

000 001 002 003 004 005 RADDIFF: RETRIEVAL-AUGMENTED DENOISING DIF- 006 FUSION FOR PROTEIN INVERSE FOLDING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Protein inverse folding, the design of an amino acid sequence based on a target 3D
029 structure, is a fundamental problem of computational protein engineering. Existing
030 methods either generate sequences without leveraging external knowledge or
031 relying on protein language models (PLMs). The former omits the evolutionary
032 information stored in protein databases, while the latter is parameter-inefficient
033 and inflexible to adapt to ever-growing protein data. To overcome the above
034 drawbacks, in this paper we propose a novel method, called retrieval-augmented
035 denoising diffusion (RadDiff), for protein inverse folding. Given the target protein
036 backbone, RadDiff uses a hierarchical search strategy to efficiently retrieve struc-
037 turally similar proteins from large protein databases. The retrieved structures are
038 then aligned residue-by-residue to the target to construct a position-specific amino
039 acid profile, which serves as an evolutionary-informed prior that conditions the
040 denoising process. A lightweight integration module is further designed to incor-
041 porate this prior effectively. Experimental results on the CATH, PDB, and TS50
042 datasets show that RadDiff consistently outperforms existing methods, improving
043 sequence recovery rate by up to 19%. Experimental results also demonstrate that
044 RadDiff generates highly foldable sequences and scales effectively with database
045 size.
046

047 1 INTRODUCTION 048

049 Proteins are the molecular machines of life, executing a vast array of biological functions dictated
050 by their three-dimensional (3D) structures (Koehler Leman et al., 2023). A grand challenge is the
051 design of novel proteins with desired functions, a task for which protein inverse folding serves as a
052 fundamental approach. The goal of protein inverse folding is to computationally design an amino
053 acid sequence that will fold into a specified 3D backbone structure (Ingraham et al., 2019).

054 Recent advances in deep learning have shown great promise for protein inverse folding (Ingraham
055 et al., 2019; Jing et al., 2020; Hsu et al., 2022; Fu & Sun, 2022; Dauparas et al., 2022; Gao et al.,
056 2022b; Tan et al., 2023). Representative methods include denoising diffusion models (Yi et al.,
057 2023; Bai et al., 2025), which have demonstrated a remarkable ability to generate high-fidelity se-
058 quences by learning the complex relationship between protein structure and sequence. However,
059 these models often operate *de novo*, generating sequences conditioned only on structural geom-
060 etry (Mahbub et al., 2025). This process omits the evolutionary information stored in large protein
061 databases. Designing sequences without reference to known biological prior may lead to sequences
062 that are biologically suboptimal (Huang et al., 2024), and it failed to leverage decades of collected
063 protein data.

064 Recognizing the value of this external knowledge, some methods have successfully improved the
065 protein design performance by incorporating information from large pre-trained protein language
066 models (PLMs) (Zheng et al., 2023; Gao et al., 2023; Wang et al., 2024). While effective, these
067 methods suffer from two key drawbacks. First, the PLMs often contain billions of parameters (Hayes
068 et al., 2025), leading to a parameter-inefficient model for protein design. Second, this strategy pro-
069 duces a static knowledge base, which compresses the data into the fixed model parameters. Incorpor-
070 ating new protein data from continuously growing protein databases requires retraining the entire
071 PLM, which is both inflexible and computationally prohibitive.

054 To address these challenges, in this paper we propose a novel method, called retrieval-augmented
 055 denoising diffusion (RadDiff), for protein inverse folding. The main contributions of our work are
 056 summarized as follows:
 057

- 058 • We design a hierarchical search strategy that efficiently retrieves structurally similar proteins from
 059 large protein databases, providing flexible access to external knowledge.
- 060 • We introduce a residue-level alignment mechanism that constructs position-specific amino acid
 061 profiles, which serves as an evolutionary-informed prior and integrated into the denoising process
 062 via a lightweight module.
- 063 • Experimental results on the CATH, PDB, and TS50 datasets show that RadDiff consistently out-
 064 performs existing methods, improving sequence recovery rate by up to 19%. Experimental results
 065 also demonstrate that RadDiff generates highly foldable sequences and scales effectively with
 066 database size.

067 2 RELATED WORKS

069 2.1 PROTEIN INVERSE FOLDING

070 Protein inverse folding has been extensively explored for years. Traditional methods, such as
 071 Rosetta (Alford et al., 2017), frame the problem as a physics-based energy minimization task. More
 072 recently, deep learning based methods have shown great promise for this problem (Wang et al.,
 073 2018; Ingraham et al., 2019; Jing et al., 2020; Qi & Zhang, 2020; Fu & Sun, 2022; Dauparas et al.,
 074 2022; Gao et al., 2022b; Yi et al., 2023; Wang et al., 2024; Qiu et al., 2024). Graph Neural Net-
 075 work (GNN) based methods like GVP (Jing et al., 2020), ProteinMPNN (Dauparas et al., 2022),
 076 and PiFold (Gao et al., 2022b) demonstrate the power of learning representations directly from 3D
 077 protein structures to predict amino acid identities. Models such as LM-Design (Zheng et al., 2023)
 078 and KW-Design (Gao et al., 2023) leverage pre-trained PLMs to inject evolutionary information into
 079 the design process, significantly boosting performance. Diffusion-based methods like GradeIf (Yi
 080 et al., 2023) and MapDiff (Bai et al., 2025) have also shown great potential for modeling the con-
 081 ditional sequence distribution. PRISM (Mahbub et al., 2025) also employs the concept of retrieval-
 082 augmentation. However, the core methodologies of PRISM and our RadDiff differ significantly.
 083 PRISM operates at the embedding level, relying on pre-trained structure and sequence encoders to
 084 retrieve and integrate learned representations. In contrast, RadDiff’s retrieval process is based on a
 085 direct comparison of 3D coordinates. Furthermore, RadDiff conditions the generation process on a
 086 position-wise amino acid profile derived from residue-level structural alignments, which provides a
 087 more direct form of guidance for the model.

089 2.2 PROTEIN STRUCTURE RETRIEVAL

090 Protein structure retrieval aims to retrieve similar protein structures from a large protein structure
 091 database given a query structure. We introduce two classical protein structure retrieval methods,
 092 TM-align (Zhang & Skolnick, 2005) and FoldSeek (van Kempen et al., 2022), which will be used in
 093 our method.

094 TM-align (Zhang & Skolnick, 2005) is a sequence-independent protein structure comparison tool.
 095 TM-align uses heuristic dynamic programming to find the optimal structure alignment between two
 096 structures based on template modeling score (TM-score) (Zhang & Skolnick, 2004). TM-score is
 097 a score function to measure the structure similarity between two protein structures, which has a
 098 value in (0,1], and 1 indicates that two structures are perfectly matched. TM-score>0.5 indicates
 099 that two structures are highly likely to share similar topology (Xu & Zhang, 2010). We will use the
 100 version US-align (Zhang et al., 2022) in our method, which is an extension of the TM-align which
 101 can generate more accurate structural alignment. Although TM-align and US-align are accurate to
 102 identify the similarity of two structures, it is time-consuming and infeasible to perform large-scale
 103 comparison for millions of or billions of structure pairs.

104 FoldSeek (van Kempen et al., 2022) is a fast protein structure retrieval method based on struc-
 105 tural alphabet. FoldSeek discretizes structures into 3D interaction (3Di) sequences and uses MM-
 106 seqs2 (Steinegger & Söding, 2017) for ultra-fast retrieval, achieving search speeds several orders
 107 of magnitude faster than traditional alignment-based methods like TM-align. However, due to the

108 information loss in the discretization to a structural alphabet, FoldSeek is generally less accurate
 109 than TM-align (Litfin et al., 2025).
 110

111 **3 METHODS**
 112

113 **3.1 PRELIMINARIES: DISCRETE DENOISING DIFFUSION**
 114

115 We follow the discrete denoising diffusion settings in Austin et al. (2021). In our setting, the vocabulary
 116 of protein inverse folding contains K kinds of natural amino acids (i.e., $K = 20$). Given
 117 the initial amino acid sequence \mathcal{S} (with N amino acids), we denote its amino acid features as
 118 $\mathbf{X}^{aa} \in \mathbb{R}^{N \times K}$, where each row corresponds to an amino acid.
 119

120 **(I) Forward diffusion process** The forward diffusion process, q , progressively corrupts an initial
 121 clean \mathbf{X}_0^{aa} over T timesteps. This creates a Markov chain of increasingly noisy sequences
 122 $\mathbf{X}_0^{aa}, \mathbf{X}_1^{aa}, \dots, \mathbf{X}_T^{aa}$. The transition at each step is defined by a matrix \mathbf{Q}_t , such that $q(\mathbf{X}_t^{aa} | \mathbf{X}_{t-1}^{aa}) = \mathbf{X}_{t-1}^{aa} \mathbf{Q}_t$. We use a standard cosine noise schedule β_t to define a uniform transition matrix
 123 $\mathbf{Q}_t = (1 - \beta_t) \mathbf{I} + \beta_t \mathbf{1}_K \mathbf{1}_K^\top / K$, $\mathbf{1}_K$ denotes the all-one vector with dimension K . The final state
 124 \mathbf{X}_T^{aa} converges to a uniform distribution over all amino acids, independent of the input \mathbf{X}_0^{aa} .
 125 For any noisy state \mathbf{X}_t^{aa} , it can be sampled in a closed form: $q(\mathbf{X}_t^{aa} | \mathbf{X}_0^{aa}) = \mathbf{X}_0^{aa} \bar{\mathbf{Q}}_t$, where
 126 $\bar{\mathbf{Q}}_t = \prod_{k=1}^t \mathbf{Q}_k$.
 127

128 **(II) Denoising network and training objective** The goal is to learn the reverse process,
 129 $p_\theta(\mathbf{X}_{t-1}^{aa} | \mathbf{X}_t^{aa})$, to denoise a sequence from \mathbf{X}_T^{aa} back to a clean sequence \mathbf{X}_0^{aa} . This is achieved
 130 by training a denoising network to predict the original clean sequence $\hat{\mathbf{X}}_0^{aa}$ given the noisy sequence
 131 \mathbf{X}_t^{aa} at timestep t , along with our conditioning information. The network is trained to minimize the
 132 cross-entropy loss between its prediction and the true clean sequence.
 133

134 **(III) Reverse denoising process** The reverse denoising process generates a new amino acid sequence by iteratively applying a denoising step for $t = T, \dots, 1$. The generative distribution for this
 135 reverse transition, $p_\theta(\mathbf{X}_{t-1}^{aa} | \mathbf{X}_t^{aa})$, is estimated using the trained denoising network. Specifically,
 136 we marginalize over the network's predictions for the clean sequence, $\hat{p}_\theta(\mathbf{X}_{t-1}^{aa} | \mathbf{X}_t^{aa})$, to compute
 137 the distribution for each residue i : $p_\theta(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i) \propto \sum_{\hat{\mathbf{x}}_0^i} q(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \hat{\mathbf{x}}_0^i) \hat{p}_\theta(\hat{\mathbf{x}}_0^i | \mathbf{x}_t^i)$, where $\hat{\mathbf{x}}_0^i$
 138 represents the predicted probability distribution for the i -th residue of the original sequence. The
 139 posterior distribution $q(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \hat{\mathbf{x}}_0^i)$ can be calculated in closed form using the forward process
 140 transition matrices from Bayes' theorem:
 141

$$q(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i, \hat{\mathbf{x}}_0^i) = \frac{q(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i, \hat{\mathbf{x}}_0^i) q(\mathbf{x}_{t-1}^i | \hat{\mathbf{x}}_0^i)}{q(\mathbf{x}_t^i | \hat{\mathbf{x}}_0^i)} = \text{Cat} \left(\mathbf{x}_{t-1}^i; p = \frac{\mathbf{x}_t^i \mathbf{Q}_t^\top \odot \hat{\mathbf{x}}_0^i \bar{\mathbf{Q}}_{t-1}}{\hat{\mathbf{x}}_0^i \bar{\mathbf{Q}}_t \mathbf{x}_t^i} \right), \quad (1)$$

142 where $\text{Cat}(\mathbf{x}; p)$ is a categorical distribution over \mathbf{x} with probabilities determined by p . Assuming
 143 independence between residues conditioned on the previous state, the probability for the entire sequence is the product of the individual amino acid probabilities: $p_\theta(\mathbf{X}_{t-1}^{aa} | \mathbf{X}_t^{aa}) =$
 144 $\prod_{1 \leq i \leq N} p_\theta(\mathbf{x}_{t-1}^i | \mathbf{x}_t^i)$. To generate a complete new sequence, the process begins with a random
 145 noise sequence sampled from the prior distribution, \mathbf{X}_T^{aa} . This sequence is then iteratively
 146 denoised at each timestep using the reverse denoising process, eventually converging to a desired
 147 sequence \mathbf{X}_0^{aa} . To accelerate this iterative generation, we also employ a discrete denoising diffusion
 148 implicit model (DDIM) (Song et al., 2020) sampler (Bai et al., 2025).
 149

150 **3.2 PROBLEM FORMULATION: A NEW PERSPECTIVE**
 151

152 The goal of protein inverse folding is to predict the amino acid sequence based on the 3D conformation
 153 (\mathcal{G}). Unlike existing methods that only use 3D conformation as input, our method leverages
 154 existing protein data to enrich the feature.
 155

156 **3D conformation.** We represent the protein structure as a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where each node
 157 $v_i \in \mathcal{V}$ corresponds to an amino acid. The graph's connectivity is defined using a k-nearest neighbor
 158 (kNN) algorithm constrained by a distance cutoff. In particular, an edge e_{ij} exists between two
 159

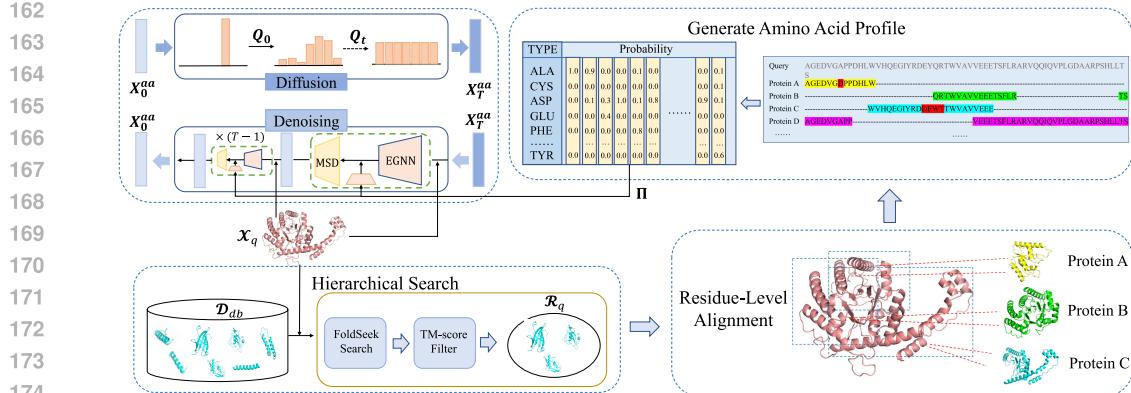


Figure 1: RadDiff’s pipeline. (1) Hierarchical search: retrieve a structurally similar protein set \mathcal{R}_q from the database \mathcal{D}_{db} . (2) Residue-level alignment: superimpose the retrieved proteins onto the query structure using US-align, and use the aligned residues as references for the amino acid types in the original sequence. (3) Generating amino acid profile: the amino acid profile is the position-specific amino acid probabilities, which serves as an evolutionary-informed prior that directly conditions the denoising process. The red color denotes the incorrect amino acid type after aligning, while the other color denotes the correct type.

nodes only if their C_α distance is less than 30Å. The input to the network consists of node features \mathbf{H} , coordinate features \mathbf{X}^{pos} , and edge features \mathbf{A} , which encode the geometric and relational properties of the structure. More details of the constructed features are described in Appendix A.1.

Structure retrieval dataset. Let protein \mathcal{P} denotes the pair of amino acid sequence \mathcal{S} and its 3D backbone structure \mathcal{X} , such that $\mathcal{P} = (\mathcal{S}, \mathcal{X})$. The protein inverse folding problem aims to find a valid sequence \mathcal{S} that folds into the desired structure \mathcal{X} . Let $\mathcal{D}_{db} = \{\mathcal{P}'_j = (\mathcal{S}'_j, \mathcal{X}'_j)\}_{j=1}^M$ be an external database of M known protein sequences and their structures. Given a query structure \mathcal{X}_q with an unknown sequence, we first introduce a retrieval step to find a set of structurally similar proteins from \mathcal{D}_{db} . The retrieved set is denoted as \mathcal{R}_q , where

$$\mathcal{R}_q = \{\mathcal{P}'_1, \mathcal{P}'_2, \dots, \mathcal{P}'_k\} \subset \mathcal{D}_{db}. \quad (2)$$

Here, \mathcal{R}_q contains the most structurally similar proteins to \mathcal{X}_q based on the designed similarity measurement.

The learning objective is to find a function \mathcal{F}_θ that models a conditional probability distribution, which depends not only on the target structure but also on the retrieved set \mathcal{R}_q . The model is trained to predict the sequence \mathcal{S}_q given both \mathcal{G} and the retrieved evidence \mathcal{R}_q :

$$\mathcal{F}_\theta : (\mathcal{G}, \mathcal{R}_q) \rightarrow \mathcal{S}_q. \quad (3)$$

3.3 RETRIEVAL AUGMENTATION

Our method conditions the protein inverse folding process on a prior derived from structurally similar proteins. This is achieved through the following three stages as shown in Figure 1: a hierarchical search for candidate structures, a precise residue-level alignment, and the generation of a position-specific amino acid profile.

3.3.1 HIERARCHICAL SEARCH

Given the vast size of protein databases, we design a hierarchical search strategy to efficiently identify a set of proteins that share similar structure with the query structure \mathcal{X}_q .

First, for coarse-grained filtering, we use FoldSeek (van Kempen et al., 2022) (Section 2) to perform a rapid search of \mathcal{X}_q against the entire database \mathcal{D}_{db} . FoldSeek represents 3D structures as sequences of discrete structural alphabet identifiers (3Di). We leverage this representation to perform an initial filtering based on fident, defined as the fraction of identical 3Di characters in the alignment between two structures. We retain only those proteins with a fident score greater than 0.5. This process yields an initial candidate set, $\mathcal{D}_q \subset \mathcal{D}_{db}$, significantly reducing the search space for the next stage.

Second, for fine-grained filtering, we further refine \mathcal{D}_q using US-align (Zhang & Skolnick, 2005) (Section 2), which performs coordinate-based structural alignment and calculates the TM-score. As the TM-score is asymmetric (its value depends on the reference protein length), an alignment between two proteins produces two scores, tm_1, tm_2 . To specifically identify local structural matches—where a smaller protein may align perfectly to a fragment of a larger one—we retain all structures where $\min(tm_1, tm_2) > 0.5$. This ensures that even partial, high-quality fragment matches are preserved. The final set of k retrieved proteins, denoted as \mathcal{R}_q , is obtained through this process. Both Foldseek and US-align are sequence-independent, ensuring that this retrieval process is based solely on structural information \mathcal{X} .

3.3.2 RESIDUE-LEVEL ALIGNMENT

After retrieving the set \mathcal{R}_q , we establish a precise residue-wise correspondence between the query structure \mathcal{X}_q and each retrieved structure \mathcal{X}_r from $\mathcal{P}_r = (\mathcal{S}_r, \mathcal{X}_r) \in \mathcal{R}_q$. The US-align algorithm, used in the previous step, provides this alignment as a byproduct of its structural superposition calculation.

As shown in Figure 1, for each retrieved protein \mathcal{P}_r , the alignment produces a mapping between residues in the query and residues in the retrieved structures. For each residue position i in the query \mathcal{P}_q , the alignment either identifies a corresponding residue j in \mathcal{P}_r or indicates that position i is not aligned to any residue.

We aggregate this information across all k proteins in \mathcal{R}_q . For each position i in the query sequence, we construct a multiset \mathcal{T}_i , containing the amino acid types of all aligned residues from the retrieved set:

$$\mathcal{T}_i = \{\mathcal{S}_r[j] \mid \forall \mathcal{P}_r = (\mathcal{S}_r, \mathcal{X}_r) \in \mathcal{R}_q \text{ where residue } i \text{ of } \mathcal{X}_q \text{ aligns with residue } j \text{ of } \mathcal{X}_r\}. \quad (4)$$

This multiset \mathcal{T}_i serves as a collection of observed amino acid types that are evolutionarily and structurally compatible with the local backbone environment at position i .

3.3.3 GENERATE AMINO ACID PROFILE

From the collected multisets of amino acids $\{\mathcal{T}_i\}_{i=1}^N$, we generate a position-specific probability matrix, or namely amino acid profile $\mathbf{\Pi} \in \mathbb{R}^{N \times |\mathcal{V}|}$, where $|\mathcal{V}| = 20$ is the size of the amino acid vocabulary. This profile quantifies the preference for each amino acid type at each position.

The profile is calculated as a position-wise frequency distribution. For the i -th residue and amino acid type $aa \in \mathcal{V}$, and the profile value $\mathbf{\Pi} \in \mathbb{R}_{i,aa}$ is computed as:

$$\mathbf{\Pi}_{i,aa} = \begin{cases} \frac{\text{count}(aa \in \mathcal{T}_i)}{|\mathcal{T}_i|} & \text{if } |\mathcal{T}_i| > 0 \\ \frac{1}{|\mathcal{V}|} & \text{if } |\mathcal{T}_i| = 0 \end{cases}, \quad (5)$$

where $\text{count}(aa \in \mathcal{T}_i)$ is the number of times amino acid aa appears in the multiset \mathcal{T}_i . For the unaligned positions (i.e., where no similar structure is retrieved or no residue on retrieved structure aligns with a particular residue i), the multiset \mathcal{T}_i will be empty. For these positions, we assign a uniform distribution to provide a non-informative prior.

The resulting profile $\{\mathbf{\Pi}_i\}_{i=1}^N$ serves as an evolutionary-informed prior. This profile is then used as an additional conditioning input to our denoising model, guiding the sequence generation towards amino acid choices validated in known structures.

3.4 3D CONFORMATION REPRESENTATION

To represent 3D protein structure, we employ a global-aware equivariant graph neural network (EGNN) (Satorras et al., 2021) as the network backbone. The EGNN is composed of L layers, where the l -th layer updates the node features \mathbf{h}_i^l and coordinates \mathbf{x}_i^l while preserving SE(3) equivariance. The \mathbf{x}_i^0 is $\mathbf{X}_i^{\text{pos}}$. At the l -th layer, the coordinates and node features are updated via:

$$\begin{aligned} \mathbf{m}_{ij}^l &= \phi_e \left(\mathbf{h}_i^l, \mathbf{h}_j^l, \|\mathbf{x}_i^l - \mathbf{x}_j^l\|^2, \mathbf{a}_{ij} \right), & \mathbf{x}_i^{l+1} &= \mathbf{x}_i^l + \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} (\mathbf{x}_i^l - \mathbf{x}_j^l) \phi_x (\mathbf{m}_{ij}^l), \\ \mathbf{m}_i^l &= \sum_{j \in \mathcal{N}_i} w_{ij} \mathbf{m}_{ij}^l, & \mathbf{h}_i^{l+1} &= \phi_h (\mathbf{h}_i^l, \mathbf{m}_i^l), \end{aligned} \quad (6)$$

270 where \mathcal{N}_i is the set of neighbors of node i and ϕ_e, ϕ_x, ϕ_h are multi-layer perceptrons (MLPs). \mathbf{a}_{ij}
 271 is the edge feature between node i and j . $\mathbf{w}_{ij} = \sigma(\phi_w(\mathbf{a}_{ij}))$, and $\sigma(\cdot)$ is the sigmoid function.
 272

273 We enhance this local message passing with a global context vector to allow for long-range com-
 274 munication across the structure (Tan et al., 2023; Bai et al., 2025). After the local update, the node
 275 representations are further refined as:

$$276 \quad \mathbf{c}^{l+1} = \text{MeanPool}(\{\mathbf{h}_i^{l+1}\}_{i=0}^{N-1}), \quad \mathbf{h}_i^{l+1} = \mathbf{h}_i^{l+1} \odot \sigma(\phi_c(\mathbf{c}^{l+1}, \mathbf{h}_i^{l+1})), \quad (7)$$

277 where \odot is the Hadamard product. The above updating process is repeated for L times. Finally,
 278 EGNN yields \mathbf{h}_i^L , the embedding of the final layer, as a representation of residue i .
 279

280 3.5 EVOLUTIONARY-INFORMED GUIDING

282 We design two evolutionary-informed guiding approaches for the generation process, which is the
 283 integration of the amino acid profile and masked-prior-guided denoising (Bai et al., 2025).
 284

285 **Integrate Amino Acid Profile** The retrieval-based amino acid profile ($\{\Pi_i\}_{i=1}^N$, Section 3.3),
 286 serving as an evolutionary-informed prior, is combined with 3D conformation representations
 287 ($\{\mathbf{h}_i^L\}_{i=1}^N$, Section 3.4). Integration is achieved via an extremely lightweight fusion module. The
 288 profile vector Π_i is first projected into the hidden dimension of the node features and then fused
 289 with \mathbf{h}_i^L using a residual connection. The resulting feature is further refined to produce the final
 290 probability over amino acid categories:

$$291 \quad \mathbf{p}_i = \text{softmax}(\phi_2(\phi_1(\Pi_i) + \mathbf{h}_i^L)), \quad (8)$$

292 where ϕ_1 and ϕ_2 are MLPs. The network is trained to minimize the cross-entropy loss between \mathbf{p}_i
 293 and the ground truth sequence.
 294

295 **Masked-Prior-Guided Denoising** Following MapDiff (Bai et al., 2025), to incorporate prior
 296 knowledge of sequential context, we pre-train a separate masked sequence designer (MSD). The role
 297 of the masked sequence design is to refine the residues with low predicting confidence. However, un-
 298 like MapDiff, our MSD is pre-trained independently and does not integrate into the training process
 299 of the graph denoising model. We found that this modification will accelerate the training process
 300 and can still improve the quality of the predicted sequence. The invariant point attention (IPA) net-
 301 work, first proposed by AlphaFold2 (Jumper et al., 2021) and modified by Frame2seq (Akpinaroglu
 302 et al., 2023) to incorporate geometric information, is used as the backbone of MSD. In the training
 303 stage, the MSD is trained based on the masked language modeling objective proposed in Devlin
 304 et al. (2019). MSD takes the masked amino acid sequence and the backbone coordinates as the in-
 305 put, and is trained to predict the original amino acid type using a cross-entropy loss. In the inference
 306 stage, given the output probability distribution \mathbf{p}_i of the graph diffusion model, the entropy of the
 307 residue i is defined as:

$$308 \quad \text{entropy}_i = - \sum_j \mathbf{p}_{ij} \log(\mathbf{p}_{ij}). \quad (9)$$

309 The lowest entropy residues are masked during inference and predicted by the MSD. The detailed
 310 process of re-predicting the amino acid type is provided in Appendix A.2.
 311

312 4 EXPERIMENT

314 4.1 EVALUATION SETTINGS

316 **RAG Database and Leakage Prevention.** We utilize the AlphaFold predicted (Varadi et al.,
 317 2022) Swiss-Prot (Bairoch & Apweiler, 1997) database, which contains 542,380 protein structures,
 318 as the external protein database. To prevent data leakage and ensure that our model’s performance is
 319 not inflated by trivial matches, we implement a strict filtering protocol during the retrieval process for
 320 each query as shown in Figure 2. (a) Identity filtering: Any structure in the retrieval database that is
 321 identical to a structure within the test sets is excluded from the retrieval pool. (b) Substring filtering:
 322 For domain-based datasets like CATH, where test samples may be fragments of full proteins, we
 323 perform a sequence-based check. If the amino acid sequence of a potential database hit contains the
 324 query’s domain sequence as a substring, or if the query’s sequence contains the database sequence

324 as a substring, that hit is discarded. This filtering strategy ensures that the structural augmentation is
 325 derived from truly homologous structures rather than from artifacts of dataset construction, thereby
 326 providing a true evaluation of our model’s ability to generalize.
 327

328 **Baselines.** We use the following three categories of base-
 329 line methods for comparison: (1) GNN-based methods, in-
 330 cluding AlphaDesign (Gao et al., 2022a), ProteinMPNN (Dau-
 331 paras et al., 2022), StructGNN (Ingraham et al., 2019), Graph-
 332 Trans (Ingraham et al., 2019), GVP (Jing et al., 2020), and
 333 PiFold (Gao et al., 2022b); (2) PLM-based methods, including
 334 LM-Design (Zheng et al., 2023) and KW-design (Gao et al.,
 335 2023); (3) diffusion-based methods, including Gradelf (Yi
 336 et al., 2023) and MapDiff (Bai et al., 2025). All baselines are
 337 evaluated under identical experimental settings.

338 **Datasets.** Our evaluation employs several standard benchmark
 339 datasets to assess model performance thoroughly. Our main
 340 evaluation is conducted on the widely-used CATH v4.2 and
 341 v4.3 datasets (Orengo et al., 1997). Following established pro-
 342 tocols, we adapt a topology-based data split to prevent overlap
 343 between the training, validation, and test sets. For CATH v4.2, the dataset is partitioned into 18,024
 344 training, 608 validation, and 1,120 test samples. Similarly, the CATH v4.3 dataset is split into 16,630
 345 training, 1,516 validation, and 1,864 test samples. To assess the zero-shot generalization capabili-
 346 ties of all models, we evaluate on two independent test sets. TS50 (Li et al., 2014) is a common
 347 benchmark containing 50 diverse protein chains. The PDB2022 dataset, curated by (Zhou et al.,
 348 2023), consists of 1,975 structures published in the Protein Data Bank (PDB) (Berman et al., 2000)
 349 between January 5, 2022, and October 26, 2022. This provides a strict, time-based split for eval-
 350 uating temporal generalization. Both datasets are entirely separate from the CATH-derived training
 351 set, minimizing data leakage and providing a robust evaluation of structural and temporal general-
 352 ization (Bai et al., 2025).
 353

4.2 PROTEIN DESIGN ON CATH

354 **Accuracies.** The performance of RadDiff on the CATH v4.2 and CATH v4.3 datasets is summarized
 355 in Table 1. We use the same evaluation protocol as prior work Zheng et al. (2023); Gao et al. (2023);
 356 Bai et al. (2025), and the results of baselines are copied from the original papers. RadDiff achieves
 357 a new state-of-the-art, outperforming all baseline methods in both perplexity and sequence recovery
 358 rate across the short, single-chain, and full dataset splits. Specifically, on the CATH v4.2 bench-
 359 mark, RadDiff achieves a perplexity of 2.46 and a sequence recovery of 67.14%. This represents a
 360 28.9% reduction in perplexity and a 10.01% relative improvement in recovery rate over the previous
 361 best method. RadDiff also demonstrates similarly strong performance on the CATH v4.3 dataset,
 362 achieving a 39.0% reduction in perplexity and a 19.0% improvement in sequence recovery over the
 363 previous best method. Overall, the experimental results show the effectiveness of RadDiff.
 364

365 **Model Size.** A key advantage of RadDiff is its parameter efficiency. While PLM-based methods
 366 like LM-Design and KW-Design also leverage external protein knowledge, they do so with substan-
 367 tial parameter overhead, requiring 46 \times and 56 \times more parameters than RadDiff, respectively. In
 368 contrast, RadDiff successfully integrates this external knowledge with a minimal increase in model
 369 size. These results show that RadDiff is a parameter-efficient way to use external database.

370 **Run Time.** The total retrieval augmentation process is computationally efficient. As detailed in
 371 Appendix B.2, RadDiff only requires a couple of minutes to compare 600 million structure pairs
 372 and obtain the alignment, so RadDiff is easily adaptable to the ever-growing protein database.

4.3 ZERO-SHOT GENERALIZATION ON PDB AND TS50

373 To assess the model’s generalization capabilities, we evaluate its zero-shot performance on two in-
 374 dependent datasets, TS50 and a new PDB dataset, using models trained on CATH v4.2 and CATH
 375 v4.3. As detailed in Table 2, the evaluation metrics includes median recovery rate and native se-
 376 quence similarity recovery (NSSR) (Löffler et al., 2017). NSSR measures the biochemical similarity
 377

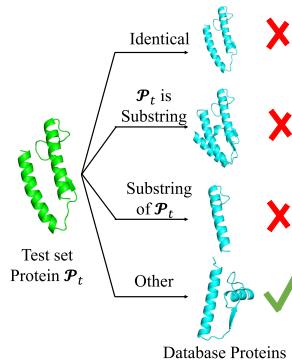


Figure 2: Illustration of strategy to prevent data leakage.

378
379
380 Table 1: Performance on CATH v4.2 and CATH v4.3 datasets.
381
382

Models	Model Size	Perplexity (↓)			Median Recovery Rate (% , ↑)		
		Short	Single-chain	Full	Short	Single-chain	Full
CATH v4.2							
StructGNN (Ingraham et al., 2019)	1.4M	8.29	8.74	6.40	29.44	28.26	35.91
GraphTrans (Ingraham et al., 2019)	1.5M	8.39	8.83	6.63	28.14	28.46	35.82
GVP (Jing et al., 2020)	2.0M	7.09	7.49	6.05	32.62	31.10	37.64
AlphaDesign (Gao et al., 2022a)	6.6M	7.32	7.63	6.30	34.16	32.66	41.31
ProteinMPNN (Dauparas et al., 2022)	1.9M	6.90	7.03	4.70	36.45	35.29	48.63
PiFold (Gao et al., 2022b)	6.6M	5.97	6.13	4.61	39.17	42.43	51.40
LM-Design (Zheng et al., 2023)	659M	6.86	6.82	4.55	37.66	38.94	53.19
KW-Design (Gao et al., 2023)	798M	5.48	5.16	3.46	44.66	45.45	60.77
GradeIf (Yi et al., 2023)	7.0M	5.65	6.46	4.40	45.84	42.73	52.63
MapDiff (Bai et al., 2025)	14.1M	3.99	4.43	3.46	52.85	50.00	61.03
RadDiff	14.2M	2.97	2.55	2.46	63.37	66.73	67.14
CATH v4.3							
GVP-GNN-Large (Hsu et al., 2022)	21M	7.68	6.12	6.17	32.60	39.40	39.20
ProteinMPNN (Dauparas et al., 2022)	1.9M	6.12	6.18	4.63	40.00	39.13	47.66
PiFold (Gao et al., 2022b)	6.6M	5.52	5.00	4.38	43.06	45.54	51.45
LM-Design (Zheng et al., 2023)	659M	6.01	5.73	4.47	44.44	45.31	53.66
KW-Design (Gao et al., 2023)	798M	5.47	5.23	3.49	43.86	45.95	60.38
GradeIf (Yi et al., 2023)	7.0M	5.30	6.05	4.58	48.21	45.94	52.24
MapDiff (Bai et al., 2025)	14.1M	3.88	3.85	3.48	55.95	54.65	60.86
RadDiff	14.2M	2.48	2.35	2.38	75.62	75.00	72.40

398
399 Table 2: Generalizability evaluation on PDB2022 and TS50 datasets. The results in brackets are
400 from the model trained with CATH v4.3.

Models	PDB2022			TS50		
	Recovery(↑)	NSSR62(↑)	NSSR90(↑)	Recovery(↑)	NSSR62(↑)	NSSR90(↑)
ProteinMPNN (Dauparas et al., 2022)	56.75 (56.65)	72.50 (72.59)	69.96 (69.95)	52.34 (51.80)	70.31 (70.13)	66.77 (66.80)
PiFold (Gao et al., 2022b)	60.63 (60.26)	75.55 (75.30)	72.96 (72.86)	58.39 (58.90)	73.55 (74.52)	70.33 (71.33)
LM-Design (Zheng et al., 2023)	66.03 (66.20)	79.55 (80.12)	77.60 (78.20)	57.62 (58.27)	73.74 (75.69)	71.22 (73.12)
GradeIf (Yi et al., 2023)	58.09 (58.35)	77.44 (77.51)	74.57 (74.97)	57.74 (59.27)	77.77 (79.11)	74.36 (76.24)
MapDiff (Bai et al., 2025)	68.03 (68.00)	84.19 (84.30)	82.13 (82.29)	68.76 (69.77)	84.10 (85.27)	81.76 (83.08)
RadDiff	76.22 (75.70)	87.38 (85.62)	86.37 (84.06)	75.64 (76.99)	88.98 (91.10)	86.91 (88.65)

408
409 between predicted and native residues using the BLOSUM (Henikoff & Henikoff, 1992) substitution
410 matrix, where a residue pair is considered a match if its BLOSUM score is positive. NSSR62 and
411 NSSR90 denote the use of the BLOSUM62 and BLOSUM90 matrices, respectively. We can find
412 that RadDiff consistently outperforms all baselines in both recovery rate and NSSR, regardless of
413 the training dataset. On the PDB dataset, models trained on CATH v4.2 and v4.3 achieve recovery
414 rate of 76.22% and 75.70%, improving upon the previous best methods by 12.04% and 11.32%.
415 On the TS50 dataset, the models achieve recovery rate of 75.64% and 76.99% respectively, repre-
416 senting 10.00% and 10.35% improvements over MapDiff. Furthermore, RadDiff obtains the highest
417 NSSR62 and NSSR90 scores, demonstrating its superior ability to not only predict the correct amino
418 acid but also to capture biochemically meaningful residue similarities. Overall, the results show that
419 RadDiff generalizes well on unseen data.

420
421 4.4 ANALYSIS OF RETRIEVAL-AUGMENTED PERFORMANCE

422
423 **Impact of Retrieval Augmentation.** To investigate how the retrieved structures will influence the
424 performance. We first quantify the retrieval coverage across the 1,120 proteins in the CATH v4.2
425 test set. As detailed in Table 4, 47.86% of proteins have at least one suitable hit (“w. RAG”),
426 while the remaining 52.14% lack matches (“w.o. RAG”). As shown in Table 3, RadDiff achieves
427 89.80% recovery on the “w. RAG” subset, which is 31% higher than the “w.o. RAG” subset. This
428 demonstrates that the retrieval-based amino acid profile serves as an effective prior for the generation
429 process. We further investigate the granularity of the retrieval guidance at the residue level. Table 4
430 also reveals that within the “w. RAG” subset, 62.40% of the aligned residues are correctly matched.
431 In contrast with the 89.80% recovery rate achieved on this subset, it demonstrates that our model
432 is not merely “copying” the retrieved amino acids. Instead, the model accurately infers the identities
433 of the remaining 37.6% of unaligned positions with very high fidelity.

432
 433 Table 3: Performance comparison on the CATH
 434 v4.2 test set classified by retrieval success.

Metric	w. RAG	w.o. RAG
Recovery Rate (%)↑	89.80	58.64
Perplexity↓	1.56	4.01

Table 4: Retrieval and alignment coverage statistics.

	Number	Ratio (%)
Proteins w/ RAG Hit	536	47.86
Proteins w/o RAG Hit	584	52.14
Total Aligned Residues	1.818M	62.40
Total Unaligned Residues	1.095M	37.60

440 Table 5: Foldability comparison using Boltz and ESMFold.

Models	Boltz2				ESMFold	
	TMscore (↑)	RMSD (↓)	pTM (↑)	pLDDT (↑)	TMscore (↑)	RMSD (↓)
ProteinMPNN (Dauparas et al., 2022)	84.95 ± 16.36	1.66 ± 0.94	82.66 ± 15.47	86.74 ± 10.73	84.34 ± 18.00	1.78 ± 1.03
PiFold (Gao et al., 2022b)	84.77 ± 15.85	1.72 ± 0.90	82.48 ± 14.33	86.08 ± 10.04	81.82 ± 18.63	1.97 ± 1.10
LM-Design (Zheng et al., 2023)	83.98 ± 16.78	1.73 ± 0.94	83.11 ± 14.67	87.16 ± 9.69	80.87 ± 19.33	1.98 ± 1.13
GradeIf (Yi et al., 2023)	78.55 ± 17.46	2.27 ± 0.97	74.43 ± 15.04	78.50 ± 11.50	73.79 ± 20.94	2.58 ± 1.26
MapDiff (Bai et al., 2025)	84.71 ± 14.94	1.78 ± 0.83	82.32 ± 12.72	86.04 ± 8.86	82.03 ± 17.00	2.01 ± 1.00
RadDiff	87.69 ± 13.06	1.55 ± 0.76	85.58 ± 11.32	89.70 ± 6.78	85.43 ± 14.74	1.79 ± 0.90

449 **Foldability of RAG-enabled Designs.** Beyond recovery rate, a critical measure of success for the
 450 design methods is the *in silico* foldability of the generated sequences. To assess this, we employ
 451 two cutting-edge structure prediction models, MSA-based method Boltz2 (Passaro et al., 2025) and
 452 MSA-free method ESMFold (Lin et al., 2022), to predict the tertiary structures of sequences. Al-
 453 phaFold2 is not used due to its prohibitively expensive local MSA search process. The results in
 454 Table 5 focus specifically on the “w. RAG” subset of the test set, allowing for a direct compari-
 455 son of design quality when our method is successfully guided by retrieved proteins. We compare
 456 the re-folded structures to the ground-truth crystal structures using a suite of metrics, including
 457 predicted TM-score (pTM), predicted aligned error (PAE), and predicted local distance difference
 458 test (pLDDT) from Boltz2, as well as the TM-score and RMSD from direct structural alignment.
 459 Across all metrics, RadDiff yields higher confidence scores and structural similarity to the native
 460 fold except the RMSD on ESMFold predicted structures. The results demonstrate that RadDiff
 461 produces designs that are highly likely to fold to the intended structure.

462 **Influence of Database Size.** To investigate how the size
 463 of the external database will influence the model per-
 464 formance, we conduct an experiment where we vary the size
 465 of the external database and measure the impact on both
 466 the retrieval hit numbers and the sequence recovery rate.
 467 As shown in Figure 3, there is a positive correlation be-
 468 tween the database size and the number of test set queries
 469 for which similar structures are found. We can find that
 470 a larger database provides a greater opportunity to find
 471 similar structures, and this increase in retrieval cover-
 472 age translates directly to improved model performance.
 473 The overall recovery rate for the entire test set rises with
 474 the database enlarged from 10,000 to 500,000, increasing
 475 from approximately 59% to over 67%. The result shows
 476 the scalability of RadDiff and the potential of increasing
 477 the database size to improve the performance.

478 5 CONCLUSION

480 In this paper, we have introduced RadDiff, a novel retrieval-augmented denoising diffusion method
 481 for protein inverse folding. Experimental results on the CATH, PDB, and TS50 datasets show that
 482 RadDiff consistently outperforms existing methods, improving sequence recovery rate by up to 19%.
 483 Experimental results also demonstrate that RadDiff generates highly foldable sequences and scales
 484 effectively with database size.

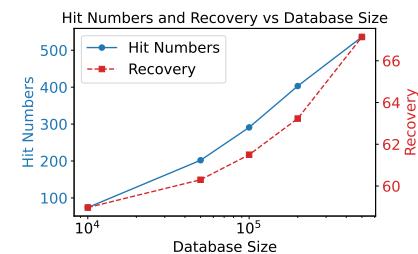


Figure 3: The relationship between the size of external database, hit numbers, and sequence recovery.

486 REFERENCES
487

488 Deniz Akpinaroglu, Kosuke Seki, Amy Guo, Eleanor Zhu, Mark JS Kelly, and Tanja Kortemme.
489 Structure-conditioned masked language models for protein sequence design generalize beyond
490 the native sequence space. *bioRxiv*, 2023.

491 Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara, Frank P DiMaio,
492 Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K Mulligan, Kalli Kappel,
493 et al. The rosetta all-atom energy function for macromolecular modeling and design. *Journal of
494 Chemical Theory and Computation*, 13(6):3031–3048, 2017.

495 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
496 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing
497 Systems*, 2021.

498 Peizhen Bai, Filip Miljković, Xianyuan Liu, Leonardo De Maria, Rebecca Croasdale-Wood, Owen
499 Rackham, and Haiping Lu. Mask-prior-guided denoising diffusion improves inverse protein fold-
500 ing. *Nature Machine Intelligence*, pp. 1–13, 2025.

501 Amos Bairoch and Rolf Apweiler. The swiss-prot protein sequence data bank and its supplement
502 trembl. *Nucleic Acids Research*, 25(1):31–36, 1997.

503 Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
504 Ilya N Shindyalov, and Philip E Bourne. The protein data bank. *Nucleic Acids Research*, 28(1):
505 235–242, 2000.

506 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
507 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-
508 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.

509 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
510 bidirectional transformers for language understanding. In *Association for Computational Linguis-
511 tics*, 2019.

512 Tianfan Fu and Jimeng Sun. Sipf: Sampling method for inverse protein folding. In *Proceedings
513 of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 378–388,
514 2022.

515 Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi
516 Jaakkola, and Andreas Krause. Independent se (3)-equivariant models for end-to-end rigid protein
517 docking. *arXiv preprint arXiv:2111.07786*, 2021.

518 Zhangyang Gao, Cheng Tan, and Stan Z Li. Alphadesign: A graph protein design method and
519 benchmark on alphafolddb. *arXiv preprint arXiv:2202.01079*, 2022a.

520 Zhangyang Gao, Cheng Tan, and Stan Z Li. Pifold: Toward effective and efficient protein inverse
521 folding. In *International Conference on Learning Representations*, 2022b.

522 Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, and Stan Z Li. Kw-
523 design: Pushing the limit of protein design via knowledge refinement. In *International Conference
524 on Learning Representations*, 2023.

525 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
526 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
527 of evolution with a language model. *Science*, 387(6736):850–858, 2025.

528 Steven Henikoff and Jorja G Henikoff. Amino acid substitution matrices from protein blocks. *Pro-
529 ceedings of the National Academy of Sciences*, 89(22):10915–10919, 1992.

530 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexan-
531 der Rives. Learning inverse folding from millions of predicted structures. In *International Con-
532 ference on Machine Learning*, 2022.

540 Zhilin Huang, Ling Yang, Xiangxin Zhou, Chujun Qin, Yijie Yu, Xiawu Zheng, Zikun Zhou, Wentao
 541 Zhang, Yu Wang, and Wenming Yang. Interaction-based retrieval-augmented diffusion models
 542 for protein-specific 3d molecule generation. In *International Conference on Machine Learning*,
 543 2024.

544 John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
 545 based protein design. *Advances in Neural Information Processing Systems*, 2019.

546 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron Dror.
 547 Learning from protein structure with geometric vector perceptrons. In *International Conference
 548 on Learning Representations*, 2020.

549 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 550 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 551 protein structure prediction with alphafold. *Nature*, 596(7873):583–589, 2021.

552 Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern recog-
 553 nition of hydrogen-bonded and geometrical features. *Biopolymers: Original Research on
 554 Biomolecules*, 22(12):2577–2637, 1983.

555 Julia Koehler Leman, Paweł Szczerbiak, P Douglas Renfrew, Vladimir Gligorijevic, Daniel Beren-
 556 berg, Tommi Vatanen, Bryn C Taylor, Chris Chandler, Stefan Janssen, Andras Pataki, et al.
 557 Sequence-structure-function relationships in the microbial protein universe. *Nature Communi-
 558 cations*, 14(1):2351, 2023.

559 Zhixiu Li, Yuedong Yang, Eshel Faraggi, Jian Zhan, and Yaoqi Zhou. Direct prediction of profiles
 560 of sequences compatible with a protein structure by neural networks with fragment-based local
 561 and energy-based nonlocal profiles. *Proteins: Structure, Function, and Bioinformatics*, 82(10):
 562 2565–2573, 2014.

563 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos San-
 564 tos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein
 565 sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022.

566 Thomas Litfin, Yaoqi Zhou, and Mark von Itzstein. Ultra-fast and highly sensitive protein structure
 567 alignment with segment-level representations and block-sparse optimization. *bioRxiv*, 2025.

568 Patrick Löffler, Samuel Schmitz, Enrico Hupfeld, Reinhard Sterner, and Rainer Merkl. Rosetta:
 569 Msf: a modular framework for multi-state computational protein design. *PLoS Computational
 570 Biology*, 13(6):e1005600, 2017.

571 Sazan Mahbub, Souvik Kundu, and Eric P Xing. Prism: Enhancing protein inverse folding through
 572 fine-grained retrieval on structure-sequence multimodal representations. In *ICLR 2025 Workshop
 573 on Machine Learning Multiscale Processes*, 2025.

574 Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and Janet M
 575 Thornton. Cath—a hierarchic classification of protein domain structures. *Structure*, 5(8):1093–
 576 1109, 1997.

577 Saro Passaro, Gabriele Corso, Jeremy Wohlwend, Mateo Reveiz, Stephan Thaler, Vignesh Ram
 578 Somnath, Noah Getz, Tally Portnoi, Julien Roy, Hannes Stark, David Kwabi-Addo, Dominique
 579 Beaini, Tommi Jaakkola, and Regina Barzilay. Boltz-2: Towards accurate and efficient binding
 580 affinity prediction. *bioRxiv*, 2025.

581 Yifei Qi and John ZH Zhang. Densecpd: improving the accuracy of neural-network-based compu-
 582 tational protein sequence design with densenet. *Journal of Chemical Information and Modeling*,
 583 60(3):1245–1252, 2020.

584 Jiezhong Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li, Xiujuan
 585 Li, Bin Cui, et al. Instructplm: Aligning protein language models to follow protein structure
 586 instructions. *bioRxiv*, pp. 2024–04, 2024.

587 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
 588 works. In *International Conference on Machine Learning*, 2021.

594 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 595 *preprint arXiv:2010.02502*, 2020.

596

597 Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
 598 the analysis of massive data sets. *Nature Biotechnology*, 35(11):1026–1028, 2017.

599

600 Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, and Stan Z Li. Global-context aware generative
 601 protein design. In *International Conference on Acoustics, Speech and Signal Processing*, 2023.

602

603 Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Cameron LM Gilchrist,
 604 Johannes Söding, and Martin Steinegger. Foldseek: fast and accurate protein structure search.
 605 *biorxiv*, 2022.

606

607 Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
 608 Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. AlphaFold protein
 609 structure database: massively expanding the structural coverage of protein-sequence space with
 610 high-accuracy models. *Nucleic Acids Research*, 50(D1):D439–D444, 2022.

611

612 Jingxue Wang, Huali Cao, John ZH Zhang, and Yifei Qi. Computational protein design with deep
 613 learning neural networks. *Scientific Reports*, 8(1):1–9, 2018.

614

615 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
 616 language models are versatile protein learners. *arXiv preprint arXiv:2402.18567*, 2024.

617

618 Jinrui Xu and Yang Zhang. How significant is a protein structure similarity with tm-score= 0.5?
 619 *Bioinformatics*, 26(7):889–895, 2010.

620

621 Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising diffusion for
 622 inverse protein folding. *Advances in Neural Information Processing Systems*, 2023.

623

624 Chengxin Zhang, Morgan Shine, Anna Marie Pyle, and Yang Zhang. Us-align: universal structure
 625 alignments of proteins, nucleic acids, and macromolecular complexes. *Nature Methods*, 19(9):
 626 1109–1115, 2022.

627

628 Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
 629 template quality. *Proteins: Structure, Function, and Bioinformatics*, 57(4):702–710, 2004.

630

631 Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
 632 tm-score. *Nucleic Acids Research*, 33(7):2302–2309, 2005.

633

634

635 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
 636 language models are protein designers. In *International Conference on Machine Learning*, 2023.

637

638 Xinyi Zhou, Guangyong Chen, Junjie Ye, Ercheng Wang, Jun Zhang, Cong Mao, Zhanwei Li, Jianye
 639 Hao, Xingxu Huang, Jin Tang, et al. Prorefiner: an entropy-based refining strategy for inverse
 640 protein folding with global graph attention. *Nature Communications*, 14(1):7434, 2023.

641

642

643

644

645

646

647

648 A MORE METHOD DETAILS
649650 A.1 DETAIL OF GRAPH CONSTRUCTION
651

652 We will explain the detailed process of obtaining graph features of \mathbf{H} , \mathbf{X}^{pos} , \mathbf{A} . The node feature
653 \mathbf{H} contains several properties that describe the residue and its local environment: the residue type,
654 secondary structure, dihedral angles, solvent-accessible surface area (SASA), crystallographic B-
655 factor, and protein surface features (Ganea et al., 2021; Yi et al., 2023; Bai et al., 2025). The
656 residue type is a one-hot encoding of the amino acid’s type. The secondary structure is a one-hot
657 encoding of the secondary structure element (e.g., helix, sheet, coil) assigned by DSSP (Kabsch &
658 Sander, 1983). The dihedral feature is calculated as $\{\sin, \cos\} \circ \{\phi, \psi\}$. The SASA is a scalar
659 value indicating the residue’s exposure to the solvent. The crystallographic B-factor is a scalar value
660 indicating the residue’s mobility. The surface feature is defined as:

$$661 \rho_i(\mathbf{x}_i; \lambda) = \frac{\left\| \sum_{j \in \mathcal{N}_i} w_{i,j,\lambda} (\mathbf{x}_i^{pos} - \mathbf{x}_j^{pos}) \right\|}{\sum_{j \in \mathcal{N}_i} w_{i,j,\lambda} \left\| \mathbf{x}_i^{pos} - \mathbf{x}_j^{pos} \right\|}, \quad \text{where } w_{i,j,\lambda} = \frac{\exp(-\|\mathbf{x}_i^{pos} - \mathbf{x}_j^{pos}\|^2 / \lambda)}{\sum_{j \in \mathcal{N}_i} \exp(-\|\mathbf{x}_i^{pos} - \mathbf{x}_j^{pos}\|^2 / \lambda)}, \quad (10)$$

662 where \mathcal{N}_i is the set of neighboring nodes, and this calculation is performed for multiple scales with
663 $\lambda \in \{1, 2, 5, 10, 30\}$.

664 The \mathbf{X}^{pos} is the coordinates of C_α atoms for each residue.

665 The Edge feature \mathbf{A} contains the relative spatial distance, local spatial positions and relative sequen-
666 tial positions (Bai et al., 2025). The relative spatial distance feature encode the distance using Radial
667 Basis Function (RBF). An additional binary contact signal is included, which is set to 1 if the spatial
668 distance between the two residues is less than 8 Å, and 0 otherwise. The local spatial position de-
669 rived from a local coordinate system constructed at each residue and represents the relative positions
670 and orientations of the backbone atoms. The relative sequential positions encodes the separation of
671 the two residues along the primary sequence. It is a one-hot encoding based on the difference in their
672 sequential indices. The above three separate features are concatenated into the final edge features \mathbf{A} .

673 A.2 DETAIL OF MASK SEQUENCE DESIGNER
674

675 The purpose of the masked sequence designer is to learn the conditional probability distribution of
676 amino acids given their structural and sequential context. This allows it to refine low-confidence pre-
677 dictions made by the main denoising network during inference. Following the pre-training strategy
678 of MapDiff, we use a masked language modeling objective. For each training sequence, a portion of
679 the amino acid (AA) residues is randomly selected for corruption: 80% are replaced with a special
680 [MASK] token, 10% are replaced with a random AA, and the remaining 10% are left unchanged. To
681 prevent information leakage from external sources, the designer is pre-trained on the same CATH
682 v4.2/v4.3 training sets used for the main diffusion model.

683 We employ an Invariant Point Attention (IPA) network as the architecture for the masked se-
684 quence designer. IPA is a geometry-aware attention mechanism, originally developed for Al-
685 phaFold2 (Jumper et al., 2021), designed to effectively fuse residue representations with their spatial
686 relationships in 3D space. To incorporate the protein’s 3D geometry, the IPA network operates on
687 three key inputs derived from the query structure \mathcal{X} and the masked sequence: (1) A feature matrix
688 $\mathbf{R} \in \mathbb{R}^{n \times d_s}$, where n is the sequence length. for each residue i , the feature vector \mathbf{R}_i is derived
689 from its AA type from the masked sequence and a positional encoding. (2) A feature tensor
690 $\mathbf{Z} \in \mathbb{R}^{n \times n \times d_z}$ that encodes relational information between all pairs of residues. The feature \mathbf{Z}_{ij}
691 include the relative positions of residues i and j along the sequence and their spatial distance in 3D.
692 (3) A set of rigid coordinate frames $\mathcal{T} = \{\mathbf{T}_i\}_{i=1}^n$, where each from $\mathbf{T}_i = (\mathbf{Rot}_i \in \mathbb{R}^{3 \times 3}, \mathbf{t}_i \in \mathbb{R}^3)$
693 consists of a rotation matrix and a translation vector. These frames are constructed from the back-
694 bone atom coordinates using the Gram-Schmidt process. The local frames ensure invariance of IPA
695 to global Euclidean transformations. The input $(\mathbf{R}, \mathbf{Z}, \mathcal{T})$ are processed through a stack of L IPA
696 layers:

$$697 \mathbf{R}^{l+1}, \mathbf{Z}^{l+1} = \text{IPA}(\mathbf{R}^l, \mathbf{Z}^l, \mathcal{T}). \quad (11)$$

698 After the final layer, the output residue representation \mathbf{R}_i^L for each position i is projected through
699 a linear layer to produce logits, which are then converted into a probability distribution over the 20

702 amino acids via a softmax function:
 703

$$704 \quad \mathbf{z}_i^m = \text{Linear}(\mathbf{R}_i^L) \quad (12)$$

$$705 \quad \mathbf{p}_i^m = \text{softmax}(\mathbf{z}_i^m), \quad (13)$$

$$706 \quad \text{entropy}^m(i) = - \sum_j \mathbf{p}_{ij}^m \log(\mathbf{p}_{ij}^m). \quad (14)$$

709 During inference, the final predicted probability is refined as:
 710

$$711 \quad \mathbf{p}_i^f = \text{softmax}\left(\frac{\exp(-\text{ent}_i)}{\exp(-\text{ent}_i) + \exp(-\text{ent}_i^m)} \mathbf{z}_i + \frac{\exp(-\text{ent}_i^m)}{\exp(-\text{ent}_i) + \exp(-\text{ent}_i^m)} \mathbf{z}_i^m\right), \quad (15)$$

713 where \mathbf{z}_i and ent_i is defined in equation 8 and 9.
 714

715 A.3 DETAIL OF DDIM

717 We use denoising diffusion implicit model (DDIM) (Song et al., 2020) to accelerate the denoising
 718 process. DDIM constructs a non-Markovian diffusion processes so that the sampling in reverse
 719 process can be faster. Follow the settings of Yi et al. (2023), the multi-step generative process is
 720 defined as:
 721

$$722 \quad p_\theta(\mathbf{x}_{t-k}^i | \mathbf{x}_t^i) \propto \left(\sum_{\hat{\mathbf{x}}_0^i} q(\mathbf{x}_{t-k}^i | \mathbf{x}_t^i, \hat{\mathbf{x}}_0^i) \hat{p}_\theta(\hat{\mathbf{x}}_0^i | \mathbf{x}_t^i)\right)^T, \quad (16)$$

723 where k is the number of skipping steps and T controls whether it is deterministic or stochastic. The
 724 posterior distribution is:
 725

$$726 \quad q(\mathbf{x}_{t-k}^i | \mathbf{x}_t^i, \hat{\mathbf{x}}_0^i) = \text{Cat}\left(\mathbf{x}_{t-k}^i; p = \frac{\mathbf{x}_t^i \mathbf{Q}_t^\top \cdots \mathbf{Q}_{t-k}^\top \odot \hat{\mathbf{x}}_0^i \bar{\mathbf{Q}}_{t-k}}{\hat{\mathbf{x}}_0^i \bar{\mathbf{Q}}_t \mathbf{x}_t^i}\right), \quad (17)$$

729 B MORE EXPERIMENTAL DETAILS

730 B.1 IMPLEMENTATION DETAILS

733 The denoising network’s backbone consists of EGNN with 6 layers, each with a hidden dimension
 734 of 128. the masked sequence designer is composed of 6 IPA layers, also with a hidden dimension
 735 of 128. We employ the Adam optimizer with an initial learning rate of 5×10^{-4} , managed by a
 736 one-cycle learning rate scheduler. A batch size of 8 is used for all training stages. Following the
 737 protocol of Bai et al. (2025), the MSD module is pre-trained for 200 epochs. The main graph-
 738 based denoising model is trained for 100 epochs. For the RAG process, FoldSeek (van Kempen
 739 et al., 2022) of version 9.427df8a is installed. The database proteins is first encoded using the
 740 foldseek createdb command, and the initial rapid search is performed with the foldseek
 741 easy-search command. For the *in silico* foldability analysis, we use Boltz v2.03 (Passaro et al.,
 742 2025) to predict the 3D structures of the generated sequences. The MSAs required as input for Boltz
 743 are generated using the online MSA server.
 744

745 B.2 RUN TIME EVALUATION

746 **Retrieval Time** A critical factor for the practical application of RadDiff is the computational effi-
 747 ciency of its retrieval process. To quantify this, we calculate the runtime of our hierarchical search
 748 strategy for all 1,120 query proteins in the CATH v4.2 test set against the Swiss-Prot database,
 749 which contains 542,380 structures. This corresponds to a total search space of over 600 million
 750 potential pairwise comparisons. The results, detailed in Table 6, demonstrate the high efficiency
 751 of our approach. The entire retrieval process for all 1,120 queries completed in just 306.5 seconds,
 752 corresponding to an average of only 0.27 seconds per query. The initial rapid filtering with FoldSeek
 753 required only 54.0 seconds in total (an average of 0.04s per query) to drastically narrow down the
 754 search space from the entire database. Subsequently, the more computationally intensive US-align
 755 step, which provides the high-quality alignments essential for our method, was applied only to this
 pre-filtered small set of candidates. The results demonstrates that our RAG approach is not only
 effective but also computationally practical.

756
757
758 Table 6: Retrieval Time
759
760
761

	FoldSeek	US-align	Total
Time	53.98s	252.52s	306.5s
Time per Query	0.04s	0.23s	0.27s

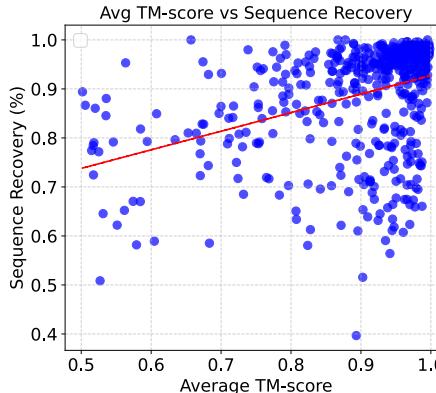
762
763 **Protein Designing Time** We also calculate the protein designing time of RadDiff, which cost
764 around 13.45 seconds per sample, which is also practical in real-world applications.
765

766 B.3 ABLATION STUDY
767

768 To systematically evaluate the contributions of the key components, We conduct ablation study on
769 the RAG and the MSD module. We evaluate three distinct model configurations on the CATH v4.2
770 test set: (1) the full RadDiff model with both modules enabled, (2) a variant with only the RAG
771 module, and (3) a variant with only the MSD module. The results is shown is Table 7. We can find
772 that the RAG and MSD module both contribute to the final results. Specifically, the RAG module
773 contribute to a sequence recovery improvement of 6.64%. and the MSD module also improve the
774 sequence recovery by 4.13%. The ablation study demonstrate the effectiveness of our RAG and
775 MSD module.

776
777 Table 7: Ablation study
778
779

MSD	RAG	Perplexity↓	Sequence Recovery(%)↑
✓	✗	3.27	61.50
✗	✓	3.39	63.03
✓	✓	2.46	67.14



800 Figure 4: The relationship between the average TM-score of test proteins and their retrieved proteins,
801 and sequence recovery.

802
803
804 **Influence of Retrieved Structural Similarity** To understand how the quality of the retrieved set
805 influences generation performance, we analyzed the relationship between structural similarity and
806 sequence recovery. For each test sample in the RAG-enabled subset, we calculated the average TM-
807 score across all of its retrieved structures and show this value against the sequence recovery. The
808 results, shown in Figure 4, reveal two important insights. First, there is a positive trend, quantified
809 by a Pearson correlation coefficient of 0.374. This indicates that, as expected, retrieving more struc-
turally similar proteins generally leads to higher sequence recovery. The results also highlights the

810 robustness of RadDiff. Even when the average structural similarity of the retrieved set is modest
811 (e.g., TM-score between 0.5 and 0.7), RadDiff consistently generates sequences with high recovery
812 rates, often exceeding 70-80%.

813

814

C USAGE OF LANGUAGE MODELS

815

816

We utilized a large language model (LLM) to aid in the preparation of this manuscript. Its use was
817 limited to editorial tasks, including proofreading for typographical errors, correcting grammar, and
818 improving the clarity and readability of the text.

819

820

821

D REPRODUCIBILITY STATEMENT

822

We have taken several steps to ensure the reproducibility of our work. All datasets used in our ex-
823 periments (CATH, PDB, and TS50) are publicly available, and we provide detailed descriptions of
824 dataset splits and preprocessing procedures. We have provided part of the code. The full imple-
825 mentation of RadDiff, including the hierarchical search, residue-level alignment, generating amino
826 acid profile, and denoising modules, will be released in an open-source repository upon publica-
827 tion. We also include training details, hyperparameter settings, and evaluation protocols to facilitate
828 replication.

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863