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ABSTRACT

Explaining deep learning models is of vital importance for understanding artificial
intelligence systems, improving safety, and evaluating fairness. To better under-
stand and control the CNN model, many methods for transparency-interpretability
have been proposed. However, most of these works are less intuitive for human
understanding and have insufficient human control over the CNN model. We pro-
pose a novel method, Transparent and Controllable Network Learning (TCNL),
to overcome such challenges. Towards the goal of improving transparency-
interpretability, in TCNL, we define some concepts for specific classification tasks
through scientific human-intuition study and incorporate concept information into
the CNN model. In TCNL, the shallow feature extractor gets preliminary features
first. Then several concept feature extractors are built right after the shallow fea-
ture extractor to learn high-dimensional concept representations. The concept fea-
ture extractor is encouraged to encode information related to the predefined con-
cepts. We also build the concept mapper to visualize features extracted by the con-
cept extractor in a human-intuitive way. TCNL provides a generalizable approach
to transparency-interpretability. Researchers can define concepts corresponding
to certain classification tasks and encourage the model to encode specific concept
information, which to a certain extent improves transparency-interpretability and
the controllability of the CNN model. The datasets (with concept sets) for our
experiments will also be released.

1 INTRODUCTION

1.1 BACKGROUND

Recently, the convolutional neural networks (CNN) (LeCun et al., 1998; Krizhevsky et al., 2012;
He et al., 2016; Szegedy et al., 2016), have achieved excellent performance in various computer
vision tasks such as image classification, object detection, and semantic segmentation. Besides the
superior performance, the interpretability of the model plays a critical role in safety, fairness, and
scientific research. Towards the goal of building the trusty artificial intelligence system, more and
more scholars devote themselves to the study of the interpretability of the CNN.

Nowadays, there are two main types of algorithms. One is designed to improve the transparency
of the CNN by adjusting the structure of the model, named as the transparency-interpretability
method (Lipton, 2018). The other aims at giving a reasonable explanation for the decision of the
CNN, named as the post-hoc interpretability method (Lipton, 2018).

Although some progress (Došilović et al., 2018) has been made in the area of the interpretability of
the CNN, some issues remain unsolved. Many transparency-interpretability works focus on improv-
ing the interpretability of the CNN by changing the structure of the model (Barbiero et al., 2022;
Garau et al., 2022; Liang et al., 2020; Wang et al., 2021). However, most of these works interpret
the CNN model in a way that is less intuitive for human understanding (Garau et al., 2022; Wang
et al., 2021). For post-hoc interpretability methods that give visual explanations of the CNN, many
methods (Zhou et al., 2016a; Selvaraju et al., 2017; Wang et al., 2020; Lee et al., 2021) do the visu-
alization by operating feature maps from a specific convolution layer. These methods try to explain
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Figure 1: In TCNL, we first define some human-intuition concepts for specific classification tasks
(this figure takes mammal classification task as an example). Then, images are fed into the shallow
feature extractors to compute shallow features. From these shallow features, the concept extractor
encodes specific concept-related information. The features output by all the concept extractors are
concatenated and fed into the classifier for classification. At the same time, the concept mapper can
map concept features to concept instances. The discriminator is used to classify concept instances
mapped from concept features and original concept instances, which aims at improving the quality
of concept learning.

decisions of the model in a linear way. Post-hoc interpretability methods work on an already trained
model, therefore they can not change the fact that the CNN still lacks interpretability.

1.2 OUR WORK

In order to ameliorate the issues mentioned above, we propose Transparent and Controllable Net-
work Learning (TCNL), a novel approach to improve the transparency-interpretability and control-
lability of the CNN model. In TCNL, for specific tasks, we first define concepts corresponding to
human understanding. Then we guide the model to learn disentangled knowledge from predefined
concepts. Finally, the model accomplishes the classification task using features related to predefined
concepts.

TCNL can be applied to several existing models such as VGG, ResNet, and AlexNet (Simonyan
& Zisserman, 2015; Krizhevsky et al., 2012; He et al., 2016). TCNL improves interpretability
and controllability by defining and learning concepts in accordance with human understanding for
specific tasks. Meanwhile, TCNL is able to visualize concept information extracted by the model
through the concept mapper. We specifically design an experiment to prove that the high-quality
concept visualization stems from the successful concept learning process rather than a strong concept
mapper. We will release all the concept instance sets and datasets in our experiments to support
future scientific research on transparency-interpretability.

2 RELATED WORK

Interpretable Models. Many studies focusing on transparency-interpretability have been carried
out. Some works try to optimize the representation learning of neurons. Zhang et al. (2018) try
to train each filter in the high convolution layer to represent an object or a part. Based on Zhang
et al. (2018), Shen et al. (2021) divide neurons into different groups in an unsupervised way to
learn disentangled representations. However, connections between class labels and neurons are still
entangled. To deal with this issue, Liang et al. (2020) try to align each filter in the last convolution
layer with a specific class during the learning process. Some approaches also try to improve the
interpretability through structure adjustment. Garau et al. (2022) implement a neural network with
a novel structure according to the visual cortex structure to represent the part-whole hierarchies
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and conceptual-semantic relationships. Barbiero et al. (2022) propose an Entropy-based Network
structure, trying to explain the model with First-Order Logic.

Semantic Concepts. For semantic concepts, some methods pay attention to the concept found by
the model during feature extraction. Zhou et al. (2015) find that neurons in the deep layers attempt
to detect a certain pattern or concept in the input image and they name these neurons as detectors.
To quantitatively analyze the relationship between neurons and concepts, Bau et al. (2017) propose
Network Dissection. Also, there are some methods focusing on finding important concepts for
the prediction of the model. Kim et al. (2018) propose TCAV, a novel framework to evaluate the
importance of pre-set concepts to the decision of the model. However, TCAV requires additional
training using pre-set concepts. To fill this gap, Ghorbani et al. (2019) propose the ACE algorithm
to find important concepts for the decision of the model automatically leveraging the philosophy of
unsupervised methods.

Visualization. Many methods have been proposed to visualize the decision of the CNN, knowledge
learnt by the model, or the structure of the CNN. To explain the decision of the model, Zhou et al.
(2016a) first propose the CAM algorithm to find and visualize the important regions of the input
images that support the decision of the CNN. Along with the idea of the CAM algorithm, many
CAM-based methods (Selvaraju et al., 2017; Wang et al., 2020; Lee et al., 2021; Jalwana et al.,
2021) have been proposed for better visualization and localization. For representation visualization,
Dosovitskiy & Brox (2016) propose the Inverting Network that can invert features to images. To vi-
sualize representations for neurons, Bau et al. (2017) propose a method based on image perturbation
to visualize the Receptive Field and Activation Pattern of a single neuron.

3 METHOD

Our TCNL tries to make the process of feature extraction more understandable. In our TCNL, we
first define some concepts following the logic of the human decision. Then we encourage the con-
cept feature extractor to encode information related to predefined concepts. Based on the extracted
concept features, the classifier makes decisions, and the concept mapper maps concept features to
concept instances for visualizing representations of the concept feature extractor.

3.1 PREDEFINED CONCEPTS AND DATASETS

Figure 2: This figure shows some samples of the predefined concept instances. All the instances
except the shape instances are generated by pixel-wise dense annotation. The shape instances are
generated using the Laplacian operator.

To define concepts in accordance with human understanding for specific tasks, we carry out a
human-intuition study. 79 people participate in our study to define concepts for mammal clas-
sification task and scene classification task. According to the study result, we select different
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parts and the shape of the mammal body as the key concepts for mammal classification. For
scene classification, we find that different types of scenes may have totally different concepts.
For example, the concept of the stage may never appear in a bedroom scene. Therefore we se-
lect some common concepts that appear in images from each class of scenes. Finally, we select
head, torso, leg, and shape as concepts for mammal classification. For scene classification, we
select bed, sofa, shelf, and seat as concepts. Examples of concept instances are shown in Figure 2.

Figure 3: This figure shows the importance score
of each concept for the human decision on the
mammal classification task. The importance score
is calculated based on the human-intuition study
result.

As the concepts for mammal classification are
shared between each class, we invite people to
sort the concepts we select according to the im-
portance of these concepts in human decisions.
The importance score for mammal concepts is
shown in Figure 3.

In TCNL, to guide the model to learn infor-
mation about predefined concepts, we propose
a mammal classification dataset and a scene
classification dataset. With fine-grained an-
notation, we build concept instance sets for
both datasets mentioned above. Considering
most datasets (Deng et al., 2009; Lin et al.,
2014; Everingham et al., 2010) do not match
our method, we collect images from existing
datasets (Zhou et al., 2016b) and the Internet
to build our own datasets and give fine-grained
annotation for every image to build concept
sets. Mammal classification dataset includes
5 classes, which are cat, dog, cow, horse, and
panda. Scene classification dataset includes 4
types of scenes in total, which are bedroom, liv-

ing room, store, and theater.

3.2 STRUCTURE AND LEARNING

The TCNL mainly aims at guiding the CNN to learn and encode information related to predefined
concepts. An overview is shown in Figure 1.

Structure of TCNL. In contrast to the traditional CNN structure, TCNL divides the CNN model
into the shallow feature extractor, the concept feature extractor, the concept mapper, and the discrim-
inator. Different parts of the model have different structures1 and perform different functions. The
shallow feature extractor consists of some shallow convolutional layers and pooling layers, aiming
at learning some simple features such as texture and color (Bau et al., 2017). The concept feature
extractor contains some deep convolutional layers and it is encouraged to learn information about
the predefined concepts from simple features. The concept mapper consists of some transposed
convoluational layers. Based on concept features output by the concept feature extractor, the con-
cept mapper maps features to images for visualizing concept representation learnt by the model. In
addition, we use the discriminator to improve the performance of the model on concept learning.

Feature Extraction. TCNL guides the concept feature extractor to learn disentangled representa-
tions about predefined concepts. The feature extraction process in TCNL can be described using
following formulas, and it is also shown in Figure 1.

First, in Equation 1, we build the concept instance set for the specific task T . Concept instances are
used as supervision information for concept learning.

T −→ {(c11, c21, . . . , cl−1
1 , cl1), . . . , (c

1
k, c

2
k, . . . , c

l−1
k , clk)} ∈ C, (1)

where cji denotes a certain concept instance from concept ci and C denotes a concept instance set
including k×l instances (k denotes the number of the concepts and l denotes the number of instances
from a certain concept). For the clear expression of the formulas, we use ci to denote an instance
from a specific concept in the following content.

1The specific structure of each part can be adjusted according to the CNN model applied by TCNL
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Second, in Equation 2, the shallow feature extractor fshallow computes the shallow feature xshallow

of the input image I . Finally, xshallow is passed to the concept feature extractor to compute the
concept feature xci related to concept ci.

xci = fci(xshallow) = fci(fshallow(I)), (2)
where fshallow and fci denote the shallow feature extractor and the concept feature extractor, re-
spectively. xshallow and xci represent the output features of the shallow feature extractor and the
concept feature extractor, respectively.

After the feature extraction, the concept mapper maps the concept feature to the concept instance ĉi
for visualization and the classifier makes the final decision.

Concept Learning. TCNL encourages the model to encode concept-related information while keep-
ing the outstanding performance on classification using the constraint in Equation 3. Lossgan and
Losssimilarity aim at concept learning. Lossclassification(ŷ, y) is a cross entropy loss to keep the
classification performance.

Loss = λLossgan + µLosssimilarity + ηLossclassification(ŷ, y). (3)

Towards the goal of guiding the model to learn knowledge from predefined concepts, we use
Losssimilarity and Lossgan in Equation 3 to constrain the learning process. For Losssimilarity ,
it can be described as Equation 4. Losssimilarity is calculated at the end of the concept mapper,
and affects the concept feature extractor and the concept mapper. It measures the pixel-wise mean
square error between the original concept instance ci and the visualized concept instance ĉi. With
this constraint, the concept feature extractor is guided to encode concept-related information and the
concept mapper is encouraged to map concept features to concept instances.

Losssimilarity =
1

w × h

w∑
n

h∑
m

(cnm − ĉnm)2, (4)

where w and h denote the width and height of the concept instance, respectively. cnm and ĉnm
represents the pixel at coordinates (n,m) in concept instance ci and visualized concept ĉi.

We leverage the advantages of GAN in our TCNL to further enhance the ability of the model to learn
predefined concepts. Lossgan in Equation 3 can be described as Equation 5. Consistent with the
philosophy of GAN, a discriminator is used to classify the original concept instance ci and visualized
concept instance ĉi. Under the influence of the discriminator, the concept feature extractor and the
concept mapper can have better performance in encoding and mapping concept features.

Lossgan = Eĉi [logD(ĉi)] + Eci,ĉi [log(1−D(ci, ĉi))], (5)
where D denotes the discriminator. Discriminator D tries to maximize this function while other
parts of the model with TCNL try to minimize it.

Figure 4: This figure shows the backward propagation process in our TCNL during training.

The backward process is presented in Figure 4. Losssimilarity is back-propagated to the concept
feature extractor and the concept mapper. Lossgan is back-propagated to the concept feature ex-
tractor, the concept mapper, and the discriminator. Lossclassification(ŷ, y) is back-propagated the
shallow feature extractor, the concept feature extractor, and the classifier. During the backward
propagation, the discriminator and other parts of the model are optimized separately.
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Figure 5: This figure shows the CRNP result on each concept in mammal classification dataset. We
compare the result between traditional CNNs (VGG, ResNet, and AlexNet) and models with TCNL.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION

Datasets: All the experiments are performed on mammal classification dataset and scene classifica-
tion dataset. Mammal classification dataset contains 5 classes, 2500 mammal images (500 images
for each class), and 10000 concept instances (2000 instances for each class). Scene classification
dataset contains 4 classes, 2000 scene images (500 images for each class) and, 8000 concept in-
stances (2000 instances for each class). Some samples of the concept instances are shown in Fig-
ure 2.

Implementation. As has been done in other studies (Barbiero et al., 2022; Zhang et al., 2018;
Bau et al., 2017; Dosovitskiy & Brox, 2016), we apply our TCNL to three traditional CNN models
(VGG, AlexNet, ResNet). For hyper-parameters of the training process, we set the learning rate to
0.001, and the batch size to 8 for both datasets.

4.2 METRICS

For evaluating interpretability, we propose Concept-Related Neuron Proportion (CRNP2), which
represents the proportion of neurons that are sensitive to a certain concept. Higher CRNP means
more neurons tend to encode information from a certain concept. We use Mean Squared Error (MSE)
and Structural Similarity (SSIM) (Wang et al., 2004) as the evaluation indicators for the performance
of the concept mapper. MSE measures the pixel-wise similarity between original concept instances
and visualized concept instances and SSIM comprehensively measures the differences in image
brightness, contrast, and structure. For MSE metric, lower is better. For SSIM metric, higher is
better. We also use Accuracy (ACC) to measure the performance on classification tasks.

4.3 RESULTS

4.3.1 CONCEPT-RELATED NEURONS ANALYSIS

Existing research (Zhou et al., 2015; Bau et al., 2017) shows that neurons in deep layers tend to
detect high-level concepts like objects and parts in the image. When concepts are removed from the
image, the activation value usually drops. Based on the research of (Zhou et al., 2015; Bau et al.,
2017), we define Concept-Related Neuron. Taking the head concept as an example, we first calculate
the activation value of each neuron in the last layer of the head concept feature extractor using the
full image as input. Then we remove the head part from the image and calculate the activation
value again using the new image as input. Finally, calculate the average numerical drop of all the
neurons in the last layer of the head concept extractor. Neurons whose activation value decreases
more than the average numerical drop are defined as Concept-Related Neurons. The proportion of
the Concept-Related Neurons is named as CRNP.

2The definition of CRNP is shown in subsubsection 4.3.1
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To analyze the transparency-interpretability of our TCNL, we calculate the proportion of concept-
related neurons in the last layer of the concept feature extractor on mammal classification dataset.
As the result in Figure 5 shows, our TCNL has a better performance on CRNP. Models with TCNL
outperform traditional CNNs on every concept in mammal classification dataset

4.3.2 CONCEPT WEIGHT ANALYSIS

To further analyze the transparency-interpretability of TCNL, we quantitatively measure the impor-
tance of the concepts during the decision process of the model on mammal classfication datasets. To
calculate weight for these concepts, we use gradient back-propagated to the corresponding concept
feature as the concept weight, which is in accordance with the weight calculating method in Sel-
varaju et al. (2017). The gradient value measures the sensitivity of a concept feature to the decision
of the model. A higher gradient value represents a higher weight in classification.

According to the result in Table 1, for human decision, the importance rank of concepts is head,
torso, shape, and leg. However, in our TCNL, four types of concepts (head, torso, leg, and shape)
have similar weights and the shape concept gets the biggest weight in the decision of the model. To
control the weight of concepts in the decision of the model will be our future work.

Table 1: Concept weight on mammal classification task

Subject of decision-making Head Torso Leg Shape
VGG with TCNL 0.22 0.22 0.23 0.33

Human 0.44 0.22 0.16 0.18

4.3.3 VISUALIZATION ANALYSIS

Figure 6: This figure shows the comparison between instances visualized from the concept features
and the original concept instances. For each image pair, the left one is the original concept instance
accessed through annotation and the right one is the output of a concept mapper.

To evaluate the performance of the visualization, we first train three types of models (VGG, AlexNet,
ResNet) with TCNL on mammal classification dataset and scene classification dataset. Then, we
collect the concept visualization results of each image on the two datasets. For each concept, we
calculated MSE and SSIM to evaluate the performance of the concept mapper. The visualization
results presented in Table 2 and Figure 6 prove that the concept mapper can successfully map concept
features to concept instances based on the concept representation of the model.

We also concatenate concept instances visualized by the concept mapper to analyze the positional
association of the concept instances. The result in Figure 7 shows that TCNL is also able to help the
model learn position information among concept instances.

7



Under review as a conference paper at ICLR 2023

Table 2: Evaluation of the visualization quality on each concept using MSE and SSIM

Model and Metric Head Torso Leg Shape Bed Sofa Shelf Seat

ResNet-50 with TCNL
MSE 44.44 36.52 31.34 276.49 93.38 50.61 136.75 64.44
SSIM 0.96 0.96 0.98 0.74 0.95 0.94 0.92 0.95

VGG-11 with TCNL
MSE 54.82 48.03 26.47 205.06 44.79 35.97 105.58 69.28
SSIM 0.96 0.95 0.98 0.77 0.96 0.97 0.94 0.94

AlexNet with TCNL
MSE 98.98 111.56 115.04 505.09 126.26 192.80 152.45 230.87
SSIM 0.92 0.92 0.93 0.69 0.96 0.93 0.92 0.92

Figure 7: This figure shows the positional association of the concept instances. Images above the
arrow are concept instances visualized by the concept mapper. Images below the arrow are concate-
nated from individual concept instances.

4.3.4 VALIDATING THE CONCEPT LEARNING

Figure 8: In this figure, we compare the visualization result between the complete TCNL method
and TCNL without the concept-related constraint for concept feature extractors.

To demonstrate that the high-quality concept visualization stems from concept knowledge learned by
the model, rather than a powerful concept mapper, we specifically design this contrast experiment.
We applied our TCNL on two same VGG models. The first model does not have the concept-related
constraint for encoding concept information while other parts of the model are the same as we have
proposed in section 3. The second model is trained with complete TCNL method. These two models
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are trained on our mammal classification dataset with the same training hyper-parameters (Batch size
set to 8, learning rate set to 0.001). Then we evaluate the visualization performance of the concept
mapper using MSE and SSIM.

Table 3: Visualization comparison between the complete TCNL method and TCNL without concept-
related constraint.

Method and Metric Head Torso Leg Shape

VGG-11 without Concept Constraint
MSE 222.67 113.50 95.07 357.95
SSIM 0.90 0.91 0.94 0.74

VGG-11 with Concept Constraint
MSE 54.82 48.03 26.47 205.06
SSIM 0.96 0.95 0.98 0.77

As the result in Table 3 shows, the model with the concept-related constraint gives a better prefor-
mance. We also present visualization result of these two models in Figure 8. It is clear that the
concept constrain in TCNL helps the model better learn knowledge about predefined concepts.

4.3.5 CLASSIFICATION PERFORMANCE

In addition, we also evaluate the classification performance of the model with TCNL. We train three
types of CNN models (VGG, ResNet, AlexNet) with TCNL on mammal classification dataset and
scene classification dataset. At the same time, we also train traditional VGG, ResNet, and AlexNet,
which are used as baseline methods. ACC is used to measure classification performance. The result
in Table 4 shows the model with TCNL maintains a strong discriminating ability as the traditional
CNN.

Table 4: Classification performance comparison between models with TCNL and traditional CNNs
on mammal classification dataset and scene classification dataset using ACC.

Dataset and Method VGG-11 ResNet-50 AlexNet

Mammal
Original Method 0.68 0.70 0.76
TCNL Method 0.82 0.74 0.82

Scene
Original Method 0.82 0.80 0.78
TCNL Method 0.80 0.75 0.83

5 CONCLUSION

In this paper, we propose TCNL to guide the model to learn knowledge about the predefined con-
cepts. Therefore, transparency-interpretability of the model is improved. In our method, concepts
(such as head, leg, bed, sofa and so on) that fit the logic of the human decision can be defined
artificially. In TCNL, the model is divided into the shallow feature extractor, the concept feature ex-
tractor, the concept mapper, the discriminator, and the classifier. Concept instances used for concept
learning can be easily accessed through artificial annotation. With the concept-related constraint in
TCNL, the concept feature extractor is guided to encode information related to predefined concepts
and the concept mapper is encouraged to map concept features to concept instance images. Refer-
ring to the successful utility of our method, we expect that TCNL has the potential to help people
understand and gain more control on the CNN in more areas than the classification task.
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