuracy During Training: Attn. Update

Method
Circuit Probe
Linear Probe
Nonlinear Probe

0 5000 10000 15000 20000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Probe Accuracy During Training: MLP Update

Method
Circuit Probe
Linear Probe
Nonlinear Probe

0 5000 10000 15000 20000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Probe Selectivity Analysis: Updates

Method
Circuit Probe
Linear Probe
Nonlinear Probe

Figure 15: Experiment 3: Results from linear and nonlinear probing on updates from
Attention (left) or MLP (right) layers. (Bottom) Selectivity analysis when probing attention
layer updates for irrelevant variable.

26



Published as a conference paper at COLM 2024

a2 -b2 a+b a-b
Variable

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Contrastive Probe: Disambiguation

Component
attn
mlp
attn update
mlp update

Free Shared Other
Variable

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Task 1 Probe Accuracy: Contrastive

Component
attn
mlp
attn update
mlp update

Free Shared Other
Variable

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Task 2 Probe Accuracy: Contrastive

Component
attn
mlp
attn update
mlp update

0 5000 10000 15000 20000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Contrastive Probe Accuracy

Location
resid_mid
attn_out
resid_post
mlp_out

0 5000 10000 15000 20000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Contrastive Probe Selectivity
Location

resid_mid
attn_out
resid_post
mlp_out

Figure 16: Results from Contrastive Linear Probing in Experiments 1-3. In general, we see
that the probe achieves low accuracy across the board. Though it does differentiate between
variables that are relevant vs. irrelevant in Experiment 1 (top left) and Experiment 2 (top
right, middle left), it fails to do so for Experiment 3 (middle right, bottom).
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Figure 17: GPT2-Small circuit probing KNN results for subject-verb agreement (Top) and
reflexive anaphora (Bottom). We notice that KNN accuracy increases for MLP blocks after
layer 6, which is where our causal analysis located the causal circuits for both phenomena.

1. the consultants that the parents loved doubted (themselves)

2. the senators that the taxi drivers hate congratulated (themselves)

3. the mechanics thought the pilot hurt (herself/himself).

OOD: 2-Distractors

1. the surgeon that the chefs love and the parents admire hated (herself/himself)

2. the mechanic knew the banker said the farmer embarrassed (herself/himself)

3. the teachers that the architect hates and the minister admires hurt (themselves)

T Experiment 4: GPT2-Small Extended Results

T.1 Experiment 4: GPT2-Small Language Probing Results

We present circuit probing KNN evaluations for both subject-verb agreement and reflexive
anaphora over all model components. Causal analyses indicate that a circuit that is causally
implicated in computing syntactic number is located in layer 6’s attention block. We note
that KNN accuracy increases for every MLP block after layer 6. Because MLP blocks are
applied token-wise, this suggests that the information required to decode syntactic number
of both subjects and referents is present in the residual stream after this layer but not before.
See Figure 17.
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Figure 18: GPT2-Small subject-verb agreement ablation results for every model component.
We note that the attention block in layer 6 provides the greatest drop in performance after
ablating the discovered circuit.
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Figure 19: GPT2-Small reflexive anaphora ablation results for every model component,
evaluated using the masculine pronoun. We note that the attention block in layer 6 provides
the greatest drop in performance after ablating the discovered circuit.

T.2 Experiment 4: GPT2-Small Full Ablation Results

We present circuit probing ablation results for both subject-verb agreement (See Figure 18)
and reflexive anaphora (See Figures 19 and 20) over all model components. In all cases,
we note that ablating the circuit in attention block in layer 6 provides the greatest drop in
model performance. Randomly ablating subnetworks of the same size does not harm model
performance.

U Experiment 4: GPT2-Medium Results

U.1 Reflexive Anaphora

We present results analyzing GPT2-Medium’s ability to compute the syntactic number of the
referent of a reflexive pronoun. We find that the attention block in layer 7 is most causally
implicated in this computation. See Figure 21. Ablating the discovered circuits harms model
performance, regardless of the pronoun used for evaluation. Ablating random subnetworks
of the same size does not harm model performance.

Turning to the reflexive anaphora probing evaluation, we see that the KNN accuracy of
circuits trained on MLP blocks increases during and after layer 7. Because MLP blocks
operate token-wise, this indicates that the information required to decode the syntactic
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Figure 20: GPT2-Small reflexive anaphora ablation results for every model component,
evaluated using the feminine pronoun. We note that the attention block in layer 6 provides
the greatest drop in performance after ablating the discovered circuit.
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Figure 21: GPT2-Medium reflexive anaphora ablation results for the attention block in layer
7.

30



Published as a conference paper at COLM 2024

attn-0
mlp-0

attn-1
mlp-1

attn-2
mlp-2

attn-3
mlp-3

attn-4
mlp-4

attn-5
mlp-5

attn-6
mlp-6

attn-7
mlp-7

attn-8
mlp-8

attn-9
mlp-9

attn-10
mlp-10

attn-11
mlp-11

attn-12
mlp-12

attn-13
mlp-13

attn-14
mlp-14

attn-15
mlp-15

attn-16
mlp-16

attn-17
mlp-17

attn-18
mlp-18

attn-19
mlp-19

attn-20
mlp-20

attn-21
mlp-21

attn-22
mlp-22

attn-23
mlp-23

Component

0.0

0.2

0.4

0.6

0.8

1.0

KN
N 

Te
st

 A
cc

.

GPT2-medium Reflexive KNN Accuracy

Figure 22: GPT2-Medium reflexive anaphora circuit probing KNN evaluation results across
all model components.
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Figure 23: GPT2-Medium reflexive anaphora ablation results across all model components,
evaluated using the masculine pronoun. Note that the largest drop in performance due to
ablation occurs at the attention block in layer 7.

number of referents is present in the residual stream after this layer, but not before. This
strengthens our causal results analysis. See Figure 22.

For completeness, we include ablation results across all model components in Figures 23
and 24.
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Figure 24: GPT2-Medium reflexive anaphora ablation results across all model components,
evaluated using the feminine pronoun. Note that the largest drop in performance due to
ablation occurs at the attention block in layer 7.
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Figure 25: GPT2-Medium subject-verb agreement ablation results across all model compo-
nents. These results do not implicate any specific circuit in computing the syntactic number
of the subject noun.

U.2 Subject-Verb Agreement

We do not find any particular circuits that drop subject-verb agreement performance sub-
stantially when ablated (See Figure 25). This might indicate that multiple circuits across
several blocks are redundantly computing the syntactic number of the subject noun.

Turning to the subject-verb agreement probing evaluation, we see that the KNN accuracy of
circuits trained on MLP blocks increases after layer 7 (see Figure 26). Because MLP blocks
operate token-wise, this might indicate that the information required to decode the syntactic
number of referents is present in the residual stream after this layer, but not before. However,
our causal analysis does not provide strong evidence of this. From Figure 25, we see a small
drop at layer 7’s attention block and another at layer 18’s attention block.

V Experiment 4: Circuit Overlap

Surprisingly, we see that there is very little overlap between the circuits used to compute
the syntactic numbers of subjects and referents in GPT2-Small, despite both circuits being
present in the same block. See Figure 27.

W GPT2-Small Subject-Verb Agreement Qualitative Results

We present qualitative results of ablating the subject-verb agreement circuit discovered by
running circuit probing on the attention block in layer 6 of GPT2-Small (See Table 8). We
note that the types of tokens predicted by the model qualitatively stay the same before
and after ablation. This suggests that we have not destroyed the model by ablating the
discovered circuit. Interestingly, we see more tokens that are explicitly consistent with the
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Figure 26: GPT2-Medium subject-verb agreement circuit probing KNN evaluation results.
We see KNN performance increase for MLP blocks around layer 7.

syntactic number of the subject before ablation, and fewer after ablation. This provides
qualitative evidence that we have indeed ablated a circuit that was responsible for tracking
the subject-verb agreement dependency.

X Investigating Syntactic Number Feature Extraction

Goal The experiments presented in Section 4.4 demonstrate that linguistic dependencies
(e.g. the influence of a previous word’s syntactic number on main verb prediction) are
computed in the middle layers of both GPT2-Small and Medium. However, this leaves
open the question: where in the model are the syntactic number features extracted in the
first place? In this section, we uncover a circuit that computes syntactic number features
and demonstrate that ablating this circuit completely destroys a model’s ability to perform
subject-verb agreement.

Task We use a subset of the 1-distractor subject-verb agreement dataset from Section 4.4 for
this experiment. Specifically, we use the subset of data that includes prepositional phrases
(e.g. the farmer near the parents). In these sentences, the final word before the main verb is
always a non-subject noun.

We run circuit probing on the last token of the non-subject noun in the sentence prefixes
to uncover the circuit that computes the syntactic number of the non-subject noun (rather
than the subject noun). Thus, we are effectively uncovering a syntactic number feature
extractor circuit. To ensure that our discovered circuit truly is a general syntactic number
feature extractor, we ablate the discovered circuit and test the model’s ability to generate
syntactically valid next-token predictions using the same evaluation as described in Sec-
tion 4.4. The experimental logic is that if the discovered circuit is responsible for syntactic
number feature extraction in general, then ablating it will also destroy a model’s ability to
extract the syntactic number of the subject noun, rendering the subject-verb agreement task
impossible.

Probing We include circuit probing KNN evaluation results for GPT2-Small and Medium
Figures 28 and 29. We find that accuracy reaches ceiling after MLP 0 and stays at ceiling
until the late stages of the model.

Causal Analysis We expect that ablating the discovered circuit will render the model
worse at extracting the syntactic number of all nouns, destroying performance on our
subject-verb agreement evaluation. We expect that ablating random subnetworks should
not harm performance on this task. We present results from both models (See Figure 30). For
both models, we find that the syntactic number is computed in early MLPs (layer 0 for GPT2-
Small, layer 1 for GPT2-Medium). Ablating the circuit returned by circuit probing drops
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Figure 27: Circuit overlap between syntactic number and reflexive anaphora in GPT2-Small,
attention block 6. We see that the discovered circuits are largely distinct. We also note that
certain attention heads (0, 3, and 7) appear to be most important in computing syntactic
number for both subject nouns and referents.
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Prefix Original Output Ablate Attn-6 Output

The surgeons behind the dancer
’s ’s
, ,
were .
. and
and
are )
said to

in
had who
have was
to ).
who is
in said
was ),
) were

The book from the executives
of of
at at
, who
’ ’
who and
, ,
. in
and .
in to
that that
was )
is on
to I
themselves were
on are

Table 8: Qualitative examples of the effect of ablating the circuit discovered in GPT2-Small,
layer 6. We record the top 15 next-token predictions. Words that are explicitly consistent with
the syntactic number of the subject are bolded, words that are inconsistent are underlined.
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Figure 28: GPT2-Small syntactic number KNN results. We see KNN performance reach
ceiling after MLP 0, and stay at ceiling until late in the model.
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Figure 29: GPT2-Medium syntactic number KNN results. We see KNN performance reach
ceiling after MLP 0, and stay at ceiling until late in the model.

subject-verb agreement performance nearly to chance while ablating random subnetworks
does not impact model performance. We present results from all layers for GPT2-Small in
Figure 31 and for GPT2-Medium in Figure 32. We note that it seems that GPT2-Medium
also performs syntactic number extraction in layer 0’s MLP.

Y GPT2 Linear Probing Results

In this section, we present results generated by linearly probing GPT2-small and medium in
all tested conditions (subject-verb agreement, reflexive anaphora, and syntactic number).
Across the board, we find that linear probing decodes the syntactic number early, and
maintains ceiling performance throughout the network. See Figures 33,34,35. Notably,
circuit probing can identify when layers are causally implicated in downstream model
performance via subnetwork ablation, whereas linear probing in this manner does not
directly provide this information.
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Figure 30: GPT2-Small (left) and Medium (right) ablation results on early MLPs. We find
that the circuit that extracts syntactic number features from tokens is computed in early
MLPs. Ablating this circuit destroys subject-verb agreement performance while ablating
random circuits of the same size does not substantially impact performance.
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Figure 31: GPT2-Small syntactic number ablation results across all model components. Note
that the largest drop in performance due to ablation occurs at the MLP block in layer 0.
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Figure 32: GPT2-Medium syntactic number ablation results across all model components.
Note that the largest drop in performance due to ablation occurs at the MLP blocks in layer
1 and layer 0. However, ablating random subnetworks has less of an impact on model
performance in layer 1’s MLP.
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Figure 33: GPT2-small and medium linear probing in Subject-Verb Agreement Task.
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Figure 34: GPT2-small and medium linear probing in Reflexive Anaphora Task.
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Figure 35: GPT2-small and medium linear probing in Syntactic Number Task.
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