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Extended Abstract

The inherent trade-off in on-line learning is between exploration and exploita-
tion. A good balance between these two (conflicting) goals can achieve a bet-
ter long-term performance. Can we define an optimal balance? We propose
to study this question through a backward-adaptive lossy compression system,
which exhibits a “natural” trade-off between exploration and exploitation.

From a rate-distortion perspective, a universal lossy compression system
needs to learn the rate-distortion achieving distribution, Q∗, in order to con-
struct an optimal codebook. This is unlike the lossless case, where strings of
the source itself have the “right” distribution and can serve as a basis for the
code dictionary (as done, e.g., in Tunstall or Lempel Ziv coding [23]). When
the source distribution is known, the system designer can use the well known
Arimoto-Blahut algorithm to compute Q∗ [1, 4]. Less known is the fact that
even if the source distribution is unknown, a sequential scheme can learn Q∗ on
the fly, while compressing consecutive source vectors.

Such an asymptotically optimal sequential coding scheme, called Natural
Type Selection (NTS), was described in [22]. It is based on the observation that
the empirical distribution of the d-matching codeword is atypical with respect to,
and better than, the codebook generating distribution. Hence, this empirical
distribution provides information on how to adjust the codebook generating
distribution in the direction of Q∗.

Specifically, NTS-based encoding alternates between two phases:

1. Compression phase - where the encoder finds the index of the first d-
matching codeword and transmits it to the decoder; and

2. Learning phase - where the encoder and decoder estimate the type (or
some other representative parameter) of the d-matching codeword.

After these two phases, the codebook is updated (identically) by the encoder
and the decoder. As it turns out, [22], in the limit of a large word length L, the
compression and learning phases above stochastically simulate an iteration of

1



the Blahut algorithm for RDF computation. Hence, after many such iterations
NTS converges to the RDF; see Arimoto [1] and Blahut [4].1

The NTS mechanism was extended and investigated from various informa-
tion theoretic perspectives and settings, [13, 8, 9, 17, 16, 14, 18]. In this extended
abstract we propose to consider its implications within the context of on-line
learning and reinforcement learning, e.g. [2]. This is a preliminary study, and we
do not formally establish new results. Rather, we propose a fresh look that we
believe may be of some interest to researchers in the intersection of compression
and learning.

Why we need to explore?

Exploration is not intrinsically inherent to universal compression, but rather a
consequence of a backward-adaptive model of such system. Let us clarify the
difference between the two modes of adaptation: forward and backward. In
forward (“batch” / “two-part”) adaptation, e.g., dynamic Huffman or CELP
speech coding, the encoder learns the source statistics, computes the optimal
encoding parameters, and sends them to the decoder as a header (“side informa-
tion”), before it begins to encode the source data. In backward (“sequential”)
adaptation, e.g., Lempel-Ziv or ADPCM, both the encoder and decoder learn
the parameters from past reconstructed samples, so there is no explicit trans-
mission of side information. See [12, 10, 11]. While in lossless compression the
two modes of operation are essentially equivalent (e.g. [20]), in the lossy case
they are fundamentally different: forward adaptation learns from the clean ver-
sion of the source, while backward adaptation learns from the noisy (quantized)
version. Furthermore, the difference between the two grows in significance with
increase in the prescribed distortion level. In information-theoretic terms, as
D increases from 0 to Dmax, the reconstruction distribution Q∗, which achieves
the rate-distortion bound, deviates from the source distribution P , progressively
concentrates on a smaller subset of the reconstruction alphabet, and eventually
at D = Dmax collapses to a single probability mass point at the “centroid”
letter.

We argue that for a memoryless source and a given (mismatched) recon-
struction codebook, the type Q of the reconstruction sequence is a sufficient
statistic for learning Q∗ in a backward mode. Furthermore, at large distortion
(D close to Dmax), Q carries almost no information about the source distribu-
tion P itself, and therefore Q∗ cannot be computed directly from Q. Thus, a
type’s goodness (for compression) can only be established when a codeword of
this type d-matches a source word. We thus conclude that in backward-adaptive
lossy compression at high distortion, explicit exploration of types is necessary
in order to find Q∗.

1This description amounts to a fixed-distortion variant of Blahut [6, 7]. Replacing d-match
by a weighted distortion-code-length sum amounts to the usual “fixed-slope” version of the
Blahut algorithm [4].
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Rates of convergence

To study the efficiency of NTS, we first consider the speed of convergence of
several related learning algorithms.

The convergence of the Blahut algorithm to the RDF is of the order of
O(1/N) after N iterations. This was shown in ([5, 7]) by writing the sum of the
gaps of the intermediate rates R(P,QN , D) from R(P,D) as a telescopic sum
that is bounded by a finite constant = the divergence between the optimum
output distribution Q∗ and the initial output distribution Q0. Thus, the gaps
must decrease at least as fast as O(1/N). A similar decrease is believed to hold
for iterative design of K-level quantizers, via the Lloyd-Max algorithm (alter-
nations between centroids computation and thresholds computation). While
faster-than-Blahut computation of R(D) is possible at small distortions due to
the known structure of the RDF (a Lagrangian solution that assumes that all
the output alphabet letters have positive probability), at high distortion most
letters are inactive, so the situation is similar to computation of the optmal
2-level quantizer.

As for the effect of the word length, universal compression schemes, lossy
and lossless, are known to exhibit redundancy on the order of O(log(L)/L). In
the lossy case, this is due to finite vector-quantization loss (“granular gain”), as
well as to the cost of universality (statistical learning).

Exploration strategies

The two-phase compression-learning mechanism of NTS can be viewed as an
exploitation step (compression), followed by an exploration step (learning). The
amount of exploration is governed by the frequency of atypical codewords in the
random codebook. In a codebook generated i.i.d, this frequency is known to
decay exponentially with the divergence between the codeword type and the
codebook generating distribution. This divergence also governs the steps of the
corresponding Blahut algorithm, and dictates its rate of convergence.

Is this “natural” trade-off between exploration and exploitation optimal?
In fact, even if the source is memoryless, a codebook distribution that is not

i.i.d. can emphasize rare types and accelerate the movement towards Q∗. A sim-
ple example is a uniform weighting of all type classes [6, 21]. More generally, to
obtain a richer codebook distribution, one may use a mixture over a parametric
family of distributions, as done in the universal lossless case, e.g., in Minimum
Description Length [3] or Context-Tree Weighting [19, 20, 15].

This view suggests a tradeoff between “breadth and depth”, i.e., wide ex-
ploration versus narrow exploration: a richer universal mixture implies higher
probability of rare types and reduced probability of typical codewords. This
may be disadvantageous as we get closer to Q∗, due to the inherent cost in
coding rate (especially in the non-asymptotic regime where the word length L
is moderate). Hence, there should be an optimal schedule for narrowing the
richness of the universal mixture as the NTS gets closer to Q∗.
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