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ABSTRACT

Time series classification is an important problem in the real world. Due to its non-
stationary property that the distribution changes over time, it remains challenging
to build models for generalization to unseen distributions. In this paper, we propose
to view time series classification from the distribution perspective. We argue that
the temporal complexity of a time series dataset could attribute to unknown latent
distributions that need characterize. To this end, we propose DIVERSIFY for out-
of-distribution (OOD) representation learning on dynamic distributions of times
series. DIVERSIFY takes an iterative process: it first obtains the ‘worst-case’ latent
distribution scenario via adversarial training, then reduces the gap between these
latent distributions. We then show that such an algorithm is theoretically supported.
Extensive experiments are conducted on seven datasets with different OOD settings
across gesture recognition, speech commands recognition, wearable stress and
affect detection, and sensor-based human activity recognition. Qualitative and
quantitative results demonstrate that DIVERSIFY significantly outperforms other
baselines and effectively characterizes the latent distributions. Code is available at
https://github.com/microsoft/robustlearn.

1 INTRODUCTION

Time series classification is one of the most challenging problems in the machine learning and
statistics community (Fawaz et al., 2019; Du et al., 2021). One important nature of time series is the
non-stationary property, indicating that its statistical features are changing over time. For years, there
have been tremendous efforts for time series classification, such as hidden Markov models (Fulcher &
Jones, 2014), RNN-based methods (Hüsken & Stagge, 2003), and Transformer-based approaches (Li
et al., 2019; Drouin et al., 2022).

We propose to model time series from the distribution perspective to handle its dynamically changing
distributions; more precisely, to learn out-of-distribution (OOD) representations for time series
that generalize to unseen distributions. The general OOD/domain generalization problem has been
extensively studied (Wang et al., 2022; Lu et al., 2022; Krueger et al., 2021; Rame et al., 2022), where
the key is to bridge the gap between known and unknown distributions. Despite existing efforts,
OOD in time series remains less studied and more challenging. Compared to image classification, the
dynamic distribution of time series data keeps changing over time, containing diverse distribution
information that should be harnessed for better generalization.

Figure 1 shows an illustrative example. OOD generalization in image classification often involves
several domains whose domain labels are static and known (subfigure (a)), which can be employed to
build OOD models. However, Figure 1 (b) shows that in EMG time series data (Lobov et al., 2018),
the distribution is changing dynamically over time and its domain information is unavailable. If no
attention is paid to exploring its latent distributions (i.e., sub-domains), predictions may fail in face
of diverse sub-domain distributions (subfigure (c)). This will dramatically impede existing OOD
algorithms due to their reliance on domain information.

In this work, we propose DIVERSIFY, an OOD representation learning algorithm for time series
classification by characterizing the latent distributions inside the data. Concretely speaking, DI-
∗Work done when Wang Lu (luwang@ict.ac.cn) was an intern at Microsoft Research Asia.
†Correspondence to: Jindong Wang (jindong.wang@microsoft.com).
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Figure 1: Illustration of DIVERSIFY: (a) Domain generalization for image data requires known
domain labels. (b) Domain labels are unknown for time series. (c) If we treat the time series data
as one single domain, the sub-domains are misclassified. Different colors and shapes correspond to
different classes and domains. Axes represent data values. (d) Finally, our DIVERSIFY can effectively
learn the latent distributions. X-axis represents data numbers while Y-axis represents values.

VERSIFY consists of a min-max adversarial game: on one hand, it learns to segment the time series
data into several latent sub-domains by maximizing the segment-wise distribution gap to preserve
diversities, i.e., the ‘worst-case’ distribution scenario; on the other hand, it learns domain-invariant
representations by reducing the distribution divergence between the obtained latent domains. Such
latent distributions naturally exist in time series, e.g., the activity data from multiple people follow
different distributions. Additionally, our experiments show that even the data of one person still has
such diversity: it can also be split into several latent distributions. Figure 1 (d) shows that DIVERSIFY
can effectively characterize the latent distributions (more results are in Sec. 3.5).

To summarize, our contributions are four-fold:

Novel perspective: We propose to view time series classification from the distribution perspective
to learn OOD representation, which is more challenging than the traditional image classification
due to the existence of unidentified latent distributions.
Novel methodology: DIVERSIFY is a novel framework to identify the latent distributions and learn
generalized representations. Technically, we propose pseudo domain-class labels and adversarial
self-supervised pseudo labeling to obtain the pseudo domain labels.
Theoretical insights: We provide the theoretical insights behind DIVERSIFY to analyze its design
philosophy and conduct experiments to prove the insights.
Superior performance and insightful results: Qualitative and quantitative results using various
backbones demonstrate the superiority of DIVERSIFY in several challenging scenarios: diffi-
cult tasks, significantly diverse datasets, and limited data. More importantly, DIVERSIFY can
successfully characterize the latent distributions within a time series dataset.

2 METHODOLOGY

A time-series training dataset Dtr can be often pre-processed using sliding window1 to N inputs:
Dtr = {(xi, yi)}Ni=1, where xi ∈ X ⊂ Rp is the p-dimensional instance and yi ∈ Y = {1, . . . , C}
is its label. We use Ptr(x, y) on X × Y to denote the joint distribution of the training dataset. Our
goal is to learn a generalized model from Dtr to predict well on an unseen target dataset, Dte, which
is inaccessible in training. In our problem, the training and test datasets have the same input and
output spaces but different distributions, i.e., X tr = X te, Ytr = Yte, but Ptr(x, y) 6= Pte(x, y). We
aim to train a model h from Dtr to achieve minimum error on Dte.

2.1 MOTIVATION

What are domain and distribution shift in time series? Time series may consist of several
unknown latent distributions (domains), even if the dataset is fully labeled. For instance, data collected
by sensors of three persons may belong to two different distributions due to their dissimilarities. This
can be termed as spatial distribution shift. Surprisingly, we even find temporal distribution shifts in

1Sliding window is a common technique to segment one time series data into fixed-size windows. Each
window is a minimum instance. We focus on fixed-size inputs for its popularity in time series (Das et al., 1998).
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Figure 2: The framework of DIVERSIFY.

experiments (Figure 6) that distributions of one person can also change at different time. Those shifts
widely exist in time series, as suggested by (Zhang et al., 2021; Ragab et al., 2022).

OOD generalization requires latent domain characterization. Due to the non-stationary property,
naive approaches that treat time series as one distribution fail to capture domain-invariant (OOD)
features since they ignore the diversities inside the dataset. In Figure 1 (c), we assume the training
domain contains two sub-domains (circle and plus points). Directly treating it as one distribution via
existing OOD approaches may generate the black margin. Red star points are misclassified to the
green class when predicting on the OOD domain (star points) with the learned model. Thus, multiple
diverse latent distributions in time series should be characterized to learn better OOD features.

A brief formulation of latent domain characterization. Following above discussions, a time
series may consist of K unknown latent domains23 rather than a fixed one, i.e., Ptr(x, y) =∑K
i=1 πiPi(x, y), where Pi(x, y) is the distribution of the i-th latent one with weight πi,

∑K
i=1 πi =

1.4 There could be infinite ways to obtain Pis and our goal is to learn the ‘worst-case’ distribution
scenario where the distribution divergence between each Pi and Pj is maximized. Why the ‘worst-
case’ scenario? It will maximally preserve the diverse information of each latent distribution, thus
benefiting generalization. For an illustration, these obtained latent distributions are shown in Sec. 3.5.

2.2 DIVERSIFY

In this paper, we propose DIVERSIFY to learn OOD representations for time series classification.
The core of DIVERSIFY is to characterize the latent distributions and then minimize the distribution
divergence between each two. DIVERSIFY utilizes an iterative process: it first obtains the ’worst-case’
distribution scenario from a given dataset, then bridges the distribution gaps between each pair of
latent distributions. Figure 2 describes its main procedures, where steps 2 ∼ 4 are iterative:

1. Pre-processing: this step adopts the sliding window to split the entire training dataset into fixed-size
windows. We argue that the data from one window is the smallest domain unit.

2. Fine-grained feature update: this step updates the feature extractor using the proposed pseudo
domain-class labels as the supervision.

3. Latent distribution characterization: it aims to identify the domain label for each instance to obtain
the latent distribution information. It maximizes the different distribution gaps to enlarge diversity.

4. Domain-invariant representation learning: this step utilizes pseudo domain labels from the last
step to learn domain-invariant representations and train a generalizable model.

2We assume K ∈ (1, N) as a smaller K may be too coarse to show the diversities in distributions while a
larger K brings difficulties to optimization. K is tuned in this work but we expect to learn it in the future.

3A domain is a set of data samples following a certain distribution and we use them interchangeably hereafter.
4We use the notations πi and Pi to only describe the problem, but do not formalize it.
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Fine-grained Feature Update. Before characterizing the latent distributions, we perform fine-
grained feature updates to obtain fine-grained representation. As shown in Figure 2 (blue), we
propose a new concept: pseudo domain-class label to fully utilize the knowledge contained in
domains and classes, which serves as the supervision for feature extractor. Features are more
fine-grained w.r.t. domains and labels, instead of only attached to domains or labels.

At the first iteration, there is no domain label d′ and we simply initialize d′ = 0 for all samples. We
treat per category per domain as a new class with label s ∈ {1, 2, · · · , S}. We have S = K × C
where K is the pre-defined number of latent distributions that can be tuned in experiments. We
perform pseudo domain-class label assignment to get discrete values for supervision: s = d′×C+y.

Let h(2)
f , h

(2)
b , h

(2)
c be feature extractor, bottleneck, and classifier, respectively (we use superscripts to

denote step number). Then, the supervised loss is computed using the cross-entropy loss `:

Lsuper = E(x,y)∼Ptr`
(
h(2)
c (h

(2)
b (h

(2)
f (x))), s

)
. (1)

Latent Distribution Characterization. This step characterizes the latent distributions contained in
one dataset. As shown in Figure 2 (green), we propose an adapted version of adversarial training
to disentangle the domain labels from the class labels. However, there are no actual domain labels
provided, which hinders such disentanglement. Inspired by (Caron et al., 2018), we employ a
self-supervised pseudo-labeling strategy to obtain domain labels.

First, we attain the centroid for each domain with class-invariant features:

µ̃k =

∑
xi∈X tr δk(h

(3)
c (h

(3)
b (h

(3)
f (xi))))h

(3)
b (h

(3)
f (xi))∑

xi∈X tr δk(h
(3)
c (h

(3)
b (h

(3)
f (xi))))

, (2)

where h(3)
f , h

(3)
b , h

(3)
c are feature extractor, bottleneck, and classifier, respectively. µ̃k is the initial

centroid of the kth latent domain while δk is the kth element of the logit soft-max output. Then, we
obtain the pseudo domain labels via the nearest centroid classifier using a distance function D:

d̃′i = arg min
k
D(h

(3)
b (h

(3)
f (xi)), µ̃k). (3)

Then, we compute the centroids and obtain the updated pseudo domain labels:

µk =

∑
xi∈X tr I(d̃′i = k)h

(3)
b (h

(3)
f (x))∑

xi∈X tr I(d̃′i = k)
, d′i = arg min

k
D(h

(3)
b (h

(3)
f (xi)), µk), (4)

where I(a) = 1 when a is true, otherwise 0. After obtaining d′, we can compute the loss of step 2:

Lself + Lcls =E(x,y)∼Ptr`(h(3)
c (h

(3)
b (h

(3)
f (x))), d′) + `(h

(3)
adv(Rλ1

(h
(3)
b (h

(3)
f (x)))), y), (5)

where h(3)
adv is the discriminator for step 3 that contains several linear layers and one classification

layer. Rλ1
is the gradient reverse layer with hyperparameter λ1 (Ganin et al., 2016). After this step,

we can obtain pseudo domain label d′ for x.

Domain-invariant Representation Learning. After obtaining the latent distributions, we learn
domain-invariant representations for generalization. In fact, this step (purple in Figure 2) is simple:
we borrow the idea from DANN (Ganin et al., 2016) and directly use adversarial training to update
the classification loss Lcls and domain classifier loss Ldom using gradient reversal layer (GRL) (a
common technique that facilitates adversarial training via reversing gradients) (Ganin et al., 2016):

Lcls + Ldom =E(x,y)∼Ptr`(h(4)
c (h

(4)
b (h

(4)
f (x))), y) + `(h

(4)
adv(Rλ2(h

(4)
b (h

(4)
f (x)))), d′), (6)

where ` is the cross-entropy loss and Rλ2 is the gradient reverse layer with hyperparameter λ2 (Ganin
et al., 2016). We will omit the details of GRL and adversarial training here since they are common
techniques in deep learning. More details are presented in Appendix B.2.

Training, Inference, and Complexity. We repeat these steps until convergence or max epochs.
Different from existing methods, the last two steps only optimize the last few independent layers
but not the feature extractor. We perform inference with the modules from the last step. Most of the
trainable parameters are shared between modules, indicating that DIVERSIFY has the same model
size as existing methods and can reach quick convergence in experiments (Figure F.5).
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2.3 THEORETICAL INSIGHTS

We present some theoretical insights to show that our approach is well motivated in theory. Proofs
can be found in Appendix A.
Proposition 2.1. Let X be a space andH be a class of hypotheses corresponding to this space. Let
Q and the collection {Pi}Ki=1 be distributions over X and let {ϕi}Ki=1 be a collection of non-negative
coefficient with

∑
i ϕi = 1. Let O be a set of distributions s.t. ∀S ∈ O, the following holds

dH∆H(
∑
i

ϕiPi,S) ≤ max
i,j

dH∆H(Pi,Pj). (7)

Then, for any h ∈ H,

εQ(h) ≤ λ′ +
∑
i

ϕiεPi
(h) +

1

2
min
S∈O

dH∆H(S,Q) +
1

2
max
i,j

dH∆H(Pi,Pj), (8)

where λ′ is the error of an ideal joint hypothesis. εP(h) is the error for a hypothesis h on a distribution
P. dH∆H(P,Q) isH-divergence which measures differences in distribution (Ben-David et al., 2010).

The first item in Eq. (8), λ′, is often neglected since it is small in reality. The second item,∑
i ϕiεPi(h), exists in almost all methods and can be minimized via supervision from class la-

bels with cross-entropy loss in Eq. (6). Our main purpose is to minimize the last two items in Eq. (8).
Here Q corresponds to the unseen out-of-distribution target domain.

The last term 1
2 maxi,j dH∆H(Pi,Pj) is common in OOD theory which measures the maximum

differences among source domains. This corresponds to step 4 in our approach.

Finally, the third item, 1
2 minS∈O dH∆H(S,Q), explains why we exploit sub-domains in step 3.

Since our goal is to learn a model which can perform well on an unseen target domain, we cannot
obtain Q. To minimize 1

2 minS∈O dH∆H(S,Q), we can only enlarge the range of O. We have
to maxi,j dH∆H(Pi,Pj) according to Eq. (7), corresponding to step 3 in our method which tries
to segment the time series data into several latent sub-domains by maximizing the segment-wise
distribution gap to preserve diversities, i.e., the ‘worst-case’ distribution scenario.

3 EXPERIMENTS

We perform evaluations on four diverse time series classification tasks: gesture recognition, speech
commands recognition, wearable stress&affect detection, and sensor-based activity recognition.

Time series OOD algorithms are currently less studied and there are only two recent strong approaches
for comparison: GILE (Qian et al., 2021) and AdaRNN (Du et al., 2021).5 We further compare with
7 general OOD methods6 from DomainBed (Gulrajani & Lopez-Paz, 2021): ERM, DANN (Ganin
et al., 2016), CORAL (Sun & Saenko, 2016), Mixup (Zhang et al., 2018), GroupDRO (Sagawa
et al., 2020), RSC (Huang et al., 2020), and ANDMask (Parascandolo et al., 2021). More details
of these methods are in Sec. B.2 and B.3. For fairness, all methods (except GILE and AdaRNN)
use a feature net with two blocks and each block has one convolution layer, one pooling layer, and
one batch normalization layer, following (Wang et al., 2019). We also use Transformers (Vaswani
et al., 2017) for backbone. Detailed data pre-processing, architecture, and hyperparameters are
in Appendix C.5 and D. Ablations with various backbones are in Figure 8 and Appendix F.4.

Most OOD methods require the domain labels known in training while ours does not, which is
more challenging and practical. We conduct the training-domain-validation strategy and the training
data are split by 8 : 2 for training and validation. We tune all methods to report the average best
performance of three trials for fairness. Note that the “target” in experiments is unseen and only used
for testing. K in DIVERSIFY is treated as a hyperparameter and we tune it to record the best OOD
performance.7 Per-segment accuracy is the evaluation metric. Time complexity and convergence
are in Sec. F.5, showing its quick convergence.

5There are recent approaches purely on time series, but not for OOD.
6There could be recent OOD methods, but according to DomainBed (Gulrajani & Lopez-Paz, 2021), most

approaches do not significantly outperform ERM. DANN, CORAL, and Mixup are also strong baselines.
7There might be no optimal K for a dataset. We perform grid search in [2, 10] to get the best performance.
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3.1 GESTURE RECOGNITION

Table 1: Results on EMG dataset.
“Target” 0 ∼ 4 denotes unseen test
distribution that is only for testing.

Target 0 1 2 3 AVG

ERM 62.6 69.9 67.9 69.3 67.4
DANN 62.9 70.0 66.5 68.2 66.9
CORAL 66.4 74.6 71.4 74.2 71.7
Mixup 60.7 69.9 70.5 68.2 67.3
GroupDRO 67.6 77.4 73.7 72.5 72.8
RSC 70.1 74.6 72.4 71.9 72.2
ANDMask 66.5 69.1 71.4 68.9 69.0
AdaRNN 68.8 81.1 75.3 78.1 75.8
DIVERSIFY 71.7 82.4 76.9 77.3 77.1

First, we evaluate DIVERSIFY on EMG for gestures Data
Set (Lobov et al., 2018). It contains data of 36 subjects with
7 classes and we select 6 common classes for our experi-
ments. We randomly divide 36 subjects into four domains
(i.e., 0, 1, 2, 3). More details on EMG and domain splits can be
found in Sec. C.2 and C.6 respectively. EMG data is affected by
many factors since it comes from bioelectric signals.EMG data
are scene and device-dependent, which means the same person
may generate different data when performing the same activity
with the same device at a different time (i.e., distribution shift
across time (Wilson et al., 2020; Purushotham et al., 2016)) or
with the different devices at the same time. Thus, the EMG
benchmark is challenging. Table 1 shows that with the same
backbone, our method achieves the best average performance and is 4.3% better than the second-best
method. DIVERSIFY even outperforms AdaRNN which has a stronger backbone.

3.2 SPEECH COMMANDS
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Figure 3: Results on Speech
commands with two different
backbones.

Then, we adopt a regular speech recognition task, the Speech Com-
mands dataset (Warden, 2018). It consists of one-second audio
recordings of both background noise and spoken words such as ‘left’
and ‘right’. It is collected from more than 2,000 persons, thus is
more complicated. Following (Kidger et al., 2020), we use 34,975
time series corresponding to ten spoken words to produce a balanced
classification problem. Since this dataset is collected from multiple
persons, the training and test distributions are different, which is also
an OOD problem with one training domain. There are many subjects
and each subject only records a few audios. Thus, we do not split
each sample. Figure 3 shows the results on two different backbones.
Compared with GroupDRO, DIVERSIFY has over 1% improvement
with a basic CNN backbone and over 0.6% improvement with a
strong backbone MatchBoxNet3-1-64 (Majumdar & Ginsburg, 2020). It demonstrates the superiority
of our method on a regular time-series benchmark containing massive distributions.

3.3 WEARABLE STRESS AND AFFECT DETECTION
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Figure 4: Results on WESAD.
Here, 0 ∼ 4 in x-axis denotes
the unseen test dataset.

We further evaluate DIVERSIFY on a larger dataset, Wearable Stress
and Affect Detection (WESAD) (Schmidt et al., 2018). WESAD is
a public dataset that contains physiological and motion data of 15
subjects with 63, 000, 000 instances. We utilize sensor modalities
of chest-worn devices including electrocardiogram, electrodermal
activity, electromyogram, respiration, body temperature, and three
axis acceleration. We split 15 subjects into four domains (details are
in Sec. C.6). Results Figure 4 showed that our method achieves the
best performance compared to other state-of-the-art methods with
an improvement of over 8% on this larger dataset.

3.4 SENSOR-BASED HUMAN ACTIVITY RECOGNITION

Finally, we construct four diverse OOD settings by leveraging four sensor-based human activity
recognition datasets: DSADS (Barshan & Yüksek, 2014), USC-HAD (Zhang & Sawchuk, 2012),
UCI-HAR (Anguita et al., 2012), and PAMAP (Reiss & Stricker, 2012). These datasets are collected
from different people and positions using accelerometer and gyroscope, with 11, 741, 000 instances
in total. (1) Cross-person generalization aims to learn generalized models for different persons.
(2) Cross-position generalization aims to learn generalized models for different sensor positions.
(3) Cross-dataset generalization aims to learn generalized models for different datasets. (4) One-
Person-To-Another aims to learn generalized models for different persons from data of a single
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Table 2: Accuracy on cross-person generalization. “Target” 0 ∼ 4 denotes the unseen test set.
DSADS USC-HAD PAMAP ALL

Target 0 1 2 3 AVG 0 1 2 3 AVG 0 1 2 3 AVG AVG

ERM 83.1 79.3 87.8 71.0 80.3 81.0 57.7 74.0 65.9 69.7 90.0 78.1 55.8 84.4 77.1 75.7
DANN 89.1 84.2 85.9 83.4 85.6 81.2 57.9 76.7 70.7 71.6 82.2 78.1 55.4 87.3 75.7 77.7
CORAL 91.0 85.8 86.6 78.2 85.4 78.8 58.9 75.0 53.7 66.6 86.2 77.8 49.0 87.8 75.2 75.7
Mixup 89.6 82.2 89.2 86.9 87.0 80.0 64.1 74.3 61.3 69.9 89.4 80.3 58.4 87.7 79.0 78.6
GroupDRO 91.7 85.9 87.6 78.3 85.9 80.1 55.5 74.7 60.0 67.6 85.2 77.7 56.2 85.0 76.0 76.5
RSC 84.9 82.3 86.7 77.7 82.9 81.9 57.9 73.4 65.1 69.6 87.1 76.9 60.3 87.8 78.0 76.9
ANDMask 85.0 75.8 87.0 77.6 81.4 79.9 55.3 74.5 65.0 68.7 86.7 76.4 43.6 85.6 73.1 74.4
GILE 81.0 75.0 77.0 66.0 74.7 78,0 62.0 77.0 63.0 70.0 83.0 68.0 42.0 76.0 67.5 70.7
AdaRNN 80.9 75.5 90.2 75.5 80.5 78.6 55.3 66.9 73.7 68.6 81.6 71.8 45.4 82.7 70.4 73.2
DIVERSIFY 90.4 86.5 90.0 86.1 88.2 82.6 63.5 78.7 71.3 74.0 91.0 84.3 60.5 87.7 80.8 81.0

Table 3: Classification accuracy on cross-position, cross-dataset, and one-to-another generalization.
Cross-position generalization Cross-dataset generalization One-Person-To-Another

Target 0 1 2 3 4 AVG 0 1 2 3 AVG DSADS USC-HAD PAMAP AVG

ERM 41.5 26.7 35.8 21.4 27.3 30.6 26.4 29.6 44.4 32.9 33.3 51.3 46.2 53.1 50.2
DANN 45.4 25.3 38.1 28.9 25.1 32.6 29.7 45.3 46.1 43.8 41.2 - - - -
CORAL 33.2 25.2 25.8 22.3 20.6 25.4 39.5 41.8 39.1 36.6 39.2 - - - -
Mixup 48.8 34.2 37.5 29.5 29.9 36.0 37.3 47.4 40.2 23.1 37.0 62.7 46.3 58.6 55.8
GroupDRO 27.1 26.7 24.3 18.4 24.8 24.3 51.4 36.7 33.2 33.8 38.8 51.3 48.0 53.1 50.8
RSC 46.6 27.4 35.9 27.0 29.8 33.3 33.1 39.7 45.3 45.9 41.0 59.1 49.0 59.7 55.9
ANDMask 47.5 31.1 39.2 30.2 29.9 35.6 41.7 33.8 43.2 40.2 39.7 57.2 45.9 54.3 52.5
DIVERSIFY 47.7 32.9 44.5 31.6 30.4 37.4 48.7 46.9 49.0 59.9 51.1 67.6 55.0 62.5 61.7

person.8 For simplicity, we use 0, 1, · · · to denote different domains. More details on datasets
information, setting construction, and domain splits can be found in Sec. C.3, C.4, and C.6.

Table 2 and Table 3 show the results on four settings for HAR, where our method significantly
outperforms the second-best baseline by 2.4%, 1.4%, 9.9%, and 5.8% respectively. All results
demonstrate the superiority of DIVERSIFY. More results using Transformer can be found in F.4.

We observe more insightful conclusions. (1) When the task is difficult: In the Cross-Person setting,
USC-HAD may be the most difficult task. Although it has more samples, it contains 14 subjects with
only two sensors on one position, which may bring more difficulty in learning. The results prove
the above argument that all methods perform terribly on this benchmark while ours has the largest
improvement. (2) When datasets are significantly more diverse: Compared to Cross-Person and
Cross-Position settings, Cross-Dataset may be more difficult since all datasets are totally different and
samples are influenced by subjects, devices, sensor positions, and some other factors. In this setting,
our method is substantially better than others. (3) Limited data: Compared with Cross-Person setting,
One-Person-To-Another is more difficult since it has fewer data samples. In this case, enhancing
diversity can bring a remarkable improvement and our method can boost the performance.

3.5 ANALYSIS

Ablation study We present ablation study to answer the following three questions. (1) Why obtain-
ing pseudo domain labels with class-invariant features in step 3? If we obtain pseudo domain labels
with common features, domain labels may have correlations with class labels, which may introduce

8In One-Person-To-Another setting, we only report average accuracy of four tasks on each dataset. Since
only one domain exists in training dataset for this setting, DANN and CORAL cannot be implemented here.
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Figure 5: Ablation study of DIVERSIFY.
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Figure 6: (a) (b) Latent distributions obtained by our method on two datasets. X-axis is data numbers
while Y-axis is its values. (c) (d)H-divergence among domains with initial splits and our splits on
PAMAP. Axes are domain numbers.
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Figure 7: t-SNE visualizations for domain splits ((a) (b)) and classification ((c) (d)) on EMG data.

contradictions when learning domain-invariant representations and lead to common performance.
This is certified by the results in Figure 5(a). (2) Why using fine-grained domain-class labels in step 2?
If we utilize pseudo domain labels to update the feature net, it may make the representations seriously
biased towards domain-related features and thereby leads to terrible performance on classification,
which is proved in Figure 5(b). If we only utilize class labels to update the feature net, it may
make representations biased to class-related features, thus DIVERSIFY is unable to obtain true latent
sub-domains, as shown in Figure 5(c). Hence, we should employ fine-grained domain-class labels
to obtain representations with both domain and class information. (3) The more latent domains, the
better? More latent domains may not bring better results (Figure 5(d)) since a dataset may only have a
few latent domains and introducing more may contradict its intrinsic data property. Plus, more latent
domains also make it harder to obtain pseudo domain labels and learn domain-invariant features.

Existence of latent distributions What exactly can our DIVERSIFY learn? In Figure 6(a), for a
subject in USC-HAD, there is more than one latent distribution for his walking activities, showing
the existence of temporal distribution shift: the distribution of the same activity could change. For
spatial distribution shift, Figure 6(b) on EMG dataset shows that our algorithm found three latent
distributions from the EMG data of multiple people. These results indicate the existence of latent
distributions with both temporal and spatial distribution shifts. 9 More results are in Appendix F.1.

Quantitative analysis for ‘worst-case’ distributions We present quantitative analysis by com-
puting the H-divergence (Ben-David et al., 2010) to show the effectiveness of our ‘worst-case
distribution’. As shown in Figure 6(c) and 6(d), compared to initial domain splits, latent sub-domains
generated by our method have larger H-divergence among each other. According to Prop. 2.1,
largerH-divergence among domains brings better generalization. This again shows the efficacy of
DIVERSIFY in computing the ’worst-case’ distribution scenario. More results are in Appendix F.3.

Visualization study We present some visualizations to show the rationales of DIVERSIFY. Data
points with different initial domain labels are mixed together in Figure 7(a) while DIVERSIFY can
characterize different latent distributions and separate them well in Figure 7(b). Figure 7(d) and
7(c) show that DIVERSIFY can learn better domain-invariant representations compared to the latest
method ANDMask. To sum up, DIVERSIFY can find better latent domains to enhance generalization.
More results are in Appendix F.1.

Varying backbones Figure 8 shows the results using small, medium, and large backbones, respec-
tively (we implement them with different numbers of layers.). Results indicate that larger models tend

9Figure 6(c)-6(d) and the experimental results above prove that paying attention to shifts comprehensively
can bring larger divergence and better results.
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to achieve better OOD generalization performance. Our method outperforms others in all backbones,
showing that DIVERSIFY presents consistently strong OOD performance in different architectures.
More results with Transformer are in Appendix F.4 Parameter sensitivity is in Appendix F.2.

4 RELATED WORK
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Time series classification is a challenging problem. Researches
mainly focus on temporal relation modeling via specially-designed
methods (Dempster et al., 2021), RNN-based networks (Dennis et al.,
2019), or Transformer architecture (Drouin et al., 2022). To our best
knowledge, there is only one recent work (Du et al., 2021) that
studied time series from the distribution level. However, AdaRNN
is a two-stage non-differential method that is tailored for RNN.

Domain / OOD generalization (Wang et al., 2022; Lu et al., 2022) typically assumes the availability
of domain labels for training. Specifically, Matsuura & Harada (2020) also studied DG without
domain labels by clustering with the style features for images, which is not applied to time series
and is not end-to-end trainable. Disentanglement (Peng et al., 2019; Zhang et al., 2022b) tries to
disentangle the domain and label information, but they also assume access to domain information.
Single domain generalization is similar to our problem setting which also involves one training
domain (Fan et al., 2021; Li et al., 2021; Wang et al., 2021; Zhu & Li, 2022). However, they treated
the single domain as one distribution and did not explore latent distributions.

Multi-domain learning is similar to DG which also trains on multiple domains, but also tests on
training distributions. Deecke et al. (2022) proposed sparse latent adapters to learn from unknown
domain labels, but their work does not consider the min-max worst-case distribution scenario and
optimization. In domain adaptation, Wang et al. (2020) proposed the notion of domain index
and further used variational models to learn them (Xu et al., 2023), but took a different modeling
methodology since they did not consider min-max optimization. Mixture models (Rasmussen et al.,
1999) are models representing the presence of subpopulations within an overall population, e.g.,
Gaussian mixture models. Our approach has a similar formulation but does not use generative models.
Subpopulation shift is a new setting (Koh et al., 2021) that refers to the case where the training and
test domains overlap, but their relative proportions differ. Our problem does not belong to this setting
since we assume that these distributions do not overlap.

Distributionally robust optimization (Delage & Ye, 2010) shares a similar paradigm with our work,
whose paradigm is also to seek a distribution that has the worst performance within a range of the
raw distribution. GroupDRO (Sagawa et al., 2020) studied DRO at a group level. However, we study
the internal distribution shift instead of seeking a global distribution close to the original one.

5 LIMITATION AND DISCUSSION

DIVERSIFY could be more perfect by pursuing the following avenues. 1) Estimate the number of
latent distributions K automatically: we currently treat it as a hyperparameter. 2) Seek the semantics
behind latent distributions (e.g., Figure 6(a)): can adding more human knowledge obtain better latent
distributions? 3) Extend DIVERSIFY beyond classification, but for forecasting problems.

Moreover, we argue that dynamic distributions not only exist in time series, but also in general
machine learning data such as images and text (Deecke et al., 2022; Xu et al., 2023). Thus, it is of
great interest to apply our approach to these domains to further improve their performance.

6 CONCLUSION

We proposed DIVERSIFY to learn generalized representation for time series classification. DIVERSIFY
employs an adversarial game that maximizes the ‘worst-case’ distribution scenario while minimizing
their distribution divergence. We demonstrated its effectiveness in different applications. We are
surprised that not only a mixed dataset, but one dataset from a single person can also contain several
latent distributions. Characterizing such latent distributions will greatly improve the generalization
performance on unseen datasets.
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A THEORETICAL INSIGHTS

A.1 BACKGROUND

For a distribution P with an ideal binary labeling function h∗ and a hypothesis h, we define the error
εP(h) in accordance with (Ben-David et al., 2010) as:

εP(h) = Ex∼P|h(x)− h∗(x)|. (9)

We also give the definition of H-divergence according with (Ben-David et al., 2010). Given two
distributions P,Q over a space X and a hypothesis classH,

dH(P,Q) = 2 sup
h∈H
|PrP(Ih)− PrQ(Ih)|, (10)

where Ih = {x ∈ X |h(x) = 1}. We often consider the H∆H-divergence in (Ben-David et al.,
2010) where the symmetric difference hypothesis classH∆H is the set of functions characteristic to
disagreements between hypotheses.
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Theorem A.1. (Theorem 2.1 in (Sicilia et al., 2021), modified from Theorem 2 in (Ben-David et al.,
2010)). Let X be a space andH be a class of hypotheses corresponding to this space. Suppose P and
Q are distributions over X . Then for any h ∈ H, the following holds

εQ(h) ≤ λ′′ + εP(h) +
1

2
dH∆H(Q,P) (11)

with λ′′ the error of an ideal joint hypothesis for Q,P.

Theorem A.1 provides an upper bound on the target-error. λ′′ is a property of the dataset and
hypothesis class and is often ignored. Theorem A.1 demonstrates the necessity to learn domain
invariant features.

A.2 PROOF OF PROPOSITION 2.1.

Proposition 2.1. Let X be a space andH be a class of hypotheses corresponding to this space. Let
Q and the collection {Pi}Ki=1 be distributions over X and let {ϕi}Ki=1 be a collection of non-negative
coefficient with

∑
i ϕi = 1. Let the object O be a set of distributions such that for every S ∈ O the

following holds
dH∆H(

∑
i

ϕiPi,S) ≤ max
i,j

dH∆H(Pi,Pj). (12)

Then, for any h ∈ H,

εQ(h) ≤ λ′ +
∑
i

ϕiεPi
(h) +

1

2
min
S∈O

dH∆H(S,Q) +
1

2
max
i,j

dH∆H(Pi,Pj) (13)

where λ′ is the error of an ideal joint hypothesis.

Proof. On one hand, with Theorem A.1, we have

εQ(h) ≤ λ′1 + εS(h) +
1

2
dH∆H(S,Q),∀h ∈ H,∀S ∈ O. (14)

On the other hand, with Theorem A.1, we have

εS(h) ≤ λ′2 + ε∑
i ϕiPi

(h) +
1

2
dH∆H(

∑
i

ϕiPi,S),∀h ∈ H. (15)

Since ε∑
i ϕiPi

(h) =
∑
i ϕiεPi(h), and dH∆H(

∑
i ϕiPi,S) ≤ maxi,j dH∆H(Pi,Pj), we have

εQ(h) ≤ λ′+
∑
i

ϕiεPi(h)+
1

2
dH∆H(S,Q)+

1

2
max
i,j

dH∆H(
∑
i

ϕiPi,S),∀h ∈ H,∀S ∈ O, (16)

where λ′ = λ′1 + λ′2. Equation 16 for all S ∈ O holds. Therefore, we complete the proof.

B METHOD DETAILS

B.1 DOMAIN-INVARIANT REPRESENTATION LEARNING

Domain-invariant representation learning utilizes adversarial training which contains a feature net-
work, a domain discriminator, and a classification network. The domain discriminator tries its best
to discriminate domain labels of data while the feature network tries its best to generate features to
confuse the domain discriminator, which thereby obtains domain-invariant representation. Therefore,
it is an adversarial process, and in our setting, it can be expressed as follows,

min
h
(4)
b ,h

(4)
c

E(x,y)∼Ptr`(h(4)
c (h

(4)
b (h

(4)
f (x))), y)− `(h(4)

adv(h
(4)
b (h

(4)
f (x))), d′),

min
h
(4)
adv

E(x,y)∼Ptr`(h
(4)
adv(h

(4)
b (h

(4)
f (x))), d′).

(17)
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To optimize Eq. (17), we need an iterative process to optimize h(4)
b , h

(4)
c and h(4)

adv iteratively, which
is cumbersome. It is better to optimize h(4)

b , h
(4)
c and h(4)

adv at the same time. It is obvious that the
key is to solve the problems caused by the negative sign in Eq. (17). Therefore, a special gradient
reversal layer (GRL), a popular implementation of the adversarial training in training several domains
as suggested by (Ganin et al., 2016), came. GRL acts as an identity transformation during the forward
propagation while it takes the gradient from the subsequent level and changes its sign before passing
it to the preceding layer during the backpropagation. During the forward propagation, the GRL can
be ignored. During the backpropagation, the GRL makes the sign of gradient on h(4)

b reverse, which
solves the problems caused by the negative sign in Eq. (17).

B.2 METHOD FORMULATION AND IMPLEMENTATION

While it is common to use some probability or Bayesian approaches for formulation when one
mentions distributions, we actually do not formulate the latent distributions: we are not a generative
or parametric method. In fact, the concept of latent distribution is just a notion to help understand
our method. Our ultimate goal is to infer which distribution a segment belongs to for best OOD
performance. Thus, we do not care what a distribution exactly looks like or even parameterize it since
it is not our focus. As long as we can obtain diverse latent distributions, things are all done.

In real implementation, the latent distributions are just represented as domain labels: latent distribution
i is also a domain i that certain time series segments belong to, as we stated in the introduction part.
Additionally, we also acknowledge that parameterizing the latent distributions may help to get better
performance, which can be left for future research.

B.3 COMPARISONS TO OTHER LATEST METHODS

Here, we offer more details on comparisons to other latest methods utilized in the main paper.

DANN (Ganin et al., 2016) is a method that utilizes the adversarial training to force the discrimi-
nator unable to classify domains for better domain-invariant features. It requires domain labels
and splits data in advance while ours is a universal method.

CORAL (Sun & Saenko, 2016) is a method that utilizes the covariance alignment in feature layers
for better domain-invariant features. It also requires domain labels and splits data in advance.

Mixup (Zhang et al., 2018) is a method that utilizes interpolation to generate more data for better
generalization. Ours mainly focuses on generalized representation learning.

GroupDRO (Sagawa et al., 2020) is a method that seeks a global distribution with the worst
performance within a range of the raw distribution for better generalization. Ours study the internal
distribution shift instead of seeking a global distribution close to the original one.

RSC (Huang et al., 2020) is a self-challenging training algorithm that forces the network to activate
features as much as possible by manipulating gradients. It belongs to gradient operation-based DG
while ours is to learn generalized features.

ANDMask (Parascandolo et al., 2021) is another gradient-based optimization method that belongs
to special learning strategies. Ours focuses on representation learning.

GILE (Qian et al., 2021) is a disentanglement method designed for cross-person human activity
recognition. It is based on VAEs and requires domain labels.

AdaRNN (Du et al., 2021) is a method with a two-stage that is non-differential and it is tailored
for RNN. A specific algorithm is designed for splitting. Ours is universal and is differential with
better performance.

C DATASET

C.1 DATASETS INFORMATION

Table 4 shows the statistical information on each dataset.
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Table 4: Information on datasets.
Dataset Subjects Sensors Classes Samples

EMG 36 1 7 33,903,472
SPCMD 2618 - 35 105,829
WESAD 15 8 4 63,000,000
DSADS 8 3 19 1,140,000

USC-HAD 14 2 12 5,441,000
UCI-HAR 30 2 6 1,310,000
PAMAP 9 3 18 3,850,505

C.2 MORE DETAILS ON EMG

Electromyography (EMG) is a typical time-series data that is based on bioelectric signals. We use
EMG for gestures Data Set (Lobov et al., 2018) that contains raw EMG data recorded by MYO
Thalmic bracelet. The bracelet is equipped with eight sensors equally spaced around the forearm that
simultaneously acquire myographic signals. Data of 36 subjects are collected while they performed
series of static hand gestures and the number of instances is 40, 000− 50, 000 recordings in each
column. It contains 7 classes and we select 6 common classes for our experiments. We randomly
divide 36 subjects into four domains (i.e., 0, 1, 2, 3) without overlapping and each domain contains
data of 9 persons.

C.3 DETAILS ON SENSOR-BASED HUMAN ACTIVITY RECOGNITION DATASET

UCI daily and sports dataset (DSADS) (Barshan & Yüksek, 2014) consists of 19 activities collected
from 8 subjects wearing body-worn sensors on 5 body parts. USC-SIPI human activity dataset
(USC-HAD) (Zhang & Sawchuk, 2012) is composed of 14 subjects (7 male, 7 female, aged 21 to
49) executing 12 activities with a sensor tied on the front right hip. UCI-HAR (Anguita et al., 2012)
is collected by 30 subjects performing 6 daily living activities with a waist-mounted smartphone.
PAMAP (Reiss & Stricker, 2012) contains data of 18 activities, performed by 9 subjects wearing 3
sensors.

C.4 DETAILS ON DIFFERENT SETTINGS FOR HUMAN ACTIVITY RECOGNITION

We construct four different settings representing different degrees of generalization: (1) Cross-
person generalization: This setting utilizes DSADS, USC-HAD, PAMAP10 datasets to construct
three benchmarks. Within each dataset, we randomly split the data into four groups and then use
three groups as training data to learn a generalized model for the last group. (2) Cross-position
generalization: this setting uses DSADS dataset and data from each position denotes a different
domain. Each sample contains three sensors with nine dimensions. We treat one position as the test
domain while the others are for training. (3) Cross-dataset generalization: this setting uses all four
datasets, and each dataset corresponds to a different domain. Six common classes are selected. Two
sensors from each dataset that belong to the same position are selected and data is down-sampled to
have the same dimension. (4) One-Person-To-Another. This setting adopts DSADS, USC-HAD,
and PAMAP datasets. In each dataset, we randomly select four pairs of persons where one is the
training and the other is the test.

C.5 DATA PREPROCESSING

We will introduce how we preprocess data and the final dimension of data for experiments here. We
mainly utilize the sliding window technique, a common technique in time-series classification, to
split data. As its name suggests, this technique involves taking a subset of data from a given array or
sequence. Two main parameters of the sliding window technique are the window size, describing a
subset length, and the step size, describing moving forward distance each time.

For EMG, we set the window size 200 and the step size 100, which means there exist 50% overlaps
between two adjacent samples. We normalize each sample with x̃ = x−minX

maxX−minX . X contains all x.
The final dimension is 8× 1× 200.

10We do not use UCI-HAR in cross-person setting since its baseline is good enough.

17



Published as a conference paper at ICLR 2023

For Speech Commands, we follow (Kidger et al., 2020).

For WESAD, we utilize the same preprocessing as EMG.

Now we give details on all datasets in Cross-person setting. For DSADS, we directly utilize data
split by the providers. The final dimension shape is 45× 1× 125. 45 = 5× 3× 3 where 5 means
five positions, the first 3 means three sensors, and the second 3 means each sensor has three axes.
For USC-HAD, the window size is 200 and the step size is 100. The final dimension shape is
6× 1× 200. For PAMAP, the window size is 200 and the step size is 100. The final dimension shape
is 27× 1× 200. For UCI-HAR, we directly utilize data split by the providers. The final dimension
shape is 6× 1× 128.

For Cross-position, we directly utilize samples obtained from DSADS in Cross-person setting. Since
each position corresponds to one domain, a sample is split into five samples in the first dimension.
And the final dimension shape is 9× 1× 125.

For Cross-dataset, we directly utilize samples obtained in Cross-person setting. To make all datasets
share the same label space and input space, we select six common classes, including WALKING,
WALKING UPSTAIRS, WALKING DOWNSTAIRS, SITTING, STANDING, LAYING. In addition,
we down-sample data and select two sensors from each dataset that belong to the same position. The
final dimension shape is 6× 1× 50.

For One-Person-To-Another, we randomly select four pairs of persons from DSADS, USC-HAD, and
PAMAP respectively. Four tasks are 1→ 0, 3→ 2, 5→ 4, and 7→ 6. Each number corresponds
to one subject. And the final dimension shape is 45× 1× 125, 6× 1× 200, and 27× 1× 200 for
DSADS, USC-HAD, and PAMAP respectively.

As we can see, samples in EMG, WESAD, and HAR all have more than one channel (the first
dimension shape), which means they are all multivariate.

C.6 DETAILS ON DOMAIN SPLITS

We introduce how we split data here.

Since Speech Commands is a regular task, we just randomly split the entire dataset into a training
dataset, a validation dataset, and a testing dataset.

We mainly focus on EMG, WESAD, and HAR, and we construct domains for OOD tasks. We denote
subjects of a dataset with 0 − sn, where sn is the number of subjects in the dataset. For example,
there are 36 subjects in EMG and we utilize 0, 1, 2, · · · , 35 to denote data of them respectively.

Table 5 shows the initial domain splits of EMG, WESAD, and all datasets for HAR in Cross-person
setting. We just want to make each domain has a similar number of samples in one dataset. As noted
in the main paper, we also utilize 0, 1, 2, and 3 to represent different domains but they have different
meanings with subjects. When conducting experiments, we take one domain as the testing data and
the others as the training data. Our method is not influenced by the splits of the training data since we
do not need the domain labels.

Table 5: Initial domain splits.
Dataset 0 1 2 3

EMG 0-8 9-17 18-26 27-35
WESAD 0-3 4-7 8-11 12-14
DSADS 0,1 2,3 4,5 6,7

USC-HAD 0,1,2,11 3,5,6,9 7,8,10,13 4,12
PAMAP 2,3,8 1,5 0,7 4,6

D NETWORK ARCHITECTURE AND HYPERPARAMETERS

For the architecture, the model contains two blocks, and each has one convolution layer, one pooling
layer, and one batch normalization layer. A single-fully-connected layer is used as the bottleneck
layer while another fully-connected layer serves as the classifier. All methods are implemented with
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PyTorch (Paszke et al., 2019). The maximum training epoch is set to 150. The Adam optimizer
with weight decay 5× 10−4 is used. The learning rate for GILE is 10−4. The learning rate for the
rest methods is 10−2 or 10−3. (For Speech Commands with MatchBoxNet3-1-64, we also try the
learning rate, 10−4.) We tune hyperparameters for each method.

For the pooling layer, we utilize MaxPool2d in PyTorch. The kernel size is (1, 2) ad the stride is 2.
For the convolution layer, we utilize Conv2d in PyTorch. Different tasks have different kernel sizes
and Table 6 shows the kernel sizes.

Table 6: The kernel size of each benchmark.
EMG (1,9)

Cross-Person
DSADS (1,9)

SPEECHCOMMANDS (1,9) USC-HAD (1,6)
WESAD (1,9) PAMAP2 (1,9)
Cross-position (1,9) One-Person-To-Another The same as Cross-Person
Cross-dataset (1,6)

E EVALUATION METRICS

We utilize average accuracy on the testing dataset as our evaluation metrics for all benchmarks.
Average accuracy is the most common metric for DG and it can be computed as the following,

Acc =

∑
(x,y)∈Dte Iy(y∗)

#|Yte|
,

y∗ = arg maxh(x).

(18)

Iy(y∗) is an indicator function. If y = y∗, it equals 1, otherwise it equals 0. #| · | represents the
number of the set. h is the model to learn. Please note that X te has a different distribution from X tr
for EMG and HAR. And x has been preprocessed and each sample is a segment.

(a) ERM (b) RSC (c) ANDMask (d) Ours

Figure 9: Visualization of the t-SNE embeddings for classification on EMG. Different colors corre-
spond to different classes while different shapes correspond to different domains.

(a) Initial splits on USC (b) Our splits on USC (c) Initial splits on EMG (d) Our splits on EMG

Figure 10: Visualization of the t-SNE embeddings for domain splits where different colors represent
different domains.
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F MORE EXPERIMENTAL RESULTS

F.1 VISUALIZATION STUDY

We show more visualization study in this part. As shown in Figure 9(a) and Figure 9(b), both ERM
and RSC also cannot obtain fine domain-invariant representations and our method still achieves the
best domain-invariant representations. As shown in Figure 10, compared with initial domain splits,
latent sub-domains generated by our method are better separated.

F.2 PARAMETER SENSITIVITY
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Figure 11: Parameter sensitivity analysis (EMG).

There are mainly four hyperparameters in our method: K which is the number of latent sub-domains,
λ1 for the adversarial part in step 3, λ2 for the adversarial part in step 4, and local epochs and total
rounds. For fairness, the product of local epochs and total rounds is the same value. We evaluate the
parameter sensitivity of our method in Figure 11 where we change one parameter and fix the other to
record the results. From these results, we can see that our method achieves better performance in a
wide range, demonstrating that our method is robust.

F.3 H-DIVERGENCE
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Figure 12: H-divergence among domains with initial splits and our splits on EMG.

Figure 12 shows H-divergence among domains with initial splits and our splits on EMG, which
demonstrates our splits have largerH-divergence and thereby can bring better generalization.

F.4 THE INFLUENCE OF ARCHITECTURES

To ensure that our method can work with different sizes of models, we add some more experiments
with more complex or simpler architectures. As shown in Table 7, where small, medium, and large
indicate the different model sizes (our paper uses the medium), we see a clear picture that model
sizes influence the results, and our method also achieves the best performance. Small corresponds to
the model with one convolutional layer, Medium corresponds to the model with two convolutional
layers, and Large corresponds to the model with four convolutional layers. For most methods, more
complex models bring better results.
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Table 7: Results on EMG dataset with different model sizes.
Model Size Small Medium Large
Target 0 1 2 3 AVG 0 1 2 3 AVG 0 1 2 3 AVG

ERM 56.6 65.7 65.3 61.8 62.3 62.6 69.9 67.9 69.3 67.4 61.2 78.8 68.8 64.6 68.4
DANN 65.3 69.3 63.6 62.9 65.3 62.9 70.0 66.5 68.2 66.9 63.0 72.7 69.4 68.5 68.4
CORAL 66.9 74.9 70.8 73.2 71.4 66.4 74.6 71.4 74.2 71.7 67.7 77.0 72.7 71.8 72.3
Mixup 56.8 61.0 68.1 67.2 63.2 60.7 69.9 70.5 68.2 67.3 66.3 81.1 71.2 69.6 72.0
GroupDRO 64.9 75.0 71.6 69.1 70.1 67.6 77.5 73.7 72.5 72.8 66.3 79.3 74.9 71.3 73.0
RSC 62.7 73.2 67.6 64.0 66.9 70.1 74.6 72.4 71.9 72.2 65.1 76.8 72.2 67.7 70.4
ANDMask 62.4 66.0 66.3 65.6 65.1 66.6 69.1 71.4 68.9 69.0 65.7 78.1 72.1 71.9 71.9
DIVERSIFY 69.8 77.3 74.4 74.4 74.0 71.7 82.4 76.9 77.3 77.1 72.0 86.6 78.5 78.9 79.0

Table 8: Results on EMG dataset with Transformer.
Target 0 1 2 3 AVG

ERM 71.7 83.8 76.1 78.0 77.4
DANN 72.7 82.3 77.6 77.3 77.5
GroupDRO 72.1 84.4 77.5 78.3 78.1
RSC 72.1 83.7 77.6 78.2 77.9
Ours 75.6 86.2 79.4 79.7 80.2

ERM DANN RSC Ours

CNN Transformer

Figure 13: Results on the first
task in Cross-dataset generaliza-
tion using Transformers.

We also try Transformer (Vaswani et al., 2017) as the backbone
for comparisons. As shown in (Zhang et al., 2022a), Transformer
often has a better generalization ability compared to CNN, which
implies improving with Transformer is more difficult. From Ta-
ble 8, we can see that each method with Transformer has a remark-
able improvement on EMG. Compared to ERM, DANN almost
has no improvement but ours still has further improvements and
achieves the best performance. To further validate the advantage
of our method, we perform the experiments on a more difficult
task, i.e. the first task of cross-dataset where distribution gaps are
larger. As shown in Figure F.4, our method still achieves the best
performance in this more difficult situation while DANN even
performs worse than ERM, which demonstrates the importance
of more accurate sub-domain labels.

Overall, for all architectures, our method achieves the best per-
formance.

Table 9: Time costs of different methods (s).
method ERM DANN CORAL Mixup GroupDRO RSC ANDMask Ours

time 305.98 328.62 357.54 2042.93 340.03 321.51 379.87 356.8

F.5 TIME COMPLEXITY AND CONVERGENCE ANALYSIS
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Figure 14: Convergence re-
sults on EMG.

We also provide some analysis on time complexity and convergence.
Since we only optimize the feature extractor in Step 2, our method
does not cost too much time. And the results in Table 9 prove this
argument empirically.

The convergence results are shown in Figure F.5. Our method is
convergent. Although there are some little fluctuations, these fluc-
tuations exist widely in all domain generalization methods due to
different distributions of different samples.
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